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Abstract We show that if the summability means in the Fourier inversion formula for a tempered
distribution f ∈ S′(Rn) converge to zero pointwise in an open set Ω, and if those means are locally
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1. Introduction

In a recent study, González Vieli and Graham [7] characterized the support of certain
tempered distributions in several variables in terms of the uniform convergence over
compacts of the symmetric Cesàro means of its Fourier inversion formula. Indeed, they
proved that, for a large class of tempered distributions f ∈ S ′(Rn), if, for some k ∈ N,

lim
a→∞

∫
|u|�a

f̂(u)e−iu·x du = 0 (C, k) (1.1)

uniformly on compacts of an open set Ω ⊂ R
n, then Ω ⊂ R

n \ supp f (see also [6,8,9]).
Results on this subject have a rich tradition that goes back to the work of Kahane and
Salem [10] and that of Walter [18]. Here we use the constants in the Fourier transform
such that

f̂(u) =
∫

Rn

f(x)eiu·x dx

if the integral exists. Hence, the inversion formula becomes

f(x) = (2π)−n

∫
Rn

f̂(u)e−iu·x du

when the integral makes sense. If instead of uniform convergence one has only pointwise
convergence, then it is easy to see that maybe Ω ∩ supp f �= ∅.
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The aims of the paper are the following:

• to obtain the characterization of the support of any tempered distribution;

• to prove the result under weaker conditions than uniform convergence of the means,
in particular, when the means are locally L1 bounded;

• to obtain the corresponding result for other summability methods such as Abel
summability and Gauss–Weierstrass summability.

It should be pointed out that in the one-variable case one can completely characterize
the support of a tempered distribution in term of the pointwise Cesàro behaviour if
one uses slightly asymmetric means. It was proved in [2] that a periodic distribution of
period 2π, f ∈ S ′(R), with Fourier series

∑∞
n=−∞ aneinx, has the distributional point

value f(x0) = γ in the �Lojasiewicz sense [11] if and only if there exists k such that, for
all a > 0,

lim
y→∞

∑
−ay�n�y

aneinx0 = γ (C, k). (1.2)

This result was recently generalized to arbitrary tempered distributions [15,16]: if f ∈
S ′(R), then

f(x0) = γ distributionally, (1.3)

if and only if
e.v.〈f̂(u), e−iux0〉 = 2πγ (C, k). (1.4)

The slightly asymmetric evaluation e.v.〈g(x), ρ(x)〉 (C, k) of a distribution g ∈ D′(R) on
a test function ρ ∈ E(R) exists and equals L if for each primitive G of ρg, G′ = ρg, we
have that, for all a > 0,

lim
y→∞

(G(y) − G(−ay)) = L (C, k). (1.5)

Therefore, since the �Lojasiewicz point values determine a distribution completely if
they exist at all points [11], we obtain the following characterization of the support of a
distribution.

Theorem 1.1. Let f ∈ S ′(R). Let Ω be an open set of R. If there exists k such that

e.v.〈f̂(u), e−iux〉 = 0 (C, k), ∀x ∈ Ω, (1.6)

then Ω ⊂ R \ supp f .

The principal value evaluation p.v.〈g(x), ρ(x)〉 (C, k) of a distribution g ∈ D′(R) on
a test function ρ ∈ E(R) exists and equals L if for each primitive G of ρg, G′ = ρg, we
have that

lim
y→∞

(G(y) − G(−y)) = L (C, k). (1.7)

Naturally, Theorem 1.1 is not true for principal value evaluations, as the example f(x) =
δ′(x) shows, since here the means converge to zero in the p.v. sense for all x ∈ R.
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The plan of the paper is as follows. In § 2 we recall the definitions of �Lojasiewicz
point values and of Cesàro behaviour. Section 3 gives the definition of the distributional
φ-transform in several variables and the proof of the distributional convergence. The
basic summability procedures for the Fourier inversion formula and their relation with
the distributional φ-transform are presented in § 4; we observe that summability results
for the Fourier transform and its inverse can be considered as particular cases of results
for the distributional φ-transform. In § 5 we show the uniform convergence on compacts of
the distributional φ-transform of a function continuous in an open set and its converse,
and consequently for summability in the Fourier inversion formula. Finally, in § 6 we
characterize the complement of the support of a distribution in the case when the means
are locally L1 bounded.

2. Preliminaries

The spaces of test functions D, E and S and the corresponding spaces of distributions are
well known [5]. We shall also need the distribution space K′, the dual of K; the space K′

plays a fundamental role in the theory of summability of distributional evaluations [5].
We shall use the notion of the distributional point value of generalized functions intro-

duced by �Lojasiewicz in one variable [11] and in several variables [12]. Let f ∈ D′(Rn),
and let x0 ∈ R

n. We say that f has the distributional point value γ at x = x0, and we
write

f(x0) = γ distributionally (2.1)

if limε→0 f(x0 + εx) = γ in the space D′(Rn), that is, if

lim
ε→0

〈f(x0 + εx), φ(x)〉 = γ

∫
Rn

φ(x) dx (2.2)

for all test functions φ ∈ D(Rn). It can be shown that f(x0) = γ, distributionally, if
and only if there exists a multi-index k0 ∈ N

n such that for all multi-indices k � k0

there exists a k primitive of f , G with DkG = f that is a continuous function in a
neighbourhood of x = x0 and satisfies

G(x) =
γ(x − x0)k

k!
+ o(|x − x0||k|) as x → x0. (2.3)

It is important to observe that the distributional point values determine a distribution
if they exist everywhere, that is, if f ∈ D′(Rn) is such that f(x) = 0 distributionally for
all x ∈ Ω, where Ω is an open set, then f = 0 in Ω [11,12].

There is a related but different notion of distributional point value, that of a symmetric
value. We say that f has the symmetric distributional value γ at x = x0, and write

fsym(x0) = γ distributionally, (2.4)

if (2.2) holds for radial test functions. In the one-variable case this means that (f(x0 +
x) + f(x0 − x))/2 has the distributional value γ at x = 0. In several variables it means
that

R(r) =
∫

S

f(x0 + rω) dσ(ω),
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when suitably extended to D′(R), has the value γ at r = 0, where S is the unit sphere.
A distribution like δ′(x) has the symmetric value 0 at all points, so, in general, the
symmetric distributional point values do not determine a distribution uniquely.

We shall follow [3,5] for the notions related to Cesàro behaviour of distributions. If
f ∈ D′(Rn) and α ∈ R is not a negative integer, we say that f is bounded by |x|α in the
Cesàro sense for |x| large, and write

f(x) = O(|x|α) (C) as |x| → ∞, (2.5)

if there exists a multi-index k ∈ N
n and a k primitive, DkG = f , which is a function for

|x| large and satisfies the ordinary order relation

G(x) = O(|x|α+|k|) as |x| → ∞. (2.6)

Naturally, (2.6) will not hold for all primitives of f , and if it holds for k it will also hold
for bigger multi-indices.

3. The distributional φ-transform

In this section we explain how we can extend to several variables the distributional
φ-transform introduced in [15]. Let φ ∈ D(Rn) be a fixed test function with∫

Rn

φ(x) dx = 1. (3.1)

If f ∈ D′(Rn) we introduce the function of n + 1 variables F = Fφ{f} by the formula

F (x, t) = 〈f(x + ty), φ(y)〉, (3.2)

where (x, t) ∈ H, the half space R
n × (0,∞). Naturally, the evaluation in (3.2) is with

respect to the variable y. We call F the distributional φ-transform of f . This transform
is also given other names, such as the standard average with kernel φ [1]. Whenever we
consider φ-transforms we assume that φ satisfies (3.1).

The definition of the φ-transform tells us that if f(x0) = γ, then F (x0, t) → γ as
t → 0+, but actually F (x, t) → γ as (x, t) → (x0, 0) in an angular or non-tangential
fashion, that is if |x − x0| � Mt for some M > 0 (just replace φ(x) by φ(x − Mω),
where |ω| = 1). On the other hand, if fsym(x0) = γ distributionally, then F (x0, t) → γ

as t → 0+ whenever φ is radial, but in general F (x, t) does not approach γ radially for
general test functions and in general F (x, t) does not approach γ in an angular fashion
even if φ is radial.

We can also consider the φ-transform if φ ∈ A(Rn) satisfies (3.1) and f ∈ A′(Rn),
where A(Rn) is a suitable space of test functions, such as S(Rn) or K(Rn).

We start with the distributional convergence of the φ-transform.

Proposition 3.1. If φ ∈ D(Rn) and f ∈ D′(Rn), then

lim
t→0+

F (x, t) = f(x) (3.3)
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distributionally in the space D′(Rn), that is, if ρ ∈ D(Rn), then

lim
t→0+

〈F (x, t), ρ(x)〉 = 〈f(x), ρ(x)〉. (3.4)

Proof. We have that

〈F (x, t), ρ(x)〉 = 〈
(ty), φ(y)〉, (3.5)

where

(z) = 〈f(x), ρ(x − z)〉 (3.6)

is a smooth function of z. The �Lojasiewicz point value 
(0) exists and equals the ordinary
value and thus

lim
t→0+

〈
(ty), φ(y)〉 = 
(0) = 〈f(x), ρ(x)〉, (3.7)

as required. �

The result of Proposition 3.1 also hold in other cases. In order to obtain those results
we need some preliminary results. Recall that an asymptotic order relation is strong if it
remains valid after differentiation of any order.

Proposition 3.2. Let f ∈ E ′(Rn) be a distribution with compact support K. Let
φ ∈ E(Rn) be a test function that satisfies (3.1) and

φ(x) = O(|x|β) strongly as |x| → ∞, (3.8)

where β < −n. Then
lim

t→0+
F (x, t) = 0 (3.9)

uniformly on compacts of R
n \ K.

Proof. There exist a constant M > 0 and q ∈ N such that

|〈f(y), ρ(y)〉| � M

q∑
|j|=0

‖Djρ‖K,∞, ∀ρ ∈ E(Rn), (3.10)

where ‖ρ‖K,∞ = sup{|ρ(x)| : x ∈ K}. There exist r0 > 0 and constants Mj > 0 such
that

|Djφ(x)| � Mj |x|β−|j| for |x| � r0, |j| � q.

Let L be a compact subset of R
n \ K and let t0 > 0 be such that if 0 < t � t0, then

t−1|x − y| � r0 for all x ∈ L, y ∈ K. Then, since

F (x, t) = t−n〈f(y), φ(t−1(y − x))〉, (3.11)

it follows that, for 0 < t � t0,

|F (x, t)| � M2t
−n−β , ∀x ∈ L, (3.12)

where M2 = M
∑q

|j|=0 Mj is a constant. Since −β − n > 0, we obtain that (3.9) holds
uniformly on x ∈ L. �
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The definition of the �Lojasiewicz point value is that if f ∈ D′(Rn), then f(x0) = γ

distributionally if

lim
ε→0

〈f(x0 + εx), φ(x)〉 = γ

∫
Rn

φ(x) dx, (3.13)

whenever φ ∈ D(Rn). If f belongs to a smaller class of distributions, then 〈f(x0 +
εx), φ(x)〉 will be defined for test functions of a larger class, not only for those of D(Rn),
and one may ask whether (3.13) remains true in that case. There are cases where (3.13)
is not true; for instance, if f ∈ E ′(R), sometimes there are φ ∈ E(R) that do not satisfy
(3.13) [4]. However, it was shown in [4] that in the one-variable case (3.13) holds if
f(x0) = γ distributionally and the following conditions are satisfied:

f(x) = O(|x|α) (C) as |x| → ∞, (3.14)

φ(x) = O(|x|β) strongly as |x| → ∞, (3.15)

and
α + β < −1, β < −1. (3.16)

In particular, (3.13) is valid when f ∈ S ′(R) and φ ∈ S(R) [4, 13, 17]. Actually, a
corresponding result is valid in several variables, and the proof is basically the same.

Proposition 3.3. Let f ∈ D′(Rn) with f(x0) = γ distributionally. Let φ ∈ E(Rn).
Suppose that

f(x) = O(|x|α) (C) as |x| → ∞, (3.17)

φ(x) = O(|x|β) strongly as |x| → ∞, (3.18)

where
α + β < −n, β < −n. (3.19)

Then

lim
ε→0

〈f(x0 + εx), φ(x)〉 = γ

∫
Rn

φ(x) dx. (3.20)

Proof. Suppose that x0 = 0. There exists a multi-index k and two primitives of f ,
DkG1 = DkG2 = f , such that

G1(x) = O(|x|α+|k|) as |x| → ∞, (3.21)

G2(x) =
γxk

k!
+ o(|x||k|) as |x| → 0. (3.22)

Hence, we can combine them into a single function G that satisfies∣∣∣∣G(x) − γxk

k!

∣∣∣∣ � M |x||k| for |x| � 1,

|G(x)| � M |x|α+|k| for |x| � 1,
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and
f = g + DkG, (3.23)

where g has compact support and x0 /∈ supp g. Then (3.20) holds for g, because of
Proposition 3.2, and it holds if φ has compact support. Therefore, it is sufficient to prove
(3.20) if f = DkG and suppφ ⊂ {x : |x| � 1}; however, in this case we may use the
Lebesgue Bounded Convergence Theorem to obtain

lim
ε→0

〈f(εx), φ(x)〉 = lim
ε→0

(−1)|k|ε−|k|
∫

Rn

G(εx)Dkφ(x) dx

=
(−1)|k|γ

k!

∫
Rn

xkDkφ(x) dx

= γ

∫
Rn

φ(x) dx,

as required. �

In particular, (3.20) holds if f ∈ S ′(Rn) and φ ∈ S(Rn).
Using the same argument as in the last proof we can prove that if f(x) = 0 for x ∈ Ω,

an open set, and the conditions (3.17)–(3.19) are satisfied, then the convergence in (3.20)
is uniform on compacts of Ω.

We can now extend the distributional convergence of the φ-transform, Proposition 3.1,
to other cases.

Proposition 3.4. If φ ∈ E(Rn) and f ∈ E ′(Rn) satisfy conditions (3.17)–(3.19), then

lim
t→0+

F (x, t) = f(x) (3.24)

distributionally in the space D′(Rn), that is, if ρ ∈ D(Rn), then

lim
t→0+

〈F (x, t), ρ(x)〉 = 〈f(x), ρ(x)〉. (3.25)

In particular, distributional convergence, (3.24), holds if φ ∈ S(Rn) and f ∈ S ′(Rn).

Proof. We proceed as in the proof of Proposition 3.1 by observing that

〈F (x, t), ρ(x)〉 = 〈
(ty), φ(y)〉,

where 
(z) = 〈f(x), ρ(x − z)〉. Next we observe that 
 is a smooth function, and that
it satisfies 
(x) = O(|x|α) (C) as |x| → ∞. Indeed, there exists a multi-index k and a
primitive of f of that order, DkG = f , which is an ordinary function for large arguments
and satisfies |G(x)| = O(|x||k|+α) as |x| → ∞. We then have that


(z) = 〈Dk
xG(x), ρ(x − z)〉

= Dk
z 〈G(x), ρ(x − z)〉,
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and
〈G(x), ρ(x − z)〉 =

∫
supp ρ

G(x + z)ρ(x) dx = O(|z||k|+α)

as |z| → ∞, since supp ρ is compact. Hence, Proposition 3.3 allows us to obtain that

lim
t→0+

〈
(ty), φ(y)〉 = 
(0) = 〈f(x), ρ(x)〉.

�

Observe also if φ ∈ E(Rn) and f ∈ E ′(Rn) satisfy the conditions (3.17)–(3.19), then,
when the distributional point value f(x0) exists, F (x, t) → f(x0) as (x, t) → (x0, 0) in
an angular fashion, while if the distributional symmetric value fsym(x0) exists and φ is
radial, then F (x0, t) → f(x0) as t → 0+.

4. Summability methods

In this section we explain several methods of summability that one can use in connection
with the Fourier Inversion Formula. We start with the (ψ)-summability.

4.1. The (ψ)-summability

Let ψ ∈ S(Rn) be any function with ψ(0) = 1. If g ∈ S ′(Rn) and ρ is a smooth function
in R

n with ρg ∈ S ′(Rn), then the evaluation

〈g(x), ρ(x)〉 (4.1)

is not defined, in general, because ρ may not belong to S(Rn). However, if ε > 0, the
evaluation

G(ε) = 〈g(x), ρ(x)ψ(εx)〉 (4.2)

is well defined. If
lim
ε→0

G(ε) = S (4.3)

exists, then we say that the evaluation 〈g(x), ρ(x)〉 is ψ-summable to S, and write

〈g(x), ρ(x)〉 = S (ψ). (4.4)

When g is locally integrable, (4.4) can be written as∫
Rn

g(x)ρ(x) dx = S (ψ), (4.5)

while if

g(x) =
∞∑

n=1

anδ(x − bn),

then (4.4) becomes
∞∑

n=1

anρ(bn) = S (ψ). (4.6)

In particular, if ψ(x) = e−|x|2 , then the (ψ)-summability becomes the Gauss–Weier-
strass summability; we may write 〈g(x), ρ(x)〉 (G–W) in this case.
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Proposition 4.1. Let ψ ∈ S(Rn) with ψ(0) = 1. Let f ∈ S ′(Rn). Then

f(x) =
1

(2π)n
〈f̂(u), e−iu·x〉 (ψ) (4.7)

distributionally in the space D′(Rn), that is, for all ρ ∈ D(Rn),

lim
ε→0+

〈
1

(2π)n
〈f̂(u), e−iu·xψ(εu)〉, ρ(x)

〉
= 〈f(x), ρ(x)〉. (4.8)

Moreover, relation (4.7) holds pointwise at any point x where the distributional point
value f(x) exists.

Proof. The result follows immediately from Propositions 3.3 and 3.4 because

1
(2π)n

〈f̂(u), e−iu·xψ(εu)〉 = F (x, ε), (4.9)

where F is the φ-transform of f for φ(x) = (2π)−nψ̂(x). �

Observe, in particular, that the Fourier inversion formula is always valid distribution-
ally, in the space D′(Rn), in the Gauss–Weierstrass summability sense for any tempered
distribution.

We also have pointwise convergence at all points where the symmetric point value
exists, provided that ψ is radial.

Proposition 4.2. Let ψ ∈ S(Rn) be a radial test function with ψ(0) = 1. Let f ∈
S ′(Rn). Let x0 ∈ R

n be a point where the distributional symmetric value fsym(x0) exists.
Then

fsym(x0) =
1

(2π)n
〈f̂(u), e−iu·x0〉 (ψ). (4.10)

4.2. Abel summability

The Abel method of summability follows by taking ψ(x) = e−|x| in the (ψ)-
summability procedure

〈g(x), ρ(x)〉 = S (A) (4.11)

if
lim

ε→0+
〈g(x), ρ(x)e−ε|x|〉 = S. (4.12)

There is an obvious problem in the application of this method, namely, the function
e−|x| does not belong to S(Rn) since it is not differentiable at x = 0. It is fair to say,
however, that e−|x| does have the behaviour of the space S(Rn) as |x| → ∞. If g satisfies
certain conditions near x = 0, then 〈g(x), ρ(x)e−ε|x|〉 can be computed, for instance, if
g is a locally integrable function in a neighbourhood of x = 0, or more generally if it is
a Radon signed measure in such a neighbourhood.

We can consider Abel means for general g if we accept that in some cases these
means are not unique. Indeed, let e(g) be an extension of g ∈ S ′(Rn) to the dual space
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(X ⊗̂ D(S))′, where we use polar coordinates x = rω, r � 0, ω ∈ S, and where X is the
space of restrictions of functions ρ(r) for ρ ∈ S(R) to [0,∞). Then ρ(x)e−ε|x| belongs
to X ⊗̂ D(S) and thus we can consider the Abel means G(ε) = 〈e(g)(x), ρ(x)e−ε|x|〉, and
their limit as ε ↘ 0 instead of (4.12). Some g have canonical extensions e(g), but in
general e(g) is not uniquely defined.

If we use Abel summability in the Fourier inversion formula, we obtain the means

U(x, t) =
1

(2π)n
〈e(f̂)(u), e−iu·x−t|u|〉, (4.13)

which is harmonic in H: Utt+
∑n

j=1 Uxjxj = 0. A similar analysis to that of Proposition 4.1
yields

lim
t→0+

U(x, t) = f(x). (4.14)

We also observe that for a fixed t > 0 the function U(x, t) belongs to S ′(Rn).
We can thus say that the Abel means in the Fourier inversion formula of a tempered

distribution f ∈ S ′(Rn) are those harmonic functions in H with these properties. Func-
tions like U(x, t) = t or U(x, t) = 3x2

j t− t3 are Abel means of f = 0, and thus the source
of non-uniqueness.

If f ∈ E ′(Rn), or more generally if f(x) = O(1) (C) as |x| → ∞, then one can define
a canonical Abel mean for the Fourier inversion formula as

U(x, t) = cn

〈
f(y),

t

(t2 + ‖x − y‖2)(n+1)/2

〉
, (4.15)

where

cn =
Γ ((n + 1)/2)

π(n+1)/2 =
( ∫

Rn

dy

(1 + ‖y‖2)(n+1)/2

)−1

, (4.16)

and where the kernel in (4.15) is the Poisson kernel for H. In this case U(x, t) is the
φ-transform of f for

φ(y) = cn(1 + ‖y‖2)−(n+1)/2.

Observe that if the distributional symmetric value fsym(x0) exists, then for any Abel
mean U(x, t) we have that U(x0, t) → fsym(x0), that is,

fsym(x0) =
1

(2π)n
〈f̂(u), e−iu·x0〉 (A). (4.17)

4.3. Cesàro summability

We can also consider Cesàro summability by spherical means [5, § 6.8]. Summability
by spherical means can actually be reduced to summability in one variable since using
polar coordinates, x = rω, r � 0, ω ∈ S, we obtain

〈f(x), 1x〉 = 〈F (r), rn−1〉 (C), (4.18)

where
F (r) = 〈f(rω), 1ω〉D′(S)×D(S). (4.19)
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The distribution F is not uniquely defined at r = 0; however, we can always write
f = f1 + f2, where f1 has compact support and where 0 /∈ supp f2. The evaluation
〈f1(x), φ(x)〉 is well defined for any φ ∈ E(Rn), so we need to consider only the case
when f = f2 satisfies that supp f ⊂ {x : |x| � a} for some a > 0. Then F will be
uniquely defined if we require that suppF ⊂ [a,∞).

We now explain when 〈f(x), φ(x)〉 is Cesàro summable by spherical means of order N ,

〈f(x), φ(x)〉 = L (C, N)r. (4.20)

If φ = 1, the (C, N)r summability means that the one-variable evaluation

〈F (r), rn−1〉 = L (C, N) (4.21)

exists in the (C, N) sense. For a general φ it means that 〈φ(x)f(x), 1x〉 = L (C, N)r. The
notation (C)r is used for Cesàro summability by spherical means, namely when there
exists some N such that the evaluation is (C, N)r.

Observe that the (C, N)r summability corresponds to the case where

ψN (x) = H(1 − |x|) (1 − |x|)N

N !
, (4.22)

in the (ψ)-summability. Here H is the Heaviside function.
If f ∈ K′(Rn) and φ ∈ K(Rn), then the evaluation 〈f, φ〉 exists in the (C)r sense, that

is, it exists (C, N)r for some N . The value of N depends on φ in this case: consider the
example where f(x) = eix and φ(x) = xn. On the other hand, if f ∈ S ′(Rn) and φ ∈
S(Rn) then the evaluation 〈f, φ〉 also exists (C)r since 〈f, φ〉 = 〈φf, 1〉, and φf ∈ K′(Rn),
but now if f ∈ S ′(Rn) is fixed, then there exists N such that 〈f, φ〉 exists (C, N)r for all
test functions φ ∈ S(Rn).

The Cesàro means of the Fourier inversion formula will converge distributionally, as in
the case of the Abel means and the (ψ) means, but this happens if N is large.

Proposition 4.3. Let f ∈ S ′(Rn). Then there exists N such that

f(x) =
1

(2π)n
〈f̂(u), e−iu·x〉 (C, N)r (4.23)

distributionally in the space S ′(Rn), in the sense that, for each ρ ∈ S(Rn),

lim
ε→0+

〈
1

(2π)n
〈f̂(u), e−iu·xψN (εu)〉, ρ(x)

〉
= 〈f(x), ρ(x)〉 (C, N)r. (4.24)

Proof. Indeed,〈
1

(2π)n
〈f̂(u), e−iu·x〉, ρ(x)

〉
=

1
(2π)n

〈f̂(u), ρ̂(−u)〉, (4.25)

and there exists N such that the evaluation 〈f̂ , φ〉 exists (C, N)r for all test functions
φ ∈ S(Rn), in particular for φ(u) = ρ̂(−u). But since

(2π)−n〈f̂(u), ρ̂(−u)〉 = 〈f(x), ρ(x)〉,

(4.24) is obtained. �
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It is interesting to observe if f ∈ E ′(Rn), then there is no need to use Cesàro summa-
bility in (4.23), that is, we actually get convergence of the spherical means. Similarly,
if f is periodic of periods in

∏n
j=1 τjZ, so that its Fourier transform is concentrated on

a discrete set, and the Fourier inversion formula is the Fourier series, then we also get
convergence. However, for a general f ∈ S ′(Rn) there is a value N for which (4.23) holds,
but the spherical means are not (C, M) summable if M < N .

When the distributional symmetric value fsym(x0) exists, (1.4) implies that we have
pointwise Cesàro summability,

fsym(x0) =
1

(2π)n
〈f̂(u), e−iu·x0〉 (C, N)r,

if N is large.

5. Continuity

If U(x, t) is harmonic in H, with distributional boundary value f(x) = U(x, 0+) ∈
S ′(Rn), and f is continuous in an open set Ω ⊂ R

n, then it is well known that actually
U(x, t) can be extended as a continuous function to H ∪ (Ω × {0}), and consequently,
U(x, t) → f(x) uniformly on compacts of Ω. In fact, this is a general result for the
φ-transform.

Proposition 5.1. Let f ∈ D′(Rn) and let F (x, t) be its φ-transform. Suppose that
φ ∈ D(Rn) or that (3.17)–(3.19) are satisfied. If f is an ordinary bounded function in a
neighbourhood of a point x0 and that function is continuous at x = x0, then

lim
(x,t)→(x0,0)

F (x, t) = f(x0), (5.1)

so that F can be extended as a continuous function to H ∪ ({x0} × {0}).

Proof. The results of § 3 show that (5.1) holds if x0 ∈ R
n \ supp f . Hence, it is

enough to prove (5.1) when f is an ordinary bounded function with compact support.
Let ε > 0, and let B be an open neighbourhood of x0, with compact closure, such that
|f(x) − f(x0)| < ε for x ∈ B. Write F (x, t) − f(x0) = G1(x, t) + G2(x, t), where

G1(x, t) = t−n

∫
B

(f(x) − f(x0))φ(t−1(x − x0)) dx, (5.2)

G2(x, t) = t−n

∫
Rn\B

(f(x) − f(x0))φ(t−1(x − x0)) dx. (5.3)

Then G2(x, t) → 0 as t → 0 uniformly on compacts of B, while

|G1(x, t)| � ε

∫
Rn

|φ(x)| dx, (5.4)

and (5.1) follows. �
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Observe that if the conditions of Proposition 5.1 are satisfied and f(x0) = γ distri-
butionally then F (x, t) → γ as (x, t) → (x0, 0) in a non-tangential fashion, while if the
distributional symmetric value exists, fsym(x0) = γ and φ is radial, then F (x0, t) → γ

as t → 0+. According to Proposition 5.1, if f is continuous at x = x0, then F (x, t) → γ

as (x, t) → (x0, 0) in an unrestricted fashion.

Proposition 5.2. Let f ∈ D′(Rn) and let F (x, t) be its φ-transform. Suppose that
φ ∈ D(Rn) or that (3.17)–(3.19) are satisfied. If f is a continuous function in an open
set Ω ⊂ R

n, then F can be extended as a continuous function to H ∪ (Ω × {0}), and
F (x, t) → f(x) uniformly on compacts of Ω. Conversely, if F (x, t) → f(x) uniformly on
compacts of Ω, then f is a continuous function in Ω.

Proof. The direct part follows immediately from the previous proposition, while the
converse result follows because uniform convergence on compacts implies distributional
convergence. �

In particular, we have the following result for summability of the Fourier inversion
formula.

Corollary 5.3. Let f ∈ S ′(Rn). If f is a continuous function in an open set Ω ⊂ R
n,

then the ψ means (for any ψ ∈ S(Rn)), any Abel means, or the Cesàro means of large
order converge to f uniformly on compacts of Ω:

f(x) =
1

(2π)n
〈f̂(u), e−iu·x〉 (T), (5.5)

uniformly on x ∈ K, K a compact subset of Ω, for (T) = (ψ), (A), or (C, N)r for N large.
Conversely, if (5.5) holds uniformly on compacts of Ω, then f is a continuous function
on Ω.

6. The support of a distribution

We now show how we can obtain a characterization of the complement of the support of
a distribution if we add some extra conditions to the pointwise convergence to zero of the
symmetric means. Naturally, the uniform convergence to zero of the means on compacts
of an open set Ω tells us that Ω ⊂ R

n \ supp f , because of Proposition 5.3; this is the
result of González Vieli and Graham [7] when (T) = (C, N)r for N large.

Let us start with the φ-transform.

Theorem 6.1. Let f ∈ D′(Rn) and let F (x, t) be its φ-transform. Assume that
φ(x) � 0 for all x ∈ R

n, while φ(0) > 0. Suppose that φ ∈ D(Rn) or that (3.17)–(3.19)
are satisfied. Suppose that pointwise

lim
t→0+

F (x, t) = 0, ∀x ∈ Ω, (6.1)

where Ω is an open set. Let p ∈ [1,∞] and suppose that for 0 < t � t0 the function
F (x, t) is locally bounded in Lp(Ω), i.e. if K is compact in Ω, there exists a constant
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M = M(K, p) such that ( ∫
K

|F (x, t)|p dx

)1/p

� M (6.2)

for p < ∞, or
sup{|F (x, t)| : x ∈ K} � M (6.3)

if p = ∞. Then Ω ⊂ R
n \ supp f .

Proof. It is sufficient to show this when p = 1, since local boundedness in Lq(Ω)
for q � 1 implies local boundedness in L1(Ω). Now, local boundedness in L1(Ω) plus
distributional convergence yield that f is a signed Radon measure in Ω: if {tn} is any
sequence of positive numbers that converges to zero, then local boundedness in L1(Ω)
implies that there exists a subsequence {tnk

} such that F (x, tnk
) converges weakly∗ in

the dual space of C(Ω), that is F (x, tnk
) → ν(x), where ν is a signed Radon measure

in Ω; but clearly f = ν in Ω.
We can then write f = fac + fdis + fsin, in Ω, where fac, the absolutely continuous

part, is a locally integrable function in Ω,

fdis(x) =
∑
a∈A

caδ(x − a),

where A is countable at the most and ∑
a∈A∩K

|ca|

converges for all K compact with K ⊂ Ω, and where fsin is a continuous signed measure
concentrated on a set of Lebesgue measure zero. But the distributional point value fac(x)
exists almost everywhere because fac is locally integrable and equals the distributional
point value f(x) almost everywhere since fdis(x) = fsin(x) = 0 almost everywhere, and
from (6.1) those values are 0, so that the function fac is null almost everywhere in Ω, and
so the distribution fac = 0 in Ω. On the other hand, if ca0 �= 0, then the contributions
from ∑

a∈A\{a0}
caδ(x − a)

and from fsin(x) give parts of F (a0, t) that are of order o(t−n) as t → 0+, so that
the main contribution comes from ca0δ(x − a0), which yields F (a0, t) ∼ ca0t

−nφ(0) as
t → 0+. However, this is not possible because of (6.1); hence, the discrete part fdis also
vanishes. Thus, f = fsin = dµ, a singular signed measure. We can write µ = µ+ − µ−,
where µ± are positive measures, concentrated on disjoint sets, Z±. But using the results
of [14, Chapter 4], the set of points x0 with infinite upper symmetric derivative

lim sup
ε→0+

ε−n

∫
|x−x0|<ε

dµ±(x) = ∞ (6.4)
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is of full measure with respect to |µ|, and at those points, because φ(x) � 0 for all x ∈ R
n

and φ(0) > 0,

lim sup
ε→0+

|F (x0, ε)| � lim sup
ε→0+

ε−n

∫
|x−x0|<ε

φ(0) dµ±(x), (6.5)

contradicting (6.1); therefore, fsin = 0. �

We immediately obtain a corresponding result for the characterization of the comple-
ment of the support in the Fourier inversion formula.

Corollary 6.2. Let f ∈ S ′(Rn). Suppose that pointwise

1
(2π)n

〈f̂(u), e−iu·x〉 = 0 (T) (6.6)

for all x ∈ Ω, where Ω is an open set, and where (T) = (ψ), (A) or (C, N)r for N large.
If the means are locally bounded in Lp(Ω) for some p ∈ [1,∞], then Ω ⊂ R

n \ supp f .
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