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PROVING A GROUP TRIVIAL MADE EASY:
A CASE STUDY IN COSET ENUMERATION

GEORGE HAVAS AND COLIN RAMSAY

Dedicated to B.H. Neumann, on the occasion of his 90th birthday

Coset enumeration, based on the methods described by Todd and Coxeter, is one of
the basic tools for investigating finitely presented groups. The process is not well
understood, and various pathological presentations of, for example, the trivial group
have been suggested as challenge problems. Here we consider one such family of pre-
sentations proposed by B.H. Neumann. We show that the problems are much easier
than they first appear, albeit at the expense of considerable preliminary 'experimen-
tation'. This demonstrates how far the range of applicability of coset enumeration
has improved.

1. INTRODUCTION

Coset enumeration, as a technique for the investigation of finitely presented groups,
was systematised and popularised by Todd and Coxeter [16]. The earliest computer
implementation seems to have been by Haselgrove, in 1953. This, along with other early
implementations, is described by Leech [9]. Detailed accounts of the techniques used in
coset enumeration can be found in [1, 3, 10, 11, 14].

Coset enumeration takes as input a finitely presented group and a finitely generated
subgroup, and attempts to find the index of the subgroup in the whole group. In principle,
it will succeed whenever this index is finite. However, the Todd-Coxeter process is not,
in general, an algorithm, and its behaviour and computational complexity are not well-
understood. Sims [14] has shown that there is no polynomial bound, in terms of the
maximum number of cosets, for the number of coset tables which can be derived by coset
table operations such as those used in enumeration programmes.

The space available during an enumeration determines the maximum number of
cosets (MaxCos, or simply M) which can be 'active' at any one time during an enumer-
ation. Sims' result means that the total number of cosets (TotCos, or simply T) defined
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can be very much larger than MaxCos, and that MaxCos can be very much larger than
the (finite) index. In general, the running time of the Todd-Coxeter process depends on
T, while the memory requirements are bounded below by M.

In this paper we consider a presentation of the trivial group which has been proposed
as a challenge to machine implementations of the Todd-Coxeter process. We discuss how
the features of a modern coset enumeration programme can be used to investigate this
presentation; it is very pathological, with T > M » 1 , but is a good deal easier to prove
trivial than first attempts suggest.

We adopt the convention of using lower-case letters for generators, with upper-case
letters denoting inverses; for example, ABab stands for aT^b^ab. Consider the group

Ei = (r, s, t | TrtRR, RsrSS, StsTT).

That Ei is the trivial group is not obvious (see Higman [6], Neumann [12]). Neumann
[13] notes that the presentation given for Ei was very difficult for early computer im-
plementations of the Todd-Coxeter process, although modern implementations solve it
readily. He notes that another presentation of the trivial group can be obtained by re-
placing r, s and t in the presentation for Ei by TrtRR, RsrSS and StsTT respectively.
This gives the group

E2 = (r, s, t | USTsTrtRRStsTTrrTRtrrTRt,

rrTRtRsrSSTrtRRssRSrssRSr, ssRSrStsTTRsrSSttSTsttSTs),

which "beats all existing programmes on all existing computers". Neumann also notes
that an infinite sequence of presentations for the trivial group, of ever-increasing difficulty,
can be obtained by iterating this process.

Sims [14, Section 5.8] discusses these presentations, and notes that the coset enu-
meration procedures which he describes were unable to find any coincidences (that is,
to prove any two distinct words equal) in E2 in defining 100000 cosets. He goes on to
discuss how the Knuth-Bendix process (originally described in [8]) is able to prove E2

trivial using "well under a megabyte" of memory. We show that we can, in fact, prove
E2 trivial by coset enumeration, and that this proof is, in retrospect, 'easy'.

The coset enumeration implementation which we used was ACE (advanced coset
enumerator) by Havas and Ramsay [4], which is an enhanced version of the one described
in [3]. The enumerations were performed on an SGI Origin 2000 computer which was
equipped with enough memory to allow the definition of some hundreds of millions of
cosets.

2. INITIAL INVESTIGATIONS

Although coset enumeration for E\ is easy, it is pathological. A standard Felsch
(see below) enumeration over the trivial subgroup, which we denote by Ei/(\), yields
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T = 588, see [14, p248]. Using our enumerator, and techniques similar to those to be
described for E2, the best machine enumeration for E\/{\) that we achieved had M — 79
and T = 81. Hand-pruning of the definition sequence reduced this to M = T = 64.
Although not of any direct help in enumerating E2/{\), these results do suggest that we
might be able to reduce the pathologicality of E2 sufficiently to enable an enumeration
to complete using a 'reasonable' amount of time and space.

The three key features to our approach for E2 are: the availability of a machine with
a large amount of memory; the choice of enumeration strategy; and the choice of presen-
tation. Once we know that we can complete an enumeration in the space available, then
we can attempt to reduce the MaxCos/TotCos values (or the running time). However,
for the initial attempts, we have no upper bound on the space requirements, so we would
like as much memory as possible. It will turn out that the enumeration for E2 can be
done in about 4 MByte, while a straightforward enumeration of E2 as it stands requires
about 8 GByte.

During an enumeration, we have considerable freedom of choice regarding the order
in which we define cosets. Two standard techniques are to define new cosets using
the next empty position in the coset table (traditionally called the Felsch strategy) or
using the relator tables (traditionally known as the HLT strategy). In Felsch strategies
each definition is tested against all essentially different positions in all the relators until
all consequent deductions and coincidences have been found and processed. In HLT
strategies each coset is scanned against all relators, with definitions made as necessary
to close all scans, while processing any deductions or coincidences encountered.

To select our enumeration strategy, we undertook some preliminary investigations of
E2/{\) where we put a limit on TotCos and noted how many cosets remained active when
this limit was reached; that is, how many coincidences there had been. The results are
summarised in Table 1. The figures for the number of active cosets remaining for a given
choice of TotCos are given in the last four columns. The first column gives the strategy,
with n/m indicating a mixed strategy in which alternate blocks of n Felsch definitions and
m HLT coset scans were made, with all definitions tested against all essentially different
positions. Note that m coset scans can result in up to 75m coset definitions, since the
total length of the relators is 75.

These results confirm Sims' observations, and suggest that Felsch strategies are 'bad'
and that HLT ones are 'good'. They also suggest that HLT strategy definitions should be
tested against all essentially different positions as soon as possible after they are made.
(In the mixed strategies, these definitions are tested after the block of m coset scans
has been completed.) ACE has a mode whereby all the definitions are made using the
HLT strategy, while definitions are tested against all essentially different positions after
each individual coset/relator scan. Since our primary concern is to minimise the space
requirements, this mixed strategy is the strategy we adopted; unless otherwise noted, it
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strategy
Felsch
HLT

10000/1
1000/1
100/1
10/1

1/1
1/10
1/100
1/1000

subgroup
(r)

(s)
(t)

(r,s)
(r,t)
(s,t)

Table

0.1
100000
100000
100000
100000
100000
99988
99976
99976
100000
99988

MaxCos
50561877
70169472
43277069
5408953
5524264
19013781

1: Progress in various strategies

TotCos
1

1000000
999811
1000000
1000000
999962
999780
999715
999709
999797
999815

Table 2: The initial

E2
TotCos

122400832
166476400
102965293
11368023
11318575
48598546

(millions)
10

10000000
6787119
10000000
10000000
9999855
7711032
6368554
6372346
6786909
6787109

runs

MaxCos
50560999
70168594
69609426
5351144
5523386
19012903

E>2

100
100000000
33847599
100000000
99999985
73563024
44379346
47870176
47678685
37167035
33234182

TotCos
122078184
166907903
170455932
11308278
11263377
49144096

was used for all the enumerations reported herein.

We started with enumerations of E2 over one- and two-generator subgroups. Our
enumeration strategy is obviously sensitive to the order of the relators. However, if we
test over all one- and two-generator subgroups, then we need test only two of the six
possible orderings, since cycling the generators induces a cycling of the relators. All of
the twelve possible combinations were tested, using a memory allocation sufficient for
a table size of 200 million cosets, and they all completed successfully. The results are
tabulated in Table 2, where E\ is £2 with the last two relators swapped. These results are
the first successful coset enumerations to be performed in E2 over 'sensible' subgroups.

3. SUCCESS

The results in Table 2 suggest that enumeration over the trivial subgroup would
be possible, albeit in an uncomfortably large number of cosets. However, instead of
attempting this immediately, we first try to reduce the totals for enumerations over the
one-generator subgroups. Experience with other enumerations indicates that a 'good'
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enumeration over one subgroup often translates to a good enumeration over a smaller
subgroup. Apart from reordering the relators, it is well-known that rotating and inverting
relators can also have a significant effect on performance (see Cannon, Dimino, Havas
and Watson [1] and Havas and Ramsay [5]). We would expect this to be particularly
effective for E2, given that the three relators in the presentation have many common
subwords.

ACE has the ability to generate and use presentations which are equivalent to the
given presentation, but where the relators have been randomly reordered, rotated, and
inverted. We can run many tests using this feature, and select those which yield the
smallest T and M values. To maximise throughput, we put a tight limit on the amount
of space; enumerations which cannot complete in the given space tend to overflow quickly,
and can be aborted.

For our tests we ran each of the three one-generator subgroup enumerations on
5000 randomly generated equivalent presentations, with a limit of 10 million on TotCos.
There were a total of 23 successes in the 15000 runs, nine over (r), eight over (s) and
six over (<). The ranges for T, M and T/M were 4171770-9946881, 496442-1119111 and
6.76-9.33 respectively. These 23 presentations all enumerated successfully over the trivial
subgroup, with a limit of 100 million on TotCos. The ranges for T, M and T/M were
36249963-71143046, 4362123-6164681 and 7.48-11.54 respectively.

The presentations which achieved T = 36249963 (with M = 4826625) and M -
4362123 (with T = 43608516) were respectively

E% = (r, s, t I ttSTsssRSrStsTTRsrSSttSTs,

ssRSrssRSrrrTRtRsrSSTrtRR, TrtRRttSTsrrTRtStsTTTrtRR),

E\ = (r, s, t I HSTsTrtRRStsTTrrTRtrrTRt,

RsrSSttSTsttSTsssRSrStsTT, RsrSSrrTRtssRSrTrtRRRsrSS).

Note how these tend to have five-letter subwords or their inverses (that is, the relators
for Ei) repeated at the beginning and end of the relators. The other 21 presentations
displayed a similar pattern. This pattern however seems to be 'delicate', and attempts
to achieve lower M and T values by manually altering the presentation, using E% and E\
as guides, met with no success.

For comparison purposes, we returned to the initial presentation Ei, and attempted
the enumeration £2/(1). Over a long weekend, when the machine we used was not busy,
the enumerator was given enough memory for a table of 400 million cosets (that is, 8.94
GByte), with space recovery via table compaction enabled. This enumeration completed
successfully, with T = 825673759 and M = 343662508, after 3 compaction phases (that
is, table overflows). Note that the ratio T/M = 2.40 is in line with those from Table 2,
which range from 2.04 to 2.58.
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4. INTERLUDE

The metrics normally used to measure the cost of an enumeration are the values of T
and M and the running time. However, given that there may be many users competing
for these resources, a better metric might be the memory-time integral. This can be
approximated by the product of memory allocation and running time. One approach to
minimising this cost is to parallelise (parts of) the enumeration, as discussed by Cooper-
man and Havas [2]. The large values oiT/M for the presentations E\ and E\ suggests an
alternative approach; that is, run the enumeration with a memory allocation somewhere
between M and T, recovering the space occupied by redundant cosets by compacting the
table each time it overflows.

A series of tests using E\ was run using this idea, and the results are given in
Table 3. The total running time is split into that spent enumerating cosets and that
spent compacting the table, with the fourth column recording the number of compaction
phases. (The usual caveats regarding running times on multiuser systems apply.) The
Origin 2000 machine has a multiprocessor shared-memory architecture. Although all the
memory is shared between all processors, physically it is divided between the processors
as local memory. This, coupled with the usual caching behaviour, explains the general
reduction in enumeration time as the memory allocation decreases. Note also that the
time to compact the table is not fixed; it varies between runs due to the variation in
table size, and it varies within a run as the proportion of the table containing active
cosets varies. All these effects, to some extent, cancel each other out. So the total
cost of the enumeration scales linearly with the memory allocation, except towards the
smaller allocations where the enumeration time is static and the compaction cost increases
rapidly.

5. SMALLER SUCCESS

The large values of T/M observed in our best enumerations imply that there are
many coincidences before the coincidence which precipitated the final collapse to an index
of one. If the progress of the enumeration is monitored, it is seen that coincidences and
partial collapses occur cyclically; the number of active cosets builds up steadily, with
very few coincidences, then there is a coincidence which deletes a significent number
of cosets, and then the cycle repeats. The cycles are not identical, but they are very
similar, suggesting that the enumerator is repeatedly proving the same relation (or, at
least, variants of the same relation) and discarding it after 'using' it. (Contrast this with
the Knuth-Bendix process, which does keep a 'record' of previous results.)

All 23 of our successful presentations displayed a similar pattern of activity, and
we chose to investigate E% in more detail. There are 246 cycles in the enumeration for
E%. Of these, 231 are similar (the 'standard' cycle, described below), and the remaining
fifteen are non-standard (eight are shorter than standard and seven are longer). If we
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memory
(106 cosets)

45
40
35
30
25
20
15
10
9
8
7
6
5

4.5

time
enum

442.30
439.30
438.14
436.81
436.72
434.76
432.71
430.81
430.37
430.57
429.15
428.56
428.58
428.73

Table 3:

(seconds)
comp

0.00
6.69
5.97
5.03
4.16
7.97

10.28
13.98
16.48
18.29
22.94
30.05
51.26
85.81

The compacting runs

#comp
(109

0
1
1
1
1
2
3
5
6
7
9

12
20
32

memory-time
byte-seconds)

477.68400
428.15040
373.05240
318.12480
264.52800
212.51040
159.47640
106.74960
96.51960
86.18112
75.95112
66.03984
57.58080
55.54440

norm
1.000
0.896
0.781
0.666
0.554
0.445
0.334
0.223
0.202
0.180
0.159
0.138
0.121
0.116

ignore the final collapse to index one and the coincidences which occur during a cycle,
then the average total number of cosets defined per cycle is 36249963/246 = 147358, the
average increase in the number of active cosets per cycle is 4826625/246 = 19620, and
the average size of the partial collapse at the end of a cycle is 147358 - 19620 = 127738.

In a standard cycle the words involved in the fourteen (primary) coincidences can
be partitioned into heads and tails. The (ordered) set of tails is the same from cycle to
cycle, while the heads change each cycle, but are fixed for the duration of the cycle (there
are always two distinct heads). (This has not been formally checked for all 231 cycles,
but has been verified 'manually'.) Table 4 illustrates this, where a, b, c and A, B, C have
been used for the words TrtRR, RsrSS, StsTT and their inverses in the tails.

This repeated proving and discarding of the 'same' relations suggests that the per-
formance of the enumerator could be enhanced by adding the relation which triggers the
first partial collapse to the relators and restarting the enumeration. If coincidence #14
from cycle # 1 is added to the presentation, then the resulting enumeration completes
in 26.13 seconds, with M - 125332 and T = 1524984. (This new enumeration displays
cyclic behaviour similar to E^, but the cycles are shorter.) If we repeat this procedure
twice more, we arrive at a six-relator presentation which enumerates in 0.25 seconds, with
M = 1656 and T = 13331. The second and third added coincidences are, respectively,
cc - ABcBAA and cBttST = cBCCBS; the last of these reduces to the relator be. In
fact, the four-relator presentation bc+E% enumerates in 0.12 seconds with the same T and
M statistics, while E\ + be enumerates in 0.11 seconds with M = 1501 and T = 12765.
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cycle
1

2

246

coinc
1
2

13
14
1
2

13
14

1
2

13
14

Table 4:

word
rrTRt
rrTRt

rrTRt
rrTRt

SrrTRt
SrrTRt

SrrTRt
SrrTRt

StsssssTRt
StsssssTRt

StsssssTRt
StsssssTRt

The standard

1
c
ABaabC

cBaa
BabCAB
c
ABaabC

cBaa
BabCAB

c
ABaabC

cBaa
BabCAB

cycle

word 2
StsTT
StsTT

rrTRt
StsTT

SStsTT
SStsTT

SrrTRt
SStsTT

StsRRtsTT
StsRRtsTT

StsssssTRt
StsRRtsTT

AA
BCbACaccB

CaBBc
BAABC
AA
BCbACaccB

CaBBc
BAABC

AA
BCbACaccB

CaBBc
BAABC

So we can prove E^ trivial by running three enumerations to their first partial
collapse, adding the collapse-inducing coincidence to the relators each time, and then
running the final enumeration to its conclusion. The four enumerations take a total of 2
seconds, and the memory requirement is determined by the space needed to complete the
first cycle in the first enumeration; that is, M = 163564 and T = 163839. A quick test
of the other 22 presentations revealed that the best values for memory usage (to the first
partial collapse) were M = 162855 and T = 162867, so the memory requirement could
be marginally reduced if required.

6. FASTER SUCCESS

Both our mixed enumeration strategy and the HLT strategy make all definitions
via coset/relator scans. In our mixed strategy, definitions are tested immediately in all
essentially different positions; this ensures that the total number of cosets defined is
minimised, but it is expensive computationally. In the HLT strategy, definition testing
is, in effect, deferred until it occurs 'naturally' during coset/relator scans; this increases
the total number of cosets defined, but processes cosets faster.

To compare the two approaches we revisited the four presentations Z?2l E'2, E% and
E\ and the seven subgroups {r,s), (r,t), {s,t), (r), (s), (t) and (1). Each of the 28
possible combinations was attempted for both strategies. Once again, enough memory
for a table of 400 million cosets was allocated and space recovery enabled. The results
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are given in Table 5. The CPU times are in seconds, with the number of compactions

(if any) in brackets afterwards. Note that the E2/{\), E2/(l) and E2/(\) enumerations

using HLT strategy are the first reported successful enumerations to define a total of

more than 109 (or 230) cosets.

Dividing the running time by the total number of cosets defined gives a measure of

a strategy's throughput. If we ignore the enumerations over the trivial subgroup, where

the results are distorted by the compactions, our mixed strategy has a throughput of

10.40-12.14 seconds per million total cosets, while the HLT strategy achieves 3.62-4.32.

The ratio between the two throughputs is 2.5-3.2. The HLT strategy is 'faster', however

it defines more cosets. For the E2 and E'2 presentations, the TotCos counts for the HLT

strategy exceed those of our mixed strategy by a ratio of 1.63-2.00. The nett effect of

these two factors is tha t the HLT strategy has a shorter running time for E2 and E'2,

even for the trivial subgroup enumerations.

Note that E2 and E\ were specifically selected for their good performance using

our mixed strategy, and that they perform badly, in terms of the total number of cosets

defined, using the HLT strategy. It is likely that the random presentation technique dis-

cussed in Section 3 would produce presentations that perform well using the HLT strategy,

but this has not been checked. Finally, note that the throughputs (and their ratio) are

specific to the type of presentation we are considering; three relators, each of length 25,

and with each of the three generators equally represented. For other presentations, very

different figures would be obtained.

7. O T H E R P R E S E N T A T I O N S

The construction method for the presentation E2 suggests an alternative presentation

for the trivial group, namely the six-generator presentation E2 given by

(r, s, t, x,y,z\ ZxzXX, XyxYY, YzyZZ, x = TrtRR, y = RsrSS, z = StsTT).

ACE has no difficulty with £ £ / ( l ) ; using the Felsch strategy, with the gap-filling technique

discussed in [3], it completes in 1.02 seconds, with M = 54236 and T = 145725. Some

experimentation with the random equivalent presentation feature of ACE, and various

mixed strategies, readily produced a strategy and presentation which completed in 0.29

seconds, with M = 20619 and T = 47514.

When we come to E3, the next in our sequence of presentations for the trivial group,

we have a choice of three-, six- and nine-generator presentations. We tested all of these

presentations over (1), with various strategies, and although some progress was made

in some combinations, none looked particularly promising. However, we can use our

success with E2 to bootstrap ourselves. Consider the presentations formed by adding

the generators {x, y, z} and the relations (r = ZxzXX, s = XyxYY, t — YzyZZ) to the
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strat
mixed

mixed

mixed

mixed

mixed

mixed

mixed

HLT

HLT

HLT

HLT

HLT

HLT

HLT

s/grp
(r,a)

M)

<M)

<r)

(s)

(t)

(1)

(r,s)

(r,t)

(s,t)

<r)

(s)

(t)

(1)

count
M
T
CPU
M
T
CPU
M
T
CPU
M
T
CPU
M
T
CPU
M
T
CPU
M
T
CPU
M
T
CPU
M
T
CPU
M
T
CPU
M
T
CPU
M
T
CPU
M
T
CPU
M
T
CPU

Table 5: Strategy Comparisons

Eh
5408953
11368023

135.12
5524264
11318575

137.45
19013781
48598546

568.76
50561877
122400832

1472.20
70169472
166476400

1957.70
43277069
102965293

1203.94
343662508
825673759

10767.74 (3)
7616099
19599655

75.13
9272920

22581459
85.47

21686180
84727676

318.45
54279676
203304585

865.03
73663677

277624534
1194.01

45954168
168974036

700.10
346398343
1346459378
8062.55 (7)

E'2
5351144
11308278

133.33
5523386
11263377

135.37
19012903
49144096

574.58
50560999
122078184

1465.59
70168594
166907903

1990.37
69609426
170455932

2026.93
343661630
827238032

10661.63 (3)
7614904
19586109

80.56
9271725
22522958

92.29
21951535
85254987

347.44
54278481
203012914

847.40
73662482
278048035

1138.28
72291370

277318454
1149.52

346397148
1347224248
7814.78 (7)

382271
2404423

26.46
189175
596049

6.36
192995
603683

6.47
1075739
7484929

83.34
1056737
7503652

83.61
808895

5438751
60.74

4826625
36249963

398.11
3850467
5754224

21.46
1758680
2410643

8.80
4324919
6241018

22.60
17924337
27578664

110.01
55394364
90452331

355.52
41527832
65887654

255.01
277197842
441951487
1973.22 (1)

E\
217923
732645

7.74
214583
807702

8.40
387532
2894907

30.59
760500
6546070

73.18
1021628
9058194
101.19
664835

5468032
60.96

4362123
43608516

477.66
7456970

20013546
84.58

7626160
19070196

79.74
16981462
78835721

327.96
38592075
183544090

792.19
53829241
256725138

1093.57
33913074
154334228

648.95
246125047
1239489022
6110.24 (4)
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presentation E%- We take this in two forms; £3, where the new relations are added before
the old ones, and £3, where they are added after.

Using our mixed strategy, neither E$ nor £3 complete over (1), but they both
displayed the same cyclic behaviour as E%- The cycles were somewhat longer than those
of E%, with those of E\ being shorter than those of £J. Further, after defining a total
of about 427 million cosets, there was a large collapse in E$ which reduced the number
of active cosets from about 167 million to about 35 million. The cyclic behaviour then
resumed.

This suggests that the enumeration would eventually complete, after some number
of the larger cycles, and that the small and large cycles are associated, respectively, with
the relators of E\ and £2, which are contained as subwords in the presentations E% and
E\. If this is the case, and the pattern of nested cycles continues to grow for the sequence
of presentations {En}, then we have a nice set of examples illustrating Sims' result.

The similarity of the cycles in the enumerations of ££ and E\ to those in £2 ' a nd
the fact that each of the new relators contain only one of the generators {r, s, £}, suggest
that the coset definitions for the two sets of three relators are 'independent' of each other,
at least in the early stages of an enumeration. This, in fact, seems to be the case, and if
the techniques discussed in Section 5 are applied to E$ and £3, then precisely the same
sets of coincidences is obtained. (Again, this has only been checked manually.) So three
partial enumerations prove that be can be added to the relators of £3 and £3. If this is
done, then the first two coincidences in a subsequent enumeration prove that B and c
(that is, ssRSr and StsTT) can be added as relators.

If we now 'tidy-up' the presentation by taking, say, £3, adding the relators ssRSr
and StsTT, and ordering the eight relators in length-increasing order, we obtain the
presentation £3. Since the triviality of a (that is, TrtRR) follows immediately from
£| , this presentation is, in some sense, an analogue of £2. Using our mixed strategy, the
enumeration £ | / (1) completes in 325.41 seconds, with M = 12020719 and T = 33740210.

Of course, our 'success' with £3 is a trifle contrived, since it involved considerable
non-determinism. It is difficult to see how the choices of which coincidences to add (or
delete) from the presentation, and when, could be automated, especially in more general
cases.

For our final investigations of the Todd-Coxeter process, we returned to the 'correct'
presentation of £3; that is, the three-generator, three-relator presentation obtained by
substituting for r, s and t in £2. To assess just how much more difficult than £ 2 this pre-
sentation is, we attempted it over the subgroup (r, s). Although a few coincidences were
obtained (about 3000 coincidences in 400 million cosets), no significant partial collapses
were noted. It also has a significantly smaller throughput, at 41.9 seconds per million
total cosets. However, when the two-generator subgroups were tried using the presenta-
tions obtained by substituting for r, s and t in E\ and E\, then considerable progress was
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noted, although none of the enumerations completed successfully. For example, in the
presentation derived from E%, over (r, s), only about 382 million cosets remained active
after defining a total of about 1275 million cosets.

8. COMPARISON WITH KNUTH-BENDIX

This family of presentations is better handled by Knuth-Bendix rewriting methods.
The two packages RKBP (Rutgers Knuth-Bendix package, [15]) and KBMAG (Knuth-
Bendix in monoids, and automatic groups, [7]) were used for some comparisons between
the Todd-Coxeter and the Knuth-Bendix processes. For the memory requirements of the
Knuth-Bendix programmes we quote the maximum total length of the rules (both sides)
during a calculation. How this figure translates into a memory requirement depends on
the data structure used to store the rules, and on any auxiliary structures used to speed
up rule access. There is considerable scope for trading off speed against memory require-
ments; in fact, one of the design aims of RKBP (which is essentially an implementation
of the work described in [14]) is to allow the manipulation of very large rewriting systems
by using a very compact rule representation. There is less scope for such trade offs in the
Todd-Coxeter process, so comparing memory requirements this way is perhaps a little
unfair to coset enumeration; especially since large partial tables (which are the type of
tables encountered in our tests) are typically quite sparse. However, it proved difficult to
measure the amount of memory devoted to the rules in the Knuth-Bendix programmes
and, as noted, this is to some extent under the user's control anyway.

One of the examples supplied with KBMAG is for E2, and this example completes
in 0.6 seconds on the SGI Origin 2000, with maximum rule length of 17070. E^, the six-
generator/six-relator version of E2, completes in 0.1 seconds, with maximum rule length
of 14659. The nine-generator/nine-relator form of E3 completes in 0.5 seconds, with
maximum rule length of 25422. The six-generator/six-relator form of £3 completes in 1.7
seconds, with maximum rule length of 275156. As for the 'correct' three-relator/three-
generator presentation of £3, KBMAG completes in 1347.4 seconds, with maximum rule
length of 14836607.

9. CONCLUSIONS

We have shown that proving E2 trivial by coset enumeration is possible and that,
although significant preliminary work is needed, the enumeration itself has very modest
resource requirements. Interestingly, our best results are obtained by proving relations in
the group, adding these to the defining relators, and restarting the enumeration; a tech-
nique borrowed from the Knuth-Bendix procedure. However, even with this technique,
the Knuth-Bendix procedure outperforms Todd-Coxeter in terms of both space and time
for the particular presentations of the trivial group considered here. Our work also sug-
gests that for difficult enumerations in general, a combination of the Todd-Coxeter and
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Knuth-Bendix processes, along with considerable experimentation (that is, intelligent

guidance), may allow an enumeration to succeed.
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