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Frictional effects on shear-induced diffusion in
suspensions of non-Brownian particles
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The shear-induced diffusivity of non-Brownian spheres in monodisperse suspensions
undergoing viscous flow was calculated using simulations that account for particle
roughness and friction as independent parameters. The diffusivity increases significantly
as the friction coefficient is increased, and the effect is largest on rougher particles.
Roughness reduces the transverse diffusivities relative to smoother particles for
sufficiently concentrated suspensions of frictionless and low-friction particles. However,
the diffusivity of roughened particles is larger than smoother ones at high values
of the friction coefficient. The increase of the diffusivity with friction is associated
with a significant broadening of the variance of the rotational velocities. The most
prevalent observation, when correlating the microstructure to changes in diffusivity for
frictionless particles, is that less diffusive systems, with larger roughness, form layers
along the flow direction. These results confirm previous experimental and simulation
results that roughness can decrease diffusivity at large concentrations using a more
detailed model. Also, comparisons of the simulation results with previously published
experimental measurements indicate that friction improves the alignment of the results
with experiments.

Key words: suspensions, particle/fluid flow

1. Introduction

In shearing flows of concentrated suspensions, particle collisions are frequent and
significantly alter the dynamics and rheology of the suspensions. Many of these changes
cannot be solely attributed to viscous interactions; allowing for solid–solid contacts during
collisions, even when the suspending fluid is viscous and inertial effects are minimal,
resolves many qualitative discrepancies between models and experimental observations.
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For instance, contact forces create asymmetry in the pair-distribution functions, as
experimentally verified for relatively dilute suspensions (Rampall, Smart & Leighton
1997; Blanc, Peters & Lemaire 2011a), and research indicates that the loss of reversibility
of particle positions in oscillatory shear is due to solid contacts rather than chaos from
hydrodynamic interactions (Metzger, Pham & Butler 2013a; Pham, Metzger & Butler
2015). Likewise, the abrupt changes in rheology measured upon reversing the direction of a
fully developed shearing flow of concentrated suspensions (Kolli, Pollauf & Gadala-Maria
2002; Blanc, Peters & Lemaire 2011b) can be explained by the sudden release of contact
forces at the moment of reversal (Bricker & Butler 2007; Peters et al. 2016). These, and
other examples, are described in detail in a recent and thorough review by Lemaire et al.
(2023).

Simulations incorporate contacts by applying a repulsive force between particle pairs
along their common normal vector when the separation distance drops below a specified
threshold. This range over which this contact force acts can be correlated with particle
roughness (Rampall et al. 1997). Modifying the contact range, or roughness of the particle,
can significantly alter the dynamics, even though the range is a small fraction (10−2 to
10−4) of the particle diameter (Lemaire et al. 2023). For example, the contact force causes
a net displacement between colliding particle pairs in a shearing flow (Da Cunha & Hinch
1996), leading to an effective shear-induced diffusivity after multiple random collisions.
Consequently, larger roughness results in higher diffusivity for small concentrations.
However, measurements and simulations indicate that roughened particles diffuse less
than smoother ones in concentrated suspensions (Zhang et al. 2023). Corresponding
simulations indicated that the rougher particles form layers in the flow direction and that
this layered structure results in a reduced diffusivity.

The presence of solid–solid contact suggests that frictional forces may also play a role
in the suspension dynamics, and models incorporating friction have been developed to
study the rheology of suspensions (Seto et al. 2013; Gallier et al. 2014; Mari et al. 2014).
Including friction increases the viscosity, and discontinuous shear thickening (Brown &
Jaeger 2014) can be predicted by also adding electrostatic interactions to friction (Seto
et al. 2013) or using a load-dependent friction (Mari et al. 2014). These methods have also
been used to simulate the pressure-imposed rheology of frictional particles (Athani et al.
2022). However, few results are available regarding the impact of friction on shear-induced
diffusion. While simulations predict that friction significantly increases shear-induced
diffusivity (Gallier 2014; Singh & Saitoh 2023), these results have not been fully explored,
especially in light of recent work which suggests roughness decreases diffusivity at high
concentrations (Zhang et al. 2023).

To address the combined effects of friction and roughness on diffusivity, we have
developed a simulation that integrates a frictional contact model with lubrication
interactions, similar to the approach of Mari et al. (2014). Given the lack of a clear relation
between roughness and friction, both were varied independently to explore their effects
on shear-induced diffusivities. Our simulations confirm that in sufficiently concentrated
suspensions, rough particles exhibit lower transverse diffusivity compared with smooth
particles when friction is absent. As the friction coefficient increases, diffusivity rises
significantly, with the effect being more pronounced for rougher particles. This larger
increase is substantial enough that, at sufficiently high friction coefficients, the diffusivity
of roughened particles surpasses that of smoother ones. Comparing the results with
experimental data shows improved predictions when friction is included. These findings
provide insights into the suspension dynamics and also have practical implications for
mixing and heat transfer within flowing viscous suspensions (Lopez & Graham 2008;
Wang et al. 2009; Metzger, Rahli & Yin 2013b; Souzy et al. 2015).
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2. Methods

A monodisperse suspension of neutrally buoyant non-Brownian spheres of radius a
suspended in a Newtonian fluid is considered. Both the fluid and particle inertia are
neglected under the assumption that the Reynolds number, Re = ρa2γ̇ /η, is low. Here,
ρ is the density of the fluid and the particles, γ̇ is the shear rate and η is the viscosity of
the fluid. Similarly, Brownian diffusion also is ignored since the particles of interest are
relatively large (i.e. >10 μm). The equations that follow are presented non-dimensionally
using the particle radius a as the characteristic length, the inverse of the shear rate γ̇−1 as
the characteristic time and 6πηγ̇ a2 as the characteristic force.

The suspension motion is driven by a simple shear flow U∞

U∞(r) = Ω∞ × r + E∞ · r, (2.1)

where the rate-of-strain tensor E∞ and vorticity Ω∞ have non-zero elements of E∞
12 =

E∞
21 = 1/2 and Ω∞

3 = −1/2. The position, translational and rotational velocities of any
particle α are denoted as rα , Uα and Ωα , respectively. In the absence of inertia, the forces
acting on particles are balanced and the equation of motion is(

F (H)

T (H)

)
+
(

F (C)

T (C)

)
= 0, (2.2)

where F and T are the force and torque vectors, respectively. The superscripts H and C
indicate hydrodynamic and contact forces.

2.1. Hydrodynamic forces
Long-range hydrodynamic interactions are not included in the current model since the
goal is to study concentrated suspensions where short-range lubrication forces dominate.
Therefore, only the Stokes drag and lubrication interactions were included, and the
hydrodynamic force and torque acting on each particle α are

F (H)α = F (S)α +
∑
β /=α

F (L)αβ and T (H)α = T (S)α +
∑
β /=α

T (L)αβ , (2.3a,b)

where
F (S)α = U∞(rα)− Uα and T (S)α = (4/3)(Ω∞ − Ωα) (2.4a,b)

are the Stokes drag force and torque and F (L)αβ and T (L)αβ are the short-range lubrication force
and torque between particles α and β. The lubrication forces are applied only when the
gap between particle surfaces, hαβ = rαβ − 2, satisfies the constraint hαβ � 0.5. Here, rαβ
is the length of the vector rαβ = rβ − rα connecting the particles α and β. It is shown in
figure S1 of the supplementary material available at https://doi.org/10.1017/jfm.2024.1121
that the cutoff lubrication range has a relatively small effect on diffusivity. The short-range
lubrication force and torque are given by⎛

⎜⎜⎜⎜⎜⎜⎝

F (L)αβ

F (L)βα

T (L)αβ

T (L)βα

⎞
⎟⎟⎟⎟⎟⎟⎠

= R(L)αβ ·

⎛
⎜⎜⎜⎜⎝

U∞(rα)− Uα

U∞(rβ)− Uβ

Ω∞ − Ωα

Ω∞ − Ωβ

⎞
⎟⎟⎟⎟⎠+ R̂

(L)
αβ :

(
E∞

E∞

)
, (2.5)
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where R(L)αβ and R̂
(L)
αβ are resistance matrices (Jeffrey & Onishi 1984; Kim & Karrila 1991;

Jeffrey 1992) Their elements are summarized in Appendix A.

2.2. Contact and friction forces
Contact forces are applied when hαβ � 2ε, where ε is the particle roughness. The normal
contact force is expressed using a Hertzian contact model (Pöschel & Schwager 2005;
Radjai & Dubois 2011). This model accounts for the deformation of contacting spherical
asperities on the surface and the force is given by

F (C,n)αβ =
{

−kn|hαβ − 2ε|3/2nαβ if hαβ � 2ε,

0 if hαβ > 2ε.
(2.6)

Here, kn is the normal stiffness and nαβ = rαβ/rαβ is the unit vector pointing from particle
α to particle β. In principle, the normal stiffness kn can be estimated from the particle’s
mechanical properties. However, in this work, the approach of Gallier et al. (2014) is
adopted and kn is chosen so that the repulsive force balances with the characteristic
force (i.e. 6πηγ̇ a2 when written dimensionally). Making the balance when the separation
distance is hαβ = 2(ε − δ) gives

kn(2δ)3/2 = 1, (2.7)

where δ is set to 0.05ε. This choice for δ has a negligible effect on diffusivity if δ is
sufficiently small (δ � 0.15ε), as demonstrated in §§ 3.1 and S1. Also note that the value
of δ is limited from above: a large δ (and, hence, a small kn) leads to overlap between
particles, as detailed in § S1 of the supplementary material.

In addition to the normal contact force, particles in contact (hαβ � 2ε) experience
friction in the tangential direction. According to Coulomb’s law of friction, when two
particles are in contact, the magnitude of the friction force F (C,t)αβ opposing their relative
motion is

F(C,t)αβ =
⎧⎨
⎩
μF(C,n)αβ , if |
U (t)

αβ | /= 0 (dynamic regime),

0 . . . μF(C,n)αβ , if |
U (t)
αβ | = 0 (static regime).

(2.8)

Here, the friction coefficient is μ and


U (t)
αβ = (I − nαβnαβ) · [Uβ − Uα − (Ωα + Ωβ)× nαβ] (2.9)

is the relative tangential velocity of the particle surfaces and I is the identity tensor. In
(2.8), the notation in the last condition indicates that the static frictional force can take on
multiple values and is not known a priori. Also note that the static and dynamic friction
coefficients are set to the same value within this model.

The main challenge in a numerical implementation of this friction law is to obtain the
static tangential force F(C,t)αβ such that 
U (t)

αβ = 0 for a given configuration. To address
this challenge, we use the Cundall–Strack tangential spring method (Cundall & Strack
1979; Luding 2008), which is commonly used for simulating granular materials (Walton
1983; Tsuji, Tanaka & Ishida 1992; Lee 1994) and has been incorporated into models of
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suspensions (Gallier et al. 2014; Mari et al. 2014). This method introduces a fictitious
spring so that the tangential force and the torque are given by

F (C,t)αβ = ktξαβ and T (C,t)αβ = nαβ × F (C,t)αβ , (2.10a,b)

respectively. Here, kt is the tangential stiffness and ξαβ is the tangential spring vector
corresponding to the colliding particles (α and β). Upon initial contact, the spring length
is set to zero and then incremented by the relative displacement of the particle surfaces

ξ̃αβ(γ +
γ ) = ξαβ(γ )+
U (t)
αβ(γ )
γ, (2.11)

where γ is the strain, 
γ is the step size and ξ̃αβ refers to an intermediate spring
vector during a simulation step. The particles are in the static friction regime when
ktξ̃αβ < μF(C,n)αβ and are in the dynamic regime otherwise. In the latter case, the spring
length is reset to ensure that (2.10a,b) yields the correct dynamic friction. Hence, the
spring length is

ξαβ(γ +Δγ ) = min
(
ξ̃αβ(γ +
γ ),

μ

kt
F(C,n)αβ (γ )

)
. (2.12)

After the spring length is determined, the spring is re-oriented in the tangential direction,
i.e.

ξαβ = tαβξαβ, (2.13)

where

tαβ = (I − nαβnαβ) · ξ̃αβ

|(I − nαβnαβ) · ξ̃αβ |
. (2.14)

When the contact ends, the spring vector ξαβ is reset to zero.
Following the literature (Shäfer, Dippel & Wolf 1996; Silbert et al. 2001; Gallier et al.

2014), the tangential stiffness is set to

kt = mkn
√

2δ, (2.15)

where the prefactor m is 2/7 unless stated otherwise. Since kt is an artificial parameter that
determines a threshold for switching between the static and dynamic regimes, its specific
value should not affect the simulation result. For a sufficiently large tangential stiffness kt,
(2.12) ensures that the system is in a dynamic regime when the particles are sliding past
each other and is in a static regime when their relative surface velocity 
U (t)

αβ is close to
zero. This is illustrated by an example of two spheres colliding in § 3.2. Also, we verify
in §§ 3.2 and S1 of the supplementary material that kt has a relatively small effect on
diffusivity for m � 2/7.

2.3. Numerical implementation
The particle velocities were obtained from their instantaneous positions and contact
forces by solving the force balance equations (2.2) using a conjugate gradient solver
(Press et al. 1992) that takes advantage of sparsity of the resistance matrix. The particle
positions were updated using the fourth-order Adams–Bashforth method (Hairer, Nørsett
& Wanner 1993; Butcher 2016). The step for the numerical integration was varied between
2 × 10−4 for particles with roughness ε < 2 × 10−2 and 5 × 10−4 for particles with
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roughness 2 × 10−2. Selection of the timestep was confirmed by analysis of convergence
of the measured diffusivity as a function of the step size.

All reported simulation results were performed in a periodic cubic cell with sides of
length 20 and Lees–Edwards boundary conditions (Lees & Edwards 1972) were employed
for shearing of the periodic cell. Simulations where the box height was doubled produced
the same diffusivity within the error. Initially, the particles were placed in the simulation
box sequentially with their positions sampled from the uniform random distribution. When
a particle overlapped the others, the particle was reassigned to a new random position until
no overlap existed. For simulations at the largest considered concentration, φ = 0.45, the
particle radius was reduced to 80 % of its original size to accelerate the generation of initial
configurations. Then the particles were restored to their original size and the system was
sheared forwards until all overlaps disappeared.

After obtaining a non-overlapping configuration, the system was sheared until it reached
steady state. Approach to steady state was determined by monitoring the number of
contacts in the system. Once the number of contacts per particle approached a constant,
the system was considered to be steady. Most systems reached steady state by the strain of
20, whereas rough (roughness ε = 2 × 10−2) frictionless particles at the volume fraction
φ = 0.45 required a strain of 80 to reach steady state. Data collection for evaluating the
reported microstructures and diffusivities began only after reaching steady state.

Each reported diffusivity represents the average across all particles for eight different
simulations. Variations in the computed diffusivities for each set of conditions arises due
to the assignment of the initial particle positions, hence the standard error was computed
from the diffusivity values of each of the separate eight runs. The errors are approximately
the size of the symbols representing the diffusivities, save for the results for small values
of kt (see figure S3 of the supplementary material).

3. Results: pairwise collisions

3.1. Collisions of frictionless particles
Representative trajectories of pairwise collisions of frictionless particles are shown in
figure 1(a). In order to visualize the trajectories near their apex, figure 1(b) shows h/2ε vs
θ , where h is the distance between particle surfaces, ε is the particle roughness and θ is
the angle between the vector connecting the particle centres and the negative direction of
the x-axis, as shown in figure 1(a).

If particles do not come into contact during a collision (i.e. h is always greater than 2ε,
as for trajectory 1 in figure 1a), their trajectories are reversible and result in a zero offset
in the transverse direction. If particles come into the contact (e.g. trajectories 2, 3 and 4
in figure 1), their motion becomes irreversible, which results in a non-zero offset in the
transverse direction. The offset depends on the particle roughness (with rougher particles
having a larger offset), but not on the initial conditions, as long as a contact between
particles takes place, as illustrated by trajectories 2 and 3 in figure 1(a). After the particles
contact, they follow the same trajectory determined by the particle roughness.

Moreover, during contact, the trajectory normalized by the particle roughness is nearly
independent of particle roughness, as evident from figure 1(b). Of course, particles of
different roughness come into contact (h � 2ε) at different θ . However, they escape
the contact region of h � 2ε at approximately the same θ , θ ≈ 90◦. The offset is then
determined by a reversible trajectory with the initial conditions at h = 2ε, θ ≈ 90◦.

The trajectory during contact depends on the value of the elastic force constant kn, as
shown in figure 1(b). Note that the closest approach hmin of two particles is closely related
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(b)(a)

ε = 2 × 10–3

ε = 2 × 10–2

ε = 2 × 10–3, δ = 0.05ε

θ

ε = 2 × 10–3, δ = 0.15ε

ε = 2 × 10–2, δ = 0.05ε

ε = 2 × 10–2, δ = 0.15ε

Figure 1. Pairwise collisions of frictionless particles: (a) trajectories of smooth (ε = 2 × 10−3) and rough
(ε = 2 × 10−2) particles are shown by dashed blue and solid red lines, respectively; (b) dependence of
the normalized gap h/2ε between the particle surfaces on the angle θ between the vector connecting the
particle centres and the negative direction of the x-axis for trajectories experiencing a contact. Trajectories
corresponding to different values of kn (determined by δ, see (2.7)) are shown. The border between reversible
(no contact) and irreversible (contact) segments of the trajectories is shown by the dashed magenta line at
h/2ε = 1.

to the parameter δ used in the definition (2.7) of kn, hmin ≈ 2(ε − δ). Despite the fact that
the particle trajectories for different kn differ during their contact, the value of the offset
at the end of a collision is nearly independent of kn, since it is determined by the point
at which the contact is lost, i.e. h = 2ε, θ ≈ 90◦, which is very similar in all considered
cases. Our calculations show that, for δ varying between 0.01 and 0.15, the value of the
offset in pairwise collisions changes by less than 0.5 %. Consequently, the effect of the
normal elasticity kn on diffusivity in dense suspensions is also relatively small, as shown
in figure S2 of the supplementary material.

3.2. Collisions of particles with friction

Friction substantially reduces the relative tangential velocity 
U (t)
αβ of particle surfaces

during contact and, for a substantial segment of the trajectory during contact, this velocity
is nearly zero, as shown in figure 2(a). In the absence of friction, particle surfaces slide
past each other, whereas friction leads to particles rolling on each other. However, friction
has a relatively small effect on the translational motion of the centre of mass of the
particles during a pairwise collision: the trajectories are nearly identical (see figure S4
of the supplementary material) and reduction of the translational velocity by friction is
typically less than 7 % (see figure 2b). Consequently, friction has a negligible effect on
the particle offset due to a collision and a marginal effect on the time of the collision. In
all considered cases, the duration of particle contact is extended by less than 5 % in the
presence of friction.

Reduction of the relative surface velocity 
U (t)
αβ by friction is accomplished largely

by changing the rotational velocity of the particles. Friction substantially increases the
magnitude of the relative rotational velocity, as seen in figure 2(c). The typical increase
of the rotational velocity for the considered particles is approximately 30 %. As will be
shown in § 4.2, this increase in rotational velocity plays an important role in the dynamics
of dense suspensions.

Figure 2(d) shows forces associated with friction during a collision, illustrating the
Cundall–Strack method for modelling friction for different values of the tangential spring
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D
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μ = 0

μ = 0.5

μ = 0

μ = 0.5
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0
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0.10

0.15F
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0.25

0.30

|�
U
α
β
 |

(t)

|U
β
 –

 U
α
 |

(b)(a)

(c) (d )

Figure 2. Pairwise collisions of smooth particles (ε = 2 × 10−3) with and without friction: (a) relative
tangential surface velocities |
U (t)

αβ |, (b) relative translational velocities, (c) relative rotational velocities
Ωr = Ωα,z +Ωβ,z − 2Ω∞

z and (d) normalized tangential spring length, ktξαβ , and the dynamic friction force,
μF(C,n)αβ . The contact takes place between points A and D. The friction coefficient of the frictional particles is
μ = 0.5. Panel (d) shows ktξαβ for several values of kt (kt is determined by the prefactor m, see (2.15)).

stiffness kt. The particles are in a static friction regime immediately after contact, even
though their relative surface velocity 
U (t)

αβ is large. However, this static regime is very
short lived: the tangential spring ξαβ quickly becomes large enough for the system to
transition into a dynamic friction regime (point A in figure 2).

While the particles are in the dynamic friction regime, the tangential spring length
is reset to (μ/kt)F

(C,n)
αβ at every step (see (2.12)), so that the spring forgets the history

associated with the relative surface velocity 
U (t)
αβ . This continues as long as the

magnitude of 
U (t)
αβ is large enough so that the increment 
U (t)

αβ
γ of the spring length

exceeds the change in the normalized dynamic friction force, (μ/kt)F
(C,n)
αβ , during a

numerical step.
The friction slows down the relative motion of particles and the particle velocity

eventually approaches zero, leading (2.12) to switch the friction force to the static regime
at point B in figure 2. This transition takes place at approximately the same time for a wide
range of the spring force parameter kt. Note, however, that if kt is too small (m � 0.01, see
(2.15)), the relative tangential velocity substantially deviates from zero even in the static
regime. In general, the tangential velocity, albeit small, does not become exactly zero in the
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Figure 3. (a) Representative mean-squared displacements for suspensions with volume fraction φ = 0.45;
(b) diffusion coefficient as a function of volume fraction for frictionless (μ = 0) and frictional (μ = 0.5)
particles for two values of roughness ε.

static friction regime and the magnitude of 
U (t)
αβ in this regime is inversely proportional

to kt.
The friction force remains static until the normal force F(C,n)αβ decreases to the value

stored in the spring length (i.e. until μF(C,n)αβ � ktξ̃αβ), at which point the friction
transitions to the dynamic regime (point C in figure 2). While in the static regime, the
spring elongates according to (2.11). This introduces a correction to the value ktξ̃ab/μ to
which the normal force needs to decrease for the transition from the static to the dynamic
regime. This correction (ktξαβ) is relatively independent of the spring constant kt, since

U (t)

αβ , and hence ξαβ , is inversely proportional to kt. Therefore, the specific value of
kt has a relatively small effect on pairwise collisions. As m ranges from 10−2 to 2, the
duration of particle contact is reduced by less than 1 % and the offset remains unchanged.
It is shown in figure S3 of the supplementary material that the effect of the kt value on
particle diffusivity in a dense suspension is also small, as long as kt is sufficiently large
(m � 2/7).

4. Results: many-body systems

Representative mean-squared displacements 〈(
y)2〉 = 〈( y(γ )− y(0))2〉 in the transverse
direction of particles in suspensions are shown in figure 3(a); note that γ = 0 corresponds
to the strain at which the suspension has already achieved steady state and the angle
brackets (〈·〉) indicate an average over all particles and simulations. After an initial
transient, the mean-squared displacement scales linearly with strain, thus confirming
that the particles undergo a diffusive motion. Their diffusivity is obtained by fitting the
mean-squared displacement to a linear relationship

〈(
y(γ ))2〉 − 〈(
y(γ0))
2〉 = 2Dyy (γ − γ0) , (4.1)

over strains for which 〈(
y)2〉 scales linearly with strain. The additional strain (γ0)
required to reach the diffusive regime after reaching steady state (γ = 0) varied between
30 and 70, depending on the system. Further details on diffusivity calculations are
provided in § S3 of the supplementary material.
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Figure 4. Snapshots of steady-state system configurations of frictionless particles at the volume fraction
φ = 0.45 with (a) ε = 2 × 10−2 and (b) ε = 2 × 10−3. The plots show projections of the particle positions
onto the x–y plane. For clarity, particles are represented by circles with a radius smaller than the actual particle
radius.

Figure 3(b) shows the dependence of the diffusion coefficient Dyy in the gradient
direction on suspension concentration φ for particles with different roughness and friction
coefficient. In the absence of friction, the diffusivity exhibits a non-monotonic dependence
on φ, with Dyy growing at small φ and decreasing at large φ. This result is in qualitative
agreement with the simulations of Zhang et al. (2023), which utilized less detailed models
for lubrication and contact forces. In contrast, frictional particles exhibit a monotonic
increase of diffusivity with φ.

The remainder of the results focus on suspensions with φ = 0.45, where the differences
between frictional and frictionless diffusivities are largest. Also note that the diffusivities
predicted for the range of volume fractions studied here (0.25 to 0.45) closely match
those predicted by Stokesian dynamics simulations (Sierou & Brady 2004) that include
long-range hydrodynamic interactions, at least in the absence of friction (see figure S5 of
the supplementary material). However, long-range hydrodynamic interactions may have
a greater effect when friction is considered, although at higher concentrations such as
φ = 0.45, its influence is expected to be minimal, further justifying the focus on this
volume fraction.

4.1. Effect of particle roughness
Figure 3(b) shows that, at sufficiently high concentrations, the diffusivity of rough,
frictionless particles is lower than that of the smooth particles. Using simulations that
neglected tangential and rotational components of the lubrication force, Zhang et al. (2023)
previously demonstrated that the reduction in diffusivity for rough particles is due to the
layering of rough particles. Here, results indicate that the same layering mechanism holds
for the more accurate lubrication and normal contact models considered in the current
simulations. Typical snapshots of suspensions of frictionless rough and smooth particles
are shown in figure 4. Layering is clearly visible for the rough particles in figure 4(a).

Layering is also evident from the pair-correlation function averaged over the azimuthal
angle

ḡ(r, θ) =

∫ 2π

0
g(r, θ, ψ) dψ

2πr2 sin θ
, (4.2)
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Figure 5. Logarithm of the averaged pair-correlation functions ḡ(r, θ) of particles at the volume fraction
φ = 0.45 with (a) ε = 2 × 10−2, μ = 0, (b) ε = 2 × 10−3, μ = 0, (c) ε = 2 × 10−2, μ = 0.25 and
(d) ε = 2 × 10−3, μ = 0.25. The function ḡ is normalized so that ḡ(r, θ) → 1 as r → ∞.

where r is the length and θ andψ are the polar and azimuthal angles of a vector connecting
particle centres, g(r, θ, ψ) is the pair-correlation function and the denominator in (4.2)
corresponds to the volume over which g(r, θ, ψ) is averaged. The averaged pair-correlation
function ḡ(r, θ) is shown in figure 5. Note the strong layering for rough particles without
friction (see figure 5a). The pair-correlation function suggests that particles also exhibit
some layering at other conditions, but it is much weaker. In particular, adding friction to
the rough particle model substantially reduces layering (see figure 5c), which is consistent
with the larger diffusivity of those particles than particles without friction, see figure 3(b).

To better quantify the layering, we computed the suspension structure factor

S(q) = 1
N

N∑
α,β=1

〈exp(iq · (rα − rβ))〉, (4.3)

where N is the total number of particles in the system and q = (qx, qy, qz) is the
wavevector. Up to an additive constant and a multiplicative factor, the structure factor
corresponds to the Fourier transform of the pair-correlation function g(r). To focus on
layering in the gradient (y) direction, we consider the structure factor corresponding
to the wavevector q = (0, qy, 0). These structure factors for several systems are shown
in figure 6(a). Clearly, there is a large peak at the wavelength of λ ≈ 2 for the rough
frictionless particles, which indicates layering with spacing between layers corresponding
to the particle diameter. The peak corresponding to layering is observed in all systems
plotted in figure 6(a), but its magnitude is at least an order of magnitude higher for
rough frictionless particles than for other considered particles, confirming that the rough
frictionless particles are much more ordered. Additionally, the strong layering for the rough
frictionless particles remains the same even when the box size is doubled in the gradient
direction, indicating that the layering does not depend on box size when it exceeds 20.
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Figure 6. Microstructure characteristics of suspensions at the volume fraction φ = 0.45: (a) the structure
factors S as a function of the wavenumber λ = 2π/qy in the gradient direction and (b) mean number of contacts
Nc per particle per timestep.

In earlier work, Zhang et al. (2023) assumed that layering lowers diffusivity by reducing
the number of particle contacts. However, a direct calculation shows that the layered
structures of frictionless rough particles have more contacts per particle than the relatively
disordered structures of frictionless smooth particles, see figure 6(b).

The smaller diffusivity of rough particles is explained by the fact that the particles in
layered structures tend to stay in their layer. Typical trajectories are shown in figure 7.
It is evident that, for rough frictionless particles, most trajectories stay within the range
−1 � y − y(0) � 1, where γ = 0 is the strain at which the system reached steady state.
Also, when a particle moves away from its layer, it is often reflected back by another
layer. This is also evident from the oscillations of the velocity autocorrelation function
Cyy(τ ) = 〈Uy(t)Uy(t + τ)〉 for these particles shown in figure 8, which suggest collisions
in which particles are reflected back rather than translating into another layer. Hence,
transitions between layers of frictionless rough particles are rare events. In contrast,
smooth frictionless particles, as well as particles with friction, exhibit a relatively uniform
(in time) diffusion (see figure 7) and their velocity autocorrelation functions do not exhibit
oscillations (see figure 8).

4.2. Effect of friction
Figure 3(b) shows that increasing the friction coefficient μ from 0 to 0.5 substantially
increases the shear-induced diffusivity of both smooth and rough particles. Effects of
further increasing the friction coefficient are shown in figure 9(a), which indicates that
the diffusivity Dyy continues to increase as μ increases. The rate of increase of Dyy with
μ is larger for rougher particles, and the diffusivity of rough particles surpasses that of
smooth particles for μ � 0.25.

Figure 9(b) indicates that the addition of friction to the model improves the agreement
with the experiments of Metzger et al. (2013b). The experiments were performed for
a suspension of particles similar to that of Zhang et al. (2023) (roughness ε = 3.8 ×
10−3) at a volume fraction of φ = 0.45. Simulations of frictionless particles at these
conditions predict a diffusivity lower than that measured experimentally. However, since
friction increases the diffusivity, at a sufficiently large friction coefficient (μ � 0.25),
the predictions for diffusivity exceed the experimental result. Linear interpolation of
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Figure 7. Representative trajectories of particles in a suspension with the volume fraction φ = 0.45 with
(a) ε = 2 × 10−2, μ = 0, (b) ε = 2 × 10−3, μ = 0, (c) ε = 2 × 10−2, μ = 0.25, (d) ε = 2 × 10−3, μ = 0.25.
Here, γ = 0 is the strain at which the system reached steady state. The dashed lines in panel (a) indicate the
locations of layers.
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Figure 8. Representative normalized velocity autocorrelation functions Cyy for suspensions at the volume
fraction φ = 0.45.

the simulation results suggests that the simulations are in agreement with experiment at
μ ≈ 0.2. Also note that the diffusivity values show relatively little variation with changes
in roughness for this value of the friction coefficient, as shown in figure 9(b).

The increase of diffusivity with increasing particle friction is somewhat counterintuitive,
as one typically associates increased friction with reduced mobility and slower
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Figure 9. (a) Effect of the friction coefficient μ on the diffusion coefficient Dyy. (b) Comparison of diffusivity
of particles with roughness ε = 3.8 × 10−3 obtained by the simulations with the experimental result of
Metzger et al. (2013b). At μ = 0.18, results of simulations for several values of roughness are shown. Data
for suspensions with volume fraction φ = 0.45 are shown.
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Figure 10. Effect of the friction coefficient μ on Smax, the peak value of the structure factor S at λ ≈ 2, which
indicates the extent of particle layering. Data for suspensions with volume fraction φ = 0.45 are shown.

transport processes. This phenomenon can be partly attributed to decreased particle
layering as μ increases. Layering in suspensions is quantified by the structure factor’s
peak (Smax) at λ ≈ 2 (see figure 6a). Figure 10 shows Smax decreasing with rising μ,
indicating reduced suspension layering. For rough particles, Smax decreases by more than
an order of magnitude as μ increases from 0 to 0.25. This disruption of layers in the
suspension induced by friction facilitates diffusivity, as confirmed by sample trajectories
of rough particles with friction shown in figure 7(c). Unlike the rough frictionless particles
(shown in figure 7a), the rough frictional particles do not remain in the same layer for large
strains before jumping to another layer. Further evidence of the changed dynamic of rough
particles is provided by the velocity autocorrelation functions (see figure 8), which do not
exhibit oscillations at μ = 0.25, in contrast with the frictionless rough particles.

The disruption of layering by friction within suspensions of monodisperse particles
also leads to higher viscosities (Goyal et al. 2022) as well as diffusivities. However,
friction-induced disorder provides only a partial explanation for the diffusivity increase
with friction, since the magnitude Smax of the structure factor peak reaches an asymptote
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Figure 11. (a) Probability distribution of the relative rotational velocity Ωz −Ω∞
z in the z-direction for

frictional (μ = 0.25) and frictionless (μ = 0.0) particles with two values of roughness, ε. (b) Dependence
of the variance σ 2

Ω of the rotational velocity Ω on the friction coefficient μ for smooth and rough particles.
Data for suspensions with volume fraction φ = 0.45 are shown.

at large μ (see figure 10), whereas the diffusivity increase continues (see figure 9a).
Moreover, smooth particles are disordered even at μ = 0.

Further insights into the mechanism of increasing diffusivity with friction are provided
by an examination of the rotational velocity fluctuations of particles. The magnitude
of fluctuations of the rotational velocity Ω of frictional particles is larger than that of
frictionless particles (see figure 11a), and the variance σ 2

Ω of Ω grows with friction (see
figure 11b).

The increase of σ 2
Ω with μ is caused by reduction of the relative tangential velocity


U (t)
αβ by friction. During pairwise collisions, friction reduces the relative tangential

velocity 
U (t)
αβ of particles, which is accomplished by increasing the magnitude of their

relative rotational velocity (see § 3.2 and figure 2). A similar reduction in 
U (t)
αβ upon

contact is observed for frictional particles in dense suspensions. Figure 12 illustrates this
phenomenon by showing the dependence of the mean magnitude of 
U (t)

αβ on relative
particle positions during and near contact. Achieving this reduction requires increasing
the relative rotational velocities of particles, similarly to the pairwise collisions, which in
turn leads to larger fluctuations of the rotational velocity (see figure 11).

The larger rotational velocity fluctuations are then transmitted to the translational
velocity via perturbations of the fluid and the network of contacts formed by the particles.
As a result, the variance σ 2

U of the translational velocity exhibits trends similar to those
of σ 2

Ω , as evident from figure 13. The growth of σ 2
U with friction gives a corresponding

increase of diffusivity, as well as the destruction of layers by friction.
The rate of increase of σ 2

Ω with μ is larger for rough particles, which is consistent with
the larger rate of increase of the diffusivity of these particles. A likely reason for the larger
growth of σ 2

Ω with μ of the rough particles is the larger number of contacts per particle
(see figure 6b), which leads to larger fluctuations of the rotational velocity.

5. Discussion and conclusions

Simulations were conducted to evaluate the effects of particle roughness and friction
on the shear-induced diffusivity of suspensions. The results predict that concentrated
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Figure 12. Mean relative tangential velocity 
U (t)
αβ near contact at the volume fraction φ = 0.45 with

(a) ε = 2 × 10−2, μ = 0, (b) ε = 2 × 10−3, μ = 0, (c) ε = 2 × 10−2, μ = 0.25 and (d) ε = 2 × 10−3,
μ = 0.25.

suspensions of rough particles exhibit lower diffusivity compared with smooth particles
when friction is either not considered or is sufficiently low. These simulations confirm
the experimental and computational findings of Zhang et al. (2023), while incorporating
additional components of hydrodynamic interactions and an improved contact model. The
observed reduction in diffusivity is attributable to enhanced flow-aligned layering of rough
particles. This well-organized structure retains particles on the same streamline for large
strains, with infrequent transitions between layers.

At high concentrations, introducing friction significantly disrupts the layering of rough
particles and increases their diffusivity, irrespective of roughness. Friction has a negligible
impact on pairwise collisions, indicating that the disruption of the microstructure by
friction is an inherently many-body effect. When examining the dynamics, friction is also
observed to greatly increase the variation of the rotational velocities of the particles which,
in turn, causes an increase in the centre of mass fluctuations and diffusivity, as argued in
§ 4.2.

Notably, the addition of friction enhances the alignment of simulated diffusivities
with experimental measurements, as originally determined by Gallier (2014). In the
current simulations, however, the friction coefficient and the roughness (the range
ε over which the Hertzian contact acts) have been independently varied. Ideally,
understanding the relationship between them would enable more detailed comparisons
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Figure 13. Effect of the friction coefficient μ on the variance σ 2
U of the transverse velocity of particles in

suspensions with volume fraction φ = 0.45.

with experimental data. Tribology literature (Spikes 1997) suggests that, in the mixed
lubrication regime, where both lubrication and asperity contact occur simultaneously,
increasing roughness generally results in a higher coefficient of friction. However, friction
also depends on other factors, such as the texture or pattern of the roughness, which can
change that trend (Spikes & Olver 2003).

If rougher particles indeed experience higher frictional forces, the results presented
here suggest a potential cancellation of effects, which may limit changes in diffusion due
to varying particle roughness. At high concentrations, roughening the particles reduces
diffusivity when holding the friction at a low value. However, roughening probably
increases the friction coefficient, which increases the diffusivity. Hence, experimental
observations made by Zhang et al. (2023) of a lower diffusivity for roughened particles
suggests that the friction coefficient (of the smooth and rough particles) was very low.

Roughness can significantly alter tangential lubrication forces even in the absence of
solid–solid contact, effectively changing the frictional behaviour (Spikes 1997). Recent
studies focused on suspensions (Jamali & Brady 2019; Yariv et al. 2024) have also
suggested that lubrication interactions between asperities can mimic the effects of friction.
The strength of tangential lubrication interactions between smooth surfaces scales as
log(1/h), offering little resistance to relative motion. However, the approach of asperities
during tangential motion provides a large, additional resistance. This concept has been
used to predict discontinuous shear thickening (Wang, Jamali & Brady 2020) and might
also be a useful framework for predicting increased diffusivities, similar to the effects of
friction explored in this study.

In this paper, all results were computed using periodic boundary conditions and spheres
of uniform size. Deviating from these conditions can alter the predicted diffusivities.
Confining the suspension between bounding walls impacts the microstructure and
diffusivity of the suspensions. For example, Zhang et al. (2023) found that confining
roughened particles between walls separated by less than 10 diameters results in increased
layering and lower diffusivity. Regardless of the roughness, the simulations predicted
that the diffusivity remained constant when the wall separation exceeded 10 diameters.
When friction is considered, bounding walls would likely further influence the structure
and diffusivity predictions. This is an important consideration for comparing with
experimental measurements, as these are often made within confined systems. Real
systems also typically contain some degree of polydispersity in particle size. Zhang et al.
(2023) found that polydispersity reduces the differences in diffusivity between frictionless
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rough and smooth particles. Specifically, increasing the polydispersity was observed
to increase the diffusivity of rougher particles. However, the effect of polydispersity
on diffusivity in suspensions with friction remains unknown and warrants further
investigation.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.1121.
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Appendix A. Details of the model for hydrodynamic interactions

The resistance matrices are (Jeffrey & Onishi 1984; Kim & Karrila 1991; Jeffrey 1992)

R(L)αβ =

⎛
⎜⎜⎜⎝

A(αα) A(αβ) B̃
(αα)

B̃
(αβ)

A(βα) A(ββ) B̃
(βα)

B̃
(ββ)

B(αα) B(αβ) C(αα) C(αβ)

B(βα) B(ββ) C(βα) C(ββ)

⎞
⎟⎟⎟⎠ , (A1)

and

R̂
(L)
αβ =

⎛
⎜⎜⎜⎜⎝

G̃
(αα)

G̃
(αβ)

G̃
(βα)

G̃
(ββ)

H̃
(αα)

H̃
(αβ)

H̃
(βα)

H̃
(ββ)

⎞
⎟⎟⎟⎟⎠ . (A2)

Here, A, B and C are second-order tensors, and G and H are third-order tensors. These
tensors obey the following symmetry relations:

A(αβ)ij = A(βα)ji , (A3)

B(αβ)ij = B̃(βα)ji , (A4)

C(αβ)ij = C(βα)ji . (A5)

The tensor elements are

A(αβ)ij = XA
αβninj + YA

αβ(Iij − ninj), (A6)

B(αβ)ij = YB
αβεijknk, (A7)

C(αβ)ij = XC
αβninj + YC

αβ(Iij − ninj), (A8)

G̃(αβ)ijk = XG
βα(njnk − 1

3 Ijk)ni + YG
βα(njIik + nkIij − 2ninjnk), (A9)

H̃(αβ)
ijk = YH

βα(εjilnlnk + εkilnlnj). (A10)

Here, ni is the ith component of the unit vector pointing from the centre of particle α to
the centre of particle β, I is the identity matrix and εijk is the Levi-Civita symbol. Also, X
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Frictional effects

and Y are scalars which depend on the gap hαβ between particles α and β. Following Mari
et al. (2014), in the current work we keep only the leading-order terms of these scalars

Xαβ = gXαβh−1
αβ and Yαβ = gYαβ ln h−1

αβ . (A11a,b)

The values of coefficients gXαβ and gYαβ for each element in the resistance matrices are
(Jeffrey & Onishi 1984; Kim & Karrila 1991; Jeffrey 1992)

gXA
αα = gXA

ββ = −gXA
αβ = −gXA

βα = 1
4 ,

gYA
αα = gYA

ββ = −gYA
αβ = −gYA

βα = 1
6 ,

gYB
αα = −gYB

ββ = −gYB
αβ = gYB

βα = −1
6 ,

gXC
αα = gXC

ββ = gXC
αβ = gXC

βα = 0,

gYC
αα = gYC

ββ = 4gYC
αβ = 4gYC

βα = 4
15 ,

gXG
αα = −gXG

ββ = −gXG
αβ = gXG

βα = 1
4 ,

gYG
αα = −gYG

ββ = −gYG
αβ = gYG

βα = 1
12 ,

gYH
αα = gYH

ββ = 1
4 gYH

αβ = 1
4 gYH

βα = 1
30 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A12)
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