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Abstract

Consider a one-dimensional diffusion process on the diffusion interval I originated in
xg € I. Let a(t) and b(t) be two continuous functions of ¢, t > ty, with bounded
derivatives, a(t) < b(t),and a(t), b(t) € I, forall t > t9. We study the joint distribution
of the two random variables 7,, and T}, the first hitting times of the diffusion process
through the two boundaries a(¢) and b(t), respectively. We express the joint distribution
of T, and T} in terms of P(T, < t, T, < Tp) and P(T}, < t, T, > Tp), and we determine
a system of integral equations verified by these last probabilities. We propose a numerical
algorithm to solve this system and we prove its convergence properties. Examples and
modeling motivation for this study are also discussed.
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1. Introduction

The exit times of diffusion processes from a strip play an important role in a variety of
applications ranging from computer science to engineering, from biology to metrology or
finance (cf. [2], [9], [21], [23], and [33]). According to the features of the model, constant or
time-dependent thresholds may bound the considered process. Typical examples are quality
models with two tolerance bands. Some parameter may control exit times from the strip, with
different effects on the exit time from the upper or lower bound. The knowledge of the joint
exit times probability density function clarifies the role of these parameters. Another example
is given by the survival probability of a population in a finite capacity environment or by tumor
growth models (cf. [2]). Similar problems arise in metrology when we need to maintain the
atomic clock error bounded by two tolerance bands. Moreover, avoiding an excessive increase
of the error is of primary importance to improve GPS instruments (cf. [11]). In this setting
the knowledge of the relationship between exit times from the upper and the lower boundaries
may suggest improvements to the clock reliability by acting on some parameters of the model
involved in the joint distribution. Other possible applications can be found in finance where
the interest focuses on the dependency between the times to sell or buy options when the level
of gain or loss is preassigned. A large body of literature exists for the study of the first passage
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time of one-dimensional diffusion processes through a boundary, and analytical, numerical,
and simulation methods have been studied both for the direct problem (cf. [4], [6], [14], [15],
[24], [27], [30], and [31]) and the inverse problem (cf. [35]). However, most of these papers
focus on the one-boundary problem, while, for the two-boundary case, the few analytical
results published rely either on the Brownian motion (cf. [22]) or particular time-dependent
boundaries, corresponding to special symmetries, for specific diffusions (cf. [7] and [10]). The
existing results generally focus on the first exit time from the strip, while our interest lies in the
joint distribution of the times when the process first attains the upper and lower boundaries. This
paper aims to cover this subject considering the joint distribution between these times. Some
results, presented in a recent paper by Giorno et al. [12], are related with those on the Laplace
transforms presented in this paper. However, their focus was not on the joint distribution of
exit times from a strip.

The notation and the existing results that will be used in this paper are introduced in Section 2,
while Sections 3 and 4 are devoted to the presentation of our results. In Section 3 we determine
the expression of the joint distribution of the exit times from the upper and lower boundaries. The
results are expressed in terms of first hitting time through a single boundary and of the probability
of crossing the upper (lower) boundary for the first time at some instant preceding ¢ before
crossing the lower (upper) boundary. Note that these probabilities are generally unknown. We
prove then that they are the unique solution of a system of Volterra integral equations of the first
kind. We also show that there exists an equivalent system of Volterra equations of the second
type. When the boundaries are constant, the Laplace transform method can be applied to solve
the system, since the integrals of such a system are of convolution type. Here we introduce
three equivalent representations of the Laplace transform. In the case of the Brownian motion
and constant boundaries, a closed-form expression for the joint distribution of the exit times
from a strip is known (cf. [5]).

In Section 4 we propose a numerical scheme for the solution of the system of integral
equations and we determine the order of convergence. This method works for both constant
and time-dependent boundaries. In the case of two constant boundaries the Laplace transforms
(cf. [1]) of the probability of crossing the upper (lower) boundary for the first time at some
instant preceding ¢ before crossing the lower (upper) boundary can be numerically inverted.
Finally, in Section 5 we present a set of examples.

2. Mathematical background and notation

Let X = {X(¢), t > tp} be a one-dimensional regular time homogeneous diffusion process
defined on a suitable probability space (€2, #, P) such that P(X (fp) = xo) = 1 and with
diffusion interval I, where I is an interval of the form (r{, ), (r1, 2], [r1, r2), or [r1, 21,
where r; = —oo and/or r, = 400 are admissible when the diffusion interval is open. If not
specified, the diffusion interval is open and the endpoints | and r, are natural boundaries. Let
Fx@n(x |y, 7) =P(X(t) < x | X(r) = y) be the transition probability distribution function
(PDF) of the process X and let fx()(x | y, T) be the corresponding transition probability
density function.

Let a(¢) be a continuous function with bounded derivatives. We denote by 7, the first hitting
time of the stochastic process X across a boundary a(t) € I:

T, =inf{t > 19, X(@) = a(®)}.

Its PDF is
Fr,(t | xo,t0) =P(T, <t | X(to) = x0)
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and fr,(t | xo, fo) is the corresponding probability density function. In the case of two
boundaries a(t) < b(¢) for all ¢, we indicate with T, and 7} the first hitting times of the
stochastic process X across the boundaries a(¢) and b(t), respectively. The aim of this paper is
to study the dependency properties of (7, Tp), i.e. to determine

Fr, 1, s | x0,0) =P(T, <t,<Tp <5 | X(to) = x0),

the joint PDF of (7, 7)), and the corresponding joint probability density function fr, 7, (¢,
s | xo, to)-

We define the following densities that distinguish the first boundary reached between the
two delimiting the strip:

8a(t | x0,t0)dt =P(T, edt, T, < Tp | X(tp) = xo) (H

and
gr(t | x0,t0)dt =P(T e dt, T, > T | X(t9) = x0). (2)

For a standard Brownian motion W = {W(¢), ¢t > 1}, the two densities g, (¢ | xo, fo) and
gp(t | xo, tp) are known in closed form (cf. [5]) when the boundaries are constant, a(t) = a

and b(t) = b:
= Xo—a+2k(b-—a) _(xo—a+2k(b—a))2)
$alt | 20-10) = k;m 27 (t — 19)3 = ( 2(t —to) ’
o b —x0+2k(b —a) ( (b—xo+2k(b—a))2>
1) = - : 3
gt | 20.10) k;w 27 (t — 19)3 o 2(t — 1) ®

The probability density function and PDF of T, are

la — xo| (a— x0)2>
, A vy kB 4
Jra(t 130, 10) = —p == =3 exP( 2(t — to) v

la — xol
Fr, (1 xo,to)zl—erf<— .
T, (| 5

Quantities (1) and (2) are useful for the computation of the joint density function of 7, and
T,. Two different instances arise according to the location of the starting point X (fy) = xo with
respect to the boundaries (cf. Figure 1). The following result holds.

Theorem 1. Let X = {X(¢), t > ty} be a diffusion process such that X (ty) = xo, and let a(t)
and b(t) be two continuous time-dependent boundaries.

(1) If xo < a(ty) < b(ty) and a(t) < b(t) for each t > ty or b(typ) < a(ty) < xo and
b(t) < a(t) for eacht > to, then

Fron s | xo0) =1 f= 5)
Ty, T\l 0,10) =

’ fr,(t | X0.t0) fr, (s | a(t). 1), t <s.
(1) Ifa(ty) < xo < b(tp) and a(t) < b(t) for each t > ty, then

S, (s | a@®),t)ga(t | x0,t0), t<s,
Sfr,1,(t, s | x0,t0) = 10, t=s, (6)
fr, (@ | b(s), s)gp(s | x0,10), t>s.

We omit the proof as it straightforwardly follows using the strong Markov property.
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FIGURE 1: Sample path of a stochastic process through two constant boundaries a and b. (a) xg € (a, b).
(b) xo ¢ (a, b).

Remark 1. Note that the first hitting time probability density function verifies the initial

condition

lim f7, (s | a(0), 1) = lim f7,(t | b(s), ) =0.
s— —>s
Furthermore, due to the differentiability of the boundaries, it holds (cf. [29]) that

lim Fx ) (b(@) | b(s), s) = lim Fx ) (a(®) | a(s), s) = 1, @)
}Ln}[l — Fx@y(b®) | a(s), s)] = }Lﬂ} Fxn(a(®) | b(s),s) =0. )

Remark 2. For some applications, it might be interesting to determine the copula function
(cf. [20]) between T, and Tp. When the two densities g, (¢ | xo, tp) and gp(¢ | xo, tp) are
known, use of (5) and (6) allows us to determine this function.

3. System of integral equations

The computation of f7,7, (¢, s | X0, fo) involves the transition probability density functions
fr,(s | a(t),t) and f7,(¢ | b(s), s) and the terms g, (¢ | xo, tp) and g, (¢ | xo, fo). When the
process is a linear regular diffusion, the transition probability density function is available in
closed form and, if the process is strictly linear, it is Gaussian. In the literature, the transition
probability density function is also available for other regular diffusion processes, such as the
Cox—Ingersoll-Ross model (also known as the Feller process), the Bessel process, or some
instances of the Raleigh process (cf. [13] and [14]). Further examples arise from the space—
time transformation of the Brownian motion (cf. [25]) or of the Cox—Ingersoll-Ross process
(cf. [8]). When closed-form solutions are not available, the transition probability density
function is evaluated via numerical methods, such as the numerical solution of the Kolmogorov
equation [17], [32] or the numerical inversion of Fourier transforms [34]. Unfortunately,
closed-form expressions for the densities g, (¢ | xo, fo) and g»(¢ | xo, fo) are known only for
the Brownian motion with constant boundaries (cf. [5, Formula 3.0.6]) or processes related to it
through suitable transformations. Use of the following theorem helps to overcome this problem.

Theorem 2. Let X = {X(¢), t > to} be a diffusion process such that X (ty) = xo. Let a(t)
and b(t) be two time-dependent boundaries with bounded derivatives such that a(ty) < xo <
b(ty) and a(t) < b(t) for each t > to. The probability density functions g,(t | xo, to) and
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gp(t | xo, to) are solutions of the following system of Volterra first-kind integral equations:

t
1 = Fx)(b(1) | X0, 10) =f [L = Fx@(b(0) | a(r), 7)]84(7 | X0, 20) d7
fo

t
+/ [1 = Fx@(b() | b(7), )Ign(t | x0,10)dz,  (9a)
1o

t

Fx@(a@®) | xo, o) =/ Fxup(a®) | a(r), 1)ga(t | X0, t0)dT

fo

t
+f Fx@y(a(t) | b(), 1)8p(T | X0, 10) dz. (9b)
1

0

Proof. For t € [0, oc], conditioning on the boundary first attained by the process, for
x ¢ [a(t), b(t)], we obtain

P(X (1) <x | X(t0) = x0)
t
=/ PX(@) <x | Ta <Tp, T, =7, X(t0) = x0)8a(T | X0, t0)d7
0]
t
+/ PX(@#) <x | Ty >Tp, Tp =7, X(t9) = x0)gp(T | X0, 1) dz
1o
t
=/ P(X(@) <x | X(1) =a(r), X(to) = x0)ga(t | X0, t0) dt
0]

t
+/ P(X(@) <x | X(v) = b(z), X(10) = x0)8gn(T | X0, t0) d7.
fo

Differentiating with respect to x we obtain
t
Ix@(x | xo, 10) =/ Ixwy(x | a(r), 1)ga(T | x0,10) dt
0]

t
+f Sx(x | b(7), T)gp(z | x0, f0) d. (10)
10
Integrating (10) with respect to x on the two subdomains [b(¢), oo] and [—o0, a(t)], we
respectively obtain (9a) and (9b).
Remark 3. Differentiating (9a) and (9b) with respect to ¢, and recalling (7) and (8), we obtain
23FX(z)(b(l) | X0, f0)

gp(t | x0,10) = —

Jat
t
+[ 2<8FX(t)(b(t8) | a(r)’r)ga(r | xo0, f0)
1o !
N 8FX(t)(b(;)t| b(71), T)gb(f | xo,to)) dr, (11a)
ga(t | x0,10) = zaFX(t)(agt) S
t
_/ 2(8Fx(z)(a(fa)t| a(T),T)ga(T | X0, 10)
1o
. an<z)(a(t8)t| b@D e to)) de.  (11b)
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This system of Volterra integral equations coincides with that proposed in [7] if the kernel of
the two equations is regularized.

The following result holds.
Theorem 3. System (9) has a unique continuous solution for t > t.

Proof. The system of Volterra integral equations of the first kind, (9), is equivalent to the
system of Volterra integral equations of the second kind, (11), that can be written in matricial
form .

g(1) =h() +/ k(t,v)g(r)dr,
10
where

_,0Fx @) | x0.10)

_ | 8a(t | X0, 10) _ 9
80) = |:gb(l‘ | X0, to)j| 7 h = 28FX(I)(4(’)I| x0.%0) |’
ot
_ZBFX(,)(b(t) | a(t), 7) _ZBFX(t)(b(t) | b(7), 1)
k(t.7) = ot o1
) LFxp@® la@, 0 0Fxp@®) | b))
ot ot

Since the kernel k(¢, 7) is singular in T = ¢, we introduce an equivalent system with continuous
kernel. Mimicking the method presented in [6], we introduce the functions y; (¢) and n; (¢), i =
1, 2, continuous in [#y, +0c]. Combining (9), (10), and (11), together with y;(¢) and n; (¢), we
obtain

t
gt | x0,10) = =W (b(1) | xo,ro)+/ (W' (b(1) | a(r), T)ga(T | X0, 10)
0]
+wl(b(r) | b(x), Dgp(t | x0,10)) dr,
t
ga(t | x0,10) = W2(a(t) | xo, 10) — / (W2(a(r) | a(r), ©)ga(t | X0, to)
10

+ W (a(t) | b(r), Dgp(t | X0, 1)) dr,
where

oF b ,

’“’)(a(:) X9 ) fro @1 ] x.5)
F O = Fxe®@) | x, )],
IFx @ (a(t) | x,s)
ot

U@ | x,s)=-2

Wat) | x,5) =2

O fxmla®),t | x,s) —n@)Fxpna() | x,s).

A suitable choice of y;(¢) and n;(¢), i = 1,2, makes both wlb@) | b(t), T) and
W2 (a(r) | a(t), t) not singular. On the other hand, since (cf. [7])

= 0,
x=b(t)

. .0
lim fx(b(@),t | a(r), v) = lim — fx(x,t | a(z), 7)
T—>t T—>1 0X

=0,

x=a(t)

. . 0
lim fxn(a@®),t | b(r), v) = lim — fx(x, 1| b(7), T)
Tt T—1 90X
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the kernels W!(b(r) | a(t), t) and W2(a(r) | b(t), T) are not singular. This makes it possible
to apply Theorem 3.11 of [19] to obtain the thesis.

Remark 4. The functions y;(¢) and 7;(t), i = 1, 2, can be determined. For example, for an
Ornstein—Uhlenbeck process characterized by the drift (¢, x) = ax + B and infinitesimal
variance o (t, x) = o, where «, 8, and 0 > 0 are arbitrary real constants. The functions that
regularize the kernels are y;(¢) = 1/2[ab(t) + B — b'(1)], y2(t) = 1/2[aa(t) + B — a’(1)],
andn; (1) =0, i =1, 2 (cf. [6]).

When the boundaries are constant, the following result holds.

Corollary 1. Let X = {X(t), t > ty} be adiffusion process such that X (ty) = xo, and let a and
b be two constant boundaries such that a < xo < b. Then the following three expressions are

equivalent for g} (xo) = m+°° e Mg, (t | xo, o) dt and g} (xo) = flj e Mau(t | xo, o) dt:
A A (p) — f)
gh(xo) = 11, (xg)fT" (A) /7, 0x0) (12a)
fTa (b)fTb(a) —1
[ (x0) £, (@) — f7; (x0)
A — a b b , 12b
85, (x0) 7 b (@) — | (12b)
_ A A _ _ A A
ot (xo) = (1 AFxfb I XO)]F))f(a | b) —[1 /\F)i(b | b)]F;;(a | xo)’ (13a)
(1 -AF3M | a)lFg(a | b) —[1 = AFyx(b | b)]Fy(a | a)
o (xo) = (1 —AF,*(A(b I xo)]F,i((a | a) —[1 —AF%(b | a)]F%(a | xo)’ (13b)
[(1-AF3M | D)]Fg(a|a)—[1—=AFxb | a)lFg(a | b)
A fx@1 | x0) fx (| b) — fx(xa | b) fx(xa | x0)
8a(x0) = =3 5 X P
S la) fx(xa | b) — fx(xr | D) fx(x2 | @)
_ vi(a, xp)va(er, b) — va(a, xp)vi (e, D) (14a)
v (o, a)va (e, b) — va(a, a)v (e, b)
ao o R T a) fra | xo) — fr(a | xo0) fx(xa | a)
8y (x0) = x x 2 2
Sl a)fyxa | b) — fx(x | b) fx(x2 | @)
_ v, @)va(a, xo) — va(a, a)vi (e, xo) (14b)

v (o, a)va(er, b) — va(a, a)vi (e, b)

where

+00
Fix | x0) = / e M Fy ) (x | %0, 10) dt,
0
+00
Fix | xo) = / e frn (x | X0 1o) dr,
0

+o0
[T, (x0) =f e Fr,(t | xo. 1) dt,
0

and the functions v; («, x), i = 1, 2, are fundamental solutions of Equation (8.13b) of [28].

Proof. Generalizing the standard calculation given in [16, p. 30] for an arbitrary regular
diffusion yields (12).
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Applying the Laplace transform to (9) and using the convolution theorem we obtain (13),
a result recently published in [12]. Applying the Laplace transform to (10) together with the
convolution theorem for two generic points x| > b and x; < a gives the first equality in (14).
The use of Equation (8.22) of [28] allows us to obtain the second equality.

Furthermore, recalling that (cf. [26])

(x| x0)
i la)

fi(x1 | x0) =

the first equality in (14) becomes (12).
Finally, remembering that (cf. [26])

1 — AF}(a | xo)

1 )xF)L( o ifa > xg,
— ala
L lxy=1 = F
Fj(a | x0) .
— ifa < xg,
Fy(a | a)

(12a), (12b) become (13a), (13b). This implies that the three formulations are equivalent.

Remark 5. The above results also hold for diffusion processes bounded by one or two reflecting
boundaries when the diffusion interval is characterized by nonnatural boundaries, i.e. for Cox—
Ingersoll-Ross, whose diffusion interval is I = [0, 00), or for the reflected Brownian motion.

4. Algorithms for P(T, e d¢t, T, < Tp) and P(Ty e dt, T, > Tp)

In this section we describe two approaches to determine the density functions g, (¢ | xo, ?o)
and gp(t | xo, to).

When the boundaries are constant, the densities g, (¢ | xo, fp) and g5 (¢ | xo, tp) are obtained
from the Laplace transforms (13) by inverting them numerically using, for example, the Euler
method [1].

Alternative methods become necessary when the boundaries a(¢) and b(¢) are time dependent
or when the Laplace inversion presents numerical difficulties. For example, in the case of
the Ornstein—Uhlenbeck process the expressions of gé‘(xo) and g}f(xo) involve a parabolic
cylinder function (cf. [31]). Their numerical inversion requires effort specific to this instance.
Furthermore, there are processes for which F }( (a | xo) and F )A( (b | xp) are not known in the
literature. Their computation is possible; however, it requires the solution of specific second-
order differential equations (cf. [26]).

Here we propose the following numerical method that can be applied both for constant and
time-dependent boundaries. Let us introduce the time discretizationt; = fo+ih, i = 1,2, ...,
where / is a positive constant. To determine the two probability density functions g, (¢ | xo, ?o)
and g, (¢ | xo, #p) at the finite set of knots #; fori = 1, ..., n, we use the Euler method [19] to
approximate the integrals on the right-hand side of (9a) and (9b). Hence, we obtain

1
1= Fx()(b(t) | x0.t0) = Y _[1 = Fx(b(t:) | a(t}),t))12a(tj | x0.to)h
j=1

+ Z[l — Fx()(b(t;) | b(t)),1)18p(t) | x0,20)h,  (152)
j=I
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1
Fx(a(t) | xo0.10) = Y Fx(@(t) | a(t)). t)&a(t; | X0, to)h
j=1

1
+ ZFX(t,)(a(li) | b(tj), t))&(t; | X0, t0)h. (15b)
=1

The densities g, (¢ | xo, to) and g, (¢ | X0, o) can be evaluated in the knots #; fori = 1,...,n
by means of the following algorithm.

Step 1. We have
2(1 — Fx ) (b(t1) | x0, t0))
? ,
2Fx ) (a(t) | xo, to)
h

8v(t1 | x0,t0) =

8a(t1 | x0,10) =
Stepi, i =2,3,.... We have

2(1 — Fx,)(b(1) | xo0, t0))

8n(ti | x0,10) =

h
i1
- 22:[(1 — Fx((b(t) | a(tj), tj))&a(t; | X0, to)
j=1

+ (1 = Fx@)(b(t) | b(t)), 1)) &p(t; | X0, 10)],
2Fx @ (a(t) | xo, to)
h

ga(ti | x0,10) =
i—1
=2 [Fxap(a(t) | a(t), t))ga(t; | X0, 10)
j=1
+ Fxn(a(t) | b(tj), ))& (t; | xo,10)],

where we have used (7) and (8).

Remark 6. The choice of equally spaced knots is motivated by the simplification of the
notation, but the method can be easily extended to nonconstant 4.

Theorem 4. If constants ¢y and c3 exist such that, for all h > 0,
Coomax | Fxa) (b)) | a(t)), t;) — Fx@_)(0(ti-1) | a(t)), tj)| < c1h, (16)
l<i<n,0<j<i—1

max 1|FX(ti)(a(ti) | b(tj),tj) — Fxq_p(ati—1) | b(t)), )| < c2h (17)

l<i<n,O0<j<i—

then the absolute value of the errors 4 ; and €p ; of the proposed algorithm at the discretization
knotst;, i =1,2,...,

€a,i = 8a(ti | x0,10) — ga(ti | X0, t0),
ep,i == gu(ti | x0,10) — &bt | X0, 1),

are O (h).
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Proof. The Euler method applied to (9) gives

1 — Fx@(b() | xo,t0) = Z[l — Fx@) (b)) | a(t)), tj)1ga(t; | xo0, to)h
j=1

+ 2[1 — Fxay(b(;) | b(tj), t;)1gn(t; | X0, t0)h,
=1

+d1(h, 1) (18a)

1
Fxy(a(t) | xo.10) = Y Fxapn(a(t) | a(t)). 1j)ga(t; | Xo.10)h
Jj=1

1
+ ZFX(t,-)(a(ti) | b(t;),tj)gn(tj | x0,t0)h + 82(h, 1), (18b)
j=1

where 81 (h, t;) and 65 (h, t;) are the differences between the integrals on the right-hand side of
(9) and the finite sums on the right-hand side of (18).
On subtracting (18a) from (15a) and (18b) from (15b) we obtain

Sith, ;) =h Z[l — Fx@)(b(@) | a(t)), tj)1eq,j
j=1

+h Z[l — Fxap(b) | b(tj), t))]ep, . (19a)
=1

i i
S (h, 1) = hZFX(z,-)(a(fi) | a(tj),tj)eq,; +hZFX(r,~)(a(ti) | b(tj),tj)ep,j.  (19b)
=1 =1

Differencing (19) and recalling (7) and (8), we obtain

S1(h, t;) — 81(h, t;i—1)
i—1

h
= Sebit+h D (1 = Fxy (@) | altp), t)] = [1 = Fx_p(b(ti-1) | at), t))ea,j
j=1

i—1
+h Y (1= Fx( () | b(t)), )] = [1 = Fx(_y(b(ti—1) | b(t)), t))Dep.
=1

8 (h, t;) — 82(h, ti—1)
i1

h
= Stai +h Z(an,»)(a(ti) | a(t)), tj) — Fxq_pla(ti-1) | a(t)), tj))eq,;
=1
i1
+ Z(FX(ti)(a(ti) | b(tj),tj) — Fxq_(a(ti—1) | b(tj),tj))ep, ),
=1
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which can be rewritten as
i1
epi =—2Y ([1 = Fxqybt) | alt)), )] = [1 = Fxq_(b(ti—1) | a(tj), t)))ea
j=1
i1
=2 (11 = Fxay ) | b)), )] = [1 = Fx_pBti-1) | b)), 1)),
j=1

2
+ E(Sl(h, 1;) — 81(h, ti—1)),
i—1
Eai = —2 Z(Fxm)(a(ti) | a(t)), tj) — Fxq_pla(ti-1) | a(tj), tj))eq,;
j=1
i—1
- 2Z(FX(z,-)(a(li) | b(tj),t;) — Fx@_p(ati—1) | b(t)),tj))ep,
j=1
2
+ E(SZ(h’ t;) — 82(h, ti—1)).
Let us now consider the global error
& = leail + leb.il-
When the hypotheses (16) and (17) are fulfilled,

i—1
2
61 < (1 + )l Y11+ 21181 G 1) = 81, ti0)| + 182k 1) = 8o, 1)
j=1

Observing that the Euler method errors are |§1(h, t)| = [62(h, )| = O (h?) and applying
Theorem 7.1 of [19] we obtain |€;| = O (h?) and, hence, the thesis.

Remark 7. A better result on the errors can be obtained by improving the integral discretization
rule, i.e. using the midpoint formula instead of the Euler’s method. Other integration rules
can improve the order of the error, but strongly increase the computational complexity of the
algorithm.

Remark 8. The two methods are equivalent in terms of computational time when the Laplace
transform expression is a well-behaved function. Nevertheless, the generalization of the method
for a time-dependent boundary S() is possible only for the numerical method.

5. Examples

In this section we discuss a set of examples of interest for the applications, i.e. standard
Brownian motion, geometric Brownian motion, and the Ornstein—Uhlenbeck process. We
apply the algorithms of Section 4 for numerical evaluations. When the joint densities are
known in closed form, we use them to illustrate the reliability of the algorithms.

5.1. Standard Brownian motion

Let us consider a standard Brownian motion with constant boundaries. It is a time and space
homogeneous diffusion process; hence, we can rewrite its joint density functions (5) and (6) in
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(a)

197

(b)

FIGURE 2: First hitting times of a Brownian motion through two constant boundaries b = —a = 1.
(a) The joint probability density function. (b) Contour lines of the joint probability density function.
(c) The density of the copula. (d) Contour lines of the density of the copula.

closed form as follows.
(1) If xo <a <borb <a < xgthen

Oa
t’ =
Tt &)= 10,00 f (s — 11 0,0),

(ii) Ifa < xo < b then

fTh_a (S —t | 07 O)ga (t | 07 0)7
Sfr,1,(@,5) =10,
fTa,b (t - | 09 O)gb(s | Os 0)9

r=s,

t<s.

t<s,
t=s,

t >,

where g, (¢ | xo, to) and g5 (¢ | xo, fo) are given by (3) and f7, (¢ | 0, 0) is given by (4).
Figure 2 shows the joint probability density function of the first hitting times of a standard
Brownian motion through two constant boundaries » = —a = 1 and the corresponding copula
together with the contour lines. Figure 3 illustrates the case of constant boundaries a = —1 and
b = 1.5 asymmetric with respect to xo. The asymmetry of the boundary locations determines
peaks of different heights. Note that the maximums of the joint density have inverted height in

the corresponding copula.
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FIGURE 3: First hitting times of a Brownian motion through two constant boundariesa = —1and b = 1.5.

(a) The joint probability density function. (b) Contour lines of the joint probability density function.
(c) The density of the copula. (d) Contour lines of the density of the copula.

Furthermore, the Laplace transforms of gé (xp) and glf (xp) can be found in [5] or by applying
Corollary 1.

Remark 9. The stability of the algorithms introduced in Section 4, already proved by The-
orem 4, is confirmed by the standard Brownian motion case where the probability density
functions g, (¢ | xo, to) and g, (¢ | xo, tp) are available in closed form. We apply the algorithms
to the standard Brownian motion with constant boundariesa = —1 and b = 2 with discretization
step 7 = 0.01, and we compare the results with the closed-form densities (3) for a series
truncated at N = 10° steps. The inversion of the Laplace transform with the Euler method
gives a mean-square deviation

MSE, = 6.02 x 107" and MSE, = 9.83 x 107%.
The numerical algorithm gives a mean-square deviation
MSE, =3.23 x 10 and MSE, =5.11 x 1078,

It confirms the reliability of the new algorithm. The higher precision of the Laplace inversion
with respect to the numerical method is determined by the simple expression of the involved
Laplace transforms. However, we cannot infer an analogous property for the other diffusions.
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[, )

FIGURE 4: First hitting times of a Brownian motion through two time-dependent boundaries b(¢) =
140.1cos(mrt) and a(t) = —1+40.1cos(zwt + 7). (a) The joint probability density function. (b) Contour
lines of the joint probability density function.

Remark 10. The extension of the above results to a Brownian motion with diffusion coefficient
o # 1 is straightforward. Indeed, a Brownian motion with diffusion coefficient o can be
transformed into a standard Brownian motion via the space transformation x = x’/o, and the
boundaries a and b become a/o and b/o, respectively. When o > 0 and a(0) < xo < b(0),
we can determine g5 (¢ | xo, o). In this case the crossing of the boundary a(#) is not a sure
event and the study of g, (¢ | xo, o) requires a suitable normalization. Similarly, the case in
which u < 0and a(0) < xo < b(0) is analogous, interchanging the role of the two boundaries.

Remark 11. Denoting by C %I,Tb the copula of (7, Tp) for a Brownian motion with diffusion
coefficient o and by C7, 7, the copula in the case o = 1, recalling the transformation x = x’/o,
the relationship C7. 7. = Cr,,.7;,, holds. Geometric Brownian motion can be obtained by
a standard Brownian motion via the space transformation x’ = exp(ox). The corresponding

copula, C %B%f, is related with the copula of the standard Brownian motion through

GBM __
CTa,Tb - CTlna/asTlna/a‘

The more general transformation x’ = exp(ut + ox) is not interesting from the point of
view of the exit times from a strip because it corresponds to transforming the process into a
Brownian motion with drift that does not have a sure crossing, as stated in Remark 10.

As a further example, we consider a standard Brownian motion with the boundaries
b(t) =1+0.1cos(rt) and a(t) = —1+0.1cos(mwt + 7).
Since the boundaries are time dependent, Laplace transform inversions cannot be applied.

Figure 4 shows the joint probability density function of the first hitting times and the
corresponding contour lines obtained with the proposed numerical algorithm.
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(a) (b)

ft,s)

c(u, v)

FIGURE 5: First hitting times of an Ornstein—Uhlenbeck process through two constant boundaries b =
—a = 1. (a) The joint probability density function. (b) Contour lines of the joint probability density
function. (c) The density of the copula. (d) Contour lines of the density of the copula.

5.2. Ornstein—Uhlenbeck process

Consider as a further example the Ornstein—Uhlenbeck process, described by the stochastic
differential equation

X (1)
dX (1) = (_T + u) dt +odW,,  X(to) = xo.

For this process, representations and numerical methods are available and can be used to
evaluate the first hitting time probability density function fr, (¢ | xo, fo) (see [3], [6], and [18]).
On the other hand, the density g, (¢ | xo, fo) is not known in closed form. Here we have
applied classical numerical algorithms (cf. [6]) to evaluate the first hitting time probability
density function and the algorithms of Section 4 to compute the second. Figure 5 shows the
joint probability density function and the corresponding copula of the first hitting times of an
Ornstein—Uhlenbeck process with parameters 6 = 10, u = 0, 0 = 1, and xo = 0 through two
constant boundaries b = —a = 1. Figure 6 illustrates the case of asymmetric with respect to
xo constant boundaries a = —1 and b = 1.5. Note that xo represents the symmetry axis of the
Ornstein—Uhlenbeck process. The height of the peaks of the joint density and of the copula
behaves as the Brownian motion case.
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(a) (b)
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FIGURE 6: First hitting times of an Ornstein—Uhlenbeck process through two constant boundaries a = —1
and b = 1.5. (a) The joint probability density function. (b) Contour lines of the joint probability density
function. (c) The density of the copula. (d) Contour lines of the density of the copula.

The Laplace transforms gf; (xp) and gé (x9) for the Ornstein—Uhlenbeck process can be found
in [5]. However, the presence of the parabolic cylinder functions in their expression discourage
their numerical inversion.
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