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THE GENERALISATION OF TUTTE'S RESULT FOR 
CHROMATIC TREES, BY LAGRANGIAN METHODS 

D. M. JACKSON AND I. P. GOULDEN 

1. Introduction. A i£-coloured rooted tree t is said to have colour 
partition L if L is a K X oo matrix with elements ltj equal to the number 
of non-root vertices of colour i and degree j . If adjacent vertices are of 
different colours then t is called a chromatic tree and L a chromatic partition. 
The tree has edge partition D where D is a K X K matrix with elements 
dij equal to the number of edges, directed away from the root, from a 
vertex of colour i to a vertex of colour j . 

In this paper we consider a method for enumerating trees with respect 
to colour and degree information. The method makes use of elementary 
decompositions of trees, and the functional equations which are induced. 
A number of new results are obtained by this means. More specifically, 
we consider (Section 3) the enumeration of rooted plane X-coloured trees 
with given colour and edge partitions. Remarkably, the number of such 
trees which are planted is a multiple of the number of spanning arbores­
cences on a graph with the edge partition as its adjacency matrix. This 
result is used (Section 4) to obtain the number of rooted plane i£-chroma-
tic trees with fixed chromatic partition, a number given by Tutte [5] for 
planted trees in the case K = 2. Finally, a new combinatorial correspon­
dence between two sets of trees is given (Section 5) which yields the 
de Bruijn-van Aardenne Ehrenfest-Smith-Tutte (BEST) theorem as a 
special case. 

We use a familiar decomposition of rooted trees. Associated with this 
is a system of functional equations which may be solved by a specialisa­
tion, given in Section 2, of the Lagrange theorem in many variables. The 
specialisation accounts for the persistence, in combinatorial enumeration, 
of determinants of matrices with row and column constraints (see, for 
example, [6]). 

Throughout this paper we use the notation: the number of non-root 
vertices of colour i is nt = ]C^i/<;•(= ]Cf=i^*)'» the s u m °f the o u t " 
degrees (edges are directed away from the root) of non-root vertices of 
colour i is qt = X ^ i 0 "" ^)hj\ the number of non-root vertices is 
N + 1 = n\ + . . . + nKy where K is the number of colours. 
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If A is a K X K matrix with elements aijt we write A = [aij]KXK and 
a,ij = [A]ij- \\dij\\ denotes the determinant of A and cof5fZ[a^] is the 
(5, /)-cofactor of A. If a, /3 C {1, . . . , K] then A [a \ ft] is the submatrix 
of A intercepted by rows with labels in a and columns with labels in 0. 
Let M = [niij]KXK be a non-negative integer matrix. Then 

A M = n *<? M! n w !̂, and j ! ( i ! ) " \ = 7 i n i 

the multinomial coefficient, where7 = i\ + . . . + i n and i = (iu . . . , in). 
If/(x) is a formal power series in x = (xi, . . . , xn) then [x!]/(x) denotes 
the coefficient of X\il . . . xn

in in / (x) , [x] denotes the operator [xi . . . xw] 
andZ x / (x) = / ( 0 ) . 

2. The Lagrange theorem and a specialisation. The following 
theorem is the multivariate extension of the Lagrange theorem to formal 
power series. 

THEOREM 2.1. Let <j> = (</>i, . . . , <f>K) and y be formal power series in the 
indeterminate s Ç = (£1, . . . , £K) awd wi/& wo ^rm^ zerc/ft negative exponents. 
Suppose that Ç = (fi, . . . , f*) satisfies ^ = f *#*(?) /or i = 1, . . . , K. 
TT&e/z if v = (PI, . . . , v*) 

Il 0KU d -̂ II 

Proof. See [3] and [4] for formulas which are easily shown to be equiva­
lent to the above by simple row and column multiplication. 

The following corollary is useful in allowing us to avoid the extraction 
of coefficients from the determinant in Theorem 2.1. 

COROLLARY 2.2. Under the conditions of Theorem 2.1 further suppose 
that <t>i(Q is independent of ijfor each (i,j) G y C {1, . . . , K}2. Then 

[<v]?r = (n..- v.)'1 Z llfi^i - **„l| i l (Ki"" • • • *«""•]*/') 

where the summation is over all non-negative integer K X K matrices such that 

K 

J2 Pa = VJ — rj, j = 1, . . . , K and 

Hij = 0 for each (i,j) £ 5^. 

Proof. From Theorem 2.1 we have 

II vt d%j 
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Let D^ denote the partial differential operator 

Then by differentiating the determinant we have 

K'HT = ç <»!rl*{|««a?«(,v<) - ^{Dr%~ */*) 
where 

S Mo- = *̂  - *> 

But, by Leibnitz's theorem we have 

where \xi0 = 0 if (i, j ) £ 5^. 
Accordingly, 

[<Y = Z (V!)_1I|Ô« - "rVoli n UspfV/ ')} 

and the result follows. 

3. Plane rooted trees with given colour and edge partitions. Let 
0Ci7.

(ijC)(L, D) be the number of plane rooted ^-coloured trees with root 
colour c and degree r, colour partition L and edge partition D. 

LEMMA 3.1. Let ^\{r) be the set of plane rooted K-coloured trees with root 
colour i and root degree r, and let & t

{1) be denoted by & t. Then 

i) G w « y ^ <#< h) #7/c r ^ ^ïT) 

where Cr denotes the cyclic group of order r. 

Proof, (i) We note that the vertex adjacent to the root has degree 
k + 1, and colour j for some k ^ 0 and j = 1, . . . , K. 

(ii) Select r plane planted trees and identify roots. 

THEOREM 3.2. 

0e, r(L,D) = r~x £ ct>(d)yc,rd-l(d~1L,d-1D), 
dlr.L.D 

where 

c,r
 ;(L, D) = j-jj^| \ r _ x j«cCofcc[ô„», - d f i]. 
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Proof. Let [X]{j = xtj, [W]tj = wtj, a = (ah . . . , aK) and 

*<(a) = ZZ^a(x)(L,D)XLWDan 

L D 

Let A<§r(a) = /^(a) r and 7,,r<*>(L,D) = [XLWDan]/^, r(a). Thus from 
Lemma 3.1 (i) we have 

K 

A<(a) = E w ^ ^ f a ) ) 

where 

g,{\) = J^XjX'1-

Let ctj = ajgj(hj(a)) so 

A* (a) = 2 ] ^ ^ . 

Thus 

7«.,ao(L,D) = [X1W 

where 

Dan]^Ç wcja,j 

From^Corollary 2.2 we obtain 

[XLWDan](g^a,)r 

?-i+...+rjK:=r M 

X \Y\ failli d,,-r,S, 
2 *2 . . . J LTO<i $1 x " . . . W« 

diK~rKhc 

X[a?" . . .aK
m«]gr[*twtiBt))} 

where the summation is over all M such that JZiLi m^ = tij — r$. 
Accordingly 

yJK){U D) = r!(n - l̂ qKDlL!)-1 £ {ft ( M } 

X \\dijtii - (dij - rfite)\\. 
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16 D. M. JACKSON AND I. P. GOULDEN 

r, + ...+ rK=r 

But 

£ \\htim - (dy - r,5ic)|| ft ( t ' ) 

= [XT](1 + *)"«.+-+d«it-1 2 COfeJÔ^ - (*„]<*„, 
7 7 1 = 1 

= nc\ r L i / coice[àijni - dtj] 

since ||ô^w* — dij\\ = 0. The result follows from Lemma 3.1 (ii) using the 
cycle index polynomial for the cyclic group. 

An immediate specialisation of Theorem 3.2 to the case K = 1, r = 1 
gives us Tutte's result [5], that the number of plane planted trees with ij 
non-root vertices of degree j , for j ^ 1, is (n — l ) ! ( i ! )~ \ where i = 
(iu i2, . . .) and n = ix + i2 + . . . . 

By a straightforward argument for embedding rooted trees in the plane 
it follows that the number of labelled rooted i^-coloured trees with root 
colour c, root degree r, colour partition L and edge partition D may be 
obtained from yc,r

(K) (L, D). The required number is given by 

(N+2)\(rl EI 0"-l)!^l"17e.r
at)(LID). \ir\ EI 

4. Plane planted trees with given chromatic partition. The 
number of achromat ic plane planted trees with root colour c and chro­
matic partition L is denoted by %c(X)(L). 

THEOREM 4.1. 

Xc
(K)(L) = (L!)"1 t ( N - iy.lx'M-x) 

where 

'«-fi(s(!;)(,"+,rlM-
Proof. Clearly 

D 

where the summation is over all D for which 

K K 

^2 dtj = nj9 22 djt = 9.i + àjc and 

djj = 0 for j = 1, . . . ,K. 
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Let « = (n - lJ îqlw^L!)- 1 so that, by Theorem 3.2, 

Xc(K)(L) = a>[vnuV] E cof, 
for z?^; 

= 0)[\nUqUc] C0lc &iAHuivA ~uflj e x P ) H v i H u i \ , 

since 

Z^(i)77 = #(x)exP 
lib l! lS x V' 

where g(x) is multilinear. Let u = Ui + . . . + uK. Noting that 
det(I + A) = 1 + trace A for A with rank one, we have 

Xc 
(K) (L) = œ[\n Vaulted exp \ ]T) Vj(u — Uj) r cofcc[ô0w — ut] 

= o)[\n VcU1^'2 exp ^ ]T) VJ(U ~ UÙ) f 

= (Lir1 f i g,![uq]M
x-2 ft (« - ««r- l +" • 

Let J ij be the i X i matrix of all l 's. Then, considering the exclusion of 
objects from positions, we obtain 

Xc<
x>(L) = ( L O - ' p e r t r ^ - Q ) 

where 0 is formed by appending K — 2 rows of zeros to the matrix 
©f«i J„._i+5.c>q.. Expanding the permanent of a sum, 

per (JN,N - 0 ) = Z (-1)*(JV - *)!**, 

since per J i t i = i!, where 

$k E perOH/3] 
( a , /3c{ l , . . . , JV) 

| | a | = |0l=* 

+.T+mK=jc LiWmJ \ Mi Jmi'f imi + ...+mK 

since, for a non-zero contribution to the permanent, we must select mt 

rows and Wj columns from the i-ih block of the direct sum, a selection 

which may be carried out in I I I l lc\ ways. The remaining 

factor, tnt\t comes from the permanent of the submatrix constructed in 
this way. Thus sk = [xk]P(x) and the result follows. 
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It follows immediately from Theorem 4.2 that 

xi<2>(L) = w 1 ! (n 2 - l ) ! (L! ) - 1 , 

the 2-chromatic result of Tutte [5]. 

Theorem 4.2 allows us to conclude that Xc(K)(L) may be computed in 
time 0(ikf (log M)2) where M is the number of non-root vertices. 

5. A generalisation of the BEST theorem. Let rc
(X)(D) be the 

number of out-directed spanning arborescences, rooted at c, of a graph 
with adjacency matrix D. Then by the matrix tree theorem ([2], [6]) we 
have 

rc
(X)(D) = coî cclôijfii — dij]. 

This result allows us to identify the determinant which is involved in 
Theorem 3.2. 

THEOREM 5.1. 

6c,x
m(L,D) = (LIDO-^ftffiK»* - 1 + 8icyJTc

(K)(D). 

Proof. This follows directly from Theorem 3.2. 

We now derive the BEST theorem [1], a correspondence between 
Eulerian dicircuits and spanning arborescences, from Theorem 5.1. 

THEOREM 5.2. Let & be a digraph on the vertex set {1, . . . , K) with in-
degree (i) = out-degree (i) = kt for i — 1, . . . , K, e Eulerian dicircuits 
and tc out-directed spanning arborescences rooted at c. Then 

e = (k — 1) \tc for any c = 1, . . . , K. 

Proof. Let D be the adjacency matrix of @. Let ncc be the number of 
sequences over {1, . . . , K) which begin and end with c, with dij occur­
rences of the substring ij for i,j— 1, . . . , K and thus 

K K 

^Hdij = ^dji = kt 
3=1 j=l 

occurrences of i for i ^ c and 

K K 

Yl, dCj — 1 = X djc — 1 = kc — 1 
3=1 7 = 1 

non-terminal occurrences of c. 
It is immediate that e = Y>\kc~

lncc since edges are distinct. A sequence 
in the set counted by ncc is a plane planted tree rooted at a vertex of 
colour c such that, in the notation of Theorem 5.1 In = kh lid- = 0,7 9^ 2, 
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i^c;lc2~kc— 1, lci = 1 and lcj = 0, j è 3. T h u s , we have r = 1, 
<Z* = &*> i 7e c\ qc = kc — 1 and m = ku i = 1, . . . , X. The result 
follows directly from Theorem 5.1. 
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