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Abstract
This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semi-
groups, as introduced by Jajcayová. We show that if S∗ = [S; U1, U2; φ] is a lower bounded HNN extension then the
maximal subgroups of S∗ may be described using Bass-Serre theory, as the fundamental groups of certain graphs
of groups defined from the D-classes of S, U1 and U2. We then obtain a number of results concerning when inverse
semigroup properties are preserved under the HNN extension construction. The properties considered are com-
pletely semisimpleness, having finite R-classes, residual finiteness, being E-unitary, and 0-E-unitary. Examples
are given, such as an HNN extension of a polycylic inverse monoid.

1. Introduction

Higman et al. [10] introduced the concept of an HNN extension of a group. In combinatorial group
theory, HNN extensions play an important role in algorithmic problems.

Yamamura [20] showed the usefulness of HNN extensions in the variety of inverse semigroups by
proving the undecidability of any Markov property and the undecidability of several non-Markov prop-
erties. Jajcayová introduced lower bounded HNN extensions in [12], mirroring the definition of lower
bounded amalgams of inverse semigroups given in Bennett [3] and [4]. It was proved in Jajcayová [13]
that an HNN extension of a free inverse semigroup with finitely generated subsemigroups has decidable
word problem.

HNN extensions of a finite inverse semigroup have been considered by Cherubini and Rodaro [6],
showing that an HNN extension of a finite inverse semigroup has decidable word problem. More recently,
Ayyash and Cherubini [1] and [2] give necessary and sufficient conditions for an HNN extension of a
finite inverse semigroup or a lower bounded HNN extension to be completely semisimple. Ayyash [1]
also described the maximal subgroups in the finite case.

In the current paper, we use Bass-Serre theory to describe the maximal subgroups of a lower bounded
HNN extension S∗ containing the idempotents of S (Theorem 4.4). The maximal subgroups are the
fundamental groups of graph of groups constructed from D-classes and maximal subgroups of S. All
other maximal subgroups of S∗ are isomorphic to subgroups of S (Theorem 4.6). Conditions are given for
S∗ to have finite R-classes (Theorem 4.16). Conditions are given for S∗ to be E-unitary and 0-E-unitary
(Theorem 4.19). We show that the HNN extension of a polycyclic inverse monoid can be 0-E-unitary,
with group of units isomorphic to a free group and all other maximal subgroups are trivial.

2. Preliminaries

A semigroup S is an inverse semigroup if for all s ∈ S there is a unique element s−1, the inverse of s, such
that ss−1s = s and s−1ss−1 = s−1. The semilattice of idempotents of S is the set E(S) = {e ∈ S : e2 = e}. The
natural partial order ≤ of S is defined by a ≤ b if and only if a = eb, for some e ∈ E(S), for a, b ∈ S. A
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Figure 1. The lower bounded subsemigroup condition.

subsemigroup U of S is an inverse subsemigroup if u−1 ∈ U, for all u ∈ U. For inverse semigroups, see
Howie [11], Petrich [18], and Lawson [16].

A presentation for an inverse semigroup S is a pair 〈X | R〉, where X is a non-empty set and R is a
binary relation on (X ∪ X−1)+, with S ∼= (X ∪ X−1)+/τ , where τ is the congruence generated by R and
the Vagner congruence ρ. We then say S is presented by the generators X and relations R, written
S = Inv〈X | R〉.

We study 〈X | R〉 by considering the Schützenberger automaton A (X, R, w) of w, for w ∈ (X ∪ X−1)+.
The automaton A (X, R, w) has underlying graph S�(X, R, w), with vertices Rwτ , the R-class of S con-
taining wτ , and an edge from s to t labeled by y, for s, t ∈ Rwτ and y ∈ X ∪ X−1 where s · yτ = t in S. The
initial state is ww−1τ and the terminal state is wτ . We also denote 〈X | R〉, S�(X, R, w), A (X, R, w) by
〈S〉, S�(S, w), A (S, w), respectively. For presentations, see Stephen [19].

For any non-empty set X, an inverse word graph � over X is a connected graph with edges labeled
over the set X ∪ X−1, such that for any edge from v1 to v2 labeled by y, there is an inverse edge from v2

to v1 labeled by y−1. The inverse word graph � is deterministic if no two distinct edges have the same
initial vertex and label. We denote the vertex and edge by V(�) and E(�), respectively.

A (birooted) inverse automaton over X is a triple A = (α, �, β), where � is an inverse word graph
over X and α, β are vertices, called the initial and terminal roots of A , respectively. The language L[A ]
of the automaton A is the set of all words labeling paths from α to β. An inverse automaton A over
X is called an approximate automaton of A (X, R, w) if L[A ] ⊆ L[A (X, R, w)], and there is some word
w1 ∈ L[A ] with w1 = w in S = Inv〈X | R〉, written A �A (X, R, w). The notation ∼= is used to indicate
when two inverse word graphs (automata) are isomorphic.

If � and �1 are disjoint inverse word graphs, v1, v2 ∈ V(�) and α1, β1 ∈ V(�1) then we sew
on (α1, �1, β1) from v1 to v2 by taking the quotient of � ∪ �1 by the V-equivalence generated by
{(v1, α1), (v2, β1)}. The linear automaton of w = z1z2 · · · zn ∈ (X ∪ X−1)+, for zk ∈ X ∪ X−1, is the inverse
automaton with vertices v0 = αw, v1, . . ., vn−1, vn = βw and edges vk−1 →zk vk, vk →z−1

k vk−1, for k =
1, 2, . . . , n. If (r, s) is a relation in R and there is a path v1 →r v2 in �, with no path v1 →s v2, then
we perform an elementary expansion, relative to 〈X | R〉, by sewing on the linear automaton of s from v1

to v2. A deterministic inverse word graph (automaton) over X is closed relative to 〈X | R〉 if no elementary
expansion can be performed.

If � is an inverse graph over X, then we say there is a path from vertex v1 to vertex v2 labeled by
s ∈ S, written v1 →s v2, if there is a path v1 →w v2, for some w ∈ (X ∪ X−1)+ such that wτ = s in S. If � is
closed, relative to 〈X | R〉, and we have a path v1 →w v2, for some w ∈ (X ∪ X−1)+ with wτ = s, then we
also have a path v1 →y v2, for any y ∈ (X ∪ X−1)+ with yτ ≥ s.

3. HNN extensions of inverse semigroups

The theory of lower bounded HNN extensions has been generalized by the authors in [5]. An inverse
subsemigroup U is called lower bounded in S if, for any u ∈ U and e ∈ E(S) with u ≥ e in S, there exists
f ∈ E(U) with u ≥ f ≥ e in S. The lower bounded inverse subsemigroup condition is illustrated in Fig. 1.
We review some definitions and results from [5].
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Figure 2. The HNN extensions S∗ = [S; U1, U2; φ].

We consider an HNN extension S∗ = [S; U1, U2; φ] of an inverse semigroup S where U1 and U2 are
inverse monoids that are lower bounded in S, with respective identities e1 and e2, and φ : U1 → U2 is
an isomorphism. If U1 and U2 are only inverse subsemigroups that are lower bounded in S, then we
can study the HNN extension [S′; U′

1, U′
2; φ ′], where S′ = S ∪ {1}, the element 1 is disjoint from S and is

the identity of S ∪ {1}, U′
1 = U1 ∪ {1} and U′

2 = U2 ∪ {1} are inverse monoids that are lower bounded in
S ∪ {1} and φ ′ is the isomorphism U′

1 → U′
2 induced by φ : U1 → U2 and 1 → 1.

Let S have inverse semigroup presentation 〈X | R〉. We also denote this presentation for S by 〈S〉. Let
t be disjoint from S. The free product S ∗ FIS(t) in the variety of inverse semigroups has presentation
〈X ∪ {t} | R〉, where FIS(t) is the free inverse semigroup on {t}. We also denote this presentation for
S ∗ FIS(t) by 〈S ∪ {t}〉. The HNN extension S∗ has inverse semigroup presentation 〈X ∪ {t} | R ∪ R∗〉,
where R∗ consists of the relations tt−1 = e1, t−1t = e2 and t−1ut = (u)φ, for u ∈ U1. We also denote this
presentation for S∗ by 〈S∗〉. In [20], it was proved that S is embedded into S∗. The HNN extension is
illustrated in Fig. 2. For w ∈ (X ∪ X−1)∗, we let S�(S, w) and A (S, w) denote the Schützenberger graph
and automaton of w, respectively, relative to 〈S〉. For w ∈ (X ∪ X−1 ∪ {t, t−1})∗, we let S�(S∗, w) and
A (S∗, w) denote the Schützenberger graph and automaton of w, respectively, relative to 〈S∗〉.

We briefly describe the algorithm given in [5] for constructing the Schützenberger automata of S∗.
Let � be an inverse word graph over X ∪ {t}. An 〈S〉-lobe of � is a maximal connected subgraph with
edges labeled over X ∪ X−1. A 〈t〉-lobe of � is a maximal connected subgraph with edges labeled over
{t, t−1}. The 〈S〉-lobe containing v ∈ V(�) is denoted by �(v). Any path v1 →t v2 is called a t-edge. If
v1 →t v2 is a t-edge where v1 and v2 belong to distinct 〈S〉-lobes�(v1) and�(v2), respectively, then�(v1)
and �(v2) are called adjacent and we say �(v2) is connected to �(v1) by a t-edge.

An 〈S〉-lobe path is a finite sequence of 〈S〉-lobes �1,�2, . . . ,�n, where �k is adjacent to �k+1, for
1 ≤ k ≤ n − 1. The 〈S〉-lobe path is reduced if it is not of the form �1,�2,�1 and the 〈S〉-lobes are
distinct, except possibly the first and last. There is a unique reduced 〈S〉-lobe path between any two 〈S〉-
lobes if and only if there are no non-trivial reduced 〈S〉-lobe loops. The 〈S〉-lobe graph of � is the graph
with vertices consisting of the 〈S〉-lobes of � and edges consisting of all pairs (�1,�2) of adjacent 〈S〉-
lobes, where there is a t-edge v1 →t v2 from a vertex v1 of �1 to a vertex v2 of �2. The 〈S〉-lobe graph
of � is a tree if and only if there are no non-trivial reduced 〈S〉-lobe loops. An 〈S〉-lobe of � is a called
extremal if it is adjacent to precisely one other 〈S〉-lobe.

We say � is t-cactoid if it has finitely many 〈S〉-lobes, every t-edge v1 →t v2 connects distinct 〈S〉-
lobes, for any such t-edge there are loops v1 →e1 v1 and v2 →e2 v2 in �, where e1 and e2 are the identities
of U1 and U2, respectively, adjacent 〈S〉-lobes are connected by precisely one t-edge and the 〈S〉-lobe
graph of � is a finite tree. An inverse automaton over X ∪ {t} is t-cactoid if its underlying graph is.

Construction 3.1. [5, Construction 3.5] Let A be a t-cactoid inverse automaton over X ∪ {t} that is
closed, relative to 〈X ∪ {t} | R〉. Suppose v1 →t v2 is a t-edge of A and we have a loop v1 →f v1 in�(v1),
for some f ∈ E(U1), and no loop v2 →(f )φ v2 in�(v2). Let A ′ be the closed form, relative to 〈X ∪ {t} | R〉,
of the automaton obtained from A by sewing on the linear automaton of any word that defines (f )φ in S
at v2. The construction is illustrated in Fig. 3, where the circles represent 〈S〉-lobes, the dots represent
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Figure 3. Construction 3.1 illustrated.

Figure 4. Construction 3.2 illustrated.

vertices of A , the arrows represent paths, and the dashed arrow represents the linear automaton of
(f )φ. We have an analogous construction when we have a loop v2 →(f )φ v2 in�(v2), for some f ∈ E(U1),
and no loop v1 →f v1 in �(v1).

Construction 3.2. [5, Construction 3.12] Let B = (α2, �2, β2) be a t-cactoid inverse automaton over
X ∪ {t} that is closed, relative to 〈X ∪ {t} | R〉. Suppose there are t-edges v1 →t v2, v3 →t v4 and paths
v1 →u v3, v2 →(u)φ v5 in �2, for some u ∈ U1. The situation is illustrated in Fig. 4.

Since the 〈S〉-lobe graph of �2 is a tree, the unique reduced 〈S〉-lobe path from an 〈S〉-lobe of �2 to
�(v1) either contains�(v2) or does not. Let	1 be the subgraph of �2 containing�(v1) and any 〈S〉-lobe
where the unique reduced 〈S〉-lobe path to�(v1) does not contain�(v2), including all t-edges connecting
these 〈S〉-lobes. Similarly, let 	2 be the subgraph of �2 containing �(v2) and any 〈S〉-lobe where the
unique reduced 〈S〉-lobe path to �(v2) does not contain �(v1), including all t-edges connecting these
〈S〉-lobes. Thus 	1 ∪	2 is equal to �2, minus the t-edge v1 →t v2, and 	1 ∩	2 = ∅.

Let 	∗
1 and 	∗

2 denote disjoint copies of 	1 and 	2, respectively. Let α∗ and β∗ denote the unique
respective images of α2 and β2 in 	∗

1 ∪	∗
2 . Then, let η denote the V-equivalence on 	∗

1 ∪	∗
2 generated

by {(v4, v5)}, letting v4 and v5 denote their unique images in	∗
1 ∪	∗

2 . Put C = (α∗η, (	∗
1 ∪	∗

2 )/η, β∗η).
Let B′ denote the closed form of C , relative to 〈X ∪ {t} | R〉.

We have an analogous construction if there are t-edges v2 →t v1, v4 →t v3 and paths v1 →(u)φ v3,
v2 →u v5 in �2, for some u ∈ U1.

Let � be an inverse word graph over X ∪ {t}. The graph � has the idempotent property if for every
loop v →s v in �, where s ∈ S, there is a loop v →e v, for some e ∈ E(S) with s ≥ e in S. The graph � has
the equality property if, for every t-edge v1 →t v2 in �, connecting two distinct 〈S〉-lobes, there is a loop
v1 →u v1 in �(v1) if and only if there is a loop v2 →(u)φ v2 in �(v2), for all u ∈ U1.

For an t-edge v1 →t v2 of �, the set of related pairs of v1 →t v2 consists of (v1, v2) and all pairs (v3, v4)
of vertices for which we have a path v1 →u v3 in�(v1) and a path v2 →(u)φ v4 in�(v2), for some u ∈ U1. If
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Figure 5. Construction 3.3 illustrated.

(v3, v4) is a related pair of v1 →t v2, then v3 and v4 are called its first and second coordinates, respectively.
The graph� has the separation property if the related pairs of any two t-edges, connecting different pairs
of 〈S〉-lobes, share no common first coordinates and no common second coordinates.

We say that a t-edge v1 →t v2 of � has identified related pairs if there is a t-edge v3 →t v4 for every
related pair (v3, v4) of v1 →t v2. If, in addition, the pair (v3, v4) is a related pair of v1 →t v2, for every t-
edge v3 →t v4 from �(v1) to �(v2), then we say �(v1) and �(v2) are t-saturated by v1 →t v2. The graph
� has the t-saturation property if any two adjacent 〈S〉-lobes are t-saturated by some t-edge.

If � has the equality property, then the related pairs of any t-edge v1 →t v2 define a partial one-one
map between V(�(v1)) and V(�(v2)). If � has the equality and separation properties and v1 →t v2 is the
only t-edge from �(v1) to �(v2), then we can t-saturate �1(v) and �2(v) by sewing on a t-edge from v3

to v4, for every related pair (v3, v4) of v1 →t v2, other than (v1, v2). If � has the equality and separation
properties and there is precisely one t-edge connecting adjacent 〈S〉-lobes, then the t-saturated form of
� is obtained by t-saturating every pair of adjacent 〈S〉-lobes.

The graph � is t-opuntoid if every t-edge connects two distinct 〈S〉-lobes, the idempotent, equality
and t-saturation properties hold and there are no non-trivial reduced 〈S〉-lobe loops. A t-subopuntoid
subgraph of a t-opuntoid graph � is a connected subgraph that is also t-opuntoid and is formed by a
collection of the 〈S〉-lobes of �. If � is t-opuntoid, then a v ∈ V(�) is a bud if there is a loop v →f v in
�(v), for some f ∈ E(U1), and no t-edge v →t v′, or if there a loop v →(f )φ v in�(v), for some f ∈ E(U1),
and no t-edge v′ →t v. Any of the above graph properties holds for an inverse automaton over X ∪ {t} if
it holds for its underlying graph.

Construction 3.3. [5, Construction 3.17] Let D be a t-opuntoid automaton that is closed, relative to
〈X ∪ {t} | R〉, and has a bud v1. If v1 ∈ V(D) and there is a loop v1 →f v1 in �(v1), for some f ∈ E(U1),
and no t-edge v1 →t v2, then we form the automaton E from D by sewing on a t-edge v1 →t v2 and then
sewing the linear automaton of any word that defines (f )φ in S∗ at v2, for every f ∈ E(U1) that labels a
loop at v1 in �(v1). In Fig. 5, the dashed arrows represent the automata that are sewed and the dashed
circle represents the new 〈S〉-lobe created. Let E ′ denote the closed form of E , relative to 〈S ∪ {t}〉. Let
v′

1 →t v′
2 denote the image of v1 →t v2 in E . Then, E ′ is obtained from E by closing �(v′

2), relative to
〈S〉. Let v′ ′

1 →t v′ ′
2 denote the image of v′

1 →t v′
2 in E ′. Then, let D ′ be the automaton obtained from E ′ by

sewing on a t-edge from v3 to v4, for every related pair (v3, v4) of v′ ′
1 →t v′ ′

2, other than (v′ ′
1, v′ ′

2).
We have an analogous construction if we have a vertex v2 ∈ V(D) and there is a loop v2 →(f )φ v2 in

�(v2), for some f ∈ E(U1), and no t-edge v1 →t v2.

A t-opuntoid graph � is complete if it has no buds. A complete t-opuntoid graph is illustrated in
Fig. 6, where the circles represent 〈S〉-lobes and the arrows represent t-edges.

Lemma 3.4. [5, Lemmas 3.18, 3.19] Let D be a t-opuntoid automaton, and let D ′ be obtained from D
by Construction 3.3. Then D ′ is a t-opuntoid automaton and D is a t-subopuntoid subautomaton of D ′.
Further, if D�A (S∗, w) then D ′�A (S∗, w). We have a directed system of all automata obtained from
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Figure 6. A complete t-opuntoid graph.

D by a finite number of applications of Construction 3.3. The direct limit E is a complete t-opuntoid
automaton. Thus, if D�A (S∗, w) and we have a loop v1 →e1 v1 for every t-edge v1 →t v2 then E ∼=
A (S∗, w).

Algorithm 3.5. [5, Algorithm 3.20] For w ∈ (X ∪ X−1 ∪ {t, t−1})∗, the Schützenberger automaton of w,
relative to 〈S∗〉, is constructed as follows:

(i) Construct A = A (S ∪ {t}, w), using [15]. We can assume A is t-cactoid and has the idempo-
tent property.

(ii) Construct the direct limit B of the directed system of all automata obtained from A by a
finite number of applications of Construction 3.1. Then, B is t-cactoid, has the idempotent and
equality propertie,s and has at most as many 〈S〉-lobes as A .

(iii) If necessary, construct B′ from B using Construction 3.2. Then ,B′ is t-cactoid, has the
idempotent and equality properties, and has fewer 〈S〉-lobes than B.

(iv) Steps (ii) and (iii) can be applied at most a finite number of times. The resulting automaton C
is t-cactoid and has the idempotent, equality, and separation properties.

(v) The t-saturated form D of C is t-opuntoid and has finite 〈S〉-lobes.
(vi) Construct the direct limit E of the directed system of all automata obtained from D by a finite

number of applications of Construction 3.3. Then, E is a complete t-opuntoid automaton and
E ∼= A (S∗, w).

Let � be a t-opuntoid graph. Let�1 and�2 be adjacent 〈S〉-lobes of �. Then,�2 feeds off �1 if there
is a t-edge v1 →t v2 of � from�1 to�2 such that, for any loop v2 →y v2 in�2, there is a loop v2 →g v2 in
�2, for some g ∈ E(U2) with y ≥ g in S. We also say that�2 feeds off �1 if there is a t-edge v2 →t v1 of �
from�2 to�1 such that, for any loop v2 →y v2 in�2, there is a loop v2 →f v2 in�2, for some f ∈ E(U1)
with y ≥ f in S. For non-adjacent 〈S〉-lobes�1 and�n of �, we say�n feeds off �1 if there is a sequence
of 〈S〉-lobes �1,�2, . . . ,�n, where �k+1 is adjacent to �k and �k+1 feeds off �k, for 1 ≤ k ≤ n − 1,

Let�′ be a t-subopuntoid subgraph of�. An 〈S〉-lobe of� that does not belong to�′ is called external
to �′. An extremal 〈S〉-lobe of �′ is called a parasite if it feeds off the unique 〈S〉-lobe of �′ to which it
is adjacent. The subgraph �′ is parasite-free if it has no parasites. The subgraph �′ is a host of � if it
has finitely many 〈S〉-lobes, is parasite-free, and every 〈S〉-lobe of � that is external to �′ feeds off some
〈S〉-lobe of �′.
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Theorem 3.6. [5, Theorem 3.26] Let S∗ = [S; U1, U2; φ] be an HNN extension of an inverse semigroup
S, where U1 and U2 are inverse monoids that are lower bounded in S. Then, the Schützenberger automata
of S∗ are complete t-opuntoid automata with a host.

Lemma 3.7. [5, Lemma 3.23] Let � be a t-opuntoid graph. Then, a host of � is a maximal parasite-free
t-subopuntoid subgraph. If � has more than one host, then every host is an 〈S〉-lobe of �. The unique
reduced 〈S〉-lobe path between any two hosts, in the 〈S〉-lobe tree of �, consists entirely of 〈S〉-lobes that
are hosts.

Thus, we can associate a number with a t-opuntoid graph � that has a host, by defining n(�) to be
the number of 〈S〉-lobes in any host. Either � has one host, in which case n(�) ≥ 1, or every host of �
is an 〈S〉-lobe, in which case n(�) = 1.

Lemma 3.8. [5, Lemma 3.24] Let D be a t-opuntoid automaton with finitely many 〈S〉-lobes and a host
	. If D ′ is obtained from D by Construction 3.3, then 	 is also a host of D ′.

Lemma 3.9. [5, Corollary 3.29] Let � and �′ be complete t-opuntoid graphs that have hosts and let
	 be any host of �. Then, every isomorphism from 	 onto some host of �′ extends (uniquely) to an
isomorphism of � onto �′.

Lemma 3.10. [5, Lemma 3.31] If � is a t-opuntoid graph with finitely many 〈S〉-lobes, then the
automorphism group of � is embedded into the automorphism group of some 〈S〉-lobe of �.

Lemma 3.11. [5, Lemma 3.32] Let � be a complete t-opuntoid graph that has a host. Let �′ be the
subgraph that consists of the 〈S〉-lobes of every host of � and the t-edges connecting them. Then, �′ is
a t-subopuntoid subgraph of � and the automorphism group of � is isomorphic to the automorphism
group of �′.

4. Lower bounded HNN extensions

In this section, let U1 and U2 denote inverse monoids of an inverse semigroup S, with respective identities
e1 and e2, let φ : U1 → U2 be an isomorphism and let S∗ = [S; U1, U2; φ] be a lower bounded HNN
extension, as defined in [12]. That is, for each e ∈ E(S) and i ∈ {1, 2}, the set {u ∈ Ui : u ≥ e} is either
empty or has a minimal element, denoted by fi(e), and there does not exist an infinite sequence {uk},
where uk ∈ E(Ui) and uk > fi(euk)> uk+1, for all k. The monoids U1 and U2 are also lower bounded in S,
as defined in Section 3, thus we can use the results of Section 3.

Theorem 4.1. Let S∗ = [S; U1, U2; φ] be a lower bounded HNN extension. Then, the Schützenberger
automata of S∗ are, up to isomorphism, the complete t-opuntoid automata that have a host, a loop
v1 →e1 v1 for every t-edge v1 →t v2 and 〈S〉-lobes isomorphic to Schützenberger graphs of 〈S〉.

Proof. The result is a restatement of Jajcayová [14, Theorem 4.1] using the definitions of
Section 3.

The Bass-Serre theory can be used to describe the maximal subgroups of S∗, as follows; see Cohen
[7] and Dicks and Dunwoody [9, Chapters 1, 2, 3] for notation and definitions.

Notation 4.2. Let � be a complete t-opuntoid graph that has a host, and let �′ denote the t-subopuntoid
subgraph of � that consists of the 〈S〉-lobes of every host and all t-edges connecting these hosts. Let
T(�′) denote the 〈S〉-lobe tree of �′, and let G denote the automorphism group of �′. For each α ∈ G
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and 〈S〉-lobe � of �′, we define the action of α on �, written α ·�, to be (�)α, the image of � under
α, which is also an 〈S〉-lobe of �′. We extend this action to an action of T(�′) by defining the action of
α on the edge (�1,�2) to be equal to ((�1)α, (�2)α).

The quotient graph G\T(�′) is the graph of orbits of the action of G on T(�′) and is connected. There
exist subsets T0 ⊆ T ⊆ T(�′) such that T0 is a subtree of T(�′), T0 and T have the same vertices, the
initial vertex of every edge of T is also a vertex of T and T , is a G-transversal in T(�′); that is, T meets
each G-orbit exactly once, and thus, the map T → G\T(�′) : y → G · y, defined for all edges and vertices
y, is bijective.

We can make T into a graph by specifying the initial vertex of each edge (�1,�2) to be �1 and
specifying the terminal vertex to be the unique vertex �′

2 of T which lies in the same G-orbit as �2.
It then follows that the graph T is isomorphic to G\T(�′) under the above map y → G · y, and T0 is a
maximal subtree of T , as well as a subtree of T(�′).

For any edge y = (�1,�2) of T , the 〈S〉-lobes �2 and �′
2 lie in the same G-orbit, and thus, we can

choose an element αy ∈ G such that αy ·�′
2 =�2. If y ∈ E(T0), then�2 ∈ V(T0) = V(T) and so�′

2 =�2,
in which case we take αy as the identity of G. Next, let G(y) denote the stabilizer group of y under
the action of G; that is, the group G(y) is the subgroup of G consisting of all automorphisms of �′

which map�1 onto itself and�2 onto itself. Similarly, for each vertex, we let G(�) denote the stabilizer
group of � under the action of G. For any edge y = (�1,�2) of T , we have G(y) ⊆ G(�1) and the map
ty : G(y) → G(�′

2) : α→ αy ◦ α ◦ α−1
y defines a group monomorphism.

We have a graph of groups (G(−), T). Since T(�′) is a tree, the fundamental group �(G(−), T , T0)
of the graph of groups (G(−), T) is then isomorphic to G. By Lemma 3.11, the automorphism group of
� is isomorphic to G. Hence, the automorphism group of � is isomorphic to�(G(−), T , T0). The group
�(G(−), T , T0) is generated by the disjoint union of E(T) and the vertex groups of (G(−), T), subject to
the relation y−1 · α · y = (α)ty, for all y ∈ E(T) and all α ∈ G(y), and the relation y = 1, for all y ∈ E(T0).

Notation 4.3. We define a graph of groups (H(−), Y) for the HNN extension S∗ = [S; U1, U2; φ], as
follows. The graph Y has vertices V(Y) the D-classes of S. The graph Y has edges E(Y) the set of all
triples (D1, D, D2), where D is a D-class of U1, D1 is the D-class of S containing D, and D2 is the
D-class of S containing (D)φ.

We specify an H -class group within each D-class of S and specify an H -class group within each
D-class of U1. Let y = (D1, D, D2) be an edge of Y and let Hg, Hf and Hh be the specified H -class groups
of D1, D, and D2, containing idempotents g, f , and h, respectively. Fix d1 ∈ D1 such that f Rd1L g in
S and fix d2 ∈ D2 such that (f )φRd2L h in S. The maps Hf → Hg : s → d−1

1 sd1 and H(f )φ → Hg : s →
d−1

2 sd2 are group monomorphisms. Then, H(y) = d−1
1 Hf d1 is a subgroup of Hg and the map ty : H(y) →

Hh : d−1
1 sd1 → d−1

2 · (s)φ · d2 is a group monomorphism.
The construction of the graph of groups (H(−), Y) is completed by defining the vertex group H(D), of

each vertex D, to be the specified H -class group of D and defining the edge group and monomorphism
of each edge y to be the group H(y) and the monomorphism ty, respectively, as indicated above.

For e ∈ E(S), let Ye denote the connected component of Y containing, as a vertex, the D-class of e
in T . If e ∈ E(U1), then the D-class of e in S and the D-class of (e)φ in S are connected by an edge in
Y and are thus in the same connected component. Let (He(−), Ye) denote the restriction of (H(−), Y)
to Ye.

The following result generalizes Yamamura [21, Theorem 5.2], on locally full HNN extensions, and
overlaps with Ayyash [1, Theorem 5.4.1], on HNN extensions of finite inverse semigroups.

Theorem 4.4. Let S∗ = [S; U1, U2; φ] be a lower bounded HNN extension and let e be an idempotent of
S. Then, the maximal subgroup of S∗ containing e is isomorphic to the fundamental group of the graph
of groups (He(−), Ye).
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Proof. Let � = S�(S∗, e). By Theorem 4.1, the graph � is a complete t-opuntoid graph with a host
such that the 〈S〉-lobes are isomorphic to Schützenberger graphs of 〈S〉. From Notation 4.2, the fun-
damental group �(G(−), T , T0) of the graph of groups (G(−), T) is isomorphic to the automorphism
group of � and thus is also isomorphic to the maximal subgroup of S∗ containing e. Hence, the theorem
is completed by showing that the graphs of groups (G(−), T) and (He(−), Ye) are conjugate isomorphic.
We need to define a graph isomorphism between T and Ye and define isomorphisms between the corre-
sponding vertex and edge groups, such that the group isomorphisms commute with the corresponding
edge monomorphisms.

From Algorithm 3.5, the Schützenberger graph S�(S, e) is embedded onto a host of�. Thus n(�) = 1,
as defined in Section 3, and every host is an 〈S〉-lobe, by Lemma 3.7. We define a graph map ψ : T → Y
as follows.

Let� ∈ V(T). If v1, v2 ∈ V(�), then (vi,�, vi) ∼= A (S, e(vi)), for i = 1, 2, and e(v1)De(v2) in S. Thus,
we can define (�)ψ to be equal to the D-class of S containing e(v), for any vertex v of �.

Let (�1,�2) be an edge of T . Then, �1 and �2 are hosts of � and thus feed off each other, and
there is a t-edge from a vertex of �1 to a vertex of �2. If v1 →t v2 and v′

1 →t v′
2 are t-edges, where v1,

v′
1 are vertices of �1 and v2, v′

2 are vertices of �2, then we have e(v1), e(v′
1) ∈ E(U1), e(v2) = (e(v1))φ,

e(v′
2) = (e(v′

1))φ, with e(v1)De(v′
1) in U1 and e(v2)De(v′

2) in U2. Thus, we can define (�1,�2)ψ to be the
edge (D1, D, D2), where D is the D-class of U1 containing e(v1), D1 is the D-class of S containing e(v1),
and D2 is the D-class of S containing (e(v1))φ, for any t-edge v1 →t v2, from a vertex v1 of�1 to a vertex
v2 to �2.

Let�′ be the t-subopuntoid subgraph of� consisting of every host and let G = AUT(�′). As described
in Notation 4.2, the initial vertex of the edge (�1,�2) is�1 and the terminal vertex of the edge (�1,�2)
is the unique vertex�′

2 ∈ V(T) that lies in the same G-orbit as�2. Let v1 →t v2 be a t-edge from a vertex
v1 of �1 to a vertex v2 of �2. Let e(v1) ∈ D1 and e(v2) ∈ D2. Then, (�1)ψ = D1 and (�′

2)ψ = D2, since
�′

2
∼=�2. Thus, the map ψ : T → Y defines a graph homomorphism.
We now show that ψ defines a monomorphism. Suppose � and �′ are vertices of T with (�)ψ =

(�′)ψ . Let v denote a vertex of � and let v′ denote a vertex of �′. Then (�)ψ = (�′)ψ implies that
e(v)De(v′) in S, in which case we have �∼=�′. Since � and �′ are hosts, the isomorphism between
them extends to an automorphism of �, by Lemma 3.9. Thus � and �′ are in the same G-orbit and so
�=�′, since T is a transversal. We have shown that ψ is one-one on vertices. Since T is a tree, the map
ψ must also be one-one on the edges. Since � has a host that is isomorphic to S�(S, e), we have that
(T)ψ is a connected subgraph of Ye.

We now show that (T)ψ = Ye. Let (D1, D, D2) be an edge of Ye, where D1 = (�1)ψ , for some vertex
�1 of T . Let f be an idempotent of U1 that is in D. There exists a vertex v1 of �1 such that e(v1) = f .
Then, there must be a t-edge v1 →t v2, where v2 is a vertex of an 〈S〉-lobe �2. Since �1 is a host of
� and e(v2) = (f )φ, it follows that �2 is also a host of �. Since T meets each G-orbit of T(�′) exactly
once, there exists an edge (�′

1,�′
2) of T that lies in the same G-orbit as (�1,�2). Since �1 ∈ V(T),

we must have �1 =�′
1. Then, there exists a t-edge v′

1 →t v′
2 from a vertex v′

1 of �1 to a vertex v′
2 of �′

2,
such that e(v′

1) = f and e(v′
2) = (f )φ. We then have (�1.�′

2)ψ = (D1, D, D2). A similar proof shows that if
(D1, D, D2) is an edge of Ye, where D2 = (�2)ψ , for some vertex�2 of T , then (�′

1.�2)ψ = (D1, D, D2),
for some edge (�′

1.�2) of T . It now follows that (T)ψ is a maximal connected subgraph of Ye. We have
shown that ψ : T → Y defines a graph monomorphism onto Ye.

We now define the vertex group isomorphisms. Let � denote a vertex of T . Let H((�)ψ) = Hg, the
H -class group of S with identity g. If v is a vertex of� then e(v)Dg in S. Thus, we have an isomorphism
π :�→ S�(S, g). The group G(�) is the stabilizer group of�, under the action of G. Since� is a host
of �, any automorphism of � extends (uniquely) to an automorphism of �, by Lemma 3.9. Thus, we
have an isomorphism G(�) → AUT(�), under the mapping α→ α�, where α� denotes the restriction
of α to�. We then have an isomorphism AUT(�) → AUT(S�(S, g)), defined by α→ π−1 ◦ α� ◦ π . We
have an isomorphism AUT(S�(S, g)) → Hg, under the mapping β → (g)β; the set of vertices of S�(S, g)
is the R-class of S containing g. Hence we have an isomorphism ψ : G(�) → H((�)ψ), defined by
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α→ (g)π−1 ◦ α� ◦ π . The map ψ may be expressed by saying that (α)ψ = s, where s ∈ S such that
A (S, s) ∼= (v,�, (v)α), for any vertex v of � with e(v) = g.

We now define the edge group isomorphisms. Let y = (�1,�2) be an edge in T and let (y)ψ =
(D1, D, D2). Let Hg and Hf denote the specified H -class groups of D1 and D, containing the identi-
ties g and f , respectively. Thus, H(D1) = Hg and H((y)ψ) = d−1

1 Hf d1, where d1 is the fixed element of
D1 such that f Rd1L g in S. Let v1 →t v2 be a t-edge from a vertex v1 of �1 to a vertex v2 of �2. Then,
e(v1)RaL f , for some a ∈ U1. Thus, we have a path v1 →a v3, where e(v3) = f , and a path v3 →d1 v4,
where e(v4) = g.

Let α ∈ G(y). Then, α stabilizes �1 and �2 and so (v1)α→t (v2)α is a t-edge from �1 to �2. Since
�1 and�2 are t-saturated, there is a path v1 →b (v1)α, for some b ∈ U1. Since, we have a path v1 →ad1 v4

in �1, we have a path (v1)α→ad1 (v4)α in �. Thus, (v4,�1, (v4)α) ∼= A (S, s), where s = d−1
1 (fa−1ba)d1

and fa−1ba ∈ Hf . Hence, ψ : G(�1) → H((�1)ψ) maps G(y) into H((y)ψ).
Conversely, let c ∈ Hf . Since ψ : G(�1) → H((�1)ψ) is an isomorphism, there exists α ∈ G(�1)

such that (v4,�, (v4)α) ∼= A (S, d−1
1 cd1). Then we have (v3,�1, (v3)α) ∼= A (S, c) and (v1,�1, (v1)α) ∼=

A (S, afca−1). Thus the t-edge (v1)α→t (v2)αmust also be a t-edge from�1 to�2. This implies α ∈ G(y).
Thus the isomorphism ψ : G(�1) → H((�1)ψ) maps G(y) onto H((y)ψ).

Finally, we show that the isomorphisms between the vertex and edge groups of (G(−), T) and
(H(−), Ye) commute with the edge monomorphisms. Let y = (�1,�2) be an edge of T , and let (y)ψ be
equal to (D1, D, D2). Let Hg, Hf and Hh denote the specified H -class groups of D1, D and D2, containing
idempotents g, f and h, respectively. Let d1 and d2 be the fixed elements of D1 and D2, respectively, such
that f Rd1L g and (f )φRd2L h in S. The map t(y)ψ : H((y)ψ) → Hh defined by d−1

1 sd1 → d−1
2 · (s)φ · d2,

for s ∈ H((y)ψ), is the edge monomorphism for (y)ψ . Let�′
2 be the unique vertex of T that belongs in the

same G-orbit as �2, and let αy ∈ G such that αy ·�′
2 =�2. The edge monomorphism ty : G(y) → G(�′

2)
for y is given by α→ αy ◦ α ◦ α−1

y .
The composition of the edge map ty with ψ : G(�′

2) → H((�′
2)ψ) is the map ty ◦ψ : G(y) →

H((�′
2)ψ) : α→ s, with A (S, s) ∼= (v,�′

2, (v)αy ◦ α ◦ α−1
y ), for any vertex v of �′

2 such that e(v) = h.
Since αy maps �′

2 isomorphically onto �2, we can redefine this map by saying (α)ty ◦ψ = s, where
s ∈ S such that A (S, s) ∼= (v,�2, (v)α), for some vertex v of �2 with e(v) = h.

The composition of ψ : G(y) → H((y)ψ) with the edge map t(y)ψ is given by ψ ◦ t(y)ψ : G(y) →
H((�′

2)ψ): α→ d−1
2 · (r)φ · d2, where r ∈ Hf such that A (S, r) ∼= (v1,�1, (v1)α), for some t-edge v1 →t v2

from a vertex v1 of �1 to a vertex v2 of �2, with e(v1) = f .
Since e(v2) = (f )φ and (f )φRd2 in S, there exists a vertex v′

2 of �2 such that (v2,�2, v′
2) ∼= A (S, d2).

Since we have a path v1 →r (v1)α in �1, we have a path v2 →(r)φ (v2)α in �2. Then, (v2,�2, (v2)α) ∼=
A (S, (r)φ). Now ((v2)α,�2, (v′

2)α) ∼= A (S, d2) and so (v′
2,�2, (v′

2)α) ∼= A (S, d−1
2 · (r)φ · d2). We have

e(v′
2) = h and so (α)ty ◦ψ = d−1

2 · (r)φ · d2 = ψ ◦ t(y)ψ , as required, and the proof of the theorem is
complete.

Notation 4.5. We define an equivalence ∼i on S by s1 ∼i s2 if and only if s1 = s2 or s1Rs2 with s1 = s2u,
for some u ∈ Ui, for s1, s2 ∈ S, for i = 1, 2.

Theorem 4.6. Let S∗ = [S; U1, U2; φ] be a lower bounded HNN extension, and let e be an idempotent of
S∗ that is not D-related to any element of S. Then, the maximal subgroup of S∗ containing e is isomorphic
to a subgroup H of S, whose quotient H/∼i is finite, for some i ∈ {1, 2}.

Proof. Let � = S�(S∗, e). Then, the maximal subgroup of S∗ containing e is isomorphic to the auto-
morphism group of �. If n(�) = 1, as defined in Section 3, then there exists an 〈S〉-lobe� that is a host
of �. Since� is isomorphic to a Schützenberger graph of S, we then have eDg in S∗, for some g ∈ E(S),
a contradiction. Thus, n(�)> 1 and � has precisely one host 	, consisting of at least two 〈S〉-lobes.

The automorphism group of � is isomorphic to the automorphism group of	, by Lemma 3.11. From
Lemma 3.10, the automorphism group of	 is embedded into the automorphism group of some 〈S〉-lobe
� of 	, under the embedding α→ α�, where α� denotes the restriction of α to �. Let v be a vertex of
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�. We have �∼= S�(S, g), where g = e(v). Then, the map ψ : AUT(�) → Hg defined by α→ s, where
(v,�, (v)α) ∼= A (S, s) and Hg is the H -class of S containing g, defines a group monomorphism.

Let H denote the image of AUT(�) under ψ . Let v1 →t v2 be a t-edge of	, where one of the vertices
v1, v2 belongs to �. Suppose v1 ∈ V(�). We can assume v = v1. Now let α1, α2 ∈ AUT(�), (α1)ψ = s1

and (α2)ψ = s2. If (v1)α1 →t (v2)α1 and (v1)α2 → (v2)α2 are t-edges from� to an 〈S〉-lobe�′ of	, then
we have s2 = s1u, for some u ∈ U1, and so s1 ∼1 s2. Thus, the number of ∼1-classes in H is at most the
number of 〈S〉-lobes in 	 that are adjacent to �. Since 	 has finitely many 〈S〉-lobes, the group H has
finitely many ∼1-classes. If v2 ∈ V(�), then a similar proof shows that the group H has finitely many
∼2-classes.

Theorems 4.4 and 4.6 tell us that every maximal subgroup of S∗ is either isomorphic to the funda-
mental group of some graph of groups (He(−), Ye), where the vertex and edge groups are subgroups of
S, or is isomorphic to a subgroup of S.

Corollary 4.7. Let S∗ = [S; U1, U2; φ] be a lower bounded HNN extension.

(i) If S is combinatorial then every maximal subgroup of S∗ is a free group.
(ii) S∗ is combinatorial if and only if S is combinatorial and Y is a forest.

Proof. The results are immediate from Theorem 4.4.

Corollary 4.8. Let S∗ = [S; U1, U2; φ] be a lower bounded HNN extension. Let f ∈ E(U1) and Hf , H(f )φ ,
Gf denote the maximal subgroups containing f , (f )φ, f in S, S, U1, respectively. Assuming f Dg in S
implies f Dg in U1, for g ∈ E(U1):

(ii) If (f )φRdL f in S, for d ∈ S, then the maximal subgroup of S∗ containing f is isomorphic to
the group HNN extension [Hf ; Gf , d−1 · (Gf )φ · d].

(iii) If (f )φD f in S, then the maximal subgroup of S∗ containing f is isomorphic to the amalgamated
free product of the group amalgam [Hf , H(f )φ; Gf ].

Proof. Suppose (f )φRdL f in S, for d ∈ S. Assuming f Dg in S implies f Dg in U1, for g ∈ E(U1), the
component Yf consists of one vertex D1 and one edge y = (D1, D, D1). We may assume that the vertex
group H(y) is Gf and the vertex group H(D1) is Hf . The group monomorphism ty : H(y) → H(D1) is
given by s → d−1 · (s)φ · d. By Theorem 4.4, the maximal subgroup of S∗ containing e is isomorphic to
the HNN extension of groups [H(D1); H(y), (H(y))ty; ty]

Suppose (f )φD f in S. Assuming f Dg in S implies f Dg in U1, for g ∈ E(U1), the component Yf

consists of two vertices D1 and D2 connected by a single edge y = (D1, D, D2). We may assume that
the vertex group H(y) is Gf , the vertex group H(D1) is Hf , and the vertex group H(D2) is H(f )φ . The
group monomorphism ty : H(y) → H(D2) is given by s → (s)φ. Then, by Theorem 4.4, the maximal
subgroup of S∗ containing e is isomorphic to the amalgamated free product of the group amalgam
[H(D1), H(D2); H(y) ∼= H(y)ty].

Notation 4.9. Similar to Ayyash and Cherubini [2], we define a binary relation ≺S on E(U1) ∪ E(U2).
For f , g ∈ E(U1) ∪ E(U2), we write f ≺S g if f Dh ≤ g in S, for some h ∈ E(S). We then let ≺ denote the
transitive closure of ≺S and the set {(f , (f )φ), ((f )φ, f ) : f ∈ E(U1)}. As the next result shows, we are
interested in when the intersection of ≺ and �S is contained in ≺S.

An inverse semigroup is completely semisimple if two distinct idempotents in any D-class are not
comparable, under the natural partial order. Equivalently, from [3, Lemma 10], an inverse semigroup is
completely semisimple if and only if the endomorphism monoid and the automorphism group coincide
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for every Schützenberger graph. We have the following result for lower bounded HNN extensions, which
has been generalized in [5, Theorem 3.30].

Theorem 4.10 (2, Ayyash and Cherubini, Theorem 5.3). Let S∗ = [S; U1, U2; φ] be a lower bounded
HNN extension. Then, S∗ is completely semisimple if and only if S is completely semisimple and
≺ ∩ �S⊆≺S.

Corollary 4.11. Let S∗ = [S; U1, U2; φ] be a lower bounded HNN extension. Suppose S is completely
semisimple and f D(f )φ, for all f ∈ E(U1). Then, ≺ ∩ �S⊆≺S and so S∗ is completely semisimple.

Proof. Let f1, g1, f2, g2, . . . fn, gn ∈ E(U1) ∪ E(U2), for n ≥ 1, where at least one of fk = gk, (fk)φ = gk

and (fk)φ−1 = gk holds, for 1 ≤ k ≤ n, and gk ≺S fk+1, for 1 ≤ k ≤ n − 1. Thus, we have f1 ≺ gn. Assuming
f D(f )φ, for all f ∈ E(U1), we have fk ≺S gk, for 1 ≤ k ≤ n. It then follows that f1 ≺S gn, as ≺S is transitive.
Thus, we have ≺=≺S. Hence S∗ is completely semisimple, by Theorem 4.10.

Corollary 4.12. Let S∗ = [S; U1, U2; φ] be a lower bounded HNN extension. Suppose S is completely
semisimple and the following hold, for all f , g ∈ E(U1):

(i) We do not have f ≺S (g)φ in S and so E(U1) ∩ E(U2) = ∅.
(ii) f ≺S g implies f RuL u−1

1 u1 ≤ g, for some u ∈ U1.
(iii) (f )φ ≺S (g)φ implies (f )φR(u)φL (u−1u)φ ≤ (g)φ, for some u ∈ U1.

Then ≺ ∩ �S⊆≺S and so S∗ is completely semisimple.

Proof. Let f1, g1, f2, g2, . . . fn, gn ∈ E(U1) ∪ E(U2), for n ≥ 1, where at least one of fk = gk, (fk)φ = gk

and (fk)φ−1 = gk holds, for 1 ≤ k ≤ n, and gk ≺S fk+1, for 1 ≤ k ≤ n − 1. If fk = gk, then gk−1 ≺S fk = gk ≺S

fk+1, and we can shorten the sequence. Thus we can assume fk �= gk.
Suppose f1 ∈ E(U1) and (f1)φ = g1 ∈ E(U2). From condition (i) and g1 ≺S f2, we have f2 /∈ E(U1) and

so (f2)φ−1 = g2 ∈ E(U1). From condition (iii) and g1 ≺S f2, we have g1R(u1)φL (u−1
1 u1)φ ≤ f2, for some

u1 ∈ U1. Then applying φ−1, we have f1Ru1L u−1
1 u1 ≤ g2.

From condition (i) and g2 ≺S f3, we have f3 /∈ E(U2) and so (f3)φ = g3 ∈ E(U2). From condition (ii)
and g2 ≺S f3, we have g2Ru2L u−1

2 u2 ≤ f3, for some u2 ∈ U1. Thus, f1Ru1u2L u−1
2 u−1

1 u1u2 ≤ f3, where
u1u2 ∈ U1.

Continuing in this manner, we have f1RuL u−1u ≤ f2k+1, for some u ∈ U1, for k ≥ 1. Thus, if we also
have f1 �S f2k+1 then f1D f2k+1 in U1, since S is completely semisimple. Similarly, if f1 ∈ E(U2) and f1 �S

f2k+1 then f1D f2k+1 in U2. Hence, ≺ ∩ �S⊆≺S and so S∗ is completely semisimple, by Theorem 4.10.

We now establish a result that provides sufficient conditions for the HNN extension S∗ to have finite
R-classes. For S∗ to have finite R-classes it is necessary for S to have finite R-classes. Since the bicyclic
inverse semigroup has infinite R-classes, an inverse semigroup with finite R-classes cannot contain a
copy of the bicyclic inverse semigroup and so must be completely semisimple.

Definition 4.13. The relation ≺ is reflexive and transitive on E(U1) ∪ E(U2). It follows that ≺ ∩ � defines
an equivalence on E(U1) ∪ E(U2). The ≺ ∩ � equivalence classes are partially ordered by [f ] ≤ [g] if
and only if f ≺ g, where [f ] and [g] denote the ≺ ∩ �-classes of f , g ∈ E(U1), respectively. We say that
E(U1) ∪ E(U2) is finite ≺ ∩ �-above if every strictly ascending chain of ≺ ∩ �-classes is finite.

Lemma 4.14. Let S∗ = [S; U1, U2; φ] be any HNN extension where S is completely semisimple and ≺
∩ �S⊆≺S. If f ≺ ∩ � g, where f , g ∈ E(U1) ∪ E(U2), then f and g are related by the equivalence on
E(U1) ∪ E(U2) generated by the D-relation on S and the mapping φ.
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Proof. For f ≺ ∩ � g, where f , g ∈ E(U), we have:

(i) As f ≺ g, there exists f1, g1, f2, g2, . . . fn, gn ∈ E(U1) ∪ E(U2), n ≥ 1, where f = f1, g = gn, at least
one of fk = gk, (fk)φ = gk and (fk)φ−1 = gk holds, for 1 ≤ k ≤ n, and gk ≺S fk+1, for 1 ≤ k ≤ n − 1.

(ii) Since f � g, there exists h1, j1, h2, j2, . . . hn, jm ∈ E(U1) ∪ E(U2), m ≥ 1, where g = h1, f = jm, at
least one of hk = jk, (hk)φ = jk and (hk)φ−1 = jk holds, for 1 ≤ k ≤ m, and jk ≺S hk+1, for 1 ≤ k ≤
m − 1.

(iii) Since ≺ ∩ �S⊆≺S and gk ≺S fk+1 ≺ g ≺ f = f1 ≺ gk, for 1 ≤ k ≤ n − 1, we then have gk �S fk+1,
for 1 ≤ k ≤ n − 1,

(iv) As ≺ ∩ �S⊆≺S and jk ≺S hk+1 ≺ f ≺ g = h1 ≺ jk, for 1 ≤ k ≤ m − 1, we then have jk �S hk+1, for
1 ≤ k ≤ m − 1.

(v) Since S is completely semisimple. the relation ≺S ∩ �S is the D-relation on S. Thus gkD fk+1,
for 1 ≤ k ≤ n − 1, and jkDhk+1, for 1 ≤ k ≤ m − 1.

Hence f and g are related by the equivalence on E(U1) ∪ E(U2) generated by the D-relation on S and
the mapping φ.

The fundamental group of a graph of groups whose underlying graph is a finite tree is obtained
inductively by a process of repeating amalgamated free products of groups or HNN extensions of groups,
one for each edge. The fundamental group is then referred to as a finite tree product of the vertex groups.

Lemma 4.15. Let S∗ = [S; U1, U2; φ] be a lower bounded HNN extension. If S∗ has finite R-classes,
then every component of Y is a finite tree and the resulting tree product is not proper.

Proof. Suppose S∗ has finite R-classes. Let e ∈ E(S). Then, from Theorem 4.4, the fundamental group
�(He(−), Ye) is isomorphic to the H -class of S∗ containing e and so �(He(−), Ye) finite. If Ye is not a
tree then �(He(−), Ye) is necessarily infinite, since it contains a free group. Thus Ye is a tree.

Suppose Ye is an infinite tree. From Theorem 4.4, the graph Ye is isomorphic to the graph of orbits
AUT(�′)\T(�′), where �′ denotes the t-subopuntoid subgraph of � = S�(S∗, e) that consists of all 〈S〉-
lobes of � that are hosts and T(�′) is the 〈S〉-lobe tree of �′. Thus, AUT(�′)\T(�′), and hence T(�′), has
infinitely many vertices. This implies that � has infinitely many 〈S〉-lobes and we reach a contradiction,
since � has as many vertices as the R-class of S∗ containing e. Hence, Ye is a finite tree. Any proper
amalgamated free product of groups is necessarily infinite. Since �(He(−), Ye) is finite, it cannot be a
proper tree product.

In contrast with the situation for an HNN extension of a finite group, which is always infinite, an
HNN extension of a finite inverse semigroup can have finite R-classes.

Theorem 4.16. Let S∗ = [S; U1, U2; φ] be a lower bounded HNN extension. Suppose S is completely
semisimple, with finite R-classes, ≺ ∩ �S⊆≺S holds and E(U1) ∪ E(U2) is finite ≺ ∩ �-above.

(i) If every component of Y is a finite tree and has a tree product that is not proper, then S∗ has
finite R-classes.

(ii) If e1 = (e1)φ belongs to a trivial D-class of S and every component of Y , except for Ye1 , is a
finite tree and has a tree product that is not proper, then each Schützenberger graph of 〈S∗〉 has
finitely many 〈S〉-lobes that have more than one vertex.

Proof. Suppose every component of Y is a finite tree and has a tree product that is not proper. Every
such tree product is isomorphic to a maximal subgroup of S and thus is finite, since S has finite H -
classes. To prove that S∗ has finite R-classes, we show that every Schützenberger graph of 〈S∗〉 has
finitely many 〈S〉-lobes. We first show that every such graph has finitely many hosts.
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Figure 7. The 〈S〉-lobes �m−1,�m, . . . ,�n of �.

Let � be a Schützenberger graph of 〈S∗〉. From Theorem 4.1, the graph � is a complete t-opuntoid
graph that has a host, where the 〈S〉-lobes are isomorphic to Schützenberger graphs of 〈S〉. Let �′ denote
the t-subopuntoid subgraph of � that consists of the 〈S〉-lobes of every host of � and all t-edges con-
necting these hosts. If n(�)> 1 then, by Lemma 3.7, the graph � has precisely one host and so, since a
host has finitely many 〈S〉-lobes, the subgraph �′ has finitely many 〈S〉-lobes.

If n(�) = 1, then the graph of orbits AUT(�)\T(�′) is isomorphic to some connected component of
Y , from the proof of Theorem 4.4, and is thus finite, by assumption. The tree product of this connected
component is not proper, by assumption, and so AUT(�) is isomorphic to a maximal subgroup of S and
is finite. Thus, the set of orbits of any vertex or edge of T(�′) is also finite. It now follows that T(�′) has
finitely many vertices and so �′ has finitely many 〈S〉-lobes. Hence � has finitely many hosts.

We now choose an 〈S〉-lobe � of �′ and show that there is a bound on the length of any reduced
〈S〉-lobe path in � which starts in �. Let �=�1,�2, . . . be a reduced 〈S〉-lobe path in �. Since �′ has
finitely many 〈S〉-lobes, there is a least positive integer m> 1 such that�m is external to �′. Since either
�′ or �m−1 is a host of �, we have �k →�k+1, for k ≥ m − 1. The situation is illustrated in Fig. 7.

Let xm →t ym be a t-edge from a vertex xm of �m−1 to a vertex ym of �m. The case when we have a t-
edge ym →t xm from a vertex ym of�m to a vertex xm of�m−1 is similar. Since the 〈S〉-lobes are isomorphic
to Schützenberger graphs of 〈S〉, by Theorem 4.1, and�m−1 →�m, we have (ym,�m, ym) ∼= A (S, fm), for
some fm ∈ E(U2).

Next, suppose we have �k ↔�k+1, for all k ≥ m. For each k ≥ m, the reduced 〈S〉-lobe path
�m,�m+1, . . . ,�k, including the t-edges connecting the 〈S〉-lobes, forms a t-opuntoid graph 	k, where
each 〈S〉-lobe is a host of 	k. Since�k ↔�k+1, for all k ≥ m, the graph 	k can be obtained from�m by
repeated applications of Construction 3.3.

Since (ym,�m, ym) ∼= A (S, fm), we have (ym,	k, ym)�A (S∗, fm), by Lemma 3.4. Using Lemmas 3.4
and 3.8, it follows that (ym,	k, ym) is embedded onto a t-subopuntoid subautomaton of A (S∗, fm), where
the image of each 〈S〉-lobe of 	k is also a host of A (S∗, fm). Since S�(S∗, fm) has finitely many hosts,
as proved above, the sequence of graphs 	k is bounded. Thus there exists a least positive integer n>m
such that �n−1 ��n.

Let xn →t yn be a t-edge from a vertex xn of�n−1 to a vertex yn of�n. The case when we have a t-edge
yn →t xn from a vertex yn of �n to a vertex yn of �n−1 is similar. Since the 〈S〉-lobes are isomorphic to
Schützenberger graphs of 〈S〉, by Theorem 4.1, we have (yn,�n, yn) ∼= A (S, fn), for some fn ∈ E(U2). We
show that [fm]< [fn]. where [fk] denotes the ≺ ∩ �-class of fk, for k = m, n.

Without loss of generality, we assume that we also have a t-edge xk →t yk from a vertex xk of�k−1 to
a vertex yk of �k and let fk ∈ E(U2) such that (yk,�k, yk) ∼= A (S, fk), for m + 1 ≤ k ≤ n. Put gk = (fk)φ−1,
for m ≤ k ≤ n. Since �k ↔�k+1, for m ≤ k ≤ n − 2, we have (xk+1,�k, xk+1) ∼= A (S, gk+1), for m ≤ k ≤
n − 2. Since �n−1 ��n, we have (xn,�n−1, xn) ∼= A (S, g′

n) such that g′
n < gn in S, for some g′

n ∈ E(S).
Now fkDgk+1 in S, for m ≤ k ≤ n − 2, and fn−1Dg′

n < gn in S.
Thus, the idempotents fm, gm+1, . . . , fn−2, gn−1, fn−1 are all ≺ ∩ �-related and we also have fn−1 ≺S gn,

and so fn−1 ≺ gn, by the definitions of ≺ and ≺S. Suppose we have fn−1 � gn. Then fn−1 �S gn, since it
is assumed that ≺ ∩ �S⊆≺S. As S is assumed completely semisimple, we then have fn−1Dg′

n = gn, a
contradiction. Thus, we do not have fn−1 � gn and so [fm] = [fn−1]< [gn] = [fn].
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Similarly, there is a least positive integer q> n with�q−1 ��q. Continuing in this manner, we obtain
a strictly ascending sequence [fm]< [fn]< [fq] · · · . Since S is finite ≺ ∩ �-above, the above sequence
must be finite and terminates in [e1]. Thus, there is a bound on the length of any reduced 〈S〉-lobe path
in � starting in �. Since S has finite R-classes, the number of 〈S〉-lobes in � that are adjacent to any
given 〈S〉-lobe is also finite. It now follows that � has finitely many 〈S〉-lobes and part (i) is proved.

Assuming e1 = (e1)φ belongs to a trivial D-class, the connected component Ye1 of Y consists of one
vertex and one loop, with all vertex and edge groups trivial. Every 〈S〉-lobe of the Schützenberger graph
S�(S∗, e1) has precisely one vertex. Using a proof similar to that in part (i), any Schützenberger graph
� of 〈S∗〉, other than S�(S∗, e1), has finitely many hosts. Then, since any 〈S〉-lobe that feeds off a trivial
〈S〉-lobe must also be trivial, the proof that � has finitely many non-trivial 〈S〉-lobes is also similar to
that in (i).

In Jajcayova [13], it was shown that an HNN extension of a free inverse semigroup S is lower bounded,
and if U1 and U2 are finitely generated, then the HNN extension has decidable word problem.

Corollary 4.17. Let S∗ = [S; U1, U2; φ] be an HNN extension of a free inverse monoid and suppose the
following hold, for all f , g ∈ E(U1):

(i) We do not have f ≺S (g)φ in S and so E(U1) ∩ E(U2) = ∅.
(ii) f ≺S g implies f RuL u−1

1 u1 ≤ g, for some u ∈ U1.
(iii) (f )φ ≺S (g)φ implies (f )φR(u)φL (u−1u)φ ≤ (g)φ, for some u ∈ U1.

Then, S∗ is completely semisimple, combinatorial, and with finite R-classes. If E(U1) ∩ E(U2) = {1},
the identity of S, and (i), (ii), and (iii) hold for f , g ∈ E(U1)\{1}, then S∗ is completely semisimple, com-
binatorial, and there is a bound on the number of elements of S needed to express the elements as a
product, within each R-class of S∗.

Proof. We recall why the lower bounded properties hold. If u ≥ e, where u ∈ Ui and e ∈ E(S), then we
have u ∈ E(Ui), for i = 1, 2, since S is free. For e ∈ E(S), there are finitely many idempotents f ∈ E(Ui)
with f ≥ e, for i = 1, 2. Then, for e ∈ E(S), the set {u ∈ Ui : u ≥ e} is either empty or has a least element
fi(e), for i = 1, 2. Thus, the first condition of a lower bounded HNN extension is satisfied.

Let e ∈ E(S), i ∈ {1, 2} and {uk} be a sequence of idempotents in E(Ui) such that uk ≥ fi(euk) ≥ uk+1,
for all k. We have monomorphisms from A (S, e), A (S, uk) and A (S, f (euk)) into A (S, euk), for each k,
which we regard as inclusions. Let 	k = S�(S, e) ∩ S�(S, f (euk)). Suppose 	k =	k+1, for some k. Now
uk ≥ f (uek) ≥ uk ≥ f (uek+1). Then if w ∈ E(UI) and w ≥ euk+1 in S, then we must have w ≥ uk+1. Thus, we
have f (euk+1) = uk+1. Conversely, since S�(S, e) is finite, we can have 	k �	k+1 at most a finite number
of times. Thus, the second condition of a lower bounded HNN extension is satisfied. Hence, the HNN
extension S∗ = [S; U1, U2; φ] is lower bounded.

Since S is a free inverse semigroup, it is completely semisimple and has finite R-classes. From
Corollary 4.12, we have ≺ ∩ �S⊆≺S and S∗ is completely semisimple. Further, the relation ≺ ∩ � is
the D-relation in U1 on E(U1) and the D-relation in U2 on E(U2). If f , g ∈ E(U1) and f RuL u−1u< g,
for some u ∈ U1, then [f ]< [g], since S is completely semisimple. Since a free inverse monoid is finite
J -above, we then have that E(U1) ∪ E(U2) is finite ≺ ∩ �-above.

Conditions (i), (ii), and (iii) imply that every component Yf of Y consists of two vertices, the D-class
of S containing f and the D-class of S containing (f )φ, and one edge, the D-class of U1 containing f ,
for f ∈ E(U1). Since a free inverse monoid is combinatorial, we now have that S∗ has finite R-classes,
by Theorem 4.16 (i).

If E(U1) ∩ E(U2) consists of the identity of S, and (i), (ii), and (iii) hold for f , g ∈ E(U1)\{1}, then
S∗ is completely semisimple, combinatorial and has finite R-classes, by the above. Since e1 = 1 = e2,
each Schützenberger graph of 〈S∗〉 has finitely many 〈S〉-lobes that have more than one vertex, from
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Theorem 4.16 (ii). Thus, if r ∈ S∗ then all the elements of the R-class of S∗ containing r can be expressed
as a product involving fewer than N elements of S, for some N ≥ 1.

An inverse semigroup S is residually finite if for every finite non-empty subset F ⊆ S there exists a
homomorphism from S into some finite inverse semigroup T which separates the elements of F. Any
inverse semigroup with finite R-classes is residually finite, from [15, Lemma 5.3].

Corollary 4.18. Let S∗ = [S; U1, U2; φ] be an HNN extension, where S is finite, combinatorial, and
conditions (i), (ii), (iii) of Corollary 4.17 hold. Then, S∗ has finite R-classes and so is residually finite.

Proof. Let i ∈ {1, 2}. Since Ui is finite, if e ∈ E(S) then there exists a least idempotent f ∈ E(Ui) with
e ≤ f . If u ∈ Ui with u ≥ e. then f RfuL u−1fu in Ui and u−1fu ≥ f , since u−1fu ∈ E(Ui) and u−1fu ≥ e.
As S is finite, and so completely semisimple, we must have u−1fu = f . Then, fu belongs to the maximal
subgroup of U1 containing f , which is trivial. Hence fu = f and it follows that the HNN extension S∗ =
[S; U1, U2; φ] is lower bounded.

From Corollary 4.12, we have ≺ ∩ �S⊆≺S and S∗ is completely semisimple. As in the proof of
Corollary 4.17, the relation ≺ ∩ � is the D-relation in U1 on E(U1) and the D-relation in U2 on E(U2).
If f , g ∈ E(U1) and f RuL u−1u< g, for some u ∈ U1, then [f ]< [g], since S is completely semisimple.
Since S finite, we then have that E(U1) ∪ E(U2) is finite ≺ ∩ �-above.

Conditions (i), (ii), and (iii) imply that every component Yf of Y consists of two vertices, the
D-class of S containing f and the D-class of S containing (f )φ, and one edge, the D-class of U1

containing f , for f ∈ E(U1). Since S is combinatorial, we now have that S∗ has finite R-classes, by
Theorem 4.16 (i).

An inverse semigroup S is E-unitary if s ≥ e implies s ∈ E(S), for all s ∈ S and e ∈ E(S). From [19,
Theorem 3.8], we have that S is E-unitary if and only if there exists a monomorphism from A (S, s1)
into A (S, s2), whenever s1 ≥ s2 in S. Equivalently, the inverse semigroup S is E-unitary if and only
if homomorphisms between Schützenberger graphs are monomorphic. For S∗ to be E-unitary, the
homomorphisms between Schützenberger graphs of S∗ must induce embeddings of the respective lobe
trees.

Theorem 4.19. Let S∗ = [S; U1, U2; φ] be a lower bounded HNN extension where S is E-unitary, su ∈
E(S) implies ss−1 ∼1 s, and s · (u)φ ∈ E(S) implies ss−1 ∼2 s, for all s ∈ S and u ∈ U1. Then S∗ is E-unitary.

Proof. Let � and �′ be Schützenberger graphs of S∗ and let α : �→ �′ be a homomorphism. Let β
denote the homomorphism T(�) → T(�′) between the lobe trees induced by α. We first show that β is
an embedding.

Let �1,�2, . . . ,�n be a reduced 〈S〉-lobe path in � where (�1)β = (�n)β. Then,
(�1)β, (�2)β, . . . , (�n)β denote the vertices of a loop in T(�′). Since T(�′) is a tree, there exist
some k ≤ n − 1 such that (�k−1)β = (�k+1)β. The t-edges between (�k−1)β and (�k)β all start in one
〈S〉-lobe and end in the other. Without loss of generality, assume all these t-edges start in (�k−1)β and
end in (�k)β. Then, there is a t-edge x1 →t y1 from a vertex x1 of �k−1 to a vertex y1 of �k and a t-edge
x2 →t y2 from a vertex x2 of �k+1 to a vertex y2 of �k. The situation is illustrated in Fig. 8.

Let s ∈ S such that (y1,�k, y2) ∼= A (S, s). Then, we have t-edges (x1)α→t (y1)α and (x2)α→t (y2)α
from (�k−1)β to (�k)β in �′. By the t-saturation property of t-opuntoid graphs, there exists a path
(y2)α→(u)φ (y1)α in (�k)β, for some u ∈ U1. Let r ∈ S such that ((y1)α, (�k)β, (y2)α) ∼= A (S, r). Then,
we have s ≥ r and (u−1)φ ≥ r in S. Thus rr−1 ≤ s · (u)φ.

Since S is E-unitary we that s · (u)φ is idempotent. By the conditions of the statement of the theorem,
we then have ss−1 ∼2 s. This implies that either ss−1 = s or ss−1 = sv, for some v ∈ U2. The first case
implies y1 = y2 and so �k−1 =�k+1, a contradiction since the original 〈S〉-lobe path was reduced. The
second case implies that there is a path y1 →v y2 in�k and so, by the t-saturation property, we must have
�k−1 =�k+1, again a contradiction.
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Figure 8. The Schützenberger graphs � and �′.

Hence, β must be one-one on the vertices of T(�). Since T(�) is a tree, this implies that β is
an embedding. Since S is E-unitary, the homomorphisms between Schützenberger graphs of 〈S〉 are
monomorphisms. Thus, each 〈S〉-lobe of � is embedded, under α, into some 〈S〉-lobe of �′. It now
follows that α must be monomorphic. Hence, the HNN extension S∗ is E-unitary.

A subsemigroup U of an inverse semigroup S is a unitary subsemigroup if we have us ∈ U implies
s ∈ U, and su ∈ U implies s ∈ U, for all s ∈ S and u ∈ U. We note a few observations in the following
corollary.

Corollary 4.20. Let S∗ = [S; U1, U2; φ] be an HNN extension where S is an E-unitary inverse semigroup.
If S is a monoid and U1, U2 are subgroups of the groups of units of S then S∗ is E-unitary. If U1 and U2

are semilattices satisfying the descending chain condition or are full unitary inverse subsemigroups of
S then S∗ is E-unitary.

Proof. Suppose S is a monoid and U1, U2 are subgroups of the groups of units. If u ≥ e, for some
u ∈ U1 and e ∈ E(S), then u = 1, the identity of the monoid, since S is E-unitary. Similarly, if (u)φ ≥ e,
for some u ∈ U1 and e ∈ E(S), then (u)φ = 1. It follows that S∗ = [S; U1, U2; φ] is a lower bounded HNN
extension. Suppose su ∈ E(S), for some s ∈ S and u ∈ U1. Then, su = suu−1s−1 = ss−1, as uu−1 = 1, and
so ss−1 ∼1 s. Similarly, if s · (u)φ ∈ E(S), for some s ∈ S and u ∈ U1, then ss−1 ∼2 s. Thus, S∗ is E-unitary,
from Theorem 4.19.

Suppose U1 and U2 are semilattices satisfying the descending chain condition. It is immediate that
S∗ = [S; U1, U2; φ] is a lower bounded HNN extension. If su ∈ E(S), for some s ∈ S and u ∈ U1, then
u ∈ U1 = E(U1) implies s ∈ E(S), since S is E-unitary. Then ss−1 = s implies ss−1 ∼1 s. Similarly, if s ·
(u)φ ∈ E(S), for some s ∈ S and u ∈ U1, then ss−1 ∼2 s. Thus S∗ is E-unitary, from Theorem 4.19.

Suppose U1 and U2 are full unitary inverse subsemigroups of S. Since U1 and U2 are full in S, we
have E(U1) = E(U2) = E(S), and it is then immediate that S∗ = [S; U1, U2; φ] is a lower bounded HNN
extension. If su ∈ E(S) = E(U1), for some s ∈ S and u ∈ U1, then s ∈ U1, since U1 is a unitary subsemi-
group. Then, ss−1 = s · (s−1), where s−1 ∈ U1, and so ss−1 ∼1 s. Similarly, if we have s · (u)φ ∈ E(S), for
some s ∈ S and u ∈ U1, then ss−1 ∼2 s. Hence, S∗ is E-unitary, from Theorem 4.19.

An inverse semigroup S is 0-E-unitary if s ≥ e implies s ∈ E(S), for all s ∈ S\{0} and e ∈ E(S)\{0}.
The inverse semigroup S is strongly 0-E-unitary if it admits an idempotent pure partial homomorphism
to a group.

Corollary 4.21. Let S∗ = [S; U1, U2; φ] be a lower bounded HNN extension where S, U1, and U2 are
0-E-unitary, sharing a common 0. If su ∈ E(S) implies ss−1 ∼1 s, and s · (u)φ ∈ E(S) implies ss−1 ∼2 s,
for all s ∈ S\{0} and u ∈ U1\{0}, then S∗ is 0-E-unitary.
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Proof. The proof is similar to that of Theorem 4.19.

The polycyclic monoid Pn is the inverse monoid with zero that has the following presentation
〈a1, a2, . . . , an, 0, 1 | a−1

i ai = 1, a−1
i aj = 0, i �= j〉, as an inverse monoid with zero. Non-zero elements can

be written in the unique form xy−1, where x, y are elements of A∗
n, the free monoid on An = {a1, . . . , an}.

Multiplication is then defined by:

xy−1 · uv−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xzv−1 if u = yz, for some word z

x(vz)−1 if y = uz, for some word z

0 otherwise

Idempotents are given by xx−1, where x ∈ A∗
n, and xy−1Rxx−1. The monoid Pn is 0-E-unitary, 0-bisimple,

and combinatorial. For m ≤ n, we have a natural embedding of Pm into Pn, induced by the injection
from Am into An. Polycyclic inverse monoids are used to construct C∗-algebras [8]. Nearly all the inverse
semigroup studied in C∗-algebra theory are strongly 0-E-unitary [17, Section 5].

Corollary 4.22. Let S∗ = [S; U1, U2; φ] be an HNN extension where S = Pn, U1 = Pm, for m ≤ n, are the
polycyclic inverse monoids and φ is induced by any injection from Am into Ab. Then, S∗ is 0-E-unitary
with group of units isomorphic to a free group on a singleton and all other maximal subgroups are
trivial.

Proof. Let xx−1 ∈ E(S). Since S is 0-E-unitary, if xx−1 ≤ zy−1, where zy−1 ∈ S, then zy−1 is idempotent.
If xx−1 ≤ yy−1 in S then x = yz, for some word z. Thus, there are finitely many idempotents yy−1 with
xx−1 ≤ yy−1. Hence, the set {yy−1 ∈ Ui : yy−1 ≥ xx−1} has a least element f1(xx−1), possibly 1, for i = 1, 2.
We have:

xx−1 · yy−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xx−1 if x = yz, for some word z

yy−1 if y = xz, for some word z

0 otherwise

Let yy−1 ∈ E(Ui) with xx−1 � yy−1. Then either xx−1 · yy−1 = 0 or we have xx−1 · yy−1 = yy−1. Assume
xx−1 ≥ yy−1 and so fi(xx−1 · yy−1) = yy−1. If y1y−1

1 ∈ E(Ui) with yy−1 ≥ y1y−1
1 then fi(xx−1 · y1y−1

1 ) = fi(xx−1 ·
yy−1 · y1y−1

1 ) = yy−1 · y1y−1
1 = y1y−1

1 . It now follows that S∗ = [S; U1, U2; φ] is a lower bounded HNN
extension.

Let xy−1 ∈ S and uv−1 ∈ Ui such that xy−1 · uv−1 is idempotent, for i ∈ {1, 2}. Suppose u = yz, for some
word z. Then, y ∈ Ui. Since xy−1 · uv−1 = (xz)v−1 is idempotent, we have xz = v and so x ∈ Ui. Thus xy−1 ∈
Ui, xx−1 · xy−1 = xy−1 and so xx−1 ∼i xy−1. Suppose we have y = uz, for some word z. Then, since xy−1 ·
uv−1 = x(vz)−1 is idempotent, we have x = vz. Thus we have xx−1 · vu−1 = vz(vz)−1 · vu−1 = vz(uz)−1 =
xy−1 and so xx−1 ∼i xy−1. It follows that S∗ is 0-E-unitary, by Corollary 4.21.

Since S is 0-bisimple, the component Y1 of the graph of groups Y , as defined in Notation 4.3, consists
of one vertex and one edge, where 1 is the identity of S. Since S is combinatorial, the fundamental
group of the graph of groups (H1(−), Y1) is isomorphic to the free group on a singleton. The maximal
subgroup of S∗ containing 1 is isomorphic to the fundamental group of the graph of groups (H1(−), Y1),
by Theorem 4.4. All other maximal subgroups of S∗ are trivial, by Theorem 4.6.
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