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Extension of the Riemann &-Function’s
Logarithmic Derivative Positivity
Region to Near the Ciritical Strip

Kevin A. Broughan

Abstract. If K is a number field with ny, = [k : Q], and & the symmetrized Dedekind zeta function of
the field, the inequality

Elo+it)  &l(a)

&lo+it)  &lo)

1
for t # 0 is shown to be true foro > 1+ 8/ n]f improving the result of Lagarias where the constant in
the inequality was 9. In the case k = Q) the inequality is extended to o > 1 for all ¢ sufficiently large or
small and to the region o > 1+ 1/(logt — 5) for all t # 0. This answers positively a question posed
by Lagarias.

1 Introduction
The Riemann & function is £(s) = s(s — 1)7r_5/21"(s/2)((s)/2. In [8] Lagarias shows
that, assuming the Riemann hypothesis,

E(o+ir) _ &(o)
Mo+~ @

forall o > 1/2 and for all t # 0. He also shows that this inequality holds uncon-
ditionally in case ¢ > 10 and remarks that it seems likely the inequality could be
established unconditionally for & > 1 + € for any given fixed positive € “by a finite
computation”
The significance of the inequality is that the Riemann hypothesis is equivalent to
the statement
£'0s)

%w > 0 when Rs > %
(see [6,8] and the use of an assumption weaker than the Rieman hypothesis [5]), so
an approach to a proof of the Riemann hypothesis requires extending the positivity
region of the £(s) function to the left.

Lagarias does quite a lot besides addressing positivity for the logarithmic deriva-
tive of the Riemann zeta function. For example if k is a number field of degree ng
over Q), then provided o > 1+9/ ni/ ? the infinum of R &[(s)/&k(s) on the vertical line
s = o is attained at t = 0. Here &(s) is the product of the appropriate zeta function
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for the number field {; multiplied by an entire function (the gamma factor) which
ensures it is entire and satisfies a functional equation.

In this paper we show, using essentially the same approach as Lagarias but sum-
ming an infinite series in terms of the polygamma function, that the constant can be
reduced to 7.71542 - - - < 8. This is Theorem 3.1

In Theorem 3.2 we derive the Riemann zeta form (k = Q) of the inequality of
Lagarias unconditionally up to o = 1, for sufficiently small or large ¢, and for mid-
range t to o > 1+ 1/(log|t| — 5). This will be Theorem 3.2, following six lemmas.
Sufficiently small means up to a value of t which satisfies |t| < /2 — v/2, where v is
the y-coordinate of the first off critical line non-trivial zero of {(s). Sufficiently large

means greater than e(“m(?), where ¢, is the absolute constant appearing in an inequality
for the logarithmic derivative of ((s). This is presumably a very large number, a
“finite” computation, but far beyond the reach of anything practical.

The new technique for the “sufficiently small” region involves structuring and
bounding the derivative of a term, from the Mittag—Leffler expansion for the loga-
rithmic derivative of £(s), which consists of a sum of terms from four related off-
critical line zeros.

2 Preliminary Lemmas

Lemma 2.1 There exists an absolute constant ¢, such that for all 0 > 1 and all
t>1 >0

’ ¢'(s)
C(s)
Proof This follows from Richert [10] or Cheng [3]. See also [11, Section 6.19]. H

} < c,(logt)*(loglog 1)"/?.

Lemma 2.2 Foro > 1let

¢'(o) 1
C(U) + 0__1 _’707

flo) =

where 7y, is Euler’s constant. Then there exists a positive absolute constant ¢, such that
—a(c—1) < f(o) <0,

and ¢, can be taken to be > — 27y, where

N 2
. logm log"N
=i (3T - ) oo

soc; =0.47789 - - -.

Proof Write

1
flo) = - Y 8P

o—1 mo
pmo1 P
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SO
b m10g2p _ 1
f (U) - sz>1 pmg (0— _ 1)2
1
= Zlogzp Z Tm -
8P Gy T o1y
_ Z logzp.p" B 1 '
— (-1 (01
Hence

i 2 log’ p.p” log’ p.p”
vy VD vy D DY oy

3 o(Ho _ 3 0(Ho
_ 2 log227(2 3)+Zlogp.p(17 3)

BNCERE (27 —1)° = -

If o > log, 3, each term is non-negative, so f'/(c) > 0. If 1 < o < log, 3,
the sum of the first two terms is positive, so in all cases f'/(o) > 0. Hence f(o) is
concave upwards on (1, co).

Now the Laurent expansion of ((s) in the neighborhood of s = 1 [7, Theorem 1.4]
is .

(O =g +n+tnls—D+-
where, for k > 0
(=Dk "log"m log*'n
1 _
g dm (D=0 pranl

Tk =

m=1

$0 7o is Euler’s constant and ; < 0. From this it follows that in a neighborhood of

o=1

C/(U) 1 - 2 2

(o) Mt U 27 —v)(c = 1)+ O(|o — 1]7),
so f'(1) = 27y; — 72. Therefore, by the concavity of f(o), f() > (2v1 — ) (o — 1)
foro > 1.

Now, by continuous extension, f(1) = 0and f’(1) < 0. If there wasavalueo > 1
with f(o) > 0 then, by Rolle’s theorem, there would be a value with (o) = 0 and
$0, since lim,_,» f(0) = —7, a point with f"/(o) = 0. But by what we have proved
this is impossible. Hence f(o) < 0 forallo > 1. [ |

Note that the constant ¢; is the best possible, since it is the absolute value of the
slope of f(o) at 0 = 1. Note also the interesting inequality of Delange [4], which
apparently can be extended to about 0 = 0.9184 - - -, i.e., to the left of the line o = 1.
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Lemma 2.3 If1 <o <10andt>1t,>0:

I'(s/2) T'(c/2) t 2
TG/2)  To/2) = log5 —2- 55

Proof This follows directly using the asymptotic expression

I'(z) 1 1
= I —— +R R < —— >2. R 0.
Ty =087~ 5 + BRI < g [2l 2 2.9 >
and the bound
T'(c/2)
<2
T'(c/2)
which holds for 1 < ¢ < 10. ]

Lemma 2.4 Leto > 1,0 < 3 < 1/2,7v > 0 be real numbers and define

(Y=t +(0—1/2)* = (1/2— )’

WO = oy (=)o + b—1)2+(y—1)?)’

and f(t) := h(t) + h(—t). Let ¢ = \/2 — /2. Then for all t with |t| < ¢4y, f(t) >
f(0).

Proof Defineu:=0 — fandv:= o0+ — 1. Then u > v > 0 and we can write

B (y—t)+uv 1 u %
he) = (v =) +12)((y — )2 +v2) u+1/(('y—t)2-i—u2 * (”y—t)2+v2)'
Then
f(t) = h(t) + h(—t)
o 1 N 1 )
B u(u+v)(('y—t)2/u2+l (v+0)?/u?+1
1 1 N 1 )
+V(M+V)((’7—t)2/1/2+1 (v+1)2/v2+ 177
Let

1 1
+ .
(y=1)2+1 (y+1)?+1

§(1) :=
Then the derivative

iy = 20 By 42— 1)
S () RV (CEI e

and gw’,(O) =0, g§, is an odd function of ¢, and the numerator is positive if

0<t<(P+D"2y - (P + DV,
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or for the slightly smaller but more convenient range 0 < ¢t < /2 — \/E'y = (47, SO
g, (t) > 0 in this range. Hence

f“”zzaﬁfragé(ﬁ)*“ﬁ@%:ﬁgé(i)

is positive for t with 0 < t/u < ¢4y/uand 0 < t/v < c47y/v, that is the same range
as before. Therefore f(0) < f(t). But f(¢) is even, so the same inequality holds for ¢
negative also. ]

Lemma 2.5 Let ¢y be a positive real number representing the y coordinate of the first
zeta zero which is off the critical line (assuming such a zero exists). If 0 < t < cqco and
1 <o <10, then
(o +1it "o
%5 ( . ) < §'(0)
Elo+it) — &(o)

Proof With the same notation as in Levinson and Montgomery [9], we can write

o+it) &'(o)
§R§(a+it) - €0) = (o0 —1/2)I(0,1),

where I(0,t) = T, + T} and

(y=1?+(0—-1/2 - (1/2- )
T, =
Z (e =32+ (=)o +B -1+ (y—1)?)

B<1/2

P H(0—1/22 - (1/2-B) ]
(0 —B7+ (@ +B-12 42

1 1
ni=>. {(0—1/2)2+(t—7)2 - (0—1/2)2+72]

B=1/2

The proof of Lagarias [8], assuming the Riemann Hypothesis, shows that T; > 0
whether or not the Riemann hypothesis is assumed to be true. Lemma 2.4 shows
that, since each v > ¢y, each term in the sum for T, is positive for t < c4¢q so the
Lemma follows directly. ]

Lemma 2.6 Let )" (z) be the polygamma function. Then for n > 2 and all real
x>0, (n—1)! < —(=1)"x"p"(x).

Proof This follows from an examination of the proof of [1, Theorem 4]. |

Note that other properties of the digamma and polygamma functions can be
found in [2] and the references in that paper.
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3 Proofs of the Two Main Results

First we show that the constant in Lagarias’ Theorem 1.2 can be reduced from 9 to
less than 8.

Theorem 3.1 Let k be an algebraic number field of degree ny = [k,Q]. For o >
1+8/n} and t # 0 we have

lo+in o)
N .
Eoti) &)

Proof The proof of Lagarias implies that it suffices to show that for oy = 9 the
inequality

= 1 1
>
”"; (00 +2n) ~ (g — 1)?

holds. The infinite sum can be given explicitly in terms of the polygamma function,
so the inequality becomes

240 1
)| > .
2 (o0 —1)

1
(2)
Mg [t
By Lemma 2.6, this is true if

(g —1)3 o 16
(1+00/2)* = m

Lagarias’ theorem shows we can assume oy < 10 so, substituting the value oy = 10
in the denominator, the inequality will hold if

2
(o — 1) >
1k

This implies the result is true for oy > 1 + \3/%/ n,lc/ 3, SO we can assume oy <
9.32043 - - -. Replacing the upper bound 10 with this lower value and iterating the
procedure (or equivalently solving the inequality (1) with nz = 1 for the smallest
possible value of 0y), lead to o9 = 8.71542 so

7.71542 - - -
gy = 1+ — T

ng
and the result of the theorem follows. |

Note that in his proof, Lagarias neglects the positive contribution to the right
hand side of the target inequality when he “shifts the contribution of the poles at
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odd negative integers to the neighboring even negative integers” using his inequality
(2.21). In total this contribution is:

2 1 1 -
t n;dd(cr+n)((cr+n)2+t2) C(cHn+D((c+n+ 12+

20(102) -5 a5 w14 72%)

and as t — oo this expression tends to 0, so no improvement in the result can come
from this approach.

Note also that if we simply solve the inequality (1) for explicit values of n; we
obtain the values for oy:

Ny (o) Ny (o) Ny (o)

1 8.71542 | 2 | 6.06835 | 3 5.04472
4 | 44734 |5 | 4.09879 | 6 | 3.82964
7 | 3.62447 | 8 | 3.46148 | 9 | 3.32799
10 | 3.21606 | 11 | 3.12045 | 12 | 3.03753
13 | 2.96473 | 14 | 2.90012 | 15 | 2.84228
16 | 2.7901 17 | 2.74269 | 18 | 2.69938
19 | 2.65959 | 20 | 2.62287 | 21 | 2.58885
22 | 2.5572 23 | 2.52766 | 24 | 2.5

25 | 2.47403 | 26 | 2.44958 | 27 | 2.4265
28 | 2.40468 | 29 | 2.38399 | 30 | 2.36435

Theorem 3.2 Let1 < o < 10 andt # 0. Then there exist absolute constants ¢, and
¢, so that (unconditionally) for {o +1it : |t| < ¢,1 < 0 < 10} or {o + it : |t| >
0,1<o0<10}or{o+it:loglt| >5+1/(c —1),1 < o < 10}, we have
! + 't !
§lo+it) _ p€0)
fo+it) €0

Proof Lets = o + it and 1 < o. Then since £(s) = s(s — 1)m—*/2I'(s/2)((5) /2, we

can write
Ag = mi((j)) - 55((5)) — A+ Ay + Ay + Ay, where
t2
B ey
A & ¢'(0)
2T (e-Dc-Dr2+2) (o)’
¢’'(s)
As =
s =Wy
1,.T(s/2) T'(0/2)
Ba= E(%r(s/z) - T(0/2) )-
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First, A} > —1/0. From Lemma 2.2 it follows that

o—1

Ay > ot —2
2 TN e ) 2

By Lemma 2.1 we can write
¢'(s)
¢(s)

By Lemma 2.3 we can write Ay = logt — ¢56 for some small positive constant ¢s (we
can take ¢s = 4) and real 0 with || < 1. Hence Ay > 0 if

Az =R > —cl(logt)g(loglogt)%.

logt — cl(logt)2/3(loglog 03 > 4.

This is true if and only if

) _Cl(loglogt) 1/3 S 4

logt logt’

If we assume t > t3 := €®, then 1 — 4/logt > 1/2, so with this restriction we require

loglogt 1
logt 8¢’

This inequality holds if t > #; := ¢©""). So provided voc; > 4 the two regions
(0, vocal, [ts, 00) overlap and the Lagarias inequality holds for all & > 1. If however
ty > 7oCs, we argue differently. First let

t? () (o)

M= e e —rrm M S ENE T qe

| < o) A} > 0forall r > 0. Therefore

50 Ag = Ay + A+ Al + A, Since |8 =2,

(s

1
I +logt — 4,

1
Ny >—~—
g

so Ay > Oiflogr > 4+ 1/0 + 1/(0 — 1), and this is true if logr > 5+ 1/(c —
1). The best uniform value of ¢ which may be obtained using this method is given

approximately by
1
=1+ —-. u
o0 logcsco — 5
If we assume cycp = 108, this leads to oy = 14/13. Strengthening the above
approach to the Lagarias problem requires the derivation of a good explicit value for
the constant ¢; (compare [3]) and knowledge of the best current value value for ¢y
(currently 3.2 x 10%) [12].
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