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Abstract. Little is known about the generators system of the higher dimensional
Picard modular groups. In this paper, we prove that the higher dimensional Eisenstein–
Picard modular group PU(3, 1; �[ω3]) in three complex dimensions can be generated
by four given transformations.
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1. Introduction. As the complex hyperbolic analogue of Bianchi groups
PSL(2;Od), Picard modular groups are PU(n, 1;Od), where Od is the ring of algebraic
integers of the imaginary quadratic extension Q(i

√
d) for any positive square-free

integer d (see [9]). The elements of the ring Od can be described (see [8]):

Od =
{

Z[i
√

d] if d ≡ 1, 2 (mod 4)

Z[ 1+i
√

d
2 ] if d ≡ 3 (mod 4).

It is well known that the ring Od is Euclidean for positive square-free integer d if
and only if d = 1, 2, 3, 7, 11; see [11]. In particular, if d = 3,Od = �[ω3], where ω3 =
(−1 + i

√
3)/2. Picard modular groups are the simplest arithmetic lattices in PU(n, 1).

There are many results on Picard modular groups in two complex dimensions.
In [3], Falbel and Parker constructed a remarkable simple fundamental domain of
the Eisenstein–Picard modular group PU(2, 1; �[ω3]). Applying Poincaré polyhedra
theorem, they showed that PU(2, 1; �[ω3]) admits a presentation with two generators.
Similarly, in [2], they obtained a presentation of the Gauss–Picard modular group
PU(2, 1;O1). Francsics and Lax also independently obtained the generators of the
Gauss–Picard modular group acting on the two-dimensional complex hyperbolic space
(see [4–6]).

However, constructing explicit fundamental domains in complex hyperbolic space
is much more difficult than in real hyperbolic space. Therefore, it is interesting to
look for another method to get generators system of Picard modular groups. In [1],
Falbel et al. gave a simple algorithm to obtain the generators of the Gauss–Picard
modular group. Wang et al. [12] showed that this algorithm can also be extended
to the Eisenstein–Picard modular group PU(2, 1; �[ω3]). But it is still open for other
Picard modular groups. Recently, Zhao [13] obtained the generators of the Euclidean
Picard modular groups PU(2, 1;Od) for d = 2, 7, 11 by using a different method.
We note that very little is known about the geometric and algebraic properties, e.g.
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explicit fundamental domains, generators, presentations of the higher dimensional
Picard modular groups PU(n, 1;Od).

In the present paper, we prove that the method of [1] can also be applied to
the higher dimensional Eisenstein–Picard modular group PU(3, 1; �[ω3]) and obtain a
simple description in terms of generators. More precisely, we prove that the Eisenstein–
Picard modular group PU(3, 1; �[ω3]) can be generated by four transformations, one
Heisenberg translation, two Heisenberg rotations and an involution.

This paper is organised as follows. Section 2 gives a brief introduction to complex
hyperbolic geometry and the Picard modular group. Section 3 contains the main result
and its proof.

2. Preliminaries. In this section, we recall some basic materials in complex
hyperbolic geometry and Picard modular group. The general reference on these topics
are [7, 10].

Let �n,1 denote the vector space �n+1 equipped with the Hermitian form

〈w, z〉 = z1wn+1 + z2w2 + · · · + znwn + zn+1w1,

where w and z are the column vectors in �n,1 with entries z1, z2, . . . , zn, zn+1 and
w1, w2, . . . , wn, wn+1, respectively. Equivalently, we may write

〈w, z〉 = z∗Jw,

where w∗ denotes the Hermitian transpose of w and

J =
⎛
⎝0 0 1

0 In−1 0
1 0 0

⎞
⎠ .

Consider the following subspaces of �n,1:

V− = {v ∈ �n,1 : 〈v, v〉 < 0},
V0 = {v ∈ �n,1 − {0} : 〈v, v〉 = 0}.

Let � : �n,1 − {0} → �Pn be the canonical projection onto complex projective
space. Then, the complex hyperbolic n-space is defined to be Hn

� = �(V−). The
boundary of the complex hyperbolic n-space Hn

� consists of those points in �(V0)
together with a distinguished point at infinity, which denotes ∞. The finite points in
the boundary of Hn

� naturally carry the structure of the generalised Heisenberg group
(denoted by H2n−1), which is defined to �n−1 × � with the group law

(ξ, ν) · (z, u) = (ξ + z, ν + u + 2�〈〈ξ, z〉〉).

Here, 〈〈ξ, z〉〉 = z∗ξ is the standard positive-defined Hermitian form on �n−1. In
particular, we write ‖ξ‖2 = ξ ∗ξ .

Motivated by this, we define horospherical coordinates on complex hyperbolic
space. To each point (ξ, ν, u) ∈ H2n−1 × �+, we associated a point ψ(ξ, ν, u) ∈ V−.
Similarly, ∞ and each point (ξ, ν, 0) ∈ H2n−1 × {0} is associated to a point in V0 by ψ .
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The map ψ is given by

ψ(ξ, ν, u) =
⎛
⎝(−|ξ |2 − u + iν)/2

ξ

1

⎞
⎠ , ψ(∞) =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ .

We also define the origin 0 to be the point in ∂Hn
� with horospherical coordinates

(0, 0, 0). We have

ψ(0) =

⎛
⎜⎜⎜⎝

0
0
...
1

⎞
⎟⎟⎟⎠ .

The holomorphic isometry group of Hn
� is the group PU(n, 1) of complex linear

transformations, which preserve the above Hermitian form. That is, for each element
G ∈ PU(n, 1), G is unitary with respect to 〈·, ·〉. The corresponding matrix G = (gjk)n

i,j=1
satisfies the following condition

G∗JG = J, (1)

where G∗ denotes the conjugate transpose of the matrix G. Picard modular groups for
Od , denoted by PU(n, 1;Od), are the subgroups of PU(n, 1) with entries in Od .

REMARK 1. In this paper, the matrices corresponding to the generators do not
always have determinant 1. In fact, the generators belong to the group U(3, 1; �[ω3]).
In relation to complex hyperbolic isometries, the relevant group is PU(3, 1; �[ω3]) =
U(3, 1; �[ω3])/ ± I . By abuse of notation, we will denote the Eisenstein–Picard modular
group in three complex dimensions by PU(3, 1; �[ω3]) or U(3, 1; �[ω3]). We thank
referee for pointing out this.

We now discuss the decomposition of complex hyperbolic isometries. We begin by
considering those elements fixing 0 and ∞.

The matrix group U(n − 1) acts by Heisenberg rotation. In horospherical
coordinates, the action of U ∈ U(n − 1) is given by

(ξ, ν, u) 
−→ (Uξ, ν, u).

The corresponding matrix in U(n, 1) acting on �n,1 is

MU ≡
⎛
⎝1 0 0

0 U 0
0 0 1

⎞
⎠ .

The positive real numbers r ∈ �+ act by Heisenberg dilation. In horospherical
coordinates, this acting is given by

(ξ, ν, u) 
−→ (rξ, r2ν, r2u).
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In U(n, 1), the corresponding matrix is

Ar ≡
⎛
⎝r 0 0

0 In−1 0
0 0 1/r

⎞
⎠ .

The Heisenberg group acts by Heisenberg translation. For (τ, t) ∈ H2n−1, this is

N(τ,t)(ξ, ν) = (τ + ξ, t + ν + 2�〈〈τ, ξ 〉〉).

As a matrix, N(τ,t) is given by

N(τ,t) ≡
⎛
⎝1 −τ ∗ (−‖τ‖2 + it)/2

0 In−1 τ

0 0 1

⎞
⎠ .

Heisenberg translations, rotations and dilations generate the Heisenberg similarity
group. This is the full subgroup of U(n, 1) fixing ∞.

Finally, there is one more important acting, called an inversion R, which
interchanges 0 and ∞. In matrix notation, this map is

R ≡
⎛
⎝0 0 1

0 −In−1 0
1 0 0

⎞
⎠ .

Let �∞ be the stabiliser subgroup of ∞ in U(n, 1). That is

�∞ ≡ {g ∈ U(n, 1) : g(∞) = ∞}.

LEMMA 2.1. Let G = (gjk)4
j,k=1 ∈ U(3, 1). Then, G ∈ �∞ if and only if g41 = 0.

Using Langlands decomposition, any element P ∈ �∞ can be decomposed as a
product of a Heisenberg translation, dilation and a rotation:

P = N(τ,t)ArMU =
⎛
⎝r −τ ∗U (−‖τ‖2 + it)/2r

0 U τ/r
0 0 1/r

⎞
⎠ . (2)

The parameters satisfy the corresponding conditions. That is, U ∈ U(n − 1), r ∈ �+

and (τ, t) ∈ H2n−1.

3. The main result and its proof. In this section, we extend the method in [1] to
the higher dimensional Eisenstein–Picard modular group U(3, 1; �[ω3]).

Let U(2; �[ω3]) be the unitary group U(2) over the ring �[ω3]. Recall that the
unitary matrix A ∈ U(2) is of the following form:

U(2) =
{

A =
(

a b
−λb λa

)
: |λ| = 1, |a|2 + |b|2 = 1

}
.
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Then, we can see that the elements in U(2; �[ω3]) are of the following form:(
a 0
0 b

)
,

(
0 b
a 0

)
,

where a, b = ±1,±ω3and ± ω2
3.

It is easy to find that {(
a 0
0 b

)
: a, b = ±1,±ω3,±ω2

3

}

can be generated by (
1 0
0 −ω3

)
,

(−ω3 0
0 1

)
.

We also note that (
0 1
1 0

) (
a 0
0 b

)
=

(
0 b
a 0

)
,

and (
0 1
1 0

) (−ω3 0
0 1

) (
0 1
1 0

)
=

(
1 0
0 −ω3

)
.

Therefore, we have the following result.

LEMMA 3.1. U(2; �[ω3]) can be generated by the following two unitary matrices:

U1 =
(

0 1
1 0

)
, U2 =

(−ω3 0
0 1

)
.

Next, we consider the subgroup �∞ of the Picard modular group U(3, 1; �[ω3]).

LEMMA 3.2. Let �∞(3, 1; �[ω3]) denote the subgroup �∞ of Picard modular group
U(3, 1; �[ω3]). Then, any element P ∈ �∞(3, 1; �[ω3]) if and only if the parameters in the
Langlands decomposition of P satisfy the conditions

r = 1, t ∈
√

3�, τ = (τ1, τ2)T ∈ �[ω3]2, U ∈ U(2; �[ω3]),

the integers t/
√

3 and ‖τ‖2 have the same parity.

Proof. Let P ∈ �∞(3, 1; �[ω3]) be the Langlands decomposition form (2). Then, it is
easy to see that r = 1, t ∈ √

3� and U ∈ U(2; �[ω3]). Since the entries τ1, τ2 of τ and the
entry (−‖τ‖2 + it)/2 are in the ring �[ω3], we get that t/

√
3 ∈ � and |τ1|2 + |τ2|2 ∈ �.

Furthermore, they have the same parity. �

PROPOSITION 3.1. Let �∞(3, 1; �[ω3]) be stated as above. Then, �∞(3, 1; �[ω3]) is
generated by the Heisenberg translation N1 = N((1,0)T ,

√
3) and the Heisenberg rotations

MUi (i = 1, 2).
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Proof. Suppose P ∈ �∞(3, 1; �[ω3]). According to Lemma 3.2, there is no dilation
component in its Langlands decomposition, that is

P = N(τ,t)MU =
⎛
⎝1 −τ ∗ (−||τ ||2 + it)/2

0 I2 τ

0 0 1

⎞
⎠

⎛
⎝1 0 0

0 U 0
0 0 1

⎞
⎠ .

Since the unitary matrix U ∈ U(2; �[ω]). Then, the rotation component of P in the
Langlands decomposition is generated by MUi (i = 1, 2) by Lemma 3.1.

We now consider the Heisenberg translation part of P, N(τ,t). Let

τ = (a1 + b1ω3, a2 + b2ω3)T ,

where a1, b1, a2, b2 ∈ �, since τ ∈ �[ω3]2. Then, N(τ,t) splits as

N(τ,t) = N((a1+b1ω3,a1+b1ω3)T ,t)

= N((a1,0)T ,
√

3a1) ◦ N((b1ω3,0)T ,
√

3b1) ◦ N((0,a2)T ,
√

3a2) ◦ N((0,b2ω3)T ,
√

3b2)

◦ N((0,0)T ,t+√
3a1b1−

√
3a1−

√
3b1+

√
3a2b2−

√
3a2−

√
3b2).

(3)

Here, the Heisenberg translations

N((a1,0)T ,
√

3a1), N((b1ω3,0)T ,
√

3b1), N((0,a2)T ,
√

3a2), N((0,b2ω3)T ,
√

3b2)

can be written as follows:

N((a1,0)T ,
√

3a1) = Na1

((1,0)T ,
√

3)
,

N((b1ω3,0)T ,
√

3b1) = Nb1

((ω3,0)T ,
√

3)
,

N((0,a2)T ,
√

3a2) = Na2

((0,1)T ,
√

3)
,

N((0,b2ω3)T ,
√

3b2) = Nb2

((0,ω3)T ,
√

3)
.

(4)

We claim that the number

(t −
√

3(−a1b1 + a1 + b1 − a2b2 + a2 + b2))/2
√

3

is an integer, namely,

t√
3

− (−a1b1 + a1 + b1 − a2b2 + a2 + b2) ∈ 2�.

According to Lemma 3.2, the integers t/
√

3 and

‖τ‖2 = |a1 + b1ω3|2 + |a2 + b2ω3|2
= a2

1 − a1b1 + b2
1 + a2

2 − a2b2 + b2
2

(5)

have the same parity. It can be easily seen that

a2
1 − a1b1 + b2

1 + a2
2 − a2b2 + b2

2 + (−a2b2 + a2 + b2) + (−a1b1 + a1 + b1)

= a1(a1 + 1) + b1(b1 + 1) + a2(a2 + 1) + b2(b2 + 1) − 2a1b1 − 2a2b2 ∈ 2�.
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Hence, t/
√

3 and −a1b1 + a1 + b1 − a2b2 + a2 + b2 have the same parity. This
proves that

t1 = t − √
3(−a1b1 + a1 + b1 − a2b2 + a2 + b2)

2
√

3
∈ �.

Therefore, the Heisenberg translation

N((0,0)T ,t+√
3a1b1−

√
3a1−

√
3b1+

√
3a2b2−

√
3a2−

√
3b2)

can be written as

Nt1

((0,0)T ,2
√

3)
.

The Heisenberg translation N((0,0)T ,2
√

3) can be generated by N((1,0)T ,
√

3) and MU2 , that
is

N((0,0)T ,2
√

3) = [N1, MU2 N1M−1
U2

].

We also note that

N((0,1)T ,
√

3) = MU1 N1MU1 , N((ω3,0)T ,
√

3) = M−2
U2

N1M2
U2

and

N((0,ω3)T ,
√

3) = MU1 N((ω3,0)T ,
√

3)MU1 .

This proposition is proved. �

Now, we prove our main result.

THEOREM 3.2. The Picard modular group U(3, 1; �[ω3]) is generated by one
Heisenberg translation N1, two Heisenberg rotations MUi (i = 1, 2) and the involution
R.

Proof. Let G = (gjk)4
j,k=1 be an element of the group U(3, 1; �[ω3]). We only need

to consider G /∈ �∞(3, 1; �[ω3]). According to Lemma 2.1, we have g41 �= 0. G maps
the point ∞ to the point (g11/g41, g21/g41, g31/g41). Since G(∞) is in ∂H3

�, then

2�
(

g11

g41

)
= −

∣∣∣∣g21

g41

∣∣∣∣
2

−
∣∣∣∣g31

g41

∣∣∣∣
2

. (6)

Consider the Heisenberg translation NG(∞) that maps (0, 0) to G(∞). The translation
NG(∞) is not necessary in the Picard modular group U(3, 1; �[ω3]). However, we
know that RN−1

G(∞)G belongs to the stabiliser subgroup of ∞. So, we will successively

approximate N−1
G(∞) by Heisenberg translations in the Picard modular group to decrease

the value |g41|2 ∈ � until it becomes 0. Then, G can be expressed as a product
of the generators in �∞(3, 1; �[ω3]) and R. Since the ring �[ω3] is Euclidean, this
approximation process has finitely many steps.
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Next, we calculate the entry in the lower left corner of the product

G1 = RN(τ,t)G

=

⎛
⎜⎜⎝

0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 −τ1 −τ2 (−‖τ‖2 + it)/2
0 1 0 τ1

0 0 1 τ2

0 0 0 1

⎞
⎟⎟⎠ G

=

⎛
⎜⎜⎝

0 0 0 1
0 −1 0 −τ1

0 0 −1 −τ2

1 −τ1 −τ2 (−‖τ‖2 + it)/2

⎞
⎟⎟⎠ G.

(7)

It follows that the entry g(1)
41 of G1 is equal to

g(1)
41 = g11 − g21τ̄1 − g21τ̄2 + g41

−‖τ‖2 + it
2

= g41

(
g11

g41
− g21

g41
τ̄1 − g31

g41
τ̄2 + −‖τ‖2 + it

2

)

= −g41

[(
−�

(
g11

g41

)
+ �

(
g21

g41
τ̄1

)
+ �

(
g31

g41
τ̄2

)
+ ‖τ‖2

2

)

− i
(

�
(

g11

g41

)
− �

(
g21

g41
τ̄1

)
− �

(
g31

g41
τ̄2

)
+ t

2

) ]
= −g41(I1 − iI2).

(8)

Using (6), we can simplify I1 to

I1 = 1
2

(∣∣∣∣g21

g41
+ τ1

∣∣∣∣
2

+
∣∣∣∣g31

g41
+ τ2

∣∣∣∣
2
)

.

Let g21
g41

= x1 + y1ω3, g31
g41

= x2 + y2ω3, x1, y1, x2, y2 ∈ �. Note that

τ = (τ1, τ2) = (a1 + b1ω3, a2 + b2ω3)T ,

where a1, b1, a2, b2 ∈ �. In each copy of �, we can simply choose aj and bj so that
aj + bjω3 is a point in �[ω3] and τj + xj + yjω3 is as close to the origin as possible. In
other words, it lies in (Euclidean) Dirichlet domain for the lattice �[ω3] centred at the
origin. This is a hexagon whose vertices are at

1
2

+ i

2
√

3
,

i√
3
, −1

2
+ i

2
√

3
, −1

2
− i

2
√

3
, − i√

3
,

1
2

− i

2
√

3
.

All points of this hexagon are at most a distance 1/
√

3 from the origin.
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Hence, we obtain the upper bound

|I1| = 1
2

(|x1 + y1ω3 + a1 + b1ω3|2 + |x2 + y2ω3 + a2 + b2ω3|2)

≤ 1
2

(
1
3

+ 1
3

)

= 1
3
.

(9)

The above estimate for I1 was suggested by the referee. Since t/
√

3 ∈ � and |τ1|2 +
|τ2|2 ∈ � have the same parity, t/

√
3 is an odd or even number. In both cases, we can

get the inequality

|I2| =
∣∣∣∣�

(
g11

g41

)
− �

(
g21

g41
τ̄1

)
− �

(
g31

g41
τ̄2

)
+ t

2

∣∣∣∣ ≤
√

3
2

by selecting some t in I2. Therefore, we have the estimation of g(1)
41

∣∣g(1)
41

∣∣2 = |g41|2|I1 + iI2|2 = |g41|2
(
I2

1 + I2
2

) ≤ |g41|2
⎡
⎣(

1
3

)2

+
(√

3
2

)2
⎤
⎦ = 31

36
|g41|2.

We can reduce the matrix of the transformation G to the matrix of a transformation
Gn with g(n)

41 = 0 by repeating this approximation procedure finitely many times.
According to Lemma 2.1, this condition implies that the Gn belongs to the subgroups
�∞. As we shown in Proposition 3.1, the subgroup �∞ can be generated by the
Heisenberg translations N1 and the Heisenberg rotations MUi (i = 1, 2). Since the
approximation procedure just uses the transformations in �∞ and involution R. Hence,
the proof of Theorem 3.2 is completed. �

REMARK 2. It would be interesting to know if this method can be extended to the
other higher dimensional Picard modular groups.
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