
Forum of Mathematics, Sigma (2025), Vol. 13:e130 1–34
doi:10.1017/fms.2025.10085

RESEARCH ARTICLE

Orthogonal matroids over tracts
Tong Jin 1 and Donggyu Kim 2

1School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, 30332, USA;
E-mail: tongjin@gatech.edu (corresponding author).

2School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, 30332, USA;
E-mail: donggyu@gatech.edu (corresponding author).

Received: 31 December 2023; Revised: 7 April 2025; Accepted: 7 April 2025

2020 Mathematical Subject Classification: Primary – 05B35; Secondary – 15A63, 52B40

Abstract
We generalize Baker–Bowler’s theory of matroids over tracts to orthogonal matroids, define orthogonal matroids
with coefficients in tracts in terms of Wick functions, orthogonal signatures, circuit sets and orthogonal vector sets,
and establish basic properties on functoriality, duality and minors. Our cryptomorphic definitions of orthogonal
matroids over tracts provide proofs of several representation theorems for orthogonal matroids. In particular, we
give a new proof that an orthogonal matroid is regular if and only if it is representable over F2 and F3, which was
originally shown by Geelen [16], and we prove that an orthogonal matroid is representable over the sixth-root-of-
unity partial field if and only if it is representable over F3 and F4.
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1. Introduction

Let F be a field, and let 𝑉 = 𝐹2𝑛 be a 2𝑛-dimensional vector space over F endowed with a symmetric
nondegenerate bilinear form Q. We say a subspace 𝑊 ⊆ 𝑉 is isotropic if 𝑄(𝑊,𝑊) = 0, and maximal
isotropic or Lagrangian if it is isotropic and of dimension n. Given a maximal isotropic subspace W of V,
one can associate to W a point w of P𝑁 (𝐹) with coordinates 𝑤𝐼 indexed by the subsets 𝐼 ⊆ {1, . . . , 𝑛},
where 𝑁 = 2𝑛 − 1. Just as the usual Grassmannian 𝐺 (𝑟, 𝑛) parameterizes all r-dimensional subspaces
of an n-dimensional vector space, all maximal isotropic subspaces of V can be parameterized by the
Lagrangian orthogonal Grassmannian𝑂𝐺 (𝑛, 2𝑛) ⊆ P𝑁 (𝐹). The Lagrangian orthogonal Grassmannian
is a projective variety cut out by homogeneous quadratic polynomials known to physicists as the Wick
equations [21].

The combinatorial counterpart of Lagrangian orthogonal Grassmannians is the notion of a
Lagrangian orthogonal matroid. For simplicity, we omit the adjective ‘Lagrangian’ and call them
orthogonal matroids.

Let 𝐸 = [𝑛] ∪ [𝑛]∗ = {1, . . . , 𝑛} ∪ {1∗, . . . , 𝑛∗} with the obvious involution ∗ : 𝐸 → 𝐸 that induces
an involution on the power set P (𝐸), and denote by 𝑋�𝑌 the symmetric difference of two sets X and Y.
A subset 𝐴 ⊆ 𝐸 is said to be admissible or a subtransversal if 𝐴 ∩ 𝐴∗ = ∅. An n-element admissible
subset is a transversal. We call {𝑥, 𝑥∗} ⊆ 𝐸 with 𝑥 ∈ 𝐸 a divergence.

One of the simplest ways to define orthogonal matroids is via the symmetric exchange axiom.

Definition 1.1. An orthogonal matroid on E is a pair 𝑀 = (𝐸,B), where the nonempty collection B
of transversals of E satisfies the following axiom: if 𝐵1, 𝐵2 ∈ B, then for every divergence {𝑥1, 𝑥

∗
1} ⊆

𝐵1�𝐵2, there exists {𝑥2, 𝑥
∗
2} ⊆ 𝐵1�𝐵2 with {𝑥2, 𝑥

∗
2} ≠ {𝑥1, 𝑥

∗
1} such that 𝐵1�{𝑥1, 𝑥

∗
1, 𝑥2, 𝑥

∗
2} ∈ B.

The finite set 𝐸 (𝑀) := 𝐸 is called the ground set of the orthogonal matroid, and B(𝑀) := B is the
collection of bases.

Orthogonal matroids were studied by various researchers from different perspectives. An equivalent
definition of orthogonal matroids was firstly introduced by Kung in [18] in 1978 under the name of
Pfaffian structures; see also [19]. Bouchet studied basic properties of orthogonal matroids, initially
under the name of symmetric matroids and later even �-matroids, including their bases, independent
sets, circuits, the rank function, a greedy algorithm, minors and representation theory of orthogonal
matroids over fields [8, 12, 10, 11]. One can associate an orthogonal matroid to a graph embedded on
an orientable surface [9, 13]. Orthogonal matroids also coincide with the class of Coxeter matroids of
type 𝐷𝑛 in the sense of [7].

Tracts were introduced by Baker and Bowler in [2] as an algebraic framework to represent matroids
that simultaneously generalizes the notion of linear subspaces, matroids, valuated matroids, oriented
matroids and regular matroids. This framework provides short and conceptual proofs for many matroid
representation theorems [5, 4]. Recently in [17], Jarra and Lorscheid extended Baker–Bowler’s theory
to flag matroids, which also lie in the class of Coxeter matroids of type 𝐴𝑛 as ordinary matroids.
An introduction to tracts will be given in Section 2.1.

We generalize the theory of matroids over tracts in [1] and [2] to orthogonal matroids and show
that there are (at least) three natural notions of orthogonal matroids over a tract F, which we call weak
orthogonal F-matroids, moderately weak orthogonal F-matroids and strong orthogonal F-matroids in
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order of increasing strength. We give axiom systems for these in terms of Wick functions, orthogonal
signatures, circuit sets and vector sets, and prove the cryptomorphism for strong orthogonal F-matroids.

Theorem 1.2. Let 𝐸 = [𝑛] ∪ [𝑛]∗ and let F be a tract. Then there are natural bijections between:

1. Strong orthogonal F-matroids on E.
2. Strong orthogonal F-signatures on E.
3. Strong F-circuit sets of orthogonal matroids on E.
4. Orthogonal F-vector sets on E.

We also prove natural bijections between weaker notions.

Theorem 1.3. There is a natural bijection between:

1. Weak orthogonal F-matroids on E.
2. Weak F-circuit sets of orthogonal matroids on E.

Theorem 1.4. There is a natural bijection between:

1. Moderately weak orthogonal F-matroids on E.
2. Weak orthogonal F-signatures on E.

Our definitions show compatibility with various existing definitions in the following ways; see
Section 3.8.

1. If the support of a strong or weak orthogonal matroid on E over F is the lift of an ordinary matroid
on [𝑛], then an orthogonal matroid on E over F is the same thing as a strong or weak matroid on [𝑛]
over F in the sense of [2].

2. A strong or weak orthogonal matroid over the Krasner hyperfield K is the same thing as an ordinary
orthogonal matroid.

3. A strong or weak orthogonal matroid over a field K is the same thing as a projective solution to the
Wick equations in P𝑁 (𝐾), or an orthogonal matroid represented over K in the sense of [12].

4. A strong or weak orthogonal matroid over the regular partial field U0 is the same thing as a regular
representation of an orthogonal matroid in the sense of [16].

5. A strong or weak orthogonal matroid over the tropical hyperfield T is the same thing as a valuated
orthogonal matroid in the sense of [14, 27, 28], or a tropical Wick vector in the sense of [23].

6. A strong orthogonal matroid over the sign hyperfield S is the same thing as an oriented orthogonal
matroid in the sense of [27, 28].

Together with several properties of tracts, we are able to prove representation theorems for orthogonal
matroids. For instance, we give new proofs of the following characterizations of regular orthogonal
matroids.

Theorem 1.5 (Geelen, Theorem 4.13 of [16]). Let M be an orthogonal matroid. Then the following are
equivalent:

(i) M is representable over F2 and F3.
(ii) M is representable over the regular partial field U0.

(iii) M is representable over all fields.

We say that an orthogonal matroid is regular if it satisfies one of the three equivalent conditions in
the above theorem. We also give two more characterizations of regular orthogonal matroids without a
specific minor 𝑀4 on [4] ∪ [4]∗ (see Section 5 for a precise description of 𝑀4).

Theorem 1.6. Let M be an orthogonal matroid with no minor isomorphic to 𝑀4 and let (𝐾, ≺) be an
ordered field. Then the following are equivalent:

(i) M is regular.
(ii) M is representable over F2 and K.

(iii) M is representable over F2 and the sign hyperfield S.
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We then extend Whittle’s theorem [29, Theorem 1.2] that a matroid is representable over both F3 and
F4 if and only if it is representable over the sixth-root-of-unity partial field 𝑅6 to orthogonal matroids.

Theorem 1.7. Let M be an orthogonal matroid. Then the following are equivalent:

(i) M is representable over the sixth-root-of-unity partial field 𝑅6.
(ii) M is representable over F3 and F4.

(iii) M is representable over F3, F𝑝2 for all primes p, and F𝑞 for all primes q with 𝑞 ≡ 1 (mod 3).

Structure of the paper. In the remaining part of Section 1, we recall the classical theory of
orthogonal matroids, mainly following [7], and describe matroids as orthogonal matroids. In Section 2,
we survey some of the main results from the theory of matroids over tracts [2, 1], including the
definition of tracts. In Section 3, we define three notions of orthogonal matroids over tracts – namely, the
weak, moderately weak and strong orthogonal matroids over tracts – using Wick functions, orthogonal
F-signatures, F-circuit sets of orthogonal matroids, and orthogonal F-vector sets. These four axiom
systems turn out to be cryptomorphic for strong orthogonal matroids over tracts, and the proofs are
given in Section 4. Section 4 also includes equivalences between the weaker notions, as well as several
examples and counterexamples. In Section 5, we discuss applications to representation theorems for
orthogonal matroids.

1.1. Orthogonal matroids

Let 𝐸 = [𝑛] ∪ [𝑛]∗. The symmetric exchange axiom for orthogonal matroids on E turns out to be
equivalent to the strong symmetric exchange axiom [7, Theorem 4.2.4].

Proposition 1.8 (Strong Symmetric Exchange). If 𝑀 = (𝐸,B) is an orthogonal matroid, then for every
𝐵1, 𝐵2 ∈ B and divergence {𝑥1, 𝑥

∗
1} ⊆ 𝐵1�𝐵2, there exists {𝑥2, 𝑥

∗
2} ⊆ 𝐵1�𝐵2 with {𝑥2, 𝑥

∗
2} ≠ {𝑥1, 𝑥

∗
1}

such that both 𝐵1�{𝑥1, 𝑥
∗
1, 𝑥2, 𝑥

∗
2} and 𝐵2�{𝑥1, 𝑥

∗
1, 𝑥2, 𝑥

∗
2} belong to B.

Example 1.9. Let M be a matroid on [𝑛]. Then the pair lift(𝑀) := ([𝑛] ∪ [𝑛]∗,B), where
B := {𝐵 ∪ ([𝑛] \ 𝐵)∗ : 𝐵 is a basis of 𝑀}, is an orthogonal matroid. This is called the lift of the
matroid M. Notice that an orthogonal matroid N on 𝐸 = [𝑛] ∪ [𝑛]∗ is the lift of a matroid if and only if
𝐵 ∩ [𝑛] have the same cardinality for all bases B of N.

Example 1.10. Let 𝑀 = (𝐸,B) be an orthogonal matroid and let 𝐴 ⊆ 𝐸 be a subset such that 𝐴 = 𝐴∗.
Then 𝑀�𝐴 := (𝐸,B�𝐴) is an orthogonal matroid, where B�𝐴 := {𝐵�𝐴 : 𝐵 ∈ B}. This is an example
of a general operation on orthogonal matroids called twisting.

Definition 1.11. Two orthogonal matroids 𝑀1 and 𝑀2 are isomorphic if there exists a bijection
𝑓 : 𝐸 (𝑀1) → 𝐸 (𝑀2) that respects the involutions on 𝐸 (𝑀1) and 𝐸 (𝑀2), and a transversal 𝑇 ⊆ 𝐸1(𝑀)

is a basis of 𝑀1 if and only if 𝑓 (𝑇) is a basis of 𝑀2.

Definition 1.12. Every subset of a basis is called an independent set. Admissible subsets of E that are
not independent are called dependent. A circuit is a minimal dependent set with respect to inclusion.

Let C (𝑀) denote the family of circuits of an orthogonal matroid M. There is a characterization of
orthogonal matroids in terms of circuits.

Proposition 1.13 (Theorem 4.2.5 of [7]). Let C be a set of admissible subsets of 𝐸 = [𝑛] ∪ [𝑛]∗. Then
C is the family of circuits of an orthogonal matroid if and only if C satisfies the following five axioms:

(C1) ∅ ∉ C.
(C2) If 𝐶1, 𝐶2 ∈ C with 𝐶1 ⊆ 𝐶2, then 𝐶1 = 𝐶2.
(C3) If 𝐶1 ≠ 𝐶2 ∈ C, 𝑥 ∈ 𝐶1 ∩ 𝐶2, and 𝐶1 ∪ 𝐶2 is admissible, then there exists 𝐶3 ∈ C such that

𝐶3 ⊆ (𝐶1 ∪ 𝐶2) \ {𝑥}.
(C4) If 𝐶1, 𝐶2 ∈ C and 𝐶1 ∪ 𝐶2 is not admissible, then 𝐶1 ∪ 𝐶2 contains at least two divergences.
(C5) If T is a transversal and 𝑥 ∉ 𝑇 , then 𝑇 ∪ {𝑥} contains an element in C.
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Recall that for a matroid M, there is a unique circuit contained in 𝐵 ∪ {𝑒} for every basis B and an
element 𝑒 ∉ 𝐵, called the fundamental circuit with respect to B and e. The next proposition gives an
analogous notion of fundamental circuits for orthogonal matroids.

Proposition 1.14 (Theorem 4.2.1 of [7]). Let 𝑀 = (𝐸,B) be an orthogonal matroid. Take 𝐵 ∈ B and
𝑥 ∉ 𝐵. Then there exists a unique circuit 𝐶𝑀 (𝐵, 𝑥) of M such that 𝐶𝑀 (𝐵, 𝑥) ⊆ 𝐵 ∪ {𝑥}. Furthermore,
𝐶𝑀 (𝐵, 𝑥) is given by 𝐶𝑀 (𝐵, 𝑥) = {𝑥} ∪ {𝑏 ∈ 𝐵 \ {𝑥∗} : 𝐵�{𝑏, 𝑏∗, 𝑥, 𝑥∗} ∈ B}.

We call 𝐶𝑀 (𝐵, 𝑥) the fundamental circuit with respect to B and x, and we often write it as 𝐶 (𝐵, 𝑥)
if M is clear from the context.

We will use the following lemma frequently in Section 4.

Lemma 1.15. Let C be a circuit of an orthogonal matroid M. Then there exists a transversal T containing
C such that for every 𝑥 ∈ 𝐶, 𝑇�{𝑥, 𝑥∗} is a basis of M.

Proof. We choose an arbitrary 𝑦 ∈ 𝐶 and take a basis B containing 𝐶 \ {𝑦}. Then 𝑇 = 𝐵�{𝑦, 𝑦∗}
satisfies the desired property. �

Orthogonal matroids admit duals. Let 𝑀 = (𝐸,B) be an orthogonal matroid. Then the collection of
bases B∗ of the dual orthogonal matroid 𝑀∗ is defined as

B∗ := {𝐵∗ : 𝐵 ∈ B}.

Circuits of 𝑀∗ are called cocircuits of M, and must be of the form 𝐶∗ for some circuit C of M.
We finally discuss minors of orthogonal matroids in the sense of [11].
Let 𝑀 = (𝐸,B) be an orthogonal matroid. An element 𝑥 ∈ 𝐸 is singular if M has no basis containing

x, or equivalently, {𝑥} is a circuit of M. Otherwise, we call the element x nonsingular. By (C4), if an
element x is singular, then 𝑥∗ is nonsingular.

Let M be an orthogonal matroid on E and let 𝑥 ∈ 𝐸 . If x is nonsingular, then

{𝐵 \ {𝑥} : 𝑥 ∈ 𝐵 ∈ B(𝑀)}

is the set of bases of an orthogonal matroid on 𝐸 \ {𝑥, 𝑥∗}. We denote this orthogonal matroid by 𝑀 |𝑥.
If x is singular, then we define 𝑀 |𝑥 := 𝑀 |𝑥∗. We call 𝑀 |𝑥 an elementary minor of M. In particular, if
𝑥 ∈ [𝑛] (resp. 𝑥 ∈ [𝑛]∗), then it corresponds to the contraction (resp. deletion) by x in the sense of [13].

An orthogonal matroid N is a minor of another orthogonal matroid M if N can be obtained from M
by taking elementary minors sequentially. Note that 𝑀 |𝑥 |𝑦 = 𝑀 |𝑦 |𝑥, and thus, we write 𝑀 |𝑥1 |𝑥2 | . . . |𝑥𝑘
as 𝑀 |𝑆 where 𝑆 = {𝑥1, . . . , 𝑥𝑘 }.

For a collection C of subsets of E, let Min(C) denote the set of minimal elements of C with respect
to inclusion. The following proposition characterizes circuits of minors of orthogonal matroids.

Proposition 1.16. For an orthogonal matroid M and an element 𝑥 ∈ 𝐸 , we have

C (𝑀 |𝑥) = Min({𝐶 \ {𝑥} : 𝑥∗ ∉ 𝐶 ∈ C (𝑀) and 𝐶 ≠ {𝑥}}.)

Proof. By the definition of 𝑀 |𝑥, if x is nonsingular, then {𝑥} is not a circuit of M and

C (𝑀 |𝑥) = Min{𝐶 ∈ A : 𝐶 � 𝐵 for all bases 𝐵 of 𝑀 with 𝑥 ∈ 𝐵}

= Min{𝐶 ∈ A : 𝐶 ∪ {𝑥} is dependent in 𝑀}

= Min{𝐶 ∈ A : 𝐶 or 𝐶 ∪ {𝑥} is a circuit of 𝑀}

= Min{𝐶 \ {𝑥} : 𝑥∗ ∉ 𝐶 ∈ C (𝑀)},
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where A is the set of all subtransversals in 𝐸 \ {𝑥, 𝑥∗}. Now we assume that x is singular. Then {𝑥} is the
only circuit of M containing x, and M has no circuit containing 𝑥∗. Since 𝑀 |𝑥 = 𝑀 |𝑥∗, by the previous
result, we have

C (𝑀 |𝑥) = C (𝑀 |𝑥∗) = Min{𝐶 \ {𝑥∗} : 𝑥 ∉ 𝐶 ∈ C (𝑀)}

= Min{𝐶 \ {𝑥} : 𝑥∗ ∉ 𝐶 ∈ C (𝑀) and 𝐶 ≠ {𝑥}}. �

1.2. Matroids and orthogonal matroids

Recall that if M is a matroid on [𝑛], then lift(𝑀) is an orthogonal matroid whose set of bases B(lift(𝑀))

is given by {𝐵 ∪ ([𝑛] \ 𝐵)∗ : 𝐵 ∈ B(𝑀)}. There is a similar result for circuits.

Proposition 1.17 (Bouchet, Proposition 4.1 of [11]). Let M be a matroid. Then the set of circuits of the
orthogonal matroid lift(𝑀) is

C (lift(𝑀)) = {𝐶 : 𝐶 is a circuit of 𝑀} ∪ {𝐷∗ : 𝐷 is a cocircuit of 𝑀}.

Furthermore, the lift of the dual matroid 𝑀∗ can be obtained by taking the involution ∗ for all bases
and circuits of the lift of the original matroid M. In other words, B(lift(𝑀∗)) = (B(lift(𝑀)))∗ and
C (lift(𝑀∗)) = (C (lift(𝑀)))∗. An element 𝑥 ∈ 𝐸 is singular in lift(𝑀) if and only if either 𝑥 ∈ [𝑛] and
x is a loop in M, or 𝑥 ∈ [𝑛]∗ and 𝑥∗ is a coloop in M. Finally, minors of the lift of a matroid M can be
expressed as lifts of minors of M.

Proposition 1.18 (Bouchet, Corollary 5.3 of [11]). Let M be a matroid on [𝑛] and let 𝑥 ∈ [𝑛].
Then lift(𝑀) |𝑥 = lift(𝑀/𝑥) and lift(𝑀) |𝑥∗ = lift(𝑀 \ 𝑥). As a consequence, we have C (lift(𝑀) |𝑥) =
C (𝑀/𝑥) ∪ (C∗(𝑀/𝑥))∗ = C (𝑀/𝑥) ∪ (C (𝑀∗ \ 𝑥))∗, where C∗(𝑀/𝑥) denotes the set of cocircuits of 𝑀/𝑥.

2. Matroids over tracts

Let 0 � 𝑟 � 𝑛 be nonnegative integers and consider the finite set 𝐸 = [𝑛] = {1, . . . , 𝑛}. Denote by
(𝐸
𝑟

)
the family of all r-element subsets of E. In this section, we review the study of matroids over tracts in
[1] and [2].

2.1. Tracts

A tract 𝐹 = (𝐺, 𝑁𝐹 ) is an abelian group G (written multiplicatively), together with an additive relation
structure 𝑁𝐹 , which is a subset of the group semiring N[𝐺] satisfying:

(T1) The zero element 0 of N[𝐺] belongs to 𝑁𝐹 .
(T2) The identity element 1 of G does not belong to 𝑁𝐹 .
(T3) There is a unique element 𝜖 of G such that 1 + 𝜖 ∈ 𝑁𝐹 .
(T4) If 𝑔 ∈ 𝐺 and 𝑎 ∈ 𝑁𝐹 , then 𝑔𝑎 ∈ 𝑁𝐹 .

We think of 𝑁𝐹 as linear combinations of elements of G which ‘sum to zero’ and call it the null set
of the tract F.

A useful lemma from [2] about tracts is as follows.

Lemma 2.1 (Lemma 1.1 of [2]). Let 𝐹 = (𝐺, 𝑁𝐹 ) be a tract. Then we have the following:

(i) If 𝑥, 𝑦 ∈ 𝐺 with 𝑥 + 𝑦 ∈ 𝑁𝐹 , then 𝑦 = 𝜖𝑥.
(ii) 𝜖2 = 1.

(iii) 𝐺 ∩ 𝑁𝐹 = ∅.

Because of this lemma, we also write F for the set 𝐺 ∪ {0}, and write −1 instead of 𝜖 . We will
sometimes use G and 𝐹× interchangeably.
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Figure 1. Examples of tracts and tract homomorphisms.

A tract homomorphism 𝜑 : 𝐹1 → 𝐹2 is a group homomorphism 𝜑 : 𝐹×
1 → 𝐹×

2 such that the
induced semiring homomorphism N[𝐹×

1 ] → N[𝐹×
2 ] maps 𝑁𝐹1 to 𝑁𝐹2 . All tracts together with tract

homomorphisms between them form a category. An involution 𝜏 of a tract F is a tract homomorphism
𝜏 : 𝐹 → 𝐹 such that 𝜏2 is the identity map.

Example 2.2. The initial tract is I = ({1,−1}, {0, 1+ (−1)}), where the multiplication on I× is the usual
one.

Example 2.3. Let K be a field and let G be a subgroup of 𝐾×. The multiplicative monoid 𝐹 = 𝐾/𝐺 =
(𝐾×/𝐺) ∪ {0} can be endowed with a natural tract structure by setting 𝑁𝐹 := {

∑𝑘
𝑖=1 𝑥𝑖 ∈ N[𝐾

×/𝐺] :
0 ∈

∑𝑘
𝑖=1 𝑥𝑖}. We call tracts of this form quotient hyperfields. Especially, whenever 𝐺 = {1}, one can

view a field as a tract.

Example 2.4. The Krasner hyperfield is K = 𝐾/𝐾× = ({1},N[1] \ {1}) for an arbitrary field K with
more than two elements. This is the terminal object in the category of tracts. The hyperfield of signs is
S = R/R>0 = ({±1}, 𝑁S), where an element

∑
𝑥𝑖 ∈ N[{±1}] is in 𝑁S if and only if there is at least one

𝑥𝑖 = 1 and at least one 𝑥 𝑗 = −1, or all 𝑥𝑖 are zero.

Example 2.5. The tropical hyperfield T = (R∪ {+∞}, 𝑁T), where +∞ serves as the zero element in the
tract. The multiplication on T× = R is the usual addition, and the ‘addition’ on T is defined as

∑
𝑥𝑖 ∈ 𝑁T

if and only if the minimum of 𝑥𝑖’s is achieved at least twice.

Example 2.6. A partial field P is a pair (𝐺, 𝑅) of a commutative ring R with 1 and a subgroup G of
the group of units of R such that −1 belongs to G and G generates the ring R. We can associate a tract
structure on any partial field P by setting the null set to be the set of all formal sums

∑𝑘
𝑖=1 𝑥𝑖 ∈ N[𝐺]

such that
∑𝑘

𝑖=1 𝑥𝑖 = 0 ∈ 𝑅. Notice that a partial field with 𝐺 = 𝑅 \ {0} is the same thing as a field.

Example 2.7. The regular partial field is U0 = ({1,−1},Z). The sixth-root-of-unity partial field is
𝑅6 := (〈𝜁〉,Z[𝜁]), where 𝜁 ∈ C× is a root of 𝑥2 − 𝑥 + 1 = 0.

We list some examples of tracts and tract homomorphisms in Figure 1.
The category of tracts admits products, which will be useful for studying representations of matroids

and orthogonal matroids in Section 5. Let 𝐹1, 𝐹2 be tracts. The (categorical) product 𝐹1 × 𝐹2 can be
constructed explicitly as follows. As a set, 𝐹1×𝐹2 is (𝐹×

1 ⊕𝐹×
2 ) ∪{0}, endowed with the coordinate-wise

multiplication on 𝐹×
1 ⊕ 𝐹×

2 , and the rule 0 · (𝑥1, 𝑥2) = (𝑥1, 𝑥2) · 0 = 0. The null set of 𝐹1 × 𝐹2 is

𝑁𝐹1×𝐹2 :=

{
𝑘∑
𝑖=1

(𝑥𝑖 , 𝑦𝑖) ∈ N[𝐹
×
1 ⊕ 𝐹×

2 ] :
𝑘∑
𝑖=1

𝑥𝑖 ∈ 𝑁𝐹1 and
𝑘∑
𝑖=1

𝑦𝑘 ∈ 𝑁𝐹2

}
.

2.2. Grassmann–Plücker functions

The easiest way of defining matroids over tracts is via the Grassmann–Plücker functions. This is also
the tract analogue of the basis exchange axiom for ordinary matroids.
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Definition 2.8. Let F be a tract. A strong Grassmann–Plücker function of rank r on E with coefficients
in F is a function 𝜑 : 𝐸𝑟 → 𝐹 satisfying (GP1)–(GP3):

(GP1) 𝜑 is not identically zero.
(GP2) 𝜑 is alternating; that is, for all 𝑥1, . . . 𝑥𝑟 ∈ 𝐸 , 𝜑(𝑥1, . . . , 𝑥𝑟 ) = 0 if 𝑥𝑖 = 𝑥 𝑗 for some 𝑖 ≠ 𝑗 , and

𝜑(𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥 𝑗 , . . . , 𝑥𝑟 ) = −𝜑(𝑥1, . . . , 𝑥 𝑗 , . . . , 𝑥𝑖 , . . . , 𝑥𝑟 ).
(GP3) For any two subsets {𝑥1, . . . , 𝑥𝑟+1} and {𝑦1, . . . , 𝑦𝑟−1} of E, we have the Grassmann–Plücker

relations:

𝑟+1∑
𝑘=1

(−1)𝑘𝜑(𝑥1, . . . , 𝑥𝑘 , . . . , 𝑥𝑟+1)𝜑(𝑥𝑘 , 𝑦1, . . . , 𝑦𝑟−1) ∈ 𝑁𝐹 .

Definition 2.9. Let F be a tract. A weak Grassmann–Plücker function of rank r on E with coefficients
in F is a function 𝜑 : 𝐸𝑟 → 𝐹 such that the support {{𝑥1, . . . , 𝑥𝑟 } ∈

(𝐸
𝑟

)
: 𝜑(𝑥1, . . . , 𝑥𝑟 ) ≠ 0} of 𝜑 is

the set of bases of a rank r matroid on E, and 𝜑 satisfies (GP1), (GP2), and the next weaker replacement
of (GP3).

(GP3)′ For any two subsets 𝐽1 = {𝑥1, . . . , 𝑥𝑟+1} and 𝐽2 = {𝑦1, . . . , 𝑦𝑟−1} of E with |𝐽1 | = 𝑟 + 1,
|𝐽2 | = 𝑟 − 1 and |𝐽1 \ 𝐽2 | = 3, we have the 3-term Grassmann–Plücker relations:

𝑟+1∑
𝑘=1

(−1)𝑘𝜑(𝑥1, . . . , 𝑥𝑘 , . . . , 𝑥𝑟+1)𝜑(𝑥𝑘 , 𝑦1, . . . , 𝑦𝑟−1) ∈ 𝑁𝐹 .

Two strong (resp. weak) Grassmann–Plücker functions 𝜑1 and 𝜑2 are equivalent if 𝜑1 = 𝑐 ·𝜑2 for some
𝑐 ∈ 𝐹×, and we call an equivalence class 𝑀𝜑 := [𝜑] of strong (resp. weak) Grassmann–Plücker functions
a strong (resp. weak) matroid over the tract F, or simply a strong (resp. weak) F-matroid. It can be shown
that every strong F-matroid is a weak F-matroid. We denote by 𝑀𝜑 the underling ordinary matroid of a
strong or weak F-matroid 𝑀𝜑 whose set of bases is B(𝑀𝜑) = {{𝑥1, . . . , 𝑥𝑟 } ∈

(𝐸
𝑟

)
: 𝜑(𝑥1, . . . , 𝑥𝑟 ) ≠ 0}.

2.3. F-circuits and dual pairs

We now give two cryptomorphic definitions of matroids over a tract F in terms of F-circuits and dual
pairs of F-signatures.

Denote by 𝐹𝐸 the set of all functions from E to F. The support of 𝑋 ∈ 𝐹𝐸 is the set of elements
e in E such that 𝑋 (𝑒) ≠ 0, and is denoted by 𝑋 or Supp𝑋 . Given two functions 𝑋 = (𝑥1, . . . , 𝑥𝑛) and
𝑌 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝐹𝐸 , where F is endowed with an involution 𝑥 ↦→ 𝑥, the inner product of X and Y is
𝑋 ·𝑌 :=

∑𝑛
𝑘=1 𝑥𝑘 𝑦𝑘 . We say that two functions X and Y are orthogonal, denoted by 𝑋 ⊥ 𝑌 , if 𝑋 ·𝑌 ∈ 𝑁𝐹 .

When F is the field C of complex numbers or the sixth-root-of-unity partial field 𝑅6, the involution
𝑥 ↦→ 𝑥 should be taken to be the complex conjugation. For 𝐹 ∈ {K, S,T}, the involution should be taken
to be the identity map.

The linear span of 𝑋1, . . . , 𝑋𝑘 ∈ 𝐹𝐸 is defined to be the set of all functions 𝑋 ∈ 𝐹𝐸 such that

𝑐1𝑋1 + 𝑐2𝑋2 + · · · + 𝑐𝑘𝑋𝑘 − 𝑋 ∈ (𝑁𝐹 )
𝐸

for some 𝑐1, . . . , 𝑐𝑘 ∈ 𝐹.

Definition 2.10. Let 𝑀 be an ordinary matroid on E. An F-signature of 𝑀 is a subset C ⊆ 𝐹𝐸 such that
the following hold:

(i) The support C := {𝑋 : 𝑋 ∈ C} of C is the set of circuits of 𝑀 .
(ii) For all 𝑋 ∈ C and 𝛼 ∈ 𝐹×, we have 𝛼𝑋 ∈ C.

(iii) If 𝑋,𝑌 ∈ C and 𝑋 ⊆ 𝑌 , then 𝑋 = 𝛼𝑌 for some 𝛼 ∈ 𝐹×.
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For an ordinary matroid 𝑀 on E, we denote by 𝐶𝑀 (𝐵, 𝑒) the fundamental circuit of M with respect
to 𝐵 ∈ B(𝑀) and 𝑒 ∈ 𝐸 \ 𝐵. The subscript will be omitted if no confusion arises.

Definition 2.11. Let F be a tract and let 𝑀 be an ordinary matroid on E. A subset C of 𝐹𝐸 is called a
strong F-circuit set of 𝑀 if it satisfies the following axioms:

(CS1) C is an F-signature of 𝑀 .
(CS2) For every basis B of 𝑀 and for each 𝑋 ∈ C, X is in the linear span of {𝑋𝑒}𝑒∈𝐸\𝐵, where 𝑋𝑒 ∈ C

has support 𝐶 (𝐵, 𝑒).

We call C a weak F-circuit set of 𝑀 if it satisfies (CS1) and the following replacement:

(CS2)′ For every basis B of 𝑀 and distinct elements 𝑒1, 𝑒2 ∈ 𝐸 \ 𝐵, if 𝑋1 and 𝑋2 in C have supports
𝐶 (𝐵, 𝑒1) and 𝐶 (𝐵, 𝑒2), respectively, and f is a common element of the two supports, then there
exists 𝑌 ∈ C such that 𝑌 ( 𝑓 ) = 0 and Y is in the linear span of 𝑋1 and 𝑋2.

Definition 2.12. Let F be a tract and let 𝑀 be an ordinary matroid on E. A pair (C,D) of subsets of 𝐹𝐸

is called a strong dual pair of F-signatures of 𝑀 if

(DP1) C is an F-signature of 𝑀 .
(DP2) D is an F-signature of the dual matroid 𝑀∗.
(DP3) 𝑋 ⊥ 𝑌 for all 𝑋 ∈ C and 𝑌 ∈ D.

A pair (C,D) is called a weak dual pair of F-signatures of 𝑀 if it satisfies (DP1), (DP2), and the
following weakening of (DP1):

(DP3)′ 𝑋 ⊥ 𝑌 for all 𝑋 ∈ C and 𝑌 ∈ D with |𝑋 ∩ 𝑌 | � 3.

2.4. F-vectors

One can naturally ask for an axiomatization of linear spaces over a tract F. Anderson answered this
question and gave another cryptomorphic definition of strong F-matroids in terms of F-vectors in [1].

For a subset W ⊆ 𝐹𝐸 , a support basis for W is a minimal subset of E meeting every element
of Supp(W \ {0}). A reduced row-echelon form of W with respect to a support basis B is a subset
Φ𝐵 = {𝑤𝐵

𝑖 }𝑖∈𝐵 ⊆ W such that 𝑤𝐵
𝑖 ( 𝑗) = 𝛿𝑖 𝑗 for each 𝑖, 𝑗 ∈ 𝐵, and every 𝑤 ∈ W is in the linear span of

Φ𝐵. It is not difficult to see that if Φ𝐵 exists, then it is unique. We say a collection Φ = {Φ𝐵} of reduced
row-echelon forms is tight if W is precisely the set of elements of 𝐹𝐸 which are in the linear span of
Φ𝐵 for all Φ𝐵 ∈ Φ.

Definition 2.13. A subset W of 𝐹𝐸 is an F-vector set on E if the following hold:

(V1) Every support basis has a reduced row-echelon form.
(V2) The collection of all such reduced row-echelon forms is tight.

2.5. Cryptomorphisms

The main results of [2, 1] are the following theorems.

Theorem 2.14 (Theorem 4.17 of [2] and Theorem 2.18 of [1]). Let E be a finite set and let F be a tract
endowed with an involution 𝑥 ↦→ 𝑥. Then there are natural bijections between:

1. Strong F-matroids on E.
2. Strong F-circuit sets of matroids on E.
3. Ordinary matroids on E endowed with a strong dual pair of F-signatures.
4. F-vector sets on E.
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Theorem 2.15 (Theorem 4.18 of [2]). Let E be a finite set and let F be a tract endowed with an involution
𝑥 ↦→ 𝑥. Then there are natural bijections between:

1. Weak F-matroids on E.
2. Weak F-circuit sets of matroids on E.
3. Ordinary matroids on E endowed with a weak dual pair of F-signatures.

2.6. Functoriality, duality and minors.

Let F be a tract with an involution 𝑥 ↦→ 𝑥. The theory of functoriality, duality and minors for matroids
over tracts generalizes the corresponding classical theory for matroids. For simplicity, here we only give
the descriptions via the strong Grassmann–Plücker functions.

Given a strong Grassmann–Plücker function 𝜑 : 𝐸𝑟 → 𝐹 and a tract homomorphism 𝑓 : 𝐹 → 𝐹 ′,
we define the pushforword 𝑓∗𝜑 : 𝐸𝑟 → 𝐹 ′ as

( 𝑓∗𝜑) (𝑥1, . . . , 𝑥𝑟 ) = 𝑓 (𝜑(𝑥1, . . . , 𝑥𝑟 )).

It is not hard to see that 𝑓∗𝜑 is a strong Grassmann–Plücker function. Notice that pushforwards are
functorial: if 𝐹1

𝑓
−→ 𝐹2

𝑔
−→ 𝐹3 are tract homomorphisms, then (𝑔 ◦ 𝑓 )∗ = 𝑔∗ ◦ 𝑓∗.

The dual Grassmann–Plücker function 𝜑∗ : 𝐸𝑛−𝑟 → 𝐹 of 𝜑 is determined by (GP2) and

𝜑∗(𝑥1, . . . , 𝑥𝑛−𝑟 ) = sgn(𝑥1, . . . , 𝑥𝑛−𝑟 , 𝑥
′
1, . . . , 𝑥

′
𝑟 ) · 𝜑(𝑥

′
1, . . . , 𝑥

′
𝑟 ),

where 𝑥 ′1, . . . , 𝑥
′
𝑟 is any ordering of 𝐸 \ {𝑥1, . . . , 𝑥𝑛−𝑟 }, and sgn(𝑥1, . . . , 𝑥𝑛−𝑟 , 𝑥

′
1, . . . , 𝑥

′
𝑟 ) ∈ {±1} is the

permutation sign taken as an element of F. This notion of dual Grassmann–Plücker functions satisfies
𝜑∗∗ = 𝜑, and the underlying matroid of 𝜑∗ is the dual matroid of the underlying matroid of 𝜑.

Let 𝜑 : 𝐸𝑟 → 𝐹 be a strong Grassmann–Plücker function with the underlying matroid 𝑀𝜑 and let
𝐴 ⊆ 𝐸 . We denote by ℓ and k the ranks of A and 𝐸 \ 𝐴 in 𝑀𝜑 , respectively.

Let {𝑎1, . . . , 𝑎ℓ } be a maximal independent subset of A in 𝑀 𝜑 . The contraction 𝜑/𝐴 : (𝐸\𝐴)𝑟−ℓ → 𝐹
is defined by

(𝜑/𝐴) (𝑥1, . . . , 𝑥𝑟−ℓ) = 𝜑(𝑥1, . . . , 𝑥𝑟−ℓ , 𝑎1, . . . , 𝑎𝑟 ).

Choose {𝑏1, . . . , 𝑏𝑟−𝑘 } such that {𝑏1, . . . , 𝑏𝑟−𝑘 } is a basis of 𝑀𝜑/(𝐸 \ 𝐴). Then the deletion
𝜑 \ 𝐴 : (𝐸 \ 𝐴)𝑘 → 𝐹 is defined by

(𝜑 \ 𝐴) (𝑥1, . . . , 𝑥𝑘 ) = 𝜑(𝑥1, . . . , 𝑥𝑘 , 𝑏1, . . . , 𝑏𝑟−𝑘 ).

The following lemma shows that the contractions and deletions are well-defined.

Lemma 2.16 (Lemma 4.4 of [2]). The following hold.

1. Both 𝜑/𝐴 and 𝜑\𝐴 are strong Grassmann–Plücker functions, and they are independent of all choices
up to a global multiplication by a nonzero element of F.

2. 𝑀𝜑/𝐴 = 𝑀𝜑/𝐴 and 𝑀𝜑\𝐴 = 𝑀𝜑 \ 𝐴.
3. (𝜑 \ 𝐴)∗ = 𝜑∗/𝐴.

3. Orthogonal matroids over tracts

Let 𝐸 = [𝑛] ∪ [𝑛]∗ be a finite set and let F be a tract endowed with an involution 𝑥 ↦→ 𝑥. In Section 3.1,
we define strong, moderately weak, and weak orthogonal matroids on E over F in terms of Wick
functions. We then establish other cryptomorphic definitions, including orthogonal F-signatures and
F-circuit sets of orthogonal matroids in Section 3.2, and orthogonal F-vector sets in Section 3.3. We
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then summarize equivalences and implications of various notions in Section 3.4. In Sections 3.5–3.7, we
introduce functoriality, duality and minors, and in Section 3.8, we explain how orthogonal F-matroids
generalize historical works on orthogonal matroids by specifying F.

3.1. Wick functions

We describe the first cryptomorphic characterization of strong, moderately weak and weak orthogonal
matroids over tracts in terms of Wick functions. We denote by T𝑛 the family of all transversals of E.

Definition 3.1. A strong Wick function on E with coefficients in F is 𝜑 : T𝑛 → 𝐹 such that:

(W1) 𝜑 is not identically zero.
(W2) For all 𝑇1, 𝑇2 ∈ T𝑛, we have

𝑚∑
𝑘=1

(−1)𝑘𝜑(𝑇1�{𝑥𝑘 , 𝑥
∗
𝑘 })𝜑(𝑇2�{𝑥𝑘 , 𝑥

∗
𝑘 }) ∈ 𝑁𝐹 ,

where (𝑇1�𝑇2) ∩ [𝑛] = {𝑥1 < · · · < 𝑥𝑚}.

Proposition 3.2. The support Supp(𝜑) := {𝑇 ∈ T𝑛 : 𝜑(𝑇) ≠ 0} of a strong Wick function 𝜑 is the set of
bases of an ordinary orthogonal matroid.

Proof. Clearly, Supp(𝜑) ≠ ∅ by (W1). Let 𝐵1, 𝐵2 be in Supp(𝜑) with {𝑥, 𝑥∗} ⊆ 𝐵1�𝐵2. Let
𝑇1 = 𝐵1�{𝑥, 𝑥

∗} and𝑇2 = 𝐵2�{𝑥, 𝑥
∗}, and we write (𝐵1�𝐵2) ∩ [𝑛] = (𝑇1�𝑇2) ∩ [𝑛] = {𝑥1 < · · · < 𝑥𝑚}.

Take 𝑖 ∈ [𝑚] such that {𝑥𝑖 , 𝑥∗𝑖 } = {𝑥, 𝑥∗}. Then we have 𝜑(𝑇1�{𝑥𝑖 , 𝑥
∗
𝑖 })𝜑(𝑇2�{𝑥𝑖 , 𝑥

∗
𝑖 }) = 𝜑(𝐵1)𝜑(𝐵2) ≠

0. By (W2), there exists 𝑦 ∈ {𝑥1, . . . , 𝑥𝑚} \ {𝑥𝑖} such that 𝜑(𝑇1�{𝑦, 𝑦
∗})𝜑(𝑇2�{𝑦, 𝑦

∗}) ≠ 0, implying
that 𝐵 𝑗�{𝑥, 𝑥

∗}�{𝑦, 𝑦∗} = 𝑇𝑗�{𝑦, 𝑦
∗} ∈ Supp(𝜑) for both 𝑗 ∈ {1, 2}. �

Definition 3.3. Let 𝜑 : T𝑛 → 𝐹 be a map such that the support of 𝜑 is the set of bases of an orthogonal
matroid. We say that 𝜑 is a moderately weak Wick function on E with coefficients in F if 𝜑 satisfies (W1)
and the following weakened version of (W2):

(W2)′ For all 𝑇1, 𝑇2 ∈ T𝑛, if (𝑇1�𝑇2) ∩ [𝑛] = {𝑥1 < · · · < 𝑥𝑚}, and at most four of
𝜑(𝑇1�{𝑥𝑘 , 𝑥

∗
𝑘 })𝜑(𝑇2�{𝑥𝑘 , 𝑥

∗
𝑘 })’s are nonzero, then we have

𝑚∑
𝑘=1

(−1)𝑘𝜑(𝑇1�{𝑥𝑘 , 𝑥
∗
𝑘 })𝜑(𝑇2�{𝑥𝑘 , 𝑥

∗
𝑘 }) ∈ 𝑁𝐹 .

We say that 𝜑 is a weak Wick function on E with coefficients in F if 𝜑 satisfies (W1) and:

(W2)′′ For all 𝑇1, 𝑇2 ∈ T𝑛, if (𝑇1�𝑇2) ∩ [𝑛] = {𝑥1 < 𝑥2 < 𝑥3 < 𝑥4}, then we have

4∑
𝑘=1

(−1)𝑘𝜑(𝑇1�{𝑥𝑘 , 𝑥
∗
𝑘 })𝜑(𝑇2�{𝑥𝑘 , 𝑥

∗
𝑘 }) ∈ 𝑁𝐹 .

Two strong Wick functions 𝜑 and 𝜓 with coefficients in F are equivalent if 𝜑 = 𝑐𝜓 for some nonzero
𝑐 ∈ 𝐹, and we call an equivalence class 𝑀𝜑 = [𝜑] of strong Wick functions a strong orthogonal
matroid over the tract F, or simply a strong orthogonal F-matroid. We similarly define (moderately)
weak orthogonal F-matroid. It is trivial that every moderately weak orthogonal F-matroid is weak.
Proposition 3.2 shows that every strong orthogonal F-matroid is a moderately weak orthogonal F-
matroid. The three notions of orthogonal F-matroids are the same when F is a partial field [3], the
tropical hyperfield T [23] or the Krasner hyperfield K. We denote by 𝑀𝜑 the underlying orthogonal
matroid of the orthogonal F-matroid 𝑀𝜑 whose set of bases is Supp(𝜑).
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Proposition 3.4. There is a natural bijection between the set of all strong F-matroids on [𝑛] and the set
of all strong orthogonal F-matroids 𝑀𝜓 on [𝑛] ∪ [𝑛]∗ such that the intersections of bases of 𝑀𝜓 and
[𝑛] have the same cardinality.

Proof. Let 𝜑 : [𝑛]𝑟 → 𝐹 be a strong Grassmann–Plücker function. Define 𝜓 : T𝑛 → 𝐹 to be
𝜓(𝑇) := 𝜑(𝑎1, . . . , 𝑎𝑟 ) if 𝑇 = 𝐵 ∪ ([𝑛] \ 𝐵)∗ for 𝐵 = {𝑎1 < · · · < 𝑎𝑟 }, and 𝜓(𝑇) = 0 otherwise.
It is obvious that 𝜓 is not identically zero, and we claim that 𝜓 satisfies (W2). To prove (W2), we
take 𝑇1, 𝑇2 ∈ T𝑛 with (𝑇1�𝑇2) ∩ [𝑛] = {𝑥1 < · · · < 𝑥𝑚}. Suppose without loss of generality that
𝑇1 ∩ [𝑛] = {𝑏1 < · · · < 𝑏𝑟+1} and 𝑇2 ∩ [𝑛] = {𝑐1 < · · · < 𝑐𝑟−1}. If 𝑥𝑘 ∈ (𝑇2 \ 𝑇1) ∩ [𝑛], then
𝜓(𝑇1�{𝑥𝑘 , 𝑥

∗
𝑘 }) = 𝜓(𝑇2�{𝑥𝑘 , 𝑥

∗
𝑘 }) = 0. If 𝑥𝑘 = 𝑏 𝑗 ∈ (𝑇1 \ 𝑇2) ∩ [𝑛], then since |𝑇1 ∩ [𝑥𝑘 ] | = 𝑗 and

|𝑇2 ∩ [𝑥𝑘 ] | = 𝑘 − 𝑗 + 2|𝑇1 ∩ 𝑇2 ∩ [𝑥𝑘 ] |, we have

𝜓(𝑇1�{𝑥𝑘 , 𝑥
∗
𝑘 }) = 𝜑(𝑏1, . . . , 𝑏 𝑗 , . . . , 𝑏𝑟+1) and 𝜓(𝑇2�{𝑥𝑘 , 𝑥

∗
𝑘 }) = (−1)𝑘− 𝑗𝜑(𝑏 𝑗 , 𝑐1, . . . , 𝑐𝑟−1).

It follows that

𝑚∑
𝑘=1

(−1)𝑘𝜓(𝑇1�{𝑥𝑘 , 𝑥
∗
𝑘 })𝜓(𝑇2�{𝑥𝑘 , 𝑥

∗
𝑘 }) =

𝑟+1∑
𝑗=1

(−1) 𝑗𝜑(𝑏1, . . . , 𝑏 𝑗 , . . . , 𝑏𝑟+1)𝜑(𝑏 𝑗 , 𝑐1, . . . , 𝑐𝑟−1) ∈ 𝑁𝐹 .

Therefore, 𝜓 is a strong Wick function whose support forms the bases of lift(𝑀𝜑).
Conversely, let 𝜓 be a strong Wick function on 𝐸 = [𝑛] ∪ [𝑛]∗ such that all elements of {𝐵 ∩ [𝑛] :

𝐵 ∈ Supp(𝜓)} have the same cardinality r. Let 𝜑 : [𝑛]𝑟 → 𝐹 be the (unique) function satisfying
(GP1) and (GP2) defined by 𝜑(𝑎1, . . . , 𝑎𝑟 ) := 𝜓(𝑇), where 𝑇 = {𝑎1, . . . , 𝑎𝑟 } ∪ ([𝑛] \ {𝑎1, . . . , 𝑎𝑟 })

∗

for all {𝑎1 < · · · < 𝑎𝑟 } ⊆ [𝑛]. Take 𝐽1 = {𝑏1 < · · · < 𝑏𝑟+1}, 𝐽2 = {𝑐1, . . . , 𝑐𝑟−1} ⊆ [𝑛], and write
𝐽 ′1 = 𝐽1 ∪ ([𝑛] \ 𝐽1)

∗ and 𝐽 ′2 = 𝐽2 ∪ ([𝑛] \ 𝐽2)
∗. Then

𝑟+1∑
𝑗=1

(−1) 𝑗𝜑(𝑏1, . . . , 𝑏 𝑗 , . . . , 𝑏𝑟+1)𝜑(𝑏 𝑗 , 𝑐1, . . . , 𝑐𝑟−1) =
𝑟+1∑
𝑗=1

(−1) 𝑗 · 𝜓(𝐽 ′1�{𝑏 𝑗 , 𝑏
∗
𝑗 }) · (−1)𝑚 𝑗𝜓(𝐽 ′2�{𝑏 𝑗 , 𝑏

∗
𝑗 }),

where 𝑚 𝑗 is the number of elements in 𝐽2 that are less than 𝑏 𝑗 . Write (𝐽 ′1�𝐽
′
2) ∩ [𝑛] = {𝑥1, . . . , 𝑥𝑚}. If

𝑒 ∈ 𝐽2, then since all elements of {𝐵∩[𝑛] : 𝐵 ∈ Supp(𝜓)} have cardinality r, we have𝜓(𝐽 ′2�{𝑒, 𝑒
∗}) = 0.

Therefore, we have

𝑟+1∑
𝑗=1

(−1) 𝑗𝜑(𝑏1, . . . , 𝑏 𝑗 , . . . , 𝑏𝑟+1)𝜑(𝑏 𝑗 , 𝑐1, . . . , 𝑐𝑟−1) =
𝑚∑
𝑘=1

(−1)𝑘𝜓(𝐽 ′1�{𝑥𝑘 , 𝑥
∗
𝑘 })𝜓(𝐽

′
2�{𝑥𝑘 , 𝑥

∗
𝑘 }) ∈ 𝑁𝐹 .

It’s not hard to see that the two constructions are inverses of each other. �

Remark 3.5. The variant of Proposition 3.4 for weak F-matroids and weak orthogonal F-matroids
holds, and the proof is similar.

3.2. Orthogonal signatures and circuit sets

Let 𝑀 be an ordinary orthogonal matroid on E. As in Section 2, we denote the support of 𝑋 ∈ 𝐹𝐸 by
𝑋 = {𝑖 ∈ 𝐸 : 𝑋 (𝑖) ≠ 0}. If 𝑋 ∈ 𝐹𝐸 , we write 𝑋∗ ∈ 𝐹𝐸 for the function defined by 𝑋∗(𝑖) := 𝑋 (𝑖∗).
Notice that this induces an obvious involution ∗ on the subsets of 𝐹𝐸 .

Definition 3.6. A subset C ⊆ 𝐹𝐸 is an F-signature of 𝑀 if the following hold:

(i) The support C = {𝑋 : 𝑋 ∈ C} of C is the set of circuits of 𝑀 .
(ii) If 𝑋 ∈ C and 𝛼 ∈ 𝐹×, then 𝛼𝑋 ∈ C.

We call 𝑀C := 𝑀 the underlying orthogonal matroid of C and call each element of C an F-circuit.
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The inner product 〈·, ·〉 on 𝐹𝐸 with respect to the involution 𝑥 ↦→ 𝑥 is defined to be

〈𝑋,𝑌〉 =
∑
𝑖∈[𝑛]

(𝑋 (𝑖)𝑌 (𝑖) + 𝑋 (𝑖∗)𝑌 (𝑖∗)).

Note that 〈𝑌, 𝑋〉 = 〈𝑋,𝑌〉. Let ·̃ : 𝐹𝐸 → 𝐹𝐸 be such that 𝑋̃ (𝑖) = 𝑋 (𝑖) if 𝑖 ∈ [𝑛] and 𝑋̃ (𝑖) = 𝑋 (𝑖)
otherwise. Then 〈𝑋,𝑌 ∗〉 =

∑
𝑖∈𝐸 𝑋̃ (𝑖)𝑌 (𝑖∗).

We say that an F-signature C of 𝑀 satisfies the 2-term orthogonality if the following holds:

(O2) 〈𝑋,𝑌 ∗〉 ∈ 𝑁𝐹 for all 𝑋,𝑌 ∈ C with |𝑋 ∩ 𝑌 ∗ | = 2,

Lemma 3.7. Let C be an F-signature of 𝑀 satisfying the 2-term orthogonality (O2). If 𝑋, 𝑋 ′ ∈ C and
𝑋 = 𝑋 ′, then 𝑋 = 𝛼𝑋 ′ for some 𝛼 ∈ 𝐹×.

Proof. Consider two F-circuits X and 𝑋 ′ in C with 𝑋 = 𝑋 ′ = 𝐶. Suppose for contradiction that there
exist distinct elements 𝑒, 𝑓 ∈ 𝐶 with 𝑋 (𝑒)/𝑋 ( 𝑓 ) ≠ 𝑋 ′(𝑒)/𝑋 ′( 𝑓 ). Let B be a basis of M containing
𝐶�{𝑒, 𝑒∗}, and let D be the fundamental circuit 𝐶 (𝐵, 𝑓 ∗). Then 𝐶 ∩ 𝐷∗ = {𝑒, 𝑓 }. Let Y be an
F-circuit in C such that 𝑌 = 𝐷. Then 〈𝑋,𝑌 ∗〉 = 𝑋̃ (𝑒)𝑌 (𝑒∗) + 𝑋̃ ( 𝑓 )𝑌̃ ( 𝑓 ∗) ∈ 𝑁𝐹 by (O2), and thus,
𝑋̃ (𝑒)/𝑋̃ ( 𝑓 ) = 𝑌 ( 𝑓 ∗)/𝑌 (𝑒∗). We also have the same result for 𝑋 ′, a contradiction. �

Definition 3.8. We call an F-signature C of 𝑀 a strong orthogonal F-signature of 𝑀 if

(O) 〈𝑋,𝑌 ∗〉 ∈ 𝑁𝐹 for all 𝑋,𝑌 ∈ C.

We call an F-signature C of 𝑀 a weak orthogonal F-signature of 𝑀 if

(O)′ 〈𝑋,𝑌 ∗〉 ∈ 𝑁𝐹 for all 𝑋,𝑌 ∈ C with |𝑋 ∩ 𝑌 ∗ | � 4.

Remark 3.9. Let (C,D) be a dual pair of F-signatures of a matroid 𝑁 on [𝑛]. For each 𝐷 ∈ D, let 𝐷1
be the function from [𝑛]∗ to F defined by 𝐷1 (𝑥

∗) = 𝐷 (𝑥). Consider C1 := C and D1 := {𝐷1 : 𝐷 ∈ D},
the obvious embeddings of C and D in 𝐹𝐸 = 𝐹 [𝑛]∪[𝑛]∗ . By Proposition 1.17, C1 ∪D∗

1 is an F-signature
of lift(𝑁). It is readily seen from definitions that (C,D) is a strong dual pair of F-signatures of 𝑁 if and
only if C1 ∪D∗

1 is a strong orthogonal F-signature of lift(𝑁). In addition, (C,D) is a weak dual pair of
F-signatures of 𝑁 if and only if C1 ∪D∗

1 is an F-signature of lift(𝑁) which satisfies the following:

(O3) 〈𝑋,𝑌 ∗〉 ∈ 𝑁𝐹 for all 𝑋,𝑌 ∈ C with |𝑋 ∩ 𝑌 ∗ | � 3.

We will show later in Example 3.12 that for some field K, there exists a K-signature of an orthogonal
matroid which satisfies (O3) but not (O)′.

Definition 3.10. A strong F-circuit set of 𝑀 is an F-signature C of 𝑀 satisfying (O2) and the following
property:

(L) For every F-circuit 𝑋 ∈ C and a basis B of 𝑀 , the vector 𝑋̃ is in the linear span of {𝑋𝑒}𝑒∈𝐵∗ , where
𝑋𝑒 is an F-circuit in C with support 𝐶 (𝐵, 𝑒).

A weak F-circuit set of 𝑀 is an F-signature C of 𝑀 satisfying (O2) and the next weakened version of (L):

(L-i)′ Let B be an arbitrary basis of 𝑀 , and let 𝑒1, 𝑒2 ∈ 𝐵∗ be distinct. Let 𝑋𝑖 ∈ C be an F-circuit with
support 𝑋𝑖 = 𝐶 (𝐵, 𝑒𝑖) for 𝑖 = 1, 2. If 𝑋1 ∪ 𝑋2 is admissible and if 𝑓 ∈ 𝑋1 ∩ 𝑋2, then there exists
an F-circuit 𝑌 ∈ C such that 𝑌 ( 𝑓 ) = 0 and 𝑌 is in the linear span of 𝑋1 and 𝑋2.

(L-ii)′ Let B be an arbitrary basis of 𝑀 , and let 𝑒1, 𝑒2, 𝑒3 ∈ 𝐵∗ be distinct. Let 𝑋𝑖 ∈ C be an F-circuit
with support 𝑋𝑖 = 𝐶 (𝐵, 𝑒𝑖) for 𝑖 = 1, 2, 3. If none of 𝑋𝑖 ∪ 𝑋 𝑗 with 1 ≤ 𝑖 < 𝑗 ≤ 3 is admissible,
then there exists an F-circuit 𝑌 ∈ C such that 𝑌 (𝑒∗1) = 𝑌 (𝑒∗2) = 𝑌 (𝑒∗3) = 0 and 𝑌 is in the linear
span of 𝑋̃1, 𝑋̃2, and 𝑋̃3.

Notice that both (L-i)′ and (L-ii)′ follow from (L). To show that (L) implies (L-i)′, we consider
𝑓 ∈ 𝑋1 ∩ 𝑋2 as given in (L-i)′. By (C3), there exists a circuit 𝐶 ⊆ (𝑋1 ∪ 𝑋2) \ { 𝑓 }. Observe that
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𝑒1, 𝑒2 ∈ 𝐶; otherwise, C is a proper subset of 𝑋2 or 𝑋1, a contradiction. Let Y be the F-circuit whose
support is C. Applying (L), we see that𝑌 is in the linear span of {𝑋𝑒}𝑒∈𝐵∗ . We claim that the coefficients
for terms other than 𝑋1 and 𝑋2 must be zero. In fact, if 𝑒 ∈ 𝐵∗ but 𝑒 ≠ 𝑒1, 𝑒2, then 𝑒 ∈ 𝐶 (𝐵, 𝑒) \ 𝐶. As
a result, the coefficient for 𝑋𝑒 is zero. Therefore, 𝑌 is in the linear span of 𝑋1 and 𝑋2.

For (L-ii)′, we consider 𝑋𝑖 = 𝐶 (𝐵, 𝑒𝑖) for 𝑖 = 1, 2, 3 as given in (L-ii)′. Since 𝑋1 ∪ 𝑋2 is not
admissible, 𝑋1 (𝑒

∗
2) ≠ 0 and 𝑋2 (𝑒

∗
1) ≠ 0. Then 𝐵′ := 𝐵�{𝑒1, 𝑒

∗
1, 𝑒2, 𝑒

∗
2} is a basis. Let 𝐷 := 𝐶 (𝐵′, 𝑒3).

Then 𝑒1, 𝑒2, 𝑒3 ∈ 𝐷. Consider the F-circuit Y whose support is D. Then, 𝑌 (𝑒∗𝑖 ) = 0 for 1 � 𝑖 � 3 and
𝑌 is in the linear span of {𝑋𝑒}𝑒∈𝐵∗ by (L). Note that 𝐷 = 𝐶 (𝐵′, 𝑒3) ⊆ 𝐵 ∪ {𝑒1, 𝑒2, 𝑒3}. Therefore, if
𝑒 ∈ 𝐵∗ but 𝑒 ≠ 𝑒1, 𝑒2, 𝑒3, then 𝑒 ∉ 𝐷, and hence, 𝑌 is in the linear span of 𝑋1, 𝑋2, and 𝑋3.

Remark 3.11. Let C be a weak F-circuit set of a matroid 𝑁 on [𝑛]. By [2], its dual D is the F-signature
of the dual matroid 𝑁∗ such that 𝑋 ⊥ 𝑌 for all 𝑋 ∈ C and 𝑌 ∈ D with |𝑋 ∩ 𝑌 | = 2. Let C1 and D1 be
natural embeddings of C and D into 𝐹 [𝑛]∪[𝑛]∗ . Then C1 ∪ D∗

1 is an F-signature of lift(𝑁) that satisfies
(O2) and (L-i)′ by definition, and C1 ∪ D∗

1 vacuously satisfies (L-ii)′. Therefore, C1 ∪ D∗
1 is an weak

F-circuit set of lift(𝑁). If C is a strong F-circuit set of 𝑁 , then C1∪D∗
1 is a strong F-circuit set of lift(𝑁).

Indeed, denote by 𝜋 : 𝐹 [𝑛]∪[𝑛]∗ → 𝐹 [𝑛] the canonical projection map. Then an F-signature C
of lift(𝑁) is a weak (resp. strong) F-circuit set if and only if {𝜋(𝑋) : 𝑋 ∈ C with 𝑋 ⊆ [𝑛]} and
{𝜋(𝑋∗) : 𝑋 ∈ C with 𝑋∗ ⊆ [𝑛]} are weak (resp. strong) F-circuit sets of 𝑁 and 𝑁∗ respectively, and
those two F-circuit sets are the dual of each other.

Example 3.12. Let K be a field with |𝐾×| > 1 and char(𝐾) ≠ 3 and let 𝑥 ∈ 𝐾 \ {0,−3}. We assume the
trivial involution on K. Let C be a subset of 𝐾 [4]∪[4]∗ consisting of the following eight vectors and their
scalar multiples by nonzero elements:

(
0 1 1 1
1 0 0 0

)
,

(
−1 0 1 −1
0 1 0 0

)
,

(
−1 −1 0 1
0 0 1 0

)
,

(
−1 1 −1 0
0 0 0 1

)
,(

𝑥 0 0 0
0 1 1 1

)
,

(
0 𝑥 0 0
−1 0 1 −1

)
,

(
0 0 −𝑥 0
1 1 0 −1

)
,

(
0 0 0 −𝑥
1 −1 1 0

)
,

where
(
𝑎1 𝑎2 𝑎3 𝑎4
𝑏1 𝑏2 𝑏3 𝑏4

)
means 𝑋 ∈ 𝐾 [4]∪[4]∗ such that 𝑋 (𝑖) = 𝑎𝑖 and 𝑋 (𝑖∗) = 𝑏𝑖 with 𝑖 ∈ [4]. Then C

is a K-signature of the orthogonal matroid whose set of bases is {[4], [4]∗} ∪ {𝑖 𝑗 𝑘∗𝑙∗ : 𝑖 𝑗 𝑘𝑙 = [4]}.
Notice that C satisfies (O3) and (L-i)′, but neither (O)′ nor (L-ii)′.

We prove the following results in Section 4.

Theorem 3.13. An F-signature of an orthogonal matroid is a strong orthogonal F-signature if and only
if it is a strong F-circuit set.

Theorem 3.14. Every weak F-circuit set of an orthogonal matroid is a weak orthogonal F-signature.

The converse of Theorem 3.14 is not true; see Example 4.22.

3.3. Orthogonal F-vector sets

Let V be a subset of 𝐹𝐸 . A vector 𝑋 ∈ V is elementary in V if (i) it is nonzero, and (ii) it has a minimal
support in V \ {0}, and (iii) its support 𝑋 is admissible. A transversal 𝑇 ∈ T𝑛 is a support basis of V if
there is no 𝑋 ∈ V \ {0} such that 𝑋 ⊆ 𝑇 . A fundamental circuit form for V with respect to a support
basis B is {𝑋V

𝐵,𝑒 : 𝑒 ∈ 𝐵∗} where 𝑋V
𝐵,𝑒 ∈ V is such that Supp(𝑋V

𝐵,𝑒) ⊆ 𝐵�{𝑒, 𝑒∗} and 𝑋V
𝐵,𝑒 (𝑒) = 1. We

simply write 𝑋V
𝐵,𝑒 as 𝑋𝑒 if it is clear from the context.
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Definition 3.15. We call V ⊆ 𝐹𝐸 an orthogonal F-vector set if the following hold:

(V1) For all elementary vectors 𝑋,𝑌 ∈ V , if |𝑋 ∩ 𝑌 ∗ | � 2, then 〈𝑋,𝑌 ∗〉 ∈ 𝑁𝐹 .
(V2) Support bases exist, and for each support basis B, there exists a corresponding fundamental circuit

form.
(V3) V is exactly the set of vectors 𝑋 ∈ 𝐹𝐸 such that for every support basis B of V , 𝑋̃ belongs to the

linear span of {𝑋̃𝑒 : 𝑒 ∈ 𝐵∗}.

The axiom (V3) implies the uniqueness of the fundamental circuit form for each support basis of
an orthogonal F-vector set V , and that every fundamental circuit form of an orthogonal F-vector set V
consists of elementary vectors of V . When F is a field, a subset W ⊆ 𝐹 [𝑛] is an F-vector set if and only
if it is a linear subspace [1]. We give an analogue of this for orthogonal F-vector sets.

Theorem 3.16. Let F be a field and V be a subset of 𝐹𝐸 .

(i) If V is an orthogonal F-vector set, then it is a Lagrangian subspace with respect to the inner product
〈·, (·)∗〉.

(ii) Whenever char(𝐹) ≠ 2, the converse of (i) holds.

We delay the proof of Theorem 3.16(i) to Section 4.5. Theorem 3.16(ii) can be deduced from the
results of [22]. The condition that char(𝐹) ≠ 2 in (ii) is crucial, since otherwise, V = {(𝑥, 𝑥) : 𝑥 ∈ 𝐹}
is a Lagrangian subspace of 𝐹 [1]∪[1]∗ but not an orthogonal F-vector set.

Lemma 3.17 (Oum, Propositions 4.2 and 4.3(i) of [22]). Let F be a field and letV ⊆ 𝐹𝐸 be a Lagrangian
subspace with respect to 〈·, (·)∗〉.

(i) There is a support basis of V .
(ii) If char(𝐹) ≠ 2, then for each support basis B of V and 𝑥 ∈ 𝐵∗, there exists a unique vector 𝑋 ∈ V

such that 𝑋 ⊆ 𝐵�{𝑥, 𝑥∗} and 𝑋 (𝑥) = 1.

Proof of Theorem 3.16(ii). Since V is isotropic, it satisfies (V1). By Lemma 3.17, (V2) holds. Since
the n vectors in each fundamental circuit form are independent, V satisfies (V3). Therefore, V is an
orthogonal F-vector set. �

3.4. Main theorems

We prove the equivalence of four notions of strong orthogonal matroids over tracts.

Theorem 3.18. Let 𝐸 = [𝑛] ∪ [𝑛]∗ and let F be a tract endowed with an involution 𝑥 ↦→ 𝑥. Then there
are natural bijections between:

(1) Strong orthogonal F-matroids on E.
(2) Strong orthogonal F-signatures on E.
(3) Strong F-circuit sets of orthogonal matroids on E.
(4) Orthogonal F-vector sets on E.

Similarly, we have the next two equivalences for weaker notions.

Theorem 3.19. Let 𝐸 = [𝑛] ∪ [𝑛]∗ and let F be a tract endowed with an involution 𝑥 ↦→ 𝑥. Then there
is a natural bijection between:

(1) Moderately weak orthogonal F-matroids on E.
(2) Weak orthogonal F-signatures on E.

Theorem 3.20. Let 𝐸 = [𝑛] ∪ [𝑛]∗ and let F be a tract endowed with an involution 𝑥 ↦→ 𝑥. Then there
is a natural bijection between:

(1) Weak orthogonal F-matroids on E.
(2) Weak F-circuit sets of orthogonal matroids on E.
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Figure 2. Summary of results in Section 3.1–3.4. In (a), we assume that 𝐹 ∈ {T,K} or F is a partial
field [3, 23]. In (b), we assume that F is a field with char(𝐹) ≠ 2.

We will provide proofs for Theorems 3.18, 3.19 and 3.20 in Section 4. Since the notions of weak
and strong orthogonal F-matroid coincide if F is a partial field [3], the tropical hyperfield T [23], or the
Krasner hyperfield K, it follows that the three notions of orthogonal F-matroids are equivalent when F
is any of these specific tracts.

We summarize our results in Figure 2. Additionally, we remark that in Figure 2, each inclusion is
strict for certain tracts; see Examples 4.22 and 4.23.

Remark 3.21. In [2], Baker and Bowler defined strong and weak matroids over a tract and showed
cryptomorphisms among different axiom systems. For orthogonal matroids, we introduce a third mod-
erately weak orthogonal F-matroids over a tract F. We have various reasons for this. First, Example
4.22 shows that there are no bijections between weak orthogonal F-matroids and weak orthogonal
F-signatures, while Theorems 4.4 and 4.11 prove that there is a natural bijection between moderately
weak orthogonal F-matroids and weak orthogonal F-signatures. Second, Wenzel defined in [25] the
Tutte group and the inner Tutte group of an orthogonal matroid, where the multiplicative relations for
the Tutte groups recognize the axiom system for the moderately weak orthogonal matroids; see the
Remark after [25, Definition 2.5]. Finally, our ongoing work shows that we can define the universal
pasture and the foundation of an orthogonal matroid that represent respectively the functors taking a
pasture to the set of moderately weak orthogonal F-matroids and to the set of rescaling equivalence
classes of moderately weak orthogonal F-matroids in the sense of [5] and [4]; we will not further
elaborate on this direction, as it is not the main goal of the present paper.

3.5. Functoriality.

Now we discuss the behavior of strong and weak orthogonal matroids over tracts with respect to tract
homomorphisms. The following propositions are all straightforward from the definitions.

Proposition 3.22. Let 𝑓 : 𝐹1 → 𝐹2 be a tract homomorphism, and let 𝜑 be a strong Wick function with
coefficients in 𝐹1. Then the composition 𝑓 ◦𝜑 is a strong Wick function with coefficients in 𝐹2. The same
results hold for weak and moderately weak Wick functions.

By the above proposition, we define the pushforward operator 𝑓∗ taking orthogonal 𝐹1-matroids
to orthogonal 𝐹2-matroids by 𝑓∗([𝜑]) := [ 𝑓 ◦ 𝜑]. Notice that the pushforwards are functorial: if
𝐹1

𝑓
−→ 𝐹2

𝑔
−→ 𝐹3 are tract homomorphisms, then (𝑔 ◦ 𝑓 )∗ = 𝑔∗ ◦ 𝑓∗. If 𝐹2 = K, the terminal object of the

category of tracts, then the orthogonal K-matroid [ 𝑓 ◦ 𝜑] is the same thing as 𝑀𝜑 .
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Proposition 3.23. Let 𝐹1 and 𝐹2 be tracts equipped with involutions 𝜄1 and 𝜄2, respectively, and let
𝑓 : 𝐹1 → 𝐹2 be a tract homomorphism that respects the involutions (i.e., 𝑓 ◦ 𝜄1 = 𝜄2 ◦ 𝑓 ). If C is a strong
(resp. weak or moderately weak) orthogonal 𝐹1-signature of an ordinary orthogonal matroid 𝑀 , then
𝑓∗(C) := {𝑐 𝑓 (𝑋) : 𝑐 ∈ 𝐹×

2 , 𝑋 ∈ C} is a strong (resp. weak or moderately weak) orthogonal 𝐹2-signature
of 𝑀 . The same results hold for strong and weak circuit sets over tracts of an orthogonal matroid.

Therefore, we also have the pushforward operator 𝑓∗ taking orthogonal 𝐹1-signatures (resp. 𝐹1-circuit
set) to orthogonal 𝐹2-signatures (resp. 𝐹2-circuit set). If 𝐹2 = K, then 𝑓∗(C) is the same thing as the set
of circuits of 𝑀C .

However, the simple pushforwards of orthogonal F-vector sets are not defined properly. In fact, let
𝑓 : 𝐹1 → 𝐹2 be a tract homomorphism respecting the involutions and let V be an orthogonal 𝐹1-vector
set. Then the set 𝑓∗(V) = {𝑐 𝑓 (𝑋) : 𝑐 ∈ 𝐹×

2 , 𝑋 ∈ V} is not necessarily an orthogonal 𝐹2-vector set; see
Example 4.26.
Proposition 3.24. Let 𝐹1, 𝐹2 be tracts, and let 𝜑1, 𝜑2 be strong Wick functions with coefficients in 𝐹1, 𝐹2,
respectively, with the same underlying orthogonal matroid 𝑀 . Then 𝜑1 × 𝜑2 : T𝑛 → 𝐹1 × 𝐹2 defined as
(𝜑1 × 𝜑2) (𝑇) = (𝜑1 (𝑇), 𝜑2 (𝑇)) is a strong Wick function with coefficients in the product 𝐹1 × 𝐹2. The
same results hold for weak and moderately weak Wick functions.

3.6. Duality.

Let 𝜑 : T𝑛 → 𝐹 be a strong Wick function over F. Its dual strong Wick function 𝜑∗ : T𝑛 → 𝐹 is
defined as

𝜑∗(𝑇) := 𝜑(𝑇∗)

for all 𝑇 ∈ T𝑛. It is indeed a strong Wick function with underlying orthogonal matroid (𝑀𝜑)
∗ from

definitions. We define the duals of weak and moderately weak Wick F-functions in the same way.
Given a strong (resp. weak) orthogonal F-signature C, we can define its dual strong (resp. weak)

orthogonal F-signature C∗ by setting

C∗ := {𝑋∗ : 𝑋 ∈ C},

and the underlying orthogonal matroid of C∗ is (𝑀C)
∗. The duals of strong and weak F-circuit sets of

orthogonal matroids are defined in the same way.

3.7. Minors

Let 𝜑 be a strong or (moderately) weak Wick function on E with coefficients in F and take 𝑒 ∈ 𝐸 . Then
we define 𝜑|𝑒 to be the function from the set of transversals of 𝐸 \ {𝑒, 𝑒∗} to F as

(𝜑|𝑒) (𝑇) :=

{
𝜑(𝑇 ∪ {𝑒}) if 𝑒 is nonsingular in 𝑀𝜑 ,

𝜑(𝑇 ∪ {𝑒∗}) otherwise.

Proposition 3.25. Let 𝜑 be a strong Wick F-function 𝜑 on E and 𝑒 ∈ 𝐸 . Then 𝜑|𝑒 is a strong Wick
F-function and 𝑀𝜑 |𝑒 = 𝑀𝜑 |𝑒. The same holds for weak and moderately weak Wick F-functions.

We define minors of strong or weak orthogonal signatures as follows. Let C be a strong or weak
orthogonal F-signature of an orthogonal matroid 𝑀 on E. For 𝑒 ∈ 𝐸 , let C |𝑒 be the set of functions in

{𝜋(𝑋) ∈ 𝐹𝐸\{𝑒,𝑒∗ } : 𝑋 ∈ C with 𝑋 (𝑒∗) = 0 and 𝑋 ≠ {𝑒}}

that have minimal supports, where 𝜋 : 𝐹𝐸 → 𝐹𝐸\{𝑒,𝑒∗ } is the obvious projection.
The next proposition is direct from Proposition 1.16.
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Proposition 3.26. Let C be a strong (resp. weak) orthogonal F-signature of an orthogonal matroid 𝑀
on E and let 𝑒 ∈ 𝐸 . Then C |𝑒 is a strong (resp. weak) orthogonal F-signature of 𝑀 |𝑒.

Minors of a strong or weak F-circuit set of an orthogonal matroid are defined in the same way as
minors of an orthogonal F-signature, and an analogue of Proposition 3.26 holds.

One possible candidate of a minor of an orthogonal F-vector set V ⊆ 𝐹𝐸 with respect to 𝑒 ∈ 𝐸 is

V |𝑒 := {𝜋(𝑋) ∈ 𝐹𝐸\{𝑒,𝑒∗ } : 𝑋 ∈ V with 𝑋 (𝑒∗) = 0},

which coincides with the deletion and the contraction of an F-vector set of a matroid in [1, Section 4.2].
However, V |𝑒 is not necessarily an orthogonal F-signature in general, even if F is a partial field and the
underlying orthogonal matroid of V is the lift of a matroid; see Example 4.25. We remark that if F is a
field, then V |𝑒 is an orthogonal F-vector set by [22, Proposition 3.8].

3.8. Other related work

We briefly indicate how our notions of strong and weak orthogonal F-matroids generalize various flavors
of orthogonal matroids in the literature, as mentioned in Section 1.

Example 3.27. If the support of a strong or weak orthogonal matroid on E over F is the lift of an
ordinary matroid on [𝑛], then an orthogonal matroid on E over F is the same thing as a strong or weak
matroid on [𝑛] over F in the sense of [2]. This follows from Proposition 3.4.

Example 3.28. A strong or weak orthogonal matroid over the Krasner hyperfield K is the same thing
as an ordinary orthogonal matroid.

Example 3.29. When 𝐹 = 𝐾 is a field, a strong or weak Wick K-matroid is the same thing as a projective
solution to Wick equations in P𝑁 (𝐾), where 𝑁 = 2𝑛 − 1. In addition, when char(𝐾) ≠ 2, a strong or
weak orthogonal K-matroid is the same thing as a maximal isotropic subspace of 𝐾2𝑛 in the usual sense.
Indeed, a weak Wick function with coefficients in the field K automatically satisfies (W2). This follows
from [3, Theorem 1.6].

Example 3.30. A strong or weak orthogonal matroid over the regular partial field U0 is the same thing
as a regular orthogonal matroid in the sense of [16]. This follows from the discussion on page 33 in loc.
cit. and [3, Theorem 1.6].

Example 3.31. A strong or weak orthogonal matroid over the tropical hyperfield T is the same thing as
a valuated orthogonal matroid in the sense of [14] or a tropical Wick vector in the sense of [23]. This
follows from Theorem 5.1 of loc. cit.

Example 3.32. A strong orthogonal matroid over the sign hyperfield S is the same thing as an oriented
orthogonal matroid in the sense of [27, 28]. This follows from the discussion at the top of page 241
of [28].

4. Cryptomorphisms for orthogonal matroids over tracts

In this section, we give proofs of the main theorems of the paper and confirm Figure 2. Our plan is
as follows. We first construct strong (resp. weak) orthogonal signatures from strong (resp. moderately
weak) Wick functions in Section 4.1 and show the converse in Section 4.2. In Section 4.3, we show the
equivalence between weak orthogonal F-matroids and weak F-circuit sets using the constructions in
Sections 4.1 and 4.2. In Section 4.4, we prove Theorem 3.13 that orthogonal F-signatures and F-circuit
sets coincide for the strong case. In Section 4.5, we show the equivalence between strong orthogonal
signatures and orthogonal vector sets, as well as Theorem 3.16(i). We sum up all main theorems in
Section 4.6. Section 4.7 provides several pathological examples.

https://doi.org/10.1017/fms.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10085


Forum of Mathematics, Sigma 19

Recall that T𝑛 denotes the family of all transversals of 𝐸 = [𝑛] ∪ [𝑛]∗. For every 𝑖 ∈ 𝐸 , let 𝑖 be the
element in [𝑛] such that {𝑖, 𝑖∗} ∩ [𝑛] = {𝑖}. For 𝑖, 𝑗 ∈ [𝑛], let (𝑖, 𝑗] be the subset {𝑘 ∈ [𝑛] : 𝑖 < 𝑘 � 𝑗}
if 𝑖 � 𝑗 , and ( 𝑗 , 𝑖] otherwise. For 𝑇 ∈ T𝑛 and 𝑖, 𝑗 ∈ 𝐸 , let 𝑚𝑇

𝑖, 𝑗 denote |𝑇 ∩ (𝑖, 𝑗] |. We often omit the
superscription T in 𝑚𝑇

𝑖, 𝑗 if it is clear from the context. If 𝛼, 𝛽 ∈ 𝐹×, we write 𝛽
𝛼 for 𝛼−1𝛽. We often

denote a finite set 𝑆 = {𝑎1, 𝑎2, . . . , 𝑎𝑚} by enumerating its elements, such as 𝑎1𝑎2 . . . 𝑎𝑚.

4.1. From Wick functions to orthogonal signatures

Let 𝜑 be a weak Wick function on E with coefficients in a tract F. We denote by 𝑀 = 𝑀𝜑 the underlying
orthogonal matroid of [𝜑]. We first suggest a candidate for the orthogonal signature induced from the
given Wick function 𝜑.

Recall that the set of bases of 𝑀 is Supp(𝜑) = {𝐵 ∈ T𝑛 : 𝜑(𝐵) ≠ 0}. For each circuit C of 𝑀 ,
we define a function 𝑋 ∈ 𝐹𝐸 such that 𝑋 = 𝐶 as follows. Let 𝑇 ⊇ 𝐶 be a transversal such that
𝑇�{𝑥, 𝑥∗} ∈ Supp(𝜑) for all 𝑥 ∈ 𝐶, which exists by Lemma 1.15. Then for every 𝑒, 𝑓 ∈ 𝐶, we set

𝑋̃ (𝑒)

𝑋̃ ( 𝑓 )
= (−1)𝑚

𝑇
𝑒, 𝑓

𝜑(𝑇�{𝑒, 𝑒∗})

𝜑(𝑇�{ 𝑓 , 𝑓 ∗})
. (4.1)

We call X an F-circuit of 𝜑 with support C.

Lemma 4.1. The ratio 𝑋̃ (𝑒)

𝑋̃ ( 𝑓 )
is independent of the choice of T. Explicitly, let𝑇1, 𝑇2 be distinct transversals

containing C such that both 𝑇1�{𝑥, 𝑥
∗} and 𝑇2�{𝑥, 𝑥

∗} are bases of 𝑀 for all 𝑥 ∈ 𝐶. Then

(−1)𝑚1
𝜑(𝑇1�{𝑒, 𝑒

∗})

𝜑(𝑇1�{ 𝑓 , 𝑓 ∗})
= (−1)𝑚2

𝜑(𝑇2�{𝑒, 𝑒
∗})

𝜑(𝑇2�{ 𝑓 , 𝑓 ∗})
,

where 𝑚𝑖 = |𝑇𝑖 ∩ (𝑒, 𝑓 ] | for each 𝑖 = 1, 2.
Proof. We proceed by induction on |𝑇1 \ 𝑇2 |. Since 𝑇1�{𝑥, 𝑥

∗} and 𝑇2�{𝑥, 𝑥
∗} with 𝑥 ∈ 𝐶 ≠ ∅ are

distinct bases of 𝑀 , we know that |𝑇1 \ 𝑇2 | is even and at least 2.
Suppose that |𝑇1 \ 𝑇2 | = 2. Write 𝑇1 \ 𝑇2 = {𝑎, 𝑏} so that 𝑇1�𝑇2 = {𝑎, 𝑎∗, 𝑏, 𝑏∗}. Then neither

𝑇1�{𝑎, 𝑎
∗} nor 𝑇1�{𝑏, 𝑏

∗} is a basis since they contain C. Thus, 𝜑(𝑇1�{𝑎, 𝑎
∗}) = 𝜑(𝑇1�{𝑏, 𝑏

∗}) = 0.
Denote 𝑚 = |{𝑎, 𝑏} ∩ (𝑒, 𝑓 ] |. Note that 𝑚1 + 𝑚 ≡ 𝑚2 (mod 2). By the axiom (W2) applied to
𝑇1�{𝑒, 𝑒

∗, 𝑓 , 𝑓 ∗} and 𝑇1�{𝑎, 𝑎
∗, 𝑏, 𝑏∗} = 𝑇2, we have

𝜑(𝑇1�{ 𝑓 , 𝑓
∗})𝜑(𝑇2�{𝑒, 𝑒

∗}) + (−1)𝑚+1𝜑(𝑇1�{𝑒, 𝑒
∗})𝜑(𝑇2�{ 𝑓 , 𝑓

∗}) ∈ 𝑁𝐹 ,

which implies the desired equality.
Now we assume that |𝑇1 \ 𝑇2 | > 2. Fix 𝑥 ∈ 𝐶 and let 𝐵𝑖 := 𝑇𝑖�{𝑥, 𝑥

∗} with 𝑖 ∈ {1, 2}. Then 𝐵1 and
𝐵2 are bases of 𝑀 . Take 𝑦 ∈ 𝑇1 \ 𝑇2. By the symmetric exchange axiom, there is 𝑧 ∈ (𝑇1 \ 𝑇2) \ {𝑦}
such that 𝐵1�{𝑦, 𝑦

∗, 𝑧, 𝑧∗} is a basis of 𝑀 . Let 𝑇0 := 𝑇1�{𝑦, 𝑦
∗, 𝑧, 𝑧∗}. We claim that for every 𝑤 ∈ 𝐶,

the transversal 𝑇0�{𝑤, 𝑤
∗} is a basis of 𝑀 . Indeed, since 𝑇0�{𝑥, 𝑥

∗} = 𝐵1�{𝑦, 𝑦
∗, 𝑧, 𝑧∗}, we may

assume that 𝑤 ≠ 𝑥. Then by Proposition 1.14, 𝑇1�{𝑤, 𝑤
∗} = 𝐵1�{𝑥, 𝑥

∗, 𝑤, 𝑤∗} is a basis of 𝑀 . Both
𝐵1�{𝑥, 𝑥

∗, 𝑦, 𝑦∗} = 𝑇1�{𝑦, 𝑦
∗} and 𝐵1�{𝑥, 𝑥

∗, 𝑧, 𝑧∗} = 𝑇1�{𝑧, 𝑧
∗} contain C, and hence, neither of them

is a basis. Then the symmetric exchange forces that 𝑇0�{𝑤, 𝑤
∗} = 𝐵1�{𝑥, 𝑥

∗, 𝑦, 𝑦∗, 𝑧, 𝑧∗, 𝑤, 𝑤∗} is a
basis. Notice that |𝑇0�𝑇1 | = 4 and |𝑇0�𝑇2 | < |𝑇1�𝑇2 |. Therefore, we conclude the desired equality by
the claim and the induction hypothesis. �

Proposition 4.2. Every circuit C of 𝑀 corresponds to a well-defined projective F-circuit 𝑋 ∈ 𝐹𝐸 of 𝜑
with support C (i.e. X is well-defined and unique up to multiplication by an element in 𝐹×).
Proof. Lemma 4.1 shows the uniqueness. We assert furthermore that X is well-defined. This can be
proved directly. Let T be a transversal such that 𝐶 ⊆ 𝑇 and 𝑇�{𝑥, 𝑥∗} ∈ Supp(𝜑) for all 𝑥 ∈ 𝐶. Take
𝑒, 𝑓 , 𝑔 ∈ 𝐶. Since 𝑚𝑒, 𝑓 + 𝑚 𝑓 ,𝑔 + 𝑚𝑒,𝑔 ≡ 0 (mod 2), we have
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𝑋̃ (𝑒)

𝑋̃ ( 𝑓 )

𝑋̃ ( 𝑓 )

𝑋̃ (𝑔)
= (−1)𝑚𝑒, 𝑓

𝜑(𝑇�{𝑒, 𝑒∗})

𝜑(𝑇�{ 𝑓 , 𝑓 ∗})
·(−1)𝑚 𝑓 ,𝑔

𝜑(𝑇�{ 𝑓 , 𝑓 ∗})

𝜑(𝑇�{𝑔, 𝑔∗})

= (−1)𝑚𝑒,𝑔
𝜑(𝑇�{𝑒, 𝑒∗})

𝜑(𝑇�{𝑔, 𝑔∗})
=

𝑋̃ (𝑒)

𝑋̃ (𝑔)
. �

By Proposition 4.2, the set C𝜑 of all projective F-circuits induced from 𝜑 is an F-signature of 𝑀 .
Theorem 4.3. Let F be a tract. If 𝜑 is a strong Wick function over F, then C𝜑 is a strong orthogonal
F-signature.
Proof. Let 𝑋1, 𝑋2 ∈ C𝜑 . We may assume that 𝑋1 ∩ 𝑋2

∗ ≠ ∅. By Lemma 1.15, there is a transversal 𝑇𝑖
containing 𝑋𝑖 such that 𝑇𝑖�{𝑒, 𝑒∗} is a basis for every 𝑒 ∈ 𝑋𝑖 and 𝑖 = 1, 2. Note that

𝜑(𝑇1�{𝑒, 𝑒
∗})𝜑(𝑇2�{𝑒, 𝑒

∗}) = 0

for all 𝑒 ∈ (𝑇1�𝑇2) \ (𝑋1�𝑋2). Write 𝑇1 ∩ 𝑇∗
2 = {𝑒1, 𝑒2, . . . , 𝑒𝑎} with 𝑒1 < 𝑒2 < · · · < 𝑒𝑎 and

write 𝑋1 ∩ 𝑋2
∗ = {𝑒𝛼1 , . . . , 𝑒𝛼𝑏 } with 𝛼1 < · · · < 𝛼𝑏 . Then (𝑇1�𝑇2) ∩ [𝑛] = {𝑒1, . . . , 𝑒𝑎}. Let

𝑚 𝑗 := |𝑇1 ∩ (𝑒𝛼1 , 𝑒𝛼𝑗 ] | and 𝑛 𝑗 := |𝑇2 ∩ (𝑒𝛼1 , 𝑒𝛼𝑗 ] | for each 𝑗 ∈ [𝑏]. Since (𝑇1�𝑇2) ∩ (𝑒𝛼1 , 𝑒𝛼𝑗 ] = {𝑒𝑘 :
𝛼1 < 𝑘 � 𝛼 𝑗 }, we have 𝑚 𝑗 + 𝑛 𝑗 ≡ 𝛼 𝑗 − 𝛼1 (mod 2). By (W2) applied to 𝑇1 and 𝑇2, we have

𝑁𝐹 �

𝑎∑
𝑖=1

(−1)𝑖𝜑(𝑇1�{𝑒𝑖 , 𝑒
∗
𝑖 })𝜑(𝑇2�{𝑒𝑖 , 𝑒

∗
𝑖 }) =

𝑏∑
𝑖=1

(−1)𝛼𝑖𝜑(𝑇1�{𝑒𝛼𝑖 , 𝑒
∗
𝛼𝑖
})𝜑(𝑇2�{𝑒𝛼𝑖 , 𝑒

∗
𝛼𝑖
}).

Therefore,

〈𝑋1, 𝑋
∗
2〉 =

𝑏∑
𝑖=1

𝑋1(𝑒𝛼𝑖 )𝑋2(𝑒
∗
𝛼𝑖
)

= 𝑋1(𝑒𝛼1)𝑋2(𝑒
∗
𝛼1)

𝑏∑
𝑖=1

𝑋1 (𝑒𝛼𝑖 )

𝑋1 (𝑒𝛼1)

𝑋2 (𝑒
∗
𝛼𝑖
)

𝑋2 (𝑒
∗
𝛼1)

= 𝑋1(𝑒𝛼1)𝑋2(𝑒
∗
𝛼1)

𝑏∑
𝑖=1

(−1)𝑚𝑖
𝜑(𝑇1�{𝑒𝛼𝑖 , 𝑒

∗
𝛼𝑖
})

𝜑(𝑇1�{𝑒𝛼1 , 𝑒
∗
𝛼1 })

(−1)𝑛𝑖
𝜑(𝑇2�{𝑒𝛼𝑖 , 𝑒

∗
𝛼𝑖
})

𝜑(𝑇2�{𝑒𝛼1 , 𝑒
∗
𝛼1 })

= (−1)𝛼1
𝑋1(𝑒𝛼1)𝑋2(𝑒

∗
𝛼1)

𝜑(𝑇1�{𝑒𝛼1 , 𝑒
∗
𝛼1 })𝜑(𝑇2�{𝑒𝛼1 , 𝑒

∗
𝛼1 })

×

𝑏∑
𝑖=1

(−1)𝛼𝑖𝜑(𝑇1�{𝑒𝛼𝑖 , 𝑒
∗
𝛼𝑖
})𝜑(𝑇2�{𝑒𝛼𝑖 , 𝑒

∗
𝛼𝑖
}) ∈ 𝑁𝐹 . �

Theorem 4.4. Let F be a tract. If 𝜑 is a moderately weak Wick function over F, then C𝜑 is a weak
orthogonal F-signature.
Proof. It is not hard to see that C𝜑 satisfies (O)′ if we replace (W2) with (W2)′ in the proof of
Theorem 4.3. �

4.2. From orthogonal signatures to Wick functions

Throughout this part, C ⊆ 𝐹𝐸 is an F-signature of an ordinary orthogonal matroid 𝑀 satisfying the
2-term orthogonality:
(O2) 〈𝑋,𝑌 ∗〉 ∈ 𝑁𝐹 for all 𝑋,𝑌 ∈ C with |𝑋 ∩ 𝑌 ∗ | = 2.
Recall that by Lemma 3.7, for each circuit C of 𝑀 , the F-circuit 𝑋 ∈ C (and equivalently, 𝑋̃) with 𝑋 = 𝐶
is unique up to multiplication by an element in 𝐹×.
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We first set 𝛾(𝐵, 𝐵) = 1 for every basis B of 𝑀 . Let 𝐵1, 𝐵2 be two bases of 𝑀 with |𝐵1�𝐵2 | = 4. We
can write 𝐵1 = 𝑇�{ 𝑓 , 𝑓 ∗} and 𝐵2 = 𝑇�{𝑒, 𝑒∗} for some transversal T containing e and f. Let 𝑋 ∈ C
be the F-circuit whose support 𝑋 is the fundamental circuit 𝐶 (𝐵1, 𝑓 ). Then 𝑋 = 𝐶 (𝐵2, 𝑒) ⊆ 𝑇 , and in
particular, 𝑒, 𝑓 ∈ 𝑋 . We define

𝛾(𝐵1, 𝐵2) := (−1)𝑚
𝑇
𝑒, 𝑓

𝑋̃ (𝑒)

𝑋̃ ( 𝑓 )
.

Proposition 4.5. 𝛾(𝐵1, 𝐵2) is well-defined.
Proof. By Lemma 3.7, 𝛾(𝐵1, 𝐵2) is independent of the choice of X for fixed T. Let 𝑇1 =
𝑇�{𝑒, 𝑒∗}�{ 𝑓 , 𝑓 ∗} � 𝑒∗, 𝑓 ∗. Let 𝑋1 ∈ C be such that 𝑋1 = 𝐶 (𝐵1, 𝑒

∗) = 𝐶 (𝐵2, 𝑓
∗) � 𝑒∗, 𝑓 ∗. It suffices

to show that

(−1)𝑚
𝑇
𝑒, 𝑓

𝑋̃ (𝑒)

𝑋̃ ( 𝑓 )
= (−1)𝑚

𝑇1
𝑒, 𝑓

𝑋̃1 ( 𝑓
∗)

𝑋̃1 (𝑒∗)
.

Since (𝑇�𝑇1) ∩ (𝑒, 𝑓 ] = max{𝑒, 𝑓 }, we have |𝑚𝑇
𝑒, 𝑓 −𝑚𝑇1

𝑒, 𝑓 | = 1. By (O2), 𝑋̃ (𝑒) 𝑋̃1(𝑒
∗) + 𝑋̃ ( 𝑓 ) 𝑋̃1( 𝑓

∗) =
〈𝑋, 𝑋∗

1〉 ∈ 𝑁𝐹 , and therefore, we obtain the desired equality. �

The next lemma is obvious from the definition.
Lemma 4.6. If 𝐵1, 𝐵2 are bases of 𝑀 with |𝐵1�𝐵2 | = 4, then we have 𝛾(𝐵1, 𝐵2) = 𝛾(𝐵2, 𝐵1)

−1.
Now we define a candidate for a Wick function on E with coefficients in F whose underlying matroid

is exactly 𝑀 . Fix a basis 𝐵0 of 𝑀 , and let 𝜑C : T𝑛 → 𝐹 be such that:
(i) 𝜑C (𝐵0) = 1(∉ 𝑁𝐹 ).

(ii) For each basis B of 𝑀 other than 𝐵0, we set

𝜑C (𝐵) := 𝛾(𝐵′, 𝐵)𝜑C (𝐵
′),

where 𝐵′ is a basis of 𝑀 such that |𝐵 \ 𝐵′| = 2 and |𝐵 \ 𝐵0 | = |𝐵′ \ 𝐵0 | + 2.
(iii) For each non-basis transversal T, we set 𝜑(𝑇) = 0.

To show that 𝜑C is well-defined, we need a result on the basis graphs of the orthogonal matroids.
The basis graph Γ𝑁 of an ordinary orthogonal matroid 𝑁 is a graph whose vertex set is the set of

bases of 𝑁 , and two vertices 𝐵1 and 𝐵2 are adjacent if and only if |𝐵1 \ 𝐵2 | = 2. For every graph G,
a directed cycle C of length ℓ � 2 is a sequence (𝑣0, 𝑣1), (𝑣1, 𝑣2), · · · , (𝑣ℓ−1, 𝑣ℓ) of ordered pairs of
adjacent vertices in G such that all 𝑣𝑘 are distinct except for 𝑣0 = 𝑣ℓ . We simply write C as a sequence
𝑣0, 𝑣1, . . . , 𝑣ℓ−1, 𝑣0 of vertices. We denote by −𝐶 the directed cycle 𝑣0, 𝑣ℓ−1, . . . , 𝑣1, 𝑣0. For directed
cycles 𝐶0, 𝐶1, . . . , 𝐶𝑚 of G, we say 𝐶0 is generated by 𝐶1, . . . , 𝐶𝑚 if for all vertices 𝑢, 𝑣 in G, two
ordered pairs (𝑢, 𝑣) and (𝑣, 𝑢) appear the same number of times in −𝐶0, 𝐶1, · · · , 𝐶𝑚; see Figure 3.

The following theorem generalizes Maurer’s Homotopy Theorem for matroids [20].
Theorem 4.7 (Wenzel, Theorem 5.7 of [26]). Let 𝑁 be an orthogonal matroid. Then every directed
cycle in the basis graph Γ𝑁 is generated by directed cycles of length at most 4.
Lemma 4.8. The following hold for the basis graph Γ𝑀 of an orthogonal matroid 𝑀 with an F-signature
C satisfying (O2).
(i) If 𝐵1, 𝐵2, 𝐵3, 𝐵1 is a directed cycle of length 3 in Γ𝑀 , then

𝛾(𝐵1, 𝐵2)𝛾(𝐵2, 𝐵3)𝛾(𝐵3, 𝐵1) = 1.

(ii) If 𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵1 is a directed cycle of length 4 in Γ𝑀 , then

𝛾(𝐵1, 𝐵2)𝛾(𝐵2, 𝐵3)𝛾(𝐵3, 𝐵4)𝛾(𝐵4, 𝐵1) = 1.
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Figure 3. 𝐶0 is generated by 𝐶1, 𝐶2, 𝐶3.

Proof. (i) If 𝐵1, 𝐵2, 𝐵3 are bases of 𝑀 with |𝐵𝑖 \ 𝐵 𝑗 | = 2 for all distinct 𝑖, 𝑗 ∈ [3], then there
exist a transversal T and distinct elements 𝑒∗1, 𝑒

∗
2, 𝑒

∗
3 ∈ 𝑇 such that 𝐵𝑖 = 𝑇�{𝑒𝑖 , 𝑒

∗
𝑖 } � 𝑒𝑖 for each

𝑖 ∈ [3]. For distinct 𝑖, 𝑗 ∈ [3], let 𝑇𝑖 𝑗 := 𝑇�{𝑒𝑖 , 𝑒
∗
𝑖 }�{𝑒 𝑗 , 𝑒

∗
𝑗 } and 𝑋𝑖 𝑗 ∈ C be the F-circuit with

𝑋𝑖 𝑗 = 𝐶 (𝐵𝑖 , 𝑒 𝑗 ) = 𝐶 (𝐵 𝑗 , 𝑒𝑖) ⊆ 𝑇𝑖 𝑗 . Then

𝛾(𝐵𝑖 , 𝐵 𝑗 ) = (−1)𝑚𝑖 𝑗
𝑋̃𝑖 𝑗 (𝑒𝑖)

𝑋̃𝑖 𝑗 (𝑒 𝑗 )
,

where 𝑚𝑖 𝑗 := |𝑇𝑖 𝑗 ∩ (𝑒𝑖 , 𝑒 𝑗 ] |. Let Y be the F-circuit with 𝑌 = 𝐶 (𝐵1, 𝑒
∗
1) ⊆ 𝑇 . Then 𝑌 = 𝐶 (𝐵2, 𝑒

∗
2) =

𝐶 (𝐵3, 𝑒
∗
3), and thus, {𝑒∗1, 𝑒

∗
2, 𝑒

∗
3} ⊆ 𝑌 . By (O2), if 𝑖 ≠ 𝑗 ∈ [3], we have that 𝑋̃𝑖 𝑗 (𝑒𝑖)𝑌 (𝑒

∗
𝑖 )+𝑋̃𝑖 𝑗 (𝑒 𝑗 )𝑌 (𝑒

∗
𝑗 ) =

〈𝑋𝑖 𝑗 , 𝑌
∗〉 ∈ 𝑁𝐹 . Thus,

𝑋̃12 (𝑒1)

𝑋̃12 (𝑒2)

𝑋̃23 (𝑒2)

𝑋̃23 (𝑒3)

𝑋̃31(𝑒3)

𝑋̃31(𝑒1)
=

(
−
𝑌 (𝑒∗2)

𝑌 (𝑒∗1)

) (
−
𝑌 (𝑒∗3)

𝑌 (𝑒∗2)

) (
−
𝑌 (𝑒∗1)

𝑌 (𝑒∗3)

)
= −1.

By relabeling, we may assume that 𝑒1 < 𝑒2 < 𝑒3. Then (𝑇12∩(𝑒1, 𝑒2])�(𝑇23∩(𝑒2, 𝑒3])�(𝑇13∩(𝑒1, 𝑒3]) =
{𝑒2}. Hence, 𝑚12 + 𝑚23 + 𝑚13 is odd, and therefore, 𝛾(𝐵1, 𝐵2)𝛾(𝐵2, 𝐵3)𝛾(𝐵3, 𝐵1) = 1.

(ii) By (i) and Lemma 4.6, we may assume that the directed cycle 𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵1 is not generated
by directed cycles of length 3. Then |𝐵𝑖 \𝐵𝑖+1 | = 2 and |𝐵𝑖 \𝐵𝑖+2 | = 4 for all 𝑖 ∈ [4], where all subscripts
are read modulo 4. Thus, there exist a transversal T and distinct elements 𝑒1, 𝑒2, 𝑒3, 𝑒4 ∈ 𝑇 such that
𝐵1 = 𝑇12, 𝐵2 = 𝑇13, 𝐵3 = 𝑇34, and 𝐵4 = 𝑇24, where 𝑇𝐼 = 𝑇�

⋃
𝑖∈𝐼 {𝑒𝑖 , 𝑒

∗
𝑖 } for all 𝐼 ⊆ [4]. In addition,

none of T, 𝑇14, 𝑇23, and 𝑇1234 is a basis.
Let 𝑋1, 𝑋3, 𝑌3, 𝑌1 ∈ C be F-circuits such that 𝑋𝑖 ⊆ 𝑇𝑖 and 𝑌4−𝑖 ⊆ 𝑇2𝑖4 for each 𝑖 ∈ {1, 3}. Then

𝛾(𝑇12, 𝑇13) = (−1)𝑚1
𝑋̃1(𝑒3)

𝑋̃1(𝑒2)
,

𝛾(𝑇13, 𝑇34) = (−1)𝑚3
𝑋̃3(𝑒4)

𝑋̃3(𝑒1)
,

𝛾(𝑇12, 𝑇24) = (−1)𝑛3
𝑌3 (𝑒

∗
1)

𝑌3 (𝑒
∗
4)
,

𝛾(𝑇24, 𝑇34) = (−1)𝑛1
𝑌1 (𝑒

∗
2)

𝑌1 (𝑒
∗
3)
,

where 𝑚1 := |𝑇1 ∩ (𝑒2, 𝑒3] |, 𝑚3 := |𝑇3 ∩ (𝑒1, 𝑒4] |, 𝑛3 := |𝑇124 ∩ (𝑒1, 𝑒4] |, and 𝑛1 := |𝑇234 ∩ (𝑒2, 𝑒3] |.
Note that 𝑚1 +𝑚3 + 𝑛3 + 𝑛1 is even, since (𝑇1 ∩ (𝑒2, 𝑒3])�(𝑇234 ∩ (𝑒2, 𝑒3]) = {𝑒1, 𝑒2, 𝑒3, 𝑒4} ∩ (𝑒2, 𝑒3],
and (𝑇3 ∩ (𝑒1, 𝑒4])�(𝑇124 ∩ (𝑒1, 𝑒4]) = {𝑒1, 𝑒2, 𝑒3, 𝑒4} ∩ (𝑒1, 𝑒4].
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Suppose for contradiction that 𝑋1(𝑒
∗
1) ≠ 0 (i.e., 𝑒∗1 ∈ 𝑋1). Notice that 𝑋1 = 𝐶 (𝐵1, 𝑒2) is the unique

circuit of 𝑀 contained in 𝑇1, and the subtransversal 𝑇1 \ {𝑒
∗
1} is independent. Since 𝑇1 is not a basis,

𝑇 = (𝑇1 \ {𝑒
∗
1}) ∪ {𝑒1} is a basis, a contradiction. Thus, 𝑋1 (𝑒

∗
1) = 0. Similarly, one can check that all

of 𝑋1(𝑒4), 𝑋3(𝑒2), 𝑋3(𝑒
∗
3), 𝑌3 (𝑒

∗
2), 𝑌3 (𝑒3), 𝑌1 (𝑒1), and 𝑌1 (𝑒

∗
4) are zero, because none of T, 𝑇14, 𝑇23 and

𝑇1234 is a basis of 𝑀 . Therefore, by (O2), we have

𝑋̃1 (𝑒2)𝑌1 (𝑒
∗
2) + 𝑋̃1 (𝑒3)𝑌1 (𝑒

∗
3) = 〈𝑋1, 𝑌

∗
1 〉 ∈ 𝑁𝐹 ,

and

𝑋̃3(𝑒1) 𝑋̃3(𝑒
∗
1) + 𝑋̃3(𝑒4)𝑌̃3(𝑒

∗
4) = 〈𝑋3, 𝑌

∗
3 〉 ∈ 𝑁𝐹 .

Therefore,

𝛾(𝑇12, 𝑇13)𝛾(𝑇13, 𝑇34) = (−1)𝑚1+𝑚3
𝑋̃1(𝑒3)

𝑋̃1(𝑒2)

𝑋̃3 (𝑒4)

𝑋̃3 (𝑒1)
= (−1)𝑛1+𝑛3

𝑌1 (𝑒
∗
2)

𝑌1 (𝑒
∗
3)

𝑌3 (𝑒
∗
1)

𝑌3 (𝑒
∗
4)

= 𝛾(𝑇24, 𝑇34)𝛾(𝑇12, 𝑇24).

By Lemma 4.6, we obtain that

𝛾(𝐵1, 𝐵2)𝛾(𝐵2, 𝐵3)𝛾(𝐵3, 𝐵4)𝛾(𝐵4, 𝐵1)

= 𝛾(𝑇12, 𝑇13)𝛾(𝑇13, 𝑇34)𝛾(𝑇24, 𝑇34)
−1𝛾(𝑇12, 𝑇24)

−1 = 1. �

Corollary 4.9. 𝜑C is well-defined.

Proof. It suffices to show that for arbitrary paths 𝑃 = 𝐵0𝐵1 . . . 𝐵𝑘 and 𝑃′ = 𝐵′
0𝐵

′
1 . . . 𝐵

′
ℓ in Γ𝑀 , if

𝐵0 = 𝐵′
0 and 𝐵𝑘 = 𝐵′

ℓ , then

𝑘−1∏
𝑖=0

𝛾(𝐵𝑖 , 𝐵𝑖+1) =
ℓ−1∏
𝑗=0

𝛾(𝐵 𝑗 , 𝐵 𝑗+1).

This is straightforward from Lemmas 4.6, 4.8, and Theorem 4.7. �

Theorem 4.10. If C satisfies the orthogonality (O), then 𝜑C is a strong Wick function on E with
coefficients in F.

Proof. We only need to prove (W2). Take 𝑇1, 𝑇2 ∈ T𝑛 with 𝑇1 ∩ 𝑇∗
2 = {𝑒1, . . . , 𝑒𝑎}, where

𝑒1 < · · · < 𝑒𝑎. If 𝑇1 is a basis of 𝑀 , then 𝜑(𝑇1�{𝑖, 𝑖
∗}) = 0 for all 𝑖 ∈ [𝑛], and thus,∑𝑎

𝑖=1(−1)𝑖𝜑(𝑇1�{𝑒𝑖 , 𝑒
∗
𝑖 })𝜑(𝑇2�{𝑒𝑖 , 𝑒

∗
𝑖 }) ∈ 𝑁𝐹 . Therefore, we may assume that 𝑇1 is not a basis, and

similarly, we may assume that 𝑇2 is not a basis. Then there exist 𝑋1, 𝑋2 ∈ C such that 𝑋𝑖 ⊆ 𝑇𝑖 for
𝑖 = 1, 2. Write 𝑋1 ∩ 𝑋2

∗ = {𝑒𝛼1 , . . . , 𝑒𝛼𝑏 } with 𝛼1 < · · · < 𝛼𝑏 . For 𝑖 ∈ [𝑎] \ {𝛼1, . . . , 𝛼𝑏}, at least one
of 𝑇1�{𝑒𝑖 , 𝑒

∗
𝑖 } and 𝑇2�{𝑒𝑖 , 𝑒

∗
𝑖 } is not a basis. Hence,

𝑎∑
𝑖=1

(−1)𝑖𝜑(𝑇1�{𝑒𝑖 , 𝑒
∗
𝑖 })𝜑(𝑇2�{𝑒𝑖 , 𝑒

∗
𝑖 }) =

𝑏∑
𝑖=1

(−1)𝛼𝑖𝜑(𝑇1�{𝑒𝛼𝑖 , 𝑒
∗
𝛼𝑖
})𝜑(𝑇2�{𝑒𝛼𝑖 , 𝑒

∗
𝛼𝑖
}).

Therefore, we may assume that 𝑏 � 1. We can also assume that there exists 𝑐 ∈ [𝑏] such that both
𝐵1 := 𝑇1�{𝑒𝛼𝑐 , 𝑒

∗
𝛼𝑐
} and 𝐵2 := 𝑇2�{𝑒𝛼𝑐 , 𝑒

∗
𝛼𝑐
} are bases. Then 𝑋1 = 𝐶 (𝑇1�{𝑒𝛼𝑐 , 𝑒

∗
𝛼𝑐
}, 𝑒𝛼𝑐 ) and

𝑋2 = 𝐶 (𝑇2�{𝑒𝛼𝑐 , 𝑒
∗
𝛼𝑐
}, 𝑒∗𝛼𝑐

), and therefore, 𝑇𝑗�{𝑒𝛼𝑖 , 𝑒
∗
𝛼𝑖
} is a basis for each 𝑖 ∈ [𝑏] and 𝑗 = 1, 2.

For each 𝑖 ∈ [𝑏], let 𝑚𝑖 := |𝑇1 ∩ (𝑒𝛼𝑐 , 𝑒𝛼𝑖 ] | and 𝑛𝑖 := |𝑇2 ∩ (𝑒𝛼𝑐 , 𝑒𝛼𝑖 ] |. By the definition of 𝜑C , we
have

𝑋̃1 (𝑒𝛼𝑖 )

𝑋̃1(𝑒𝛼𝑐 )
= (−1)𝑚𝑖

𝜑(𝑇1�{𝑒𝛼𝑖 , 𝑒
∗
𝛼𝑖
})

𝜑(𝑇1�{𝑒𝛼𝑐 , 𝑒
∗
𝛼𝑐
})

and
𝑋̃2(𝑒

∗
𝛼𝑖
)

𝑋̃2 (𝑒
∗
𝛼𝑐
)
= (−1)𝑛𝑖

𝜑(𝑇2�{𝑒𝛼𝑖 , 𝑒
∗
𝛼𝑖
})

𝜑(𝑇2�{𝑒𝛼𝑐 , 𝑒
∗
𝛼𝑐
})
.
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Since (𝑇1�𝑇2) ∩ (𝑒𝛼𝑐 , 𝑒𝛼𝑖 ] equals {𝑒𝑘 : 𝛼𝑐 < 𝑘 � 𝛼𝑖} if 𝑐 < 𝑖 and {𝑒𝑘 : 𝛼𝑖 < 𝑘 � 𝛼𝑐} otherwise, we
have 𝑚𝑖 + 𝑛𝑖 ≡ 𝛼𝑖 − 𝛼𝑐 (mod 2). By the orthogonality relation (O), we have

𝑏∑
𝑖=1

𝑋̃1 (𝑒𝛼𝑖 ) 𝑋̃2(𝑒
∗
𝛼𝑖
) = 〈𝑋1, 𝑋

∗
2〉 ∈ 𝑁𝐹 .

Therefore,

𝑏∑
𝑖=1

(−1)𝛼𝑖𝜑(𝑇1�{𝑒𝛼𝑖 , 𝑒
∗
𝛼𝑖
})𝜑(𝑇2�{𝑒𝛼𝑖 , 𝑒

∗
𝛼𝑖
})

= (−1)𝛼𝑐

𝑏∑
𝑖=1

(−1)𝑚𝑖+𝑛𝑖𝜑(𝑇1�{𝑒𝛼𝑖 , 𝑒
∗
𝛼𝑖
})𝜑(𝑇2�{𝑒𝛼𝑖 , 𝑒

∗
𝛼𝑖
})

= (−1)𝛼𝑐
𝜑(𝑇1�{𝑒𝛼𝑐 , 𝑒

∗
𝛼𝑐
})

𝑋̃1 (𝑒𝛼𝑐 )

𝜑(𝑇2�{𝑒𝛼𝑐 , 𝑒
∗
𝛼𝑐
})

𝑋̃2 (𝑒
∗
𝛼𝑐
)

𝑏∑
𝑖=1

𝑋̃1(𝑒𝛼𝑖 ) 𝑋̃2(𝑒
∗
𝛼𝑖
) ∈ 𝑁𝐹 . �

Theorem 4.11. If C satisfies (O)′, then 𝜑C is a moderately weak Wick function on E with coefficients in F.
Proof. It yields if we replace (O) with (O)′ in the proof of Theorem 4.10. �

4.3. Weak Wick functions and weak circuit sets

In this section, we prove the equivalence between the weak Wick functions and the weak circuit sets,
using the constructions in Sections 4.1 and 4.2.
Theorem 4.12. Let C be a weak F-circuit set of an orthogonal matroid. Then 𝜑C is a weak Wick
F-function.
Proof. Denote 𝜑 := 𝜑C . Let𝑇1 be a transversal, and let 𝑒1, 𝑒2, 𝑒3, 𝑒4 ∈ 𝑇1 be such that 𝑒1 < 𝑒2 < 𝑒3 < 𝑒4.
Let 𝑇2 be another transversal such that 𝑇2 \ 𝑇1 = {𝑒∗1, 𝑒

∗
2, 𝑒

∗
3, 𝑒

∗
4}. We may assume that neither 𝑇1 nor 𝑇2

is a basis, and there is 𝑘 ∈ [4] such that both 𝑇1�{𝑒𝑘 , 𝑒
∗
𝑘 } and 𝑇2�{𝑒𝑘 , 𝑒

∗
𝑘 } are bases of 𝑀 . Let X and Y

be F-circuits in C such that 𝑋 ⊆ 𝑇1 and 𝑌 ⊆ 𝑇2. Then for each 𝑖 ∈ [4], we have

𝜑(𝑇1�{𝑒𝑖 , 𝑒
∗
𝑖 })

𝜑(𝑇1�{𝑒𝑘 , 𝑒
∗
𝑘 })

= (−1)𝑚𝑖
𝑋̃ (𝑒𝑖)

𝑋̃ (𝑒𝑘 )
and

𝜑(𝑇2�{𝑒𝑖 , 𝑒
∗
𝑖 })

𝜑(𝑇2�{𝑒𝑘 , 𝑒
∗
𝑘 })

= (−1)𝑛𝑖
𝑌 (𝑒∗𝑖 )

𝑌 (𝑒∗𝑘 )
,

where 𝑚𝑖 := 𝑚𝑇1
𝑒𝑖 ,𝑒𝑘 = |𝑇1 ∩ (𝑒𝑖 , 𝑒𝑘 ] | and 𝑛𝑖 := 𝑚𝑇2

𝑒𝑖 ,𝑒𝑘 = |𝑇2 ∩ (𝑒𝑖 , 𝑒𝑘 ] |. Note that 𝑚𝑖 + 𝑛𝑖 ≡ 𝑘 − 𝑖
(mod 2). Hence, we have

∑
𝑖∈[4]

(−1)𝑖+𝑘
𝜑(𝑇1�{𝑒𝑖 , 𝑒

∗
𝑖 })𝜑(𝑇2�{𝑒𝑖 , 𝑒

∗
𝑖 })

𝜑(𝑇1�{𝑒𝑘 , 𝑒
∗
𝑘 })𝜑(𝑇2�{𝑒𝑘 , 𝑒

∗
𝑘 })

= 1 +
∑

𝑖∈[4]\{𝑘 }

𝑋̃ (𝑒𝑖)𝑌 (𝑒
∗
𝑖 )

𝑋̃ (𝑒𝑘 )𝑌̃ (𝑒
∗
𝑘 )
. (∗)

By the strong symmetric exchange axiom, at least one of 𝜃𝑖 := 𝜑(𝑇1�{𝑒𝑖 , 𝑒
∗
𝑖 })𝜑(𝑇2�{𝑒𝑖 , 𝑒

∗
𝑖 }) with

𝑖 ∈ [4] \ {𝑘} is nonzero. If exactly one of 𝜃𝑖 is nonzero, then (*) is 1 +
𝑋̃ (𝑒𝑖)𝑌̃ (𝑒∗𝑖 )

𝑋̃ (𝑒𝑘 )𝑌̃ (𝑒∗
𝑘
)
∈ 𝑁𝐹 by (O2).

Therefore, we may assume that at least two of 𝜃𝑖 are nonzero. We denote by a, b, c the distinct elements
of [4] \ {𝑘}.

Suppose that 𝜃𝑎 and 𝜃𝑏 are nonzero but 𝜃𝑐 = 0. Then {𝑒𝑎, 𝑒𝑏 , 𝑒𝑘 } ⊆ 𝑋 and {𝑒∗𝑎, 𝑒
∗
𝑏 , 𝑒

∗
𝑘 } ⊆ 𝑌 . By

interchanging roles of 𝑇1 and 𝑇2 if necessary, we may assume that 𝑇2�{𝑒𝑐 , 𝑒
∗
𝑐} is not a basis of 𝑀 .

Then 𝑒∗𝑐 ∉ 𝑌 . Because {𝑒𝑎, 𝑒𝑏 , 𝑒𝑘 } ⊆ 𝑋 ⊆ 𝑇1, neither 𝑇1�{𝑒𝑎, 𝑒
∗
𝑎, 𝑒𝑘 , 𝑒

∗
𝑘 } nor 𝑇1�{𝑒𝑏, 𝑒

∗
𝑏 , 𝑒𝑘 , 𝑒

∗
𝑘 } is a

basis. Hence, C has F-circuits 𝑍𝑎 and 𝑍𝑏 such that 𝑍𝑖 ⊆ 𝑇1�{𝑒𝑖 , 𝑒
∗
𝑖 , 𝑒𝑘 , 𝑒

∗
𝑘 } for each 𝑖 ∈ {𝑎, 𝑏}. Because

𝑇1�{𝑒𝑎, 𝑒
∗
𝑎}, 𝑇1�{𝑒𝑘 , 𝑒

∗
𝑘 }, and 𝑇1�{𝑒𝑏, 𝑒

∗
𝑏} are bases, we have {𝑒∗𝑎, 𝑒𝑐 , 𝑒

∗
𝑘 } ⊆ 𝑍𝑎. Because 𝑇2�{𝑒𝑐 , 𝑒

∗
𝑐}
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is not a basis, 𝑒𝑏 ∉ 𝑍𝑎. Similarly, {𝑒∗𝑏, 𝑒𝑐 , 𝑒
∗
𝑘 } ⊆ 𝑍𝑏 and 𝑒𝑎 ∉ 𝑍𝑏 . Then 𝑍𝑎 ∪ 𝑍𝑏 is admissible, and by

the circuit elimination axiom (C3), 𝑀 has a circuit C contained in (𝑍𝑎 ∪ 𝑍𝑏) \ {𝑒𝑐} ⊆ 𝑇2 \ {𝑒𝑐}. Then
𝑌 = 𝐶, and hence, 𝑌 is in the linear span of 𝑍𝑎 and 𝑍𝑏 by (L-i)′. Rescaling 𝑍𝑎 and 𝑍𝑏 if necessary, we
may assume that 𝑍𝑎 (𝑒

∗
𝑎) = 𝑌 (𝑒∗𝑎) and 𝑍𝑏 (𝑒

∗
𝑏) = 𝑌 (𝑒∗𝑏). Then𝑌 (𝑒∗𝑘 ) − 𝑍𝑎 (𝑒

∗
𝑘 ) − 𝑍𝑏 (𝑒

∗
𝑘 ) ∈ 𝑁𝐹 . By (O2),

𝑍𝑖 (𝑒
∗
𝑘 )

𝑍𝑖 (𝑒
∗
𝑖 )

= −
𝑋̃ (𝑒𝑖 )

𝑋̃ (𝑒𝑘 )
for 𝑖 ∈ {𝑎, 𝑏}, and thus, (*) is equal to 1 −

𝑍𝑎 (𝑒
∗
𝑘 )

𝑌̃ (𝑒∗
𝑘
)
−

𝑍𝑏 (𝑒
∗
𝑘 )

𝑌̃ (𝑒∗
𝑘
)
∈ 𝑁𝐹 .

Now we consider the case where 𝜃𝑎, 𝜃𝑏 , 𝜃𝑐 are all nonzero. Then there are F-circuits 𝑍𝑎,
𝑍𝑏 , 𝑍𝑐 in C such that 𝑍𝑖 ⊆ 𝑇1�{𝑒𝑖 , 𝑒

∗
𝑖 , 𝑒𝑘 , 𝑒

∗
𝑘 } with 𝑖 ∈ {𝑎, 𝑏, 𝑐}. It can be easily checked that

{𝑒𝑎, 𝑒𝑏 , 𝑒𝑐 , 𝑒
∗
𝑘 }�{𝑒𝑖 , 𝑒

∗
𝑖 } ⊆ 𝑍𝑖 for every 𝑖 ∈ {𝑎, 𝑏, 𝑐}. Then by (L-ii)′, 𝑌 is in the linear span of 𝑍1, 𝑍2

and 𝑍3. Rescaling 𝑍𝑖 if necessary, we may assume that 𝑍𝑖 (𝑒∗𝑖 ) = 𝑌 (𝑒∗𝑖 ) for each 𝑖 ∈ {𝑎, 𝑏, 𝑐}. Then
𝑌 (𝑒∗𝑘 ) − 𝑍𝑎 (𝑒

∗
𝑘 ) − 𝑍𝑏 (𝑒

∗
𝑘 ) − 𝑍𝑐 (𝑒

∗
𝑘 ) ∈ 𝑁𝐹 . By (O2), 𝑍𝑖 (𝑒

∗
𝑘 )

𝑍𝑖 (𝑒
∗
𝑖 )

= −
𝑋̃ (𝑒𝑖)

𝑋̃ (𝑒𝑘 )
with 𝑖 = 𝑎, 𝑏, 𝑐, and therefore, (*)

is equal to 1 −
𝑍𝑎 (𝑒

∗
𝑘 )

𝑌̃ (𝑒∗
𝑘
)
−

𝑍𝑏 (𝑒
∗
𝑘 )

𝑌̃ (𝑒∗
𝑘
)
−

𝑍𝑐 (𝑒
∗
𝑘 )

𝑌̃ (𝑒∗
𝑘
)
∈ 𝑁𝐹 . �

To prove the converse of Theorem 4.12, we consider the following weaker replacement of orthogo-
nality (O2):

(O2)′ Let 𝑋,𝑌 ∈ C be such that 𝑋 and 𝑌 are fundamental circuits with respect to the same basis of 𝑀C ,
then 〈𝑋,𝑌 ∗〉 ∈ 𝑁𝐹 .

Lemma 4.13. Let C be an F-signature of an orthogonal matroid. If C satisfies (O2)′ and (L-i)′, then it
satisfies (O2).

Proof. Suppose for contradiction that (O2) does not hold. Let X and Y be F-circuits in C such that |𝑋∪𝑌 |
is minimized subject to |𝑋∩𝑌 ∗ | = 2 and 〈𝑋,𝑌 ∗〉 ∉ 𝑁𝐹 . Write 𝑋∩𝑌 ∗ = {𝑒, 𝑓 }. Then 𝐽 := (𝑋∪𝑌 )\{𝑒∗, 𝑓 }
is dependent in 𝑀C , because otherwise, there is a basis 𝐵 ⊇ 𝐽 such that X and Y are fundamental circuits
with respect to B and thus 〈𝑋,𝑌 ∗〉 ∈ 𝑁𝐹 by (O2)′, a contradiction. Let C be a circuit contained in J which
minimizes |𝑋 ∪𝐶 |. Note that 𝐶∩{𝑒, 𝑓 ∗} = ∅ by (C4), and there are 𝑥 ∈ 𝐶∩ (𝑋 \𝑌 ) and 𝑦 ∈ 𝐶∩ (𝑌 \ 𝑋)
by (C2). Because of the minimality of |𝑋 ∪ 𝐶 |, we deduce that 𝐽2 := (𝑋�{ 𝑓 , 𝑓 ∗}) ∪ (𝐶 \ {𝑦}) is
independent. Let 𝐵2 be a basis containing 𝐽2. Then 𝑋 and C are fundamental circuits with respect to 𝐵2.
Let Z be an F-circuit whose support is C. By (L-i)′, there is an F-circuit 𝑋2 such that 𝑋2 (𝑥) = 0 and 𝑋2
is in the linear span of 𝑋̃ and 𝑍̃ . Then 𝑋2 ∪ 𝑌 � 𝑋 ∪ 𝑌 , and for some 𝛼 ∈ 𝐹×, we have 𝑋2(𝑒) = 𝛼𝑋 (𝑒)
and 𝑋2( 𝑓

∗) = 𝛼𝑋 ( 𝑓 ∗). Therefore, 𝛼〈𝑋,𝑌 ∗〉 = 〈𝑋2, 𝑌
∗〉 ∈ 𝑁𝐹 , a contradiction. �

We note that by Lemma 4.13, an F-signature of an orthogonal matroid is a strong F-circuit set if and
only if it satisfies (L) and (O2)

′. In addition, (O2) in Lemma 3.7 can be replaced by (O2)′.

Theorem 4.14. Let 𝜑 be a weak Wick function. Then C𝜑 is a weak F-circuit set of 𝑀𝜑 .

Proof. By Lemma 4.13, it suffices to show that C𝜑 satisfies (O2)′, (L-i)′ and (L-ii)′.
Let X and Y be F-circuits in C𝜑 such that 𝑋 = 𝐶 (𝐵, 𝑓 ) and 𝑌 = 𝐶 (𝐵, 𝑒) for some basis B and distinct

elements 𝑒, 𝑓 ∈ 𝐵∗. We denote 𝑇1 := 𝐵�{ 𝑓 , 𝑓 ∗} ⊇ 𝑋 and 𝑇2 := 𝐵�{𝑒, 𝑒∗} ⊇ 𝑌 . Then

𝑋̃ (𝑒)

𝑋̃ ( 𝑓 )
= (−1)𝑚

𝑇1
𝑒, 𝑓

𝜑(𝑇1�{𝑒, 𝑒
∗})

𝜑(𝑇1�{ 𝑓 , 𝑓 ∗})
= (−1)𝑚

𝑇2
𝑒, 𝑓

𝜑(𝑇2�{ 𝑓 , 𝑓
∗})

𝜑(𝑇2�{𝑒, 𝑒∗})
= −

𝑌 ( 𝑓 ∗)

𝑌 (𝑒∗)
,

and hence, 〈𝑋,𝑌 ∗〉 ∈ 𝑁𝐹 . Therefore, C𝜑 satisfies (O2)′.
Now we show that (L-i)′ holds. Let B be a basis of 𝑀𝜑 and 𝑒1, 𝑒2 ∈ 𝐵∗ be distinct elements. Let 𝑋1

and 𝑋2 be F-circuits in C such that 𝑋𝑖 = 𝐶 (𝐵, 𝑒𝑖) for 𝑖 = 1, 2. Suppose that 𝑋1(𝑒
∗
2) = 𝑋2 (𝑒

∗
1) = 0 and

there is an element 𝑓 ∈ 𝑋1 ∩ 𝑋2. Let Y be an F-circuit whose support is a subset of (𝑋1 ∪ 𝑋2) \ { 𝑓 }.
We claim that 𝑌 belongs to the linear span of 𝑋1 and 𝑋2. We may assume that 𝑋̃𝑖 (𝑒𝑖) = 𝑌 (𝑒𝑖). Thus, it
suffices to show that 𝑌 (𝑔) − 𝑋1(𝑔) − 𝑋2 (𝑔) ∈ 𝑁𝐹 for all 𝑔 ∈ (𝑋1 ∪ 𝑋2) \ {𝑒1, 𝑒2}.

Let 𝑍 ∈ C be such that 𝑍 = 𝐶 (𝐵, 𝑓 ∗). By (O2)′, 𝑍̃ (𝑒∗𝑖 ) 𝑋̃𝑖 (𝑒𝑖)+ 𝑍̃ ( 𝑓
∗) 𝑋̃𝑖 ( 𝑓 ) ∈ 𝑁𝐹 with 𝑖 = 1, 2. Again,

by (O2)′, −𝑍 ( 𝑓 ∗)(𝑋1( 𝑓 ) + 𝑋2 ( 𝑓 )) = 𝑍̃ (𝑒∗1)𝑌̃ (𝑒1) + 𝑍̃ (𝑒
∗
2)𝑌 (𝑒2) ∈ 𝑁𝐹 . Hence, 𝑋1( 𝑓 ) + 𝑋2 ( 𝑓 ) ∈ 𝑁𝐹 . So
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we may assume that 𝑔 ≠ 𝑓 . By symmetry, we may assume that 𝑔 ∈ 𝑋1, implying that 𝐵�{𝑒1, 𝑒
∗
1, 𝑔, 𝑔

∗} is
a basis. Let 𝑊 ∈ C be such that 𝑊 = 𝐶 (𝐵, 𝑔∗). Let 𝑇1 := 𝐵�{𝑔, 𝑔∗} and 𝑇2 := 𝐵�{𝑒1, 𝑒

∗
1, 𝑒2, 𝑒

∗
2, 𝑓 , 𝑓

∗}.
Then 𝑊 ⊆ 𝑇1 and 𝑌 ⊆ 𝑇2. Since 𝐵�{𝑒2, 𝑒

∗
2, 𝑓 , 𝑓

∗} and 𝐵�{𝑒1, 𝑒
∗
1, 𝑔, 𝑔

∗} are bases of 𝑀𝜑 , both 𝑌 (𝑒1)
and 𝑊 (𝑒∗1) are nonzero. We rewrite {𝑒1, 𝑒2, 𝑓

∗, 𝑔} ⊆ 𝑇2 by {𝑥1, 𝑥2, 𝑥3, 𝑥4} with 𝑥1 < 𝑥2 < 𝑥3 < 𝑥4, and
let 𝑘 ∈ [4] be such that 𝑥𝑘 = 𝑒1. Since 𝑚𝑇1

𝑥𝑖 ,𝑥𝑘 + 𝑚𝑇2
𝑥𝑖 ,𝑥𝑘 ≡ 𝑘 − 𝑖 (mod 2), by (W2)′′, we have that

4∑
𝑖=1

𝑊̃ (𝑥∗𝑖 )𝑌̃ (𝑥𝑖) = 𝑊̃ (𝑥∗𝑘 )𝑌 (𝑥𝑘 )
4∑
𝑖=1

𝑊̃ (𝑥∗𝑖 )𝑌 (𝑥𝑖)

𝑊̃ (𝑥∗𝑘 )𝑌 (𝑥𝑘 )

= 𝑊̃ (𝑥∗𝑘 )𝑌 (𝑥𝑘 )
4∑
𝑖=1

(−1)𝑘−𝑖
𝜑(𝑇1�{𝑥𝑖 , 𝑥

∗
𝑖 })𝜑(𝑇2�{𝑥𝑖 , 𝑥

∗
𝑖 })

𝜑(𝑇1�{𝑥𝑘 , 𝑥
∗
𝑘 })𝜑(𝑇2�{𝑥𝑘 , 𝑥

∗
𝑘 })

∈ 𝑁𝐹 .

By (O2)′, 𝑊̃ (𝑒∗𝑖 )𝑌 (𝑒𝑖) = 𝑊̃ (𝑒∗𝑖 )𝑍𝑖 (𝑒𝑖) = −𝑊̃ (𝑔∗)𝑍𝑖 (𝑔) for each i. Since 𝑊 (𝑔∗) ≠ 0 and 𝑌 ( 𝑓 ∗) = 0, we
conclude that 𝑌 (𝑔) − 𝑍1 (𝑔) − 𝑍2 (𝑔) ∈ 𝑁𝐹 . Therefore, (L-i)′ holds.

Finally, we show that (L-ii)′ holds. Let B be a basis of 𝑀𝜑 and let 𝑋1, 𝑋2, 𝑋3 be F-circuits in
C such that their supports are 𝐶 (𝐵, 𝑒1), 𝐶 (𝐵, 𝑒2), 𝐶 (𝐵, 𝑒3) for some distinct 𝑒1, 𝑒2, 𝑒3 ∈ 𝐵∗, and
𝑋𝑖 (𝑒

∗
𝑗 ) ≠ 0 for all 𝑖 ≠ 𝑗 . Then 𝐵�{𝑒1, 𝑒

∗
1, 𝑒2, 𝑒

∗
2}, 𝐵�{𝑒1, 𝑒

∗
1, 𝑒3, 𝑒

∗
3}, and 𝐵�{𝑒2, 𝑒

∗
2, 𝑒3, 𝑒

∗
3} are all

bases. Let Y be an F-circuit in C whose support is 𝐶 (𝐵�{𝑒1, 𝑒
∗
1, 𝑒2, 𝑒

∗
2}, 𝑒3). Then {𝑒1, 𝑒2, 𝑒3} ⊆ 𝑌 ⊆

𝐵�{𝑒1, 𝑒
∗
1, 𝑒2, 𝑒

∗
2, 𝑒3, 𝑒

∗
3}. We claim that 𝑌 belongs to the linear span of 𝑋̃𝑖 with 𝑖 = 1, 2, 3. We may

assume that 𝑋𝑖 (𝑒𝑖) = 𝑌 (𝑒𝑖) for each i. Hence, it suffices to show that𝑌 ( 𝑓 )−𝑋1( 𝑓 )−𝑋2( 𝑓 )−𝑋3( 𝑓 ) ∈ 𝑁𝐹

for all 𝑓 ∈ 𝐵. Denote 𝛼 := 𝑋1 (𝑒
∗
2)𝑌 (𝑒2) ∈ 𝐹×. Then 𝑋1(𝑒

∗
3)𝑌̃ (𝑒3) = −𝛼 by (O2)′ applied to 𝑋1

and Y. Applying again (O2)′ to 𝑋1 and 𝑋2, we have 𝑋2(𝑒
∗
1)𝑌̃ (𝑒1) = −𝛼. Similarly, we deduce that

𝑋2 (𝑒
∗
3)𝑌 (𝑒3) = 𝑋3 (𝑒

∗
1)𝑌 (𝑒1) = −𝑋3(𝑒

∗
2)𝑌̃ (𝑒2) = 𝛼. Then 𝑋𝑖+1(𝑒

∗
𝑖 ) + 𝑋𝑖+2(𝑒

∗
𝑖 ) ∈ 𝑁𝐹 for each i, where

the subscripts are read modulo 3. Thus, we may assume that 𝑓 ≠ 𝑒∗1, 𝑒
∗
2, 𝑒

∗
3.

Let 𝑇1 := 𝐵�{ 𝑓 , 𝑓 ∗} and 𝑇2 := 𝐵�{𝑒1, 𝑒
∗
1, 𝑒2, 𝑒

∗
2, 𝑒3, 𝑒

∗
3} ⊇ 𝑌 . Let Z be an F-circuit in C such that

𝑍 = 𝐶 (𝐵, 𝑓 ∗) ⊆ 𝑇1. Note that 𝑋𝑖 ( 𝑓 ) ≠ 0 if and only if 𝑇1�{𝑒𝑖 , 𝑒
∗
𝑖 } is a basis. Hence, if 𝑋𝑖 ( 𝑓 ) = 0 for

all i, then by (W2)′′, 𝜑(𝑇2�{ 𝑓 , 𝑓
∗}) = 0 so 𝑌 ( 𝑓 ) = 0. Therefore, we may assume that at least one of

𝑋𝑖 ( 𝑓 ) is nonzero. By relabeling, we may assume that 𝑋1 ( 𝑓 ) ≠ 0, and hence, 𝑇1�{𝑒1, 𝑒
∗
1} is a basis.

Then 𝑍 (𝑒1) ≠ 0.
We rewrite {𝑒1, 𝑒2, 𝑒3, 𝑓

∗} ⊆ 𝑇2 by {𝑥1, 𝑥2, 𝑥3, 𝑥4} with 𝑥1 < 𝑥2 < 𝑥3 < 𝑥4, and let 𝑘 ∈ [4] be such
that 𝑥𝑘 = 𝑒1. Note that 𝑚𝑇1

𝑥𝑖 ,𝑥𝑘 + 𝑚𝑇2
𝑥𝑖 ,𝑥𝑘 ≡ 𝑘 − 𝑖 (mod 2). Then by (W2)′′,

4∑
𝑖=1

𝑍̃ (𝑥∗𝑖 )𝑌̃ (𝑥𝑖) = 𝑍̃ (𝑥∗𝑘 )𝑌 (𝑥𝑘 )
4∑
𝑖=1

(−1)𝑘−𝑖
𝜑(𝑇1�{𝑥𝑖 , 𝑥

∗
𝑖 })𝜑(𝑇2�{𝑥𝑖 , 𝑥

∗
𝑖 })

𝜑(𝑇1�{𝑥𝑘 , 𝑥
∗
𝑘 })𝜑(𝑇2�{𝑥𝑘 , 𝑥

∗
𝑘 })

∈ 𝑁𝐹 .

By (O2)′, 𝑍̃ (𝑒∗𝑖 )𝑌 (𝑒𝑖) = 𝑍̃ (𝑒∗𝑖 ) 𝑋̃𝑖 (𝑒𝑖) = −𝑍̃ ( 𝑓 ∗) 𝑋̃𝑖 ( 𝑓 ) for each i. Because 𝑓 ∗ ∈ 𝑍 , we deduce that
𝑌 ( 𝑓 ) −

∑3
𝑖=1 𝑋̃𝑖 ( 𝑓 ) = 𝑌 ( 𝑓 ) + 𝑍̃ ( 𝑓 ∗)−1 ∑3

𝑖=1 𝑍̃ (𝑒
∗
𝑖 )𝑌 (𝑒𝑖) ∈ 𝑁𝐹 . �

4.4. Strong orthogonal signatures and strong circuit sets

Let C be an F-signature of an orthogonal matroid 𝑀 on E satisfying (O2). We say that 𝑋 ∈ 𝐹𝐸 is
consistent with C if for each basis B of 𝑀 , the vector 𝑋̃ belongs to the linear span of {𝑋𝑒 : 𝑒 ∈ 𝐵∗},
where 𝑋𝑒 is the unique F-circuit in C such that 𝑋𝑒 = 𝐶 (𝐵, 𝑒) and 𝑋𝑒 (𝑒) = 1. Hence, (L) is equivalent
to that every F-circuit in C is consistent with C.

The orthogonal complement of W ⊆ 𝐹𝐸 is W⊥ := {𝑋 ∈ 𝐹𝐸 : 〈𝑋,𝑌 ∗〉 ∈ 𝑁𝐹 for all 𝑌 ∈ W}.
Therefore, the orthogonality (O) is equivalent to that C ⊆ C⊥.

Lemma 4.15. Let C be an F-signature of an orthogonal matroid on E satisfying (O2). If 𝑋 ∈ 𝐹𝐸 is
consistent with C, then 𝑋 ∈ C⊥.
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Proof. We claim that 〈𝑋,𝑌 ∗〉 ∈ 𝑁𝐹 for all 𝑌 ∈ C. We may assume that 𝑋 ∩ 𝑌 ∗ ≠ ∅. Write 𝑋 ∩ 𝑌 ∗ =
{𝑒∗0, 𝑒1, . . . , 𝑒ℓ }, and let B be a basis of the underlying orthogonal matroid 𝑀C such that𝑌�{𝑒0, 𝑒

∗
0} ⊆ 𝐵.

Then {𝑒∗0, . . . , 𝑒
∗
ℓ } ⊆ 𝐵. We denote by 𝑚 := |𝑋∩𝐵∗ |, and if 𝑋∩(𝐵\𝑌 )∗ is nonempty, then we enumerate

its elements as 𝑒ℓ+1, 𝑒ℓ+2, . . . , 𝑒𝑚. Then 𝑋 ∩𝐵∗ = {𝑒1, . . . , 𝑒𝑚}. For 0 � 𝑖 � 𝑚, let 𝑋𝑖 be the F-circuit in
C such that 𝑋𝑖 = 𝐶 (𝐵, 𝑒𝑖) and 𝑋𝑖 (𝑒𝑖) = 1. Then 𝑋̃−

∑𝑚
𝑖=1 𝑋̃ (𝑒𝑖) 𝑋̃𝑖 ∈ (𝑁𝐹 )

𝐸 since X is consistent with C.
Note that 𝑌 = 𝐶 (𝐵, 𝑒0) = 𝑋0. By multiplying Y with 𝑌 (𝑒0)

−1 ∈ 𝐹×, we can assume that 𝑌 (𝑒0) = 1. For
each 1 � 𝑖 � 𝑚, 𝑋̃0 (𝑒

∗
𝑖 ) + 𝑋̃𝑖 (𝑒

∗
0) = 〈𝑋0, 𝑋

∗
𝑖 〉 ∈ 𝑁𝐹 by (O2), and so 𝑌 (𝑒∗𝑖 ) = −𝑋̃𝑖 (𝑒

∗
0). Therefore,

〈𝑋,𝑌 ∗〉 = 𝑋̃ (𝑒∗0) +
𝑚∑
𝑖=1

𝑋̃ (𝑒𝑖)𝑌̃ (𝑒
∗
𝑖 ) = 𝑋̃ (𝑒∗0) −

𝑚∑
𝑖=1

𝑋̃ (𝑒𝑖) 𝑋̃𝑖 (𝑒
∗
0) ∈ 𝑁𝐹 . �

Lemma 4.16. Let C be an orthogonal F-signature of an orthogonal matroid on E. If 𝑋 ∈ C⊥, then X is
consistent with C.
Proof. Let B be a basis of 𝑀C . Write 𝑋 ∩ 𝐵∗ = {𝑒1, . . . , 𝑒𝑚}, and let 𝑋𝑖 be the F-circuit in C such that
𝑋𝑖 = 𝐶 (𝐵, 𝑒𝑖) and 𝑋𝑖 (𝑒𝑖) = 1. We claim that 𝑋̃ ( 𝑓 ) −

∑
𝑖 𝑋̃ (𝑒𝑖) 𝑋̃𝑖 ( 𝑓 ) ∈ 𝑁𝐹 for all 𝑓 ∈ 𝐸 . For 𝑓 ∈ 𝐵∗,

we have 𝑋𝑖 ( 𝑓 ) = 1 if 𝑓 = 𝑒𝑖 , and 𝑋𝑖 ( 𝑓 ) = 0 otherwise. Thus, we may assume that 𝑓 ∈ 𝐵. Let 𝑌 ∈ C
be such that 𝑌 = 𝐶 (𝐵, 𝑓 ∗) and 𝑌 ( 𝑓 ∗) = 1. If 𝑓 ∗ = 𝑒𝑖 , then 𝑋𝑖 ( 𝑓 ) = 𝑋𝑖 (𝑒

∗
𝑖 ) = 0 and 𝑌 (𝑒∗𝑖 ) = 𝑌 ( 𝑓 ) = 0.

Otherwise, we have 𝑋̃𝑖 ( 𝑓 ) + 𝑌 (𝑒∗𝑖 ) = 〈𝑋𝑖 , 𝑌
∗〉 ∈ 𝑁𝐹 , and hence, −𝑋̃𝑖 ( 𝑓 ) = 𝑌 (𝑒∗𝑖 ). Therefore, by the

orthogonality (O),

𝑋̃ ( 𝑓 ) −
∑
𝑖

𝑋̃ (𝑒𝑖) 𝑋̃𝑖 ( 𝑓 ) = 𝑋̃ ( 𝑓 ) +
∑
𝑖

𝑋̃ (𝑒𝑖)𝑌 (𝑒
∗
𝑖 ) = 〈𝑋,𝑌 ∗〉 ∈ 𝑁𝐹 . �

We now prove Theorem 3.13 using the previous lemmas.

Proof of Theorem 3.13. Let C be an F-signature of an orthogonal matroid. Suppose that C is orthogonal.
Then C ⊆ C⊥ and C satisfies (O2). By Lemma 4.16, C satisfies (L). Conversely, suppose C is a strong
F-circuit set. Then by Lemma 4.15, we deduce that C ⊆ C⊥, or equivalently, C is orthogonal. �

4.5. Orthogonal signatures and orthogonal vector sets

In [1], Anderson showed the equivalence between strong F-matroids and F-vector sets for matroids. The
orthogonal complement of an F-cocircuit set of an ordinary matroid 𝑀 (i.e., an F-circuit set of the dual
matroid 𝑀∗) is an F-vector set of 𝑀 , and nonzero vectors having minimal supports in an F-vector set
of 𝑀 form an F-circuit set of 𝑀 . We prove that the strong orthogonal F-signatures and the orthogonal
F-vector sets can be derived from each other in a similar sense.
Lemma 4.17. Let V be an orthogonal F-vector set. Then there exists an ordinary orthogonal matroid 𝑀
whose set of bases equals the set of support bases of V . Furthermore, the set of supports of elementary
vectors in V equals the set of circuits of 𝑀 .
Proof. Let B be the set of support bases of V . It suffices to check that B ≠ ∅ and B satisfies the
symmetric exchange axiom.

We first show that B ≠ ∅. We may assume that V has an elementary vector X, since otherwise every
transversal is a support basis. Let 𝐼0 = 𝑋 \ {𝑒, 𝑒∗} for an arbitrary 𝑒 ∈ 𝑋 . We say that a subtransversal
is V-independent if it does not contains any 𝑌 where 𝑌 ∈ V \ {0}. Then 𝐼0 is V-independent.

We claim that if a subtransversal I is V-independent and 𝑓 ∈ [𝑛] \ 𝐼, then 𝐼 ∪ { 𝑓 } or 𝐼 ∪ { 𝑓 ∗} is
V-independent. Suppose for contradiction that neither 𝐼 ∪ { 𝑓 } nor 𝐼 ∪ { 𝑓 ∗} is V-independent. Then
there are 𝑌1, 𝑌2 ∈ V \ {0} such that 𝑌1 ⊆ 𝐼 ∪ { 𝑓 } and 𝑌2 ⊆ 𝐼 ∪ { 𝑓 ∗}. We may assume that 𝑌1 and 𝑌2 are
elementary. Since I is V-independent, 𝑓 ∈ 𝑌1 and 𝑓 ∗ ∈ 𝑌2. Then 〈𝑌1, 𝑌

∗
2 〉 = 𝑌1 ( 𝑓 )𝑌̃2( 𝑓

∗) ∉ 𝑁𝐹 , which
contradicts (V1). By the claim, for 𝑖 = 0, 1, 2, . . . , there is a V-independent set 𝐼𝑖+1 such that 𝐼𝑖 ⊆ 𝐼𝑖+1
and |𝐼𝑖+1 | = |𝐼𝑖 | + 1, unless |𝐼𝑖 | � 𝑛. Then for 𝑘 := 𝑛 − |𝐼0 |, the subtransversal 𝐼𝑘 is a V-independent set
of size n and hence, 𝐼𝑘 is a support basis of V , implying that B ≠ ∅.
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Next, we show that B satisfies the symmetric exchange axiom. Let 𝐵1, 𝐵2 ∈ B and 𝑒 ∈ 𝐵1 \ 𝐵2. By
(V2), there is a fundamental circuit form {𝑋𝑔 : 𝑔 ∈ 𝐵∗

1} of V with respect to 𝐵1, where 𝑋𝑔 ⊆ 𝐵1�{𝑔, 𝑔
∗}

and 𝑋𝑔 (𝑔) = 1. Let 𝑋 := 𝑋𝑒∗ . Note that X is elementary in V by (V3). Since 𝐵2 is a support basis,
𝑋 � 𝐵2. Thus, there is 𝑓 ∈ 𝑋 \ 𝐵2 ⊆ (𝐵1�{𝑒, 𝑒

∗}) \ 𝐵2 = (𝐵1 \ 𝐵2) \ {𝑒}. It suffices to show
that 𝐵1�{𝑒, 𝑒

∗}�{ 𝑓 , 𝑓 ∗} is a support basis of V . If not, then there is 𝑌 ∈ V \ {0} with support 𝑌 ⊆

𝐵1�{𝑒, 𝑒
∗}�{ 𝑓 , 𝑓 ∗}. We may assume that Y is elementary in V . By (V1), 𝑋̃ ( 𝑓 )𝑌 ( 𝑓 ∗) = 〈𝑋,𝑌 ∗〉 ∈ 𝑁𝐹

and thus, 𝑌 ( 𝑓 ∗) = 0. Then 𝑌 ⊆ 𝐵1�{𝑒, 𝑒
∗}. Since 𝐵1 is a support basis, 𝑒∗ ∈ 𝑌 . By (V3), 𝑌 = 𝑌 (𝑒∗)𝑋 ,

which contradicts the fact that 𝑌 ( 𝑓 ) = 0 ≠ 𝑋 ( 𝑓 ). Therefore, 𝐵1�{𝑒, 𝑒
∗, 𝑓 , 𝑓 ∗} is a support basis.

From the definitions of B and 𝑀 , it is straightforward to see that the set of circuits of 𝑀 equals the
set of supports of elementary vectors of V . �

In Lemma 4.16, if we assume additionally that X is elementary in C⊥, then X is indeed in C rather
than merely being consistent with C, as the next lemma shows. For W ⊆ 𝐹𝐸 , let Elem(W) be the set of
elementary vectors in W .

Lemma 4.18. Let C be an orthogonal F-signature of an orthogonal matroid on E. Then Elem(C⊥) = C.

Proof. Denote 𝑀 := 𝑀C . Note that C ⊆ C⊥, since C is orthogonal.
We first show that Elem(C⊥) ⊇ C. Suppose 𝑋 ∈ C is not elementary in C⊥. Then there is 𝑋 ′ ∈ C⊥\{0}

such that 𝑋 ′ � 𝑋 . Let 𝑒 ∈ 𝑋 \ 𝑋 ′ and let B be a basis of 𝑀 containing 𝑋�{𝑒, 𝑒∗}. Choose 𝑓 ∈ 𝑋 ′ and
𝑌 ∈ C so that 𝑌 = 𝐶 (𝐵, 𝑓 ∗). Then 〈𝑋 ′, 𝑌 ∗〉 = 𝑋 ′( 𝑓 )𝑌 ( 𝑓 ∗) ∉ 𝑁𝐹 , a contradiction.

Next, we prove that Elem(C⊥) ⊆ C. Let X be an elementary vector in C⊥. Suppose for contradiction
that 𝑋 is independent in 𝑀 . Take an element 𝑒 ∈ 𝑋 and a basis B of 𝑀 containing 𝑋 , and let 𝑌 ∈ C be
such that 𝑌 = 𝐶 (𝐵, 𝑒∗). Then 〈𝑋,𝑌 ∗〉 = 𝑋̃ (𝑒)𝑌 (𝑒∗) ∉ 𝑁𝐹 , a contradiction. Therefore, 𝑋 is dependent
in 𝑀 . Then there is 𝑋 ′ ∈ C such that 𝑋 ′ ⊆ 𝑋 . Since C ⊆ C⊥ and X is elementary in C⊥, we have
𝑋 ⊆ 𝑋 ′. Hence, 𝑋 = 𝑋 ′. Now it suffices to show 𝑋 = 𝛼𝑋 ′ for some 𝛼 ∈ 𝐹×. For 𝑒 ∈ 𝑋 , we may
assume that 𝑋 (𝑒) = 𝑋 ′(𝑒) = 1. Suppose that 𝑋 ≠ 𝑋 ′. Then 𝑋 ( 𝑓 ) ≠ 𝑋 ′( 𝑓 ) for some 𝑓 ∈ 𝑋 . For a
basis B of 𝑀 containing 𝑋�{𝑒, 𝑒∗}, let 𝑌 ∈ C be such that 𝑌 = 𝐶 (𝐵, 𝑓 ∗) and 𝑌 ( 𝑓 ∗) = 1. Because
𝑋̃ ( 𝑓 ) + 𝑌 (𝑒∗) = 〈𝑋,𝑌 ∗〉 ∈ 𝑁𝐹 , we have 𝑋̃ ( 𝑓 ) = −𝑌 (𝑒∗). We similarly deduce that 𝑋̃ ′( 𝑓 ) = −𝑌 (𝑒∗),
which contradicts the fact that 𝑋 ( 𝑓 ) ≠ 𝑋 ′( 𝑓 ). Thus, 𝑋 = 𝑋 ′ ∈ C. �

Theorem 4.19. The following hold:

(i) If C is an orthogonal F-signature, then C⊥ is an orthogonal F-vector set and C = Elem(C⊥).
(ii) If V is an orthogonal F-vector set, then Elem(V) is an orthogonal F-signature and V = Elem(V)⊥.

Proof. (i) By Lemma 4.18, Elem(C⊥) = C, and thus, C⊥ satisfies (V1). In addition, the set of support
bases of C⊥ is equal to the set of bases of 𝑀C . Therefore, by (C5), C⊥ satisfies (V2). By Lemmas 4.15
and 4.16, C⊥ satisfies (V3).

(ii) Let C := Elem(V). By (V1), C satisfies the 2-term orthogonality relation (O2). By Lemma 4.17,
the set of support bases of V coincides with the set of support bases of C. Moreover, it is the set of bases
of some ordinary orthogonal matroid 𝑀 . Then C is an F-signature of 𝑀 and every fundamental circuit
form of C is a fundamental circuit form of V . Conversely, by (V3), every fundamental circuit form of V
is a fundamental circuit form of C. Therefore, 𝑋 ∈ 𝐹𝐸 is in V if and only if it is consistent with C. The
latter condition implies that 𝑋 ∈ C⊥ by Lemma 4.15. Then C ⊆ V ⊆ C⊥. Therefore, C is an orthogonal
F-signature of 𝑀 . By Lemma 4.16, if 𝑋 ∈ C⊥, then X is consistent with C. Hence, C⊥ ⊆ V , and we
conclude C⊥ = V . �

We finish the discussion of orthogonal vector sets with the proof of Theorem 3.16(i) that if F is a
field, then every orthogonal F-vector set is a Lagrangian subspace.

Proof of Theorem 3.16(i). By (V2) and (V3), V is an n-dimensional linear subspace of 𝐹 [𝑛]∪[𝑛]∗ . Let
C := Elem(V). By Theorem 4.19(ii), 〈𝑋,𝑌 ∗〉 = 0 for all 𝑋,𝑌 ∈ C and V = C⊥. By Lemma 4.16, V is
the subspace spanned by C, and thus, 〈𝑋,𝑌 ∗〉 = 0 for all 𝑋,𝑌 ∈ V . Hence, V is isotropic and therefore
Lagrangian. �
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Example 4.20. By [2, Corollary 3.45], if F is a doubly distributive partial hyperfield such as a field,
S, T or K, and if M is a strong F-matroid, then every vector (resp. covector) of M is orthogonal to all
covectors (resp. vectors) of M. For the proof, it is crucial to show that if F is a doubly distributive partial
hyperfield, then every weak F-matroid is automatically a strong F-matroid. In the orthogonal case, if
F is a field and W ⊆ 𝐹 [𝑛]∪[𝑛]∗ is an orthogonal F-vector set, then W⊥ = W by Theorem 3.16(i). So
one may ask naturally whether this fact can be generalized to doubly distributive partial hyperfields.
However, it is false even if we take 𝐹 = K, the Krasner hyperfield. Let 𝑁 be the orthogonal matroid on
[5] ∪ [5]∗ in which a transversal B is a basis of 𝑁 if and only if |𝐵∩ [5] | is even and 𝐵 ≠ 1∗2345, 12∗345.
By computer search, we check that |C | = 15, |V | = 256, and |V⊥| = 169, where C is the uniqueK-circuit
set of 𝑁 and V := C⊥ is the corresponding orthogonal K-vector set.

4.6. Natural bijections

Summarizing the results in Sections 4.1–4.5, we prove the equivalence between various notions of
orthogonal matroids with coefficients in tracts, described in Theorems 3.18, 3.19 and 3.20. As a
corollary, we deduce Theorem 3.14.

The following lemma is straightforward from definitions.

Lemma 4.21. Let F be a tract. Let C be an F-signature of an orthogonal matroid satisfying (O2), and
let 𝜑 be a weak Wick F-function. Then C𝜑C = C and [𝜑C𝜑 ] = [𝜑].

Proof of Theorem 3.18. By Theorems 4.3, 4.10 and Lemma 4.21, there is a natural bijection between
(1) and (2). By Theorem 3.13, (2) and (3) are identical. By Theorem 4.19, there is a natural bijection
between (2) and (4). �

Proof of Theorem 3.19. It is straightforward from Theorems 4.4, 4.11, and Lemma 4.21. �

Proof of Theorem 3.20. It is concluded by Theorem 4.12, 4.14, and Lemma 4.21. �

Proof of Theorem 3.14. It is an immediate corollary of Theorems 3.19 and 3.20. �

4.7. More examples

Strong orthogonal F-matroids generalize strong F-matroids by Proposition 3.4, and strong orthogo-
nal F-signatures of orthogonal matroids generalize strong dual pairs of F-signatures of matroids by
Remark 3.9. Baker and Bowler showed in [2] the equivalence of weak F-matroids and weak dual
pairs of F-signatures. By Theorem 3.19, moderately weak orthogonal F-matroids and weak orthog-
onal F-signatures are equivalent. However, in the previous equivalence, moderately weak orthogonal
F-matroids cannot be replaced by weak orthogonal F-matroids, as the class of weak orthogonal
F-matroids is strictly larger than the class of moderately weak orthogonal F-matroids for some tract F.
This is true even if we restrict the classes of weak and moderately weak orthogonal F-matroids to those
whose underlying orthogonal matroids are lifts of matroids.

Example 4.22. Let F be the tract ({1}, {1+ 1, 1+ 1+ 1}) with the trivial involution and let 𝑀 be the lift
of the uniform matroid 𝑈3,6. The set of bases of 𝑀 is {𝑎𝑏𝑐𝑑∗𝑒∗ 𝑓 ∗ : 𝑎𝑏𝑐𝑑𝑒 𝑓 = [6]}. Since 𝐹× = {1},
the function 𝜑 : T6 → 𝐹 whose support is the set of bases of 𝑀 is uniquely determined. Because
𝑀 is the lift of a matroid, for all transversals 𝑇1 and 𝑇2 with | (𝑇1�𝑇2) ∩ [6] | = 4, at most three of
𝜑(𝑇1�{𝑖 𝑗 , 𝑖

∗
𝑗 })𝜑(𝑇2�{𝑖 𝑗 , 𝑖

∗
𝑗 }) with 1 � 𝑗 � 4 are nonzero, where (𝑇1�𝑇2) ∩ [6] = {𝑖1 < 𝑖2 < 𝑖3 < 𝑖4}.

Therefore, 𝜑 is a weak Wick F-function. Consider 𝑇 ′
1 = {1, 2, 3, 4, 5∗, 6∗} and 𝑇 ′

2 = (𝑇 ′
1)

∗. We have∑6
𝑖=1(−1)𝑖𝜑(𝑇 ′

1�{𝑖, 𝑖
∗})𝜑(𝑇 ′

2�{𝑖, 𝑖
∗}) = 1 + 1 + 1 + 1 ∉ 𝑁𝐹 . Hence, 𝜑 is not a moderately weak Wick

F-function. Similarly, if we take C to be the unique F-signature of 𝑀 , then it is readily seen that C is a
weak F-circuit set but not a weak orthogonal F-signature.
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We also have an instance showing where the class of strong F-matroids is strictly larger than the
class of moderately weak F-matroids (i.e., the class of strong orthogonal F-signatures is strictly larger
than the class of weak orthogonal F-signatures).

Example 4.23. Let F be the tract ({1}, {1+1, 1+1+1, 1+1+1+1}) endowed with the trivial involution
and let 𝑀 be the lift of 𝑈4,8. Let C be the unique F-signature of 𝑀 . Then for 𝑋,𝑌 ∈ C whose supports
are [5] and [5]∗, respectively, we have 〈𝑋,𝑌 ∗〉 = 1 + 1 + 1 + 1 + 1 ∉ 𝑁𝐹 , and thus, (O) does not hold.
However, (O)′ holds obviously by our choice of F.

By Theorem 2.15, if C is an F-signature of the lift of a matroid satisfying the 3-term orthogonality
(O3), then 𝜑C is a weak Wick F-function. However, this is false in general for orthogonal matroids, even
if F is a field.

Example 4.24. Consider the K-signature C defined in Example 3.12, which satisfies (O3) but not (O)′.
Note that C𝜑C = C, and thus, by Theorem 4.4, 𝜑C is not a moderately weak Wick K-function. Since
𝐸 (𝑀C) = [4] ∪ [4]∗, (W2)′ and (W2)′′ are equivalent for 𝜑C . Thus, 𝜑C is not a weak Wick function.

More precisely, we can compute 𝜑C by setting 𝜑C ([4]) = 1 and check whether it satisfies (W2)′′. By
definition, it is easily seen that

𝜑C (𝐵) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if 𝐵 = [4] or 1∗23∗4,
−1 if 𝐵 ∈ {𝑖 𝑗 𝑘∗ℓ∗ : 𝑖 𝑗 𝑘ℓ = [4]} \ {1∗23∗4},
−𝑥 if 𝐵 = [4]∗,
0 otherwise.

Then for 𝑇1 = 1234∗ and 𝑇2 = 1∗2∗3∗4,

4∑
𝑖=1

(−1)𝑖𝜑(𝑇1�{𝑖, 𝑖
∗})𝜑(𝑇2�{𝑖, 𝑖

∗}) = −1 − 1 − 1 − 𝑥 ≠ 0

since 𝑥 ∈ 𝐾 \ {0,−3}. Therefore, 𝜑C does not satisfies (W2)′′.

In Sections 3.5 and 3.7, we promised to show that the minors and the pushforward operations of
an orthogonal F-vector set are not properly defined. Recall that for W ⊆ 𝐹𝐸 and 𝑒 ∈ 𝐸 , W |𝑒 =
{𝜋(𝑋) ∈ 𝐹𝐸\{𝑒,𝑒∗ } : 𝑋 ∈ W with 𝑋 (𝑒∗) = 0}, where 𝜋 : 𝐹𝐸 → 𝐹𝐸\{𝑒,𝑒∗ } is the canonical projection.
For an orthogonal F-signature C and the corresponding F-vector set V := C⊥, it is readily seen that
V |𝑒 ⊆ (C |𝑒)⊥. Example 4.25 provides an instance where V |𝑒 ≠ (C |𝑒)⊥. If 𝑓 : 𝐹 → 𝐹 ′ is a tract
homomorphism commuting with involutions of F and 𝐹 ′, one can check that 𝑓∗(V) ⊆ ( 𝑓∗(C))⊥. It
might not be an equality, as Example 4.26 shows.

Example 4.25. Let 𝑀 be the lift of 𝑈1,3. Then C (𝑀) = {12, 13, 23, 1∗2∗3∗}. Consider the following
orthogonal U0-signature of 𝑀:

C := {(1,−1, 0, 0, 0, 0), (1, 0, 1, 0, 0, 0), (0, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1,−1)},

where the coordinates of the vectors are indexed by 1, 2, 3, 1∗, 2∗, 3∗ in order. Let V := C⊥ be the orthog-
onalU0-vector set. Then V |3 = {(1,−1, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0)} and (C |3)⊥ = V |3∪ {(1, 1, 0, 0)},
where the coordinates of vectors are indexed by 1, 2, 1∗, 2∗ in order.

Example 4.26. Similarly, let C = {(1, 1, 0, 0, 0, 0), (1, 0, 1, 0, 0, 0), (0, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1, 1)} ⊆

(F2)
[3]∪[3]∗ be the orthogonal F2-signature of the lift of 𝑈1,3, where the coordinates of each vector

are indexed by 1, 2, 3, 1∗, 2∗, 3∗ in order. Let V := C⊥. Then it is an orthogonal F2-vector set by
Theorem 4.19 and (1, 1, 1, 0, 0, 0) ∉ V . For the tract homomorphism 𝑓 : F2 → K, it is easily checked
that (1, 1, 1, 0, 0, 0) ∈ ( 𝑓∗(C))⊥ \ 𝑓∗(V) and Elem( 𝑓∗(V)) = 𝑓∗(C). Thus, 𝑓∗(V) is not an orthogonal
K-vector set by Theorem 4.19.
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5. Applications

An ordinary orthogonal matroid 𝑀 is representable (resp. weakly reprsentable) over a tract F if there
is a strong (resp. weak) orthogonal F-matroid whose underlying orthogonal matroid is 𝑀 . When F is
a field, the representability of orthogonal matroids was introduced using skew-symmetric matrices in
[12], and coincides with our definition by [27, Theorem 2.2]. Note that whenever 𝑀 is the lift of a
matroid 𝑁 , the orthogonal matroid 𝑀 is representable over a field K if and only if the matroid 𝑁 admits
a usual matrix representation over K by [12, (4.4)].

The following theorem will be used repeatedly in this section.
Theorem 5.1 (Baker–Jin, Theorem 4.3 of [3]). Let P be a partial field and let 𝜑 : T𝑛 → 𝑃 be a function.
Then 𝜑 is a strong Wick function if and only if it is a weak Wick function. In particular, an orthogonal
matroid is representable over P if and only if it is weakly representable over P.

For a tract F and a nonnegative integer k, let 𝑁�𝑘𝐹 be the set of elements in 𝑁𝐹 ⊆ N[𝐹×] that are
formal sums of at most k elements of 𝐹×. To check whether a map 𝜑 : T𝑛 → 𝐹 is a weak Wick function,
we only need the information of 𝑁�4

𝐹 rather than 𝑁𝐹 .
One impressive result in matroid theory is that if a matroid is representable over F2 and F3, then it is

representable over all fields [24]. Geelen extended this result to orthogonal matroids.
Theorem 5.2 (Geelen, Theorem 4.13 of [16]). Let M be an orthogonal matroid. Then the following are
equivalent:

(i) M is representable over F2 and F3.
(ii) M is representable over the regular partial field U0.

(iii) M is representable over all fields.
The proof in [16] involves technical matrix calculations. However, using the theory of orthogonal

matroids over tracts, we are able to give a short and conceptual proof.

Proof. If M is representable over F2 and F3 via strong Wick functions 𝜑1 and 𝜑2, respectively, then by
Proposition 3.24, 𝜑1 × 𝜑2 is a strong Wick function over F2 ×F3 with underlying orthogonal matroid M.
Let f be the map from the set F2 ×F3 = {0, (1,±1)} to the set U0 = {0,±1} given by 𝑓 (1,±1) = ±1 and
𝑓 (0) = 0. Then we have 𝑓 (𝑁�4

F2×𝐹3
) = 𝑁�4

U0
. Therefore, 𝜑0 := 𝑓 ◦ (𝜑1 × 𝜑2) is a weak Wick function over

U0 and hence a strong Wick function by Theorem 5.1, and we have (i) implies (ii). For every field F,
since there is a natural tract homomorphism U0 → 𝐹 induced by the map Z→ 𝐹, we have (ii) implies
(iii) using Proposition 3.22. It is trivial that (iii) implies (i). �

It is worth noting that the map f defined in the above proof is not a tract homomorphism.
We say that an orthogonal matroid is regular if it satisfies one of the three equivalent conditions in

Theorem 5.2. We now give two more characterizations of regular orthogonal matroids without a specific
minor 𝑀4 on [4] ∪ [4]∗ whose bases are

{𝑎𝑏𝑐𝑑∗, 𝑎∗𝑏∗𝑐∗𝑑 : 𝑎𝑏𝑐𝑑 = [4]}.

An ordered field is a field together with a strict total order ≺ such that for every 𝑥, 𝑦, 𝑧 ∈ 𝐹, (i) if
𝑥 ≺ 𝑦, then 𝑥 + 𝑧 ≺ 𝑦 + 𝑧, and (ii) if 0 ≺ 𝑥 and 0 ≺ 𝑦, then 0 ≺ 𝑥𝑦. For instance, the real field R with the
usual order is an ordered field.
Theorem 5.3. Let M be an orthogonal matroid with no minor isomorphic to 𝑀4 and let (𝐾, ≺) be an
ordered field. Then the following are equivalent:

(i) M is regular.
(ii) M is representable over F2 and K.

(iii) M is representable over F2 and the sign hyperfield S.
To show Theorem 5.3, we need the following lemma on orthogonal matroids with no minor

isomorphic to 𝑀4.
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Lemma 5.4. Let F be a tract and 𝜑 a weak Wick function over F. If 𝑀𝜑 has no minor isomorphic to 𝑀4,
then for all transversals𝑇1 and𝑇2 with𝑇1\𝑇2 = {𝑖1, 𝑖2, 𝑖3, 𝑖4}, at least one of 𝜑(𝑇1�{𝑖 𝑗 , 𝑖

∗
𝑗 })𝜑(𝑇2�{𝑖 𝑗 , 𝑖

∗
𝑗 })

with 𝑗 ∈ [4] is zero.

Proof. Suppose for contradiction that all products are nonzero. Then all of the eight transversals
𝑇𝑘�{𝑖 𝑗 , 𝑖

∗
𝑗 } with 𝑘 ∈ [2] and 𝑗 ∈ [4] are bases of 𝑀𝜑 . Let 𝑆 := 𝑇1 \ {𝑖1, 𝑖2, 𝑖3, 𝑖4}. Then 𝑀 |𝑆 is

isomorphic to 𝑀4, a contradiction. �

Proof of Theorem 5.3. If M is representable over F2 and S via Wick functions 𝜑1 and 𝜑2, respectively,
then by Proposition 3.24, 𝜑1 × 𝜑2 is a Wick function over F2 × S with underlying orthogonal matroid
M. Let g be the map from the set F2 × S = {0, (1,±1)} to the set U0 = {0,±1} given by 𝑔(0) = 0 and
𝑔(1,±1) = ±1. Then 𝑔(𝑁�3

F2×S
) = 𝑁�3

U0
. Hence, by Lemma 5.4, 𝜑0 := 𝑔 ◦ (𝜑1 × 𝜑2) is a weak Wick

function over U0. By Theorem 5.1, 𝜑0 is a strong Wick function, and we have (iii) implies (i). The
direction (i) implies (ii) follows trivially from Theorem 5.2. Finally, let 𝜎 : 𝐾 → S be such that

𝜎(𝑥) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑥 � 0,
0 if 𝑥 = 0,
−1 otherwise.

Then 𝜎 is a tract homomorphism, and thus, we have (ii) implies (iii) by Proposition 3.22. �

Remark 5.5. The condition that an orthogonal matroid M does not have minors isomorphic to 𝑀4 is
sufficient but not necessary for the characterizations of regular orthogonal matroids in Theorem 5.3. In
fact, 𝑀4 itself is representable over the regular partial field U0 by setting 𝜑(𝑇) = 1 if T is a basis, and
𝜑(𝑇) = 0 otherwise, and hence representable over all fields and the sign hyperfield S. It is still an open
question whether Theorem 5.3 holds for all orthogonal matroids.

Duchamp [15, Proposition 1.5] proved that an orthogonal matroid M is isomorphic to a twisting of
the lift of a matroid if and only if M has no minor isomorphic to the orthogonal matroid 𝑀3 on [3] ∪ [3]∗
whose set of bases is

B(𝑀3) = {𝑎𝑏𝑐∗ : 𝑎𝑏𝑐 = [3]} ∪ {[3]∗}.

Note that 𝑀3 = 𝑀4 |4. So in particular, if M is isomorphic to the lift of a matroid, then it does not have
minors isomorphic to 𝑀4. As a consequence, we have the following:

Corollary 5.6 (Bland–Las Vergnas, [6]). A matroid is regular if and only if it is binary and orientable,
if and only if the matroid is binary and representable over the reals.

We also extend Whittle’s theorem [29, Theorem 1.2] that a matroid is representable over both F3 and
F4 if and only if it is representable over the sixth-root-of-unity partial field 𝑅6 to orthogonal matroids.

Theorem 5.7. Let M be an orthogonal matroid. Then the following are equivalent:

(i) M is representable over the sixth-root-of-unity partial field 𝑅6.
(ii) M is representable over F3 and F4.

(iii) M is representable over F3, F𝑝2 for all primes p, and F𝑞 for all primes q with 𝑞 ≡ 1 (mod 3).

To show Theorem 5.7, we need the following lemma on 𝑅6.

Lemma 5.8 (van Zwam, Lemma 2.5.12 and Table 4.1 of [30]). Let p be a prime.

1. There is a tract homomorphism 𝑅6 → F𝑝2 .
2. If 𝑝 ≡ 1 (mod 3), then there is a tract homomorphism 𝑅6 → F𝑝 .
3. There is a tract isomorphism 𝑅6 � F3 × F4.
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Proof of Theorem 5.7. The proof is a straightforward application of Propositions 3.22, 3.24, and
Lemma 5.8, and is similar to the proof of Theorem 5.2. In particular, the only nontrivial part that if M
is representable over F3 and F4 then M is representable over 𝑅6 is guaranteed by the tract isomorphism
𝑅6 � F3 × F4 and Proposition 3.24. �
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