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1. Introduction

The aim of this work is to study k-folding map-germs on complex surfaces in C?
and relate them to the extrinsic differential geometry of smooth surfaces in R3.

The standard Whitney fold of order k with respect to the plane 7 : y = 0 in C?
is the map wy: C3 — C3, given by wy(z,y, 2) = (2,9, z). The map wy “folds’ the
space C? along the plane 7y, gluing the points (z,v, 2), (z,&y, 2), ..., (z,¥ 1y, 2),
where & = €27/¥ is a primitive kth-root of unity. The Whitney fold of order k with
respect to any plane 7, denoted by wf, is defined similarly in §2.

Let M be a complex surface in C3. We call the restriction of wf to M the k-
folding map on M with respect to w. As our study is local, given a point p on M and
a plane 7 in C? through p, we choose a coordinate system so that M is locally the
graph of a function z = f(x,y) and @ =y : y = 0 (see remark 2.3(4)). Then the
germ at py of the k-folding map is represented in standard form by the map-germ
Fy : (C%,0) — (C3,0), given by

Fk(ﬂ?,y) = (x7yk’f(x’y))' (11)
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k-Folding map-germs and hidden symmetries in the Euclidean 3-space 61

For an analytic (resp. smooth) surface M C R3, the k-folding map at a point p
on M is constructed by complexifying M (resp. a certain jet of a parametrization
of M) at p. The singularities of a k-folding map-germ encode the local symmetries
of M with respect to the (complex) reflection group of order k& whose hyperplane
arrangement consists of the single plane 7.

The study of 2-folding map-germs on surfaces in R? was carried out by Bruce
and Wilkinson [5, 8, 32] (see [6, 12-15, 32] for more work on the subject), without
resorting to complexification. The real map-germs in [5, 8, 32] are called folding
map-germs and our 2-folding map-germs are their complexifications. Complexifying
does not give extra information when k& = 2. For k£ > 3, per contra, k-folding maps
reveal a great deal of new geometric information. The local symmetries captured
by these map-germs cannot be seen in the real case, which is why we call them
hidden symmetries of M C R3. The loci of their singularities are visible on M and
capture extrinsic geometric information of the surface.

Bruce and Wilkinson showed that folding maps capture the sub-parabolic and
ridge curves, as well as umbilic points and other special points on these curves:
these are robust features of the surface (i.e. they are special geometric features
that can be traced on an evolving surface; see §6.2 for details). Passing to the
complex setting, we show that the singularities of k-folding maps, k > 2, capture
in a unified way, known robust features obtained by considering the contact of
the surface with lines, planes or spheres (parabolic, sub-parabolic, ridge and flec-
nodal curves, umbilic points, B3, C3 and Ss-points, A3-points, cusps of Gauss
(gulls-points) and butterfly-points). Our approach also reveals a new robust fea-
ture on surfaces: when k is divisible by 3, we obtain a new curve, which we call the
Hj-curve. We also obtain new special points on previously known curves as well
as on the Hs-curve. This motivates the following question: can the Hjs-curve be
obtained via the contact of the surface with some special geometric object? Further
work is also required for understanding the link between local (hidden) symmetries
of a surface and its contact with lines and planes.

The paper is organized as follows. In § 2, we set notation and give some prelimi-
naries. In § 3, we obtain formulae for the invariants C, T, u(D) and r(D) of k-folding
map-germs. These are respectively, the number of cross-caps, the number of triple
points, the Milnor number and the number of branches of the double-point curve.
These invariants determine the finite A-determinacy and the topological class of a
k-folding map-germ.

We show that there are no A-simple k-folding map-germs for k > 5; also the
modality of the map-germs is large for k large. This is why producing normal forms
of finitely A-determined germs, as is usually done in singularity theory, is not of
great use here. Our classification is of strata in the jet space which are manifolds
formed by unions of finitely A-determined germs with the property that all germs
in a given stratum are topologically equivalent.

We produce in §4 a stratification of the [-jet space of k-folding map-germs in
standard form which is identified with the I-jet space of germs of functions J(2,1).
The stratification results are summarized as follows.
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THEOREM 1.1. For any integer k > 2, there is a stratification Sy, of J'1(2,1) such
that, for any stratum S in Sk of codimension <4, all k-folding map-germs in stan-
dard form with 11-jets in S are finitely A-determined and are pairwise topologically
equivalent.

We relate in §6 the stratification of the jet space to the extrinsic differential
geometry of surfaces in R3. After clarifying what it means for a surface to be
generic, we deduce the following result about the topological classes of k-folding
map-germs.

THEOREM 1.2. Let k > 3 be an integer and let M be a generic smooth surface in
R? (or a complex surface in C3). Then, at any point p on M and for any plane
through p, the k-folding map-germ at p with respect to m is finitely A-determined
and is topologically equivalent to one of the following map-germs:

M§ (2,y) e (2,95, ),

M (z,y) — (z, ’“xy+y)

MP (@) (2t yd aly), 1=2,34,

NF - (@)= (ot g + 2Py + 7 ), 1=3.4,

of  (z.y)~ (=, Py 2%y + ).

Pr (zy) = (e yh oy +o? +920), 1=2,3,4,

3 (z,y) — (z, kxy+y +y +4°),

N{Z (:U,y)'—>( kxy-i—y +y —|—y),

Rk ($7y)|—>( zy+y + y° +y)

Uk (z,y) — (z, kxy—i—Qxy +y +y),

Uk (z,y) — (2, y*, 2%y + 2292 + v° + 4°),
Viw,? ) (z,y) — (z, kxy—i—l‘y —|—a”y +b“,ac y+y)
WBZJ W (z,y) = (5", 2%y + zy? +ch + 4z?y* + y*),
W4qz(1‘) (z,y) — (z, Z:ny—Fy +y' +9°),

X% (z,y) — (x,y", zy —I—y +x y+y)

% SR IS S i )

(t) The constants aj ;,b; ;» (resp. ¢;) are as in proposition 4.23 (resp. 4.25) and
the conditions on the indices are as in table 6.

It is worth noting that 3-folding map-germs can have A-simple singularities and
their corresponding strata in Sz are A-constant. For k > 4, none of the k-folding
map-germs are A-simple, except for immersions and for M, which is the C3-
singularity. The strata of Sy give rise to moduli of finitely determined map-germs
with constant invariants C, T, (D) and (D).

The representatives M§ and M} are quasi-homogeneous, and MF, with 21k,
Qk, with 124k, R%, with 201k and U%, with 31k, can be replaced by quasi-
homogeneous representatives of the same topological class (see remarks 4.10). For
these cases, the invariants can be calculated in terms of the weights and degrees
[24] and the topological triviality of the strata in the jet space follows from
equisingularity results in [9].
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Figure 1. Robust features captured by k-folding map-germs away from umbilic points for
k > 4, even and divisible by 3 (see theorem 6.5 and remarks 6.6 for the robust curves at
umbilic points).

The robust features captured by k-folding map-germs on a generic surface are
sketched in figure 1. An interesting finding is that, having studied symmetries of
infinitely many orders (for any k > 2), we obtain a finite collection of robust features
that occur along curves and a finite collection of special points on these curves if
we discard the VF33" and WHJ-points.

2. Preliminaries

We introduce here k-folding map-germs and notation from singularity theory that
are needed in the paper. We start with the singularity theory notation, see for
example [25, 31] for more details.

2.1. Singularities of map-germs

We deal with germs F: (M,p) — (N, F(p)) of holomorphic maps between
complex manifolds. Taking coordinate charts, this is the same as dealing with
map-germs (C™,0) — (CP,0).

Let O,, be the local ring of germs of holomorphic functions (C™,0) — C and m,,
its maximal ideal (which is the subset of germs that vanish at the origin). Denote
by O(n,p) the O,-module of holomorphic map-germs (C",0) — CP, so O(n,p) =
@D, On.

Let R (resp. £) be the group of bi-holomorphic germs (C™,0) — (C™,0) (resp.
(CP,0) — (CP,0)). The group A =R x L of right-left equivalence acts on m,, -
O(n,p) by (h1,hs) - G = hy oG ohy'. Two germs H, G are said to be A-equivalent,
and write H ~4 G, if H = (hl,hQ) - (G for some (h1, hg) e A

The [-jet space of map-germs in m,, - O(n,p) is by definition

Jl(n,p) =my - O(n,p)/mffl : O(nvp)‘
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Given a germ G € m,, - O(n, p), we identified its I-jet j'G with its Taylor polynomial
of degree [ at the origin. Let A; be the subgroup of A whose elements have I-
jets the germ of the identity. The group A; is a normal subgroup of A. Define
AW = A/A;. The elements of AY) are the I-jets of the elements of A. The action
of A on m, - O(n,p) induces an action of the jet group AW on J!(n,p) as follows.
For j'G € J'(n,p) and j!(h1, ho) € AV, j!(hy, ha) - 57 G = j((h1, ho) - G).

A germ G is said to be finitely A-determined if there exist an integer [ such that
G ~4 H for any H with j'H = j'G; j'G is then said to be a sufficient jet of G.
The germ G is then said to be I-A-determined. The least [ satisfying this property
is called the degree of determinacy of G.

There are classifications of finitely determined map-germs for various pairs (n, p).
When p =1, there is Arnold’s extensive list of the R-classification of germs of
functions [1]. For (n,p) = (2,2), classifications were carried out by several authors,
the most extensive ones are given in [16, 29]. Here we need only the singularities
of A.-codimension <2, which we reproduce in table 9. For (n,p) = (2,3), Mond
[22] produced an extensive list of finitely .A-determined map-germs. We use in this
paper the following singularities from [22]:

Immersion (z,y,0)

Cross-cap  (x,9?%, xy)
Sk (w92, 9% + 2" y), k> 1
Bk (I,y2,1'2y + y2k+1)’ k 2 2
Cs (z, 92, 2y + 25y)
Hk (x7xy+y3k717y3)7k>2
Xy (z, 9%, 2%y + zy® + y*)

The notion of a simple germ is defined in [1] as follows. Let X be a manifold and
G a Lie group acting on X. The modality of a point g € X under the action of G on
X is the least number m such that a sufficiently small neighbourhood of g may be
covered by a finite number of m-parameter families of orbits. The point ¢ is said to
be simple if its modality is 0, that is, a sufficiently small neighbourhood intersects
only a finite number of orbits. The modality of a finitely .A-determined map-germ
is the modality of a sufficient jet in the jet-space under the action of the jet-group.

We also need the notion of topological equivalence. We say that two germs H,
G € m,, - O(n,p) are topologically equivalent if H = hy o G o hfl for some germs of
homeomorphisms hy and hs of, respectively, the source and target.

2.2. Reflections and k-folding maps

In all this paper, we fix the inner product {a,b) = Y, a;b; in C3.

Let m be an element of the affine Grassmannian Graff(2,3) of planes in C3.
A plane 7 has equation (g, v) = d, where v is a fixed non-zero vector orthogonal to
m and d is a fixed scalar. However, any non-zero scalar multiple of (d,v) gives an
equation of 7, so 7 is identified with the class (d,v) € CP? of (d,v) € C*.

Let 7 : {g,v) = d be a plane in C3. The orthogonal projection of a point p € C3
to m along the vector v is the point ¢ = p+ \v € 7 with A = (d — (p,v))/ (v, v).

Consider the map wf : C? — C3 given by

Wi (p) = q+ Nv = p+ I+ \o.

https://doi.org/10.1017/prm.2022.90 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.90

k-Folding map-germs and hidden symmetries in the Euclidean 3-space 65

If we take (d',v") = (ad, aw), a € C\ 0, as another representative of 7 = (d,v), then
(d—(p,v)))
a2 (v,v) a2k (v, v)

=p+ v+ Nal"Fy

p—l—)\lvl—l—)\/k?/:p-i-a

=q+ \al7Fy.

Clearly, the map w] depends on the points on the line (ad,av) € C* and not
merely on the class of the line (d,v) € CP3. However, all these maps are L-

equivalent: the bi-holomorphic map ¢ — Av — ¢ — A F v composed (on the left)
with the map w] with 7 represented by (d,v) gives the map w] with 7 represented
by (ad, aw). Therefore, the L-class of w] depends only on 7.

DEFINITION 2.1. The Whitney fold of order k (k-fold for short) with respect to
a plane 7 € Graff(2,3) is the L-class of the map w*. We still denote by wyp any

Pl

representative of wf obtained by choosing a representative (p,v) of m = (d,v) €
CP3.

A k-fold may be viewed as generalization of the Whitney fold (x,y?, z)
(2,92, 2). While the Whitney fold folds the space along the plane {y = 0} and iden-
tifies the points (z,y,2) and (z, —y, z), the Whitney fold of order k with respect
to a plane 7 represented by (d,v) is a generically a k-to-1 branched cover, rami-
fied along 7, and identifies k-tuples of points ¢ — A\v, ¢ — EMv, ..., q — ¥~ 1\, where
€ = e*™/k ig a primitive kth-root of unity and ¢ € =.

The map wf can also be viewed as the quotient map associated to the action of
the cyclic group Z/kZ, regarded as a complex reflection group whose hyperplane
arrangement consist of the single plane 7. We regard Z/kZ as the group generated
by the order k complex reflection ¢ — Av — g — EAv. Observe that, even though the
plane 7 does not determine wf uniquely (it depends on the choice of a representative
of = (d,v) € CP?), the action of Z/kZ on C? is determined uniquely by 7.

Given any subset X C C3, wI'(X) encodes the order k reflectional symmetries
of X with respect to m. See [17] for a recent work on singular maps related to
reflection groups.

DEFINITION 2.2. Let M C C3 be a complex surface, p a point on M and k > 2 an
integer. Given m € Graff(2,3), the k-folding map-germ on M at p with respect to
is the A-class of the restriction of wj to M at p. We denote any representative of
the class by FT: (M,p) — (C3,w(p)).

REMARKS 2.3.
1. All the map-germs FJ7 with 7 represented by (ad, av), a € C, are A-equivalent
as the maps w] are L-equivalent. Thus, the A-class of I} depends only on 7 and

not on the choice of a representative (p,v) of 7 = (d,v) € CP3. In all the paper, we
work with a representative of the A-class of F.

2. If p ¢ m, then FY is the germ of an immersion. Thus, to obtain any meaningful
local geometric information about the surface M we should take the plane m passing
through the point p € M.
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3. The image of F) is the image by wf of the germ (M, p), so for p €e TN M, F
captures order k local symmetries of M with respect to 7. The aim of this paper
is to understand how these local symmetries are captured by the A-singularities of

4. Let po e mN' M and (d,v) a representative of w. If v ¢ T, M, then FJ is
a germ of an immersion and is A-equivalent to (x,y) +— (z,y*,y). Suppose that
v € Ty, M. We choose a coordinates system in C* so that po is the origin, the
z-axis is along a normal vector to M at pg, the y-axis along v and the z-axis
orthogonal to the previous two axes. Then we can take M locally at py as the
graph z = f(z,y) of some holomorphic map f in a neighbourhood U of the origin.
In this coordinate system, we have m = 7y : y = 0. Consequently, the k-folding map-
germ on M at pg is the germ Fy, = F[° : (C?,0) — (C3,0), given in standard form
Fy(z,y) = (z,y*, f(z,y)). In view of this, we shall always take a given k-folding
map-germ in standard form (1.1).

5. Definition 2.2 is adapted as follows for the real case. When M is an analytic
surface in R3, denote by Mc ,, its local complexification at p and by 7¢ the com-
plexification of 7. The k-folding map-germ on M at p with respect to 7 is then
defined as the A-class of the restriction of w;® to Mc, at p. When M is a smooth
surface, we consider the k-folding map-germ of a given jet of (a parametrization of)
M at p.

3. Topological invariants

We recall the definitions of some key A-invariants of map-germs (C?,0) — (C3,0).
These are the Milnor number of the double-point curve (D), the number of cross-
caps C and the number of triple points 7. We give formulae for computing these
invariants for k-folding map-germs, and use the invariants to study the finite A-
determinacy and topological equivalence of these germs.

3.1. The double-point curve

We start by recalling the definition of the double- and triple-point spaces of a
corank one map-germ F': (C",0) — (C"*1,0) from [19]. Any such germ can be writ-
ten in a suitable coordinate system in the form F'(z,y) = (z, fn(z,y), fn+1(z,v)),
with x = (z1,...,2,—1) € (C"1,0) and y € (C,0).

Given h € O, the iterated divided differences of h are defined as

h(x7yl) —h/(.’E,y)
Y-y
h[xayvy/,] — h[‘ray7y/]
v —

h[x7y7y/} = S On-‘rh

h[ma Y, y/7 y//] - S O7L+2'

The multiple point ideals of a map-germ F' as above are defined as

IQ(F) = <fn[xayay/]7f7l+1[z7y7yl]> g On+1;

Ig(F) = <fn[x7yay/]vfn[xvyvylay”}vfn+1[xayvy/]afn+1[$7y7y17yn]> g On+2o
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The double- and triple-point spaces of F' are, respectively,
D2(F) = V(IX(F)),
D3(F) = V(I3(F)).

By counting variables and generators, it follows that D?(F) (resp. D3(F)) is a
complete intersection whenever it has dimension n — 1 (resp. n — 2).

The double-point space D?(F), as a subset of (C"~! x C x C,0), consists of
points (z,y,y’) such that either y #y" and F(z,y) = F(z,y’) or ¥/ =y and F
is singular at (x,y).

To define the source double-point space, we assume that F' is finite. Then, the
projection 7: D?(F) — C"~! x C given by (z,y,y') — (z,y) is also finite. As a
consequence, the image of 7w can be given a complex structure as the 0-th Fitting
ideal Fo(7m+Op2(f)) of the push forward module 7. Op2(py (see [26] for details). The
source double-point space D(F') is defined as the projection 7(D?(F)) endowed with
this complex space structure, that is,

D(F) = V(Fo(mrOpa(p))) C C".

To compute the source double-point space of a k-folding map-germ, we need the
following result.

LEMMA 3.1. Let Z be a germ of an n-dimensional Cohen—Macaulay space and let
hi,...,hy in Oz be reqular elements. Write X; =V (h;) and X =V (hy...h,). Let
¢: Z — (C™,0) be a germ of a morphism of complex spaces such that the restrictions
Blx;: Xj — (C™,0) are finite. Then Fo((¢|x)«Ox) = H;Zl Fo((¢lx;)+O0x;)-

Proof. Tt is enough to prove the statement for the case r = 2. We can assume that
X1 and X5 have no common irreducible component as topological spaces. Indeed,
consider the two subspaces X; = V(hy —t) and Xy = V(hs) of Z x (C,0) and the
map ¢ x Id: Z x (C,0) — (C"*1,0). The spaces &} and X5 have no common irre-
ducible component. Moreover, if the statement holds for ¢ x Id, then it holds for ¢.
This is a consequence of the fact that Fitting ideals commute with base change
(see lemma 1.2 in [26]). Now consider the disjoint union X; U X5 C Z Ul Z and the
commutative diagram

Xlqu#)X

¢\ /¢|X
(C",0)

The map « is generically a local isomorphism (i.e. a local isomorphism on a
Zariski open and dense subset) because X7 and X5 are assumed to have no common
component. Moreover, both X and X; LI Xy are Cohen—Macaulay spaces, which
implies that the ideals Fo(¥.Ox,ux,) and Fo((¢|x)-Ox) are principal. Since o
is generically a local isomorphism, they are necessarily equal. The statement then
follows from the equalities

f0(¢*OX1UX2) = fo((¢|X1)*OX1 S (¢|X2)*OX2))
= fo((¢|X1)*OX1) '}—0((¢|X2)*0X2)' g
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THEOREM 3.2. For a k-folding map-germ Fy(z,vy) = (z,v*, f(z,y)), the double-
point space D is the zero locus V(X\), where \ = Hf;ll A;j and

f(‘ray) — f(xaé-]y)

Ve amey

for1 < j<k—1. We have thus a decomposition D = U;c;ll Dj, with D; =V (Aj).
Proof. The double-point space D?(Fy) is the intersection of the zero loci of the
divided differences

f(x,y) B f(-r7y/)

and -

y -y y—y

Since ((v)* —y®)/(y' —y) = H;:ll(y’ — &Jy), we conclude that, as a set, the
space D?(F},) is the union of the spaces

D = {(. e e @ xex 0 LENZL0ED) o},

(1—&)y

for j=1,...,k—1. Each of the sets DJZ projects to V()\;), which shows that
D(Fy) =V ()) as sets.

To show the equality as complex spaces, observe that the possible dimension
of D*(Fy) is one or two. If D*(F},) has dimension two, then some branch D3 has
dimension two. Therefore, the corresponding function J\; is identically zero, which
in turn implies A = 0. Since F}, is finite by construction, the projection D?(Fy) is
finite, hence the image of DJZ is a germ of a 2-dimensional analytic closed subset of
(C2,0), so is equal to (C2,0). This implies that D(F}) = (C2,0) = V(0).

Suppose now that D?(F}) has dimension one. This implies that the func-
tions H;:ll (v — &y) and f[z,y,y] form a regular sequence. Applying lemma 3.1
with Z =V (f[z,y,4']) gives D(Fy) = V([I;Z) Fo((x]p2).Op2))), where the D,
j=1,...,k—1, are given the natural complex space structure. Each of the mor-
phisms ’/T‘DJzZ DJZ — C? consists of forgetting the third coordinate of the tuple

(z,y,&7y), and this implies o ((7|p2).Op2)) = (A;). 0

Now we introduce some results we use to check finite A-determinacy of a k-folding
map-germ Fj, and topological triviality in families of such germs. The first of these
results was proven in [19] for corank one map-germs, then extended to arbitrary
corank in [20].

THEOREM 3.3. A finite map-germ F: (C2,0) — (C3,0) is finitely A-determined if
and only if its double-point curve D is reduced.

The decomposition D = U;:ll D; in theorem 3.2 can be used to compute p(D),
making it easier to apply theorem 3.3 (and theorem 3.10 below). We denote by
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D, - Djs the intersection multiplicity of two distinct branches of the double-point
curve. Clearly, D; - Dy = Dy - D, and

0>
D, Dy =dimg ————.
’ ! e </\j, /\j'>
PRrROPOSITION 3.4. A k-folding map-germ Fy, is finitely A-determined if and only
if the Milnor numbers p(D;), j=1,...,k—1, and the intersection multiplicities
Dj - Dy of all pairs D; and D}, with j' # j, are finite. In that case,

k—1 k—1

p(D(Fy) =Y w(D;)+2 > D;-Dj —k+2.
Jj=1 39’ =1
i<i’

Proof. By theorem 3.3, F}, is finitely A-determined if and only if u(D(F})) is finite,
equivalently, D(F}) has an isolated singularity. This occurs if and only if every
branch D; has an isolated singularity and no pair of branches D; and Dj/, with
j # j', have a common component. Using the formula =25 —r + 1 for plane
curves (see [21]) and the property §(X UY) =§(X)+6(Y)+ X - Y, we get

w(D(Fy)) = 26(D(F)) — r(D(Fy)) + 1

k—1 k—1
=> (26(D;) —r(Dj)+1)—k+2+2 > D; Dy
Jj=1 J:3'=1,5<J"
k—1 k—1
=> wDj)+2 > Dj-Dy—k+2. O
Jj=1 3,3'=1,j<y’

REMARKS 3.5. 1. Suppose that D; is a germ of a regular curve parametrized by a
regular map-germ «a: (C,0) — (C?,0). Then, D; - Dj» = ord(hj o ), which is the
degree of the first non-zero term in the Taylor expansion of A/ (a(t)).

2. If both D; and Dj: are regular curves, we refer to D; - D;, as the order of
contact between D; and Dj. We have D; - Dy =1 if and only if the two curves
intersect transversally. Suppose they are tangential and parametrized, respectively,
by t — (t,7,(t)) and t — (t,7;/(t)). Then D; - D;r = ord(y; — ;7).

3. Let Fj be a finitely A-determined k-folding map-germ. Then any pair of
branches D; and D;, with j # j/, cannot have any common irreducible component,

otherwise D(F},) would fail to be reduced. Hence, we have r(D) = Zf;ll r(D;).

The defining functions A; of the branches D; of the double-point curve play
a major role in our study of finite A-determinacy and topological equivalence of
k-folding map-germs. We take Fy(z,y) = (z,vy*, f(z,y)) and write, for any given
integer p > 1,

Py =33 agaty (3.1)

q=1 s=0
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Then,
P a
PN = Z Z Vsjagsc? Sy (3.2)
g=1 s=1
with
1= (s-1)j
ﬁsj—l_gj—l-i-f—i—--'-l-é .

The constants ¥4; play a significant role in determining the singularity type of
the germs A; and in computing D, - D;. The following properties are needed in § 4.

LEMMA 3.6. The numbers U4, satisfy the following properties:
(1) 955 =0 if and only if k | sj.
(2) ¥s5 =1 if and only if k| (s —1)j.
(3) If 055 = Vsjr, then Oy is either 0 or 1.

Proof. We observe that dg; = 0, 91; = 1 and, for any integers m,n, we have ¥,,; =
U (m+n); if and only if k [ nj. For (1) we take m = 0 and n = s, and for (2) we take
m=1andn=s-—1.

For (3), we observe that the constants d; lie in the images of the curves 7, :
St cC— Cgivenby v,(2) = (1 —2"") /(1 —2) =1+ 2 + - - + 2™. We show that
the self intersection points of the curves 7, are 0 and 1 (for n > 3).

Write 2z = e, with @ € [0,27). Then v, () = = + iy, with (z,y) € R?, gives 1 —
(M1 — (2 4+ iy)(1 — €'?). Therefore,

cos((n+1)0) =1 — z + z cos(f) — ysin(h),
sin((n + 1)0) = —y + y cos(0) + xsin(0).

Now the identity cos((n 4 1)0)% + sin((n + 1)0)2 = 1 gives
(1 —cos(0))(x? +y* — x) — ysin(h) = 0. (3.3)

Suppose that y = 0. Then equation (3.3) becomes (1 — cos(#))xz(z — 1) =0, so
x=0or1lorf=0.

When =0, we have 1—¢€?#£0, so 1—e™tD? =0, That gives 0=
2rj/(n+1),5 = 1,...,n. Therefore, 7,, passes n-times through the origin.

When z = 1, we get e’ = 1,500 = 27j/n,j = 1,...,n — 1. Therefore, 7, passes
(n — 1)-times through the point 1.

When 6 =0, we have v,(0) =n + 1 and the curve has no self-intersections at
that point. See figure 2 for the cases n = 5,6, 7.

Suppose now that y # 0. Then equation (3.3) can be written as cot(0/2) =
(22 + y? — ) /y. This shows that, for any (z,y) € R? with y # 0, there is at most
one 0 € [0, 27) satisfying v, (0) = x + iy. Therefore, the only self-intersection points
of v, are 0 and 1. g
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Figure 2. Maple plots of the curves v, for n = 5,6,7 (from left to right).

REMARK 3.7. As k cannot divide j, the condition k& | sj in lemma 3.6(1) can also be
written as d = ged(k,s) # 1 and j € {k/d,...,((d — 1)k)/d}. Of course, the same
applies to the condition & | (s — 1)j in lemma 3.6(2).

3.2. Cross-caps and triple points

The number of cross-caps and triple points are invariants of finitely A-determined
map-germs F: (C2,0) — (C3,0) that can be described using stable deformations.
A stable mapping U — (C3,0) with U an open neighbourhood of the origin in C?
exhibits only regular points, transverse double points along curves, cross-caps and
isolated transverse triple points. Every stable deformation F}; of F' exhibits the same
number C' of cross-caps and T of triple points [23]. For a corank one map-germ,
these are given by the formulae

O 1 Oy
C’—dlm(cJ—F7 T_EdlmCIB(F)’

where JF' is the ideal generated by the 2 x 2 minors of the differential matrix of F’
[23] (the formula for C holds without the corank one assumption).
For j,7 € {1,...,k — 1}, with j # j', we set

i — Ajr
N o= J
3, "
and define
(@
T; j = dimg ———.
! (Njs Ajig)

Observe that Tj j = T} ; for all j # j'.

PROPOSITION 3.8. The number of cross-caps and of triple points of a finitely A-
determined k-folding map-germ Fj, are given by

. O, 1
C = dime and T'=2 Tig-
WE1 (0F /0y) (z, ) 3 Z "
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Proof. The formula for C is trivial. For T, we claim that

k

y/k: yk: y//k_y . y/k_yk
_ — y'—y v -y 3
J= ’ " ’ cl (Fk)

Yy -y yv' -y
is a radical ideal of @4 whose zero locus is

Z ={(,y,y',y") |y =&y, = &'y for some j,j" € {1,..., k 1} with j # j'}.

Clearly, Z is contained in the zero locus V(J). The converse inclusion follows by
considering the degree of the generators of J and by the fact that V' (J) is generically
reduced. Since V'(J) is also a complete intersection, it is reduced. Thus J is a radical
ideal.

The irreducible decomposition of Z consists of the branches

Zjy = {(x,y,8,6"y) | 2,y € C}.

Thus, we may decompose D3(F}), as a set, as the union of the (not necessarily
irreducible) branches

D?,j’ (Fk) = V(y/ - gjyvy” - é.j,yv f[‘ra y7y/]a f[I,y7y/7yN]).

Eliminating %' and y”, gives D3 ((Fi) = (X, Ajjr). Therefore, we only need to
show that dimc (04 /I3 (F},)) = Zﬁéj dlmc((’)g/(< i Aj.j7))- It is clear that the same
decomposition of D3(Fy) applies to an unfolding Fy(z,y,t) = (z, y*, fe(w,y),t) of
Fy, and fixing a representative and a nonzero parameter d, the same holds for (F})s.
This gives a decomposition of D*((Fj)s) into the branches D? ;, ((F)s)-

It is possible to choose an unfolding where the branches D7 ;, ((F})s) are pairwise
disjoint. Indeed, it follows from their defining equations that two spaces D;” i ((Fi)s)
and Dis/((ﬁ i)s) can only intersect on {y = 0}, so it is enough to find an unfolding
where D?)j,((ﬁk)(;) N{y =0} is empty. Again, it follows from the defining equa-
tions that a point (2,0,0,0) € D3, ((Fy)s) if (0f5/0x)(x,0) = (9f}/0x?)(x,0) = 0,
a condition that can be avoided by choosing a suitable deformation f; of f.

We take now an unfolding as above. Since Z is reduced, D*((Fy)s) is isomor-
phic to the union of the D% ;,((Fi);) as complex spaces. The equality we need to
show follows now from the constancy of the numbers involved under continuous
deformations. Defining )\5 and )\5 ;- in the obvious way, we obtain

. 04 04
dimg¢ = dimg¢
IB(Fk) (I,yzy:y ) IB((Fk) )(x,y,y’,y”)
3 Y O = e %
(w,y) 3#3" 3275 J#5’
Since Tj; =T} j, we add only the numbers Tj ;/, with j < j’, and replace 1/6
by 1/3. O
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3.3. Topological triviality

We say that two subspaces S and S’ of a topological space X have the same topo-
logical type if there is a homeomorphism X — X restricting to an homeomorphism
S — 8. Milnor showed that two isolated hypersurface singularities with same topo-
logical type have the same Milnor number. In the case of our invariants, a similar
result can be obtained using the results in [28, 30] (see [4] for details).

PROPOSITION 3.9. Let F,G : (C2,0) — (C3,0) be finitely A-determined map-germs.
If F and G are topologically equivalent, then u(D(F)) = u(D(Q)), r(D(F)) =
r(D(Q)), C(F) = C(G) and T(F) =T(G).

The Milnor number of the double-point curve is enough to determine the
topological triviality of families of finitely A-determined map-germs.

ProrosITION 3.10 (Corollary 40 [3. )] A family of finitely A-determined map-
germs Gy: (C2,0) — (C3,0) s topologically trivial if and only if p(D(Gy)) is
constant along the parameter t.

Using the upper semi-continuity of the numbers involved, proposition 3.10 can
be combined with proposition 3.4 to yield the following result.

COROLLARY 3.11. Let F{ = (x,9", fi(z,y)) be a family of finitely A-determined
k-folding map-germs. The following statements are equivalent:

(1) The family F} is topologically trivial.
(2) The numbers u(D;) and D; - Dy are constant along the family F}.

(3) The numbers C, u(D;),D; - Djr and Tj j» are constant along the family FY.

4. The jet space stratification

In this section, we study the singularities of k-folding map-germs which we take
in standard form Fy(z,y) = (x,9*, f(z,y)) (see remark 2.3(4)). We identify the set
of such germs with the set O of germs, at the origin, of holomorphic functions
f. For each k, we obtain a stratification Sy of J''(2,1) (and hence of J!(2,1)
for I > 11). The stratification consists of the strata of codimension <4 stated in
theorem 1.1 together with the complement of their union (i.e. the union of strata
of codimension >5). Every stratum of codimension <4 of Sy consists of finitely
A-determined and pairwise topologically equivalent k-folding map-germs. The jet
level I = 11 is determined by the conditions defining the strata of Sy which involve
the coefficients of f in (3.1) up to degree 11 (see tables 1, 2, 4, 6).

As pointed out in the Introduction, the case k =2 was studied in [5, 8, 32].
The stratification Ss can be recovered from the results in this paper. The different
A-classes obtained in [5] correspond to different topological classes. This follows
by analysing the invariants C, T, u(D) and r(D). We shall suppose here that k > 3
and write the jets of f as in (3.1).
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Table 1. Strata of S3 of codimension <4

Normal form Defining equations and open conditions Codim
Immersion a11 #0 0
S1 a1 = 0,a22a21 #0 1
S3 a11 = a1 = 0,a22a31 #0 2
Ss a1l = a1 = az1 = 0,a22a41 # 0 3
St a1l = az1 = azy = aq1 = 0,a22a51 # 0 4
Ho a11 = age = 0,a21 # 0,CndHa # 0 2
Hs a11 = age = CndHy = 0,a21 # 0,CndHs # 0 3
Hy a11 = agz = CndHy = CndHs = 0,a21 # 0,CndHy # 0 4
X4 a1l = az1 = agz = 0,a31a32a44 # 0 4
Ui a1 = ag1 = agy = aqq = 0,a31a32 # 0,CndUmg # 0 4
X3 a11 = az1 = aze = a3zl = 0,a32a41044 # 0 4
wi! a11 = a1 = agz = a3z = 0,a31a44 # 0,a31a55 — as2a44 # 0 4

CndHz = azza44 — assa21
3 2 2
CndH3 = aggay; — (ar7asz + asaaes)as; + asa(as2a44 + azgasa)az — agiagsaze.
5 4
CndHy = ay1,11a5; — (asaa98 + a10,10a32 + arraes)as;
2 3
+ (aaaag7asze + az2assar7 + aqaas4a65 + 2044a77042 + a3 a75)a5,
2
— (as2a3y + asaa31a65 + 2a42a44a54 + 44064032
9 2 2
+ 2a77as2a31 + ag,a32)a4aa3,
2 2 3
+ (2a44a31042 + a44a41032 + 3a32054a31)ai,a21 — 2a3;a3207,

CndUmsg = ass(asiass — assasz2) + a77a§2 (see table 6)

Table 2. Strata of codimension <4 in branch 2

Defining equations and open condition

Name together with a11 = ag1 =0, age #0 Codim
M5, 2tk as1 #0 2
M5, 2| k azzazy # 0 2
Mk,2'|’k a31 =0, a41 #0 3
ME 2k az1 =0, agzas #0 3
M% 2tk az1 =aq1 =0, a5y #0 4
Mj, 2 | k a3 = aq1 = 0, azzasy # 0 4
NE 2|k a3z =0, az; # 0, CndN A3 # 0 3
Nk 2|k ag3 = CndN Az =0, az; # 0, CndNAs # 0 4
O{z, 2 ‘ k a31 = as3 =0, ag1a43 #0 4

CndN A3 = a3; — 4aziass
— 3 2 2 2 3
CndNAg = 8as a7 — 4a65a43a31 + 2as3a33031 — 431043
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Table 3. Topological invariants of germs in the strata in table 2

Name c T w(D) r(D)
M5, 2tk 2k — 2 0 20k —1)(k —2) —k +2 k—1
M5, 2| k 2k — 2 0 (k—1)(k—2)+3—k k
ME 2tk 3k —3 0 3(k—1)(k—2) —k+2 k—1
M5, 2| k 3k —3 0 (k—1)(k—2)+4—k k—1
M5, 2tk 4k — 4 0 4k —1)(k —2) —k +2 k—1
MY, 2|k 4k — 4 0 (k—1)(k—2)+5—k k
N 2|k 2k — 2 0 (2k —3)(k—2)+3 k
Nk 2|k 2% — 2 0 (2k —3)(k —2) 45 k
o, 2|k 3k—3 0 (3k —4)(k—2)+4 k+1

Table 4. Strata of codimension <4 in branch 3

Defining equations and open conditions

Name together with a11 = ase =0, a1 #0 Codim
Pg, 3J(k a3z #0 2
Ps 3k asz # 0, CndHa # 0 2
PY 3k asz # 0, CndHy = 0, CndHs # 0 3
Pk 3|k ass # 0, CndHs = CndHs = 0, CndHy # 0 4
Qb 31k 41k a3z =0, agq #0 3
QL 3k 4tk as3 =0, aqq # 0,CndHy # 0 3
Q. 31k 4k asz =0, agq # 0, CndQms £ 0 3
Q5 121k ass =0, agq # 0, CndHs # 0, CndQms # 0 3
QY. 3|k 41k ass = CndHs = 0, agq # 0, CndHs # 0 4
Qi 12|k asz = CndHy = 0, CndHs # 0, CndQms # 0 4
QY. 31k 4k ag3 = CndQms = 0, agq # 0, CndQmg # 0 4
Qi 121k ass = CndQms = 0, CndHs # 0, CndQmg # 0 4
R§,4+k,5)[k a3z =aqq =0, as5 # 0 4
R]Z,4|k,5j[l€ a3z = aqq =0, as5 # 0, CndQms # 0 4
RE,4'|’k,5|k a3z = aqq =0, as5 # 0, CndRms # 0 4
RY, 20| k ass = asq = 0, ass # 0, CndQms # 0, CndRms # 0 4
Cnd@Qms = as2as5 — a21066

CndQme = aazass — az1a77

CndRms = asxaes — a21077

It is clear that Fj is an immersion if and only if a;; # 0. All immersions are
A-finitely determined and pairwise topologically equivalent. Moreover, only immer-
sions have D = (), hence 7(D) = 0. We define a;; # 0 as the open stratum of Sy
(corresponding to the jets of all immersions) and choose

M¢: (z,y) — (2,9",y)
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Table 5. Topological invariants of germs in the strata in table 4

Name C T u(D) r(D)
P5 31k k-1 (=D)(k=2) (2k — 3)(k — 2) k-1
P53k k—1 (o D)(k-2) 14 (2k —3)(k—2)+4 k—1
P53k k-1 (1)(h22)+10 (2k — 3)(k — 2) + 10 k-1
Pk 3|k k—1 G L)(-2) 416 (2k — 3)(k — 2) + 16 k—1
Qb 31k 41k k-1 (b=1)(k=2) (3k — 4)(k — 2) k-1
Q. 3|k 41k k-1 D211 (3k — 4)(k — 2) + 2 k-1
Qb 31k 4k k-1 G1)(E-2)16 (3k — 4)(k — 2) + 12 k-1
Qb 12 |k k-1 G=D(E-2)47 (3k —4)(k —2) + 14 k-1
Qh, 3|k 41k k-1 GD)(E-2)14 (3k —4)(k —2) + 8 k-1
Qk, 12|k k—1 (=1)(h=2)+10 (3k — 4)(k — 2) + 20 k—1
Qb 31k, 4|k k-1 (k=1)(k=2)+9 (3k — 4)(k — 2) + 18 k-1
Q. 12 |k k-1 (=1)(h=2)+10 (3k — 4)(k — 2) + 20 k-1
RY 41k, 51k k-1 (r=1)(k=2) (4k — 5)(k — 2) k-1
RY 4|k 51k k-1 (=D)(-2)12 (4k — 5)(k — 2) + 6 k-1
RY 41k, 5k k-1 (r=1)(k=2)+8 (4k — 5)(k — 2) + 24 k-1
R%, 20 | k k-1 (=L)(E=2)+10 (4k — 5)(k — 2) + 30 k-1

as a normal form for topological equivalence of germs in this stratum. The strata
corresponding to singular germs are organized into four branches according to the
following result.

LEMMA 4.1. For k > 3, every singular k-folding map-germ is A-equivalent to a
k-folding map-germ whose 2-jet is equal to (x,0,zy + y?), (x,0,y?), (x,0,2y) or
(z,0,0).

Proof. As we are assuming Fj to be singular at the origin, we have a;; = 0. Then
Fy is A-equivalent to a germ whose 2-jet is (x,0, a1 2y + az2y?). Depending on the
coefficients as; and age, the 2-jet can be taken to one of the following forms:

(2,0,2y +y?) <= a1 =0,az1a22 #0 (Branch 1)
(2,0,92) <= aj1 =ag =0, axx #0 (Branch 2)
(2,0, 2y) <= a1 =az =0,as #0 (Branch 3)
(JZ, 0, 0) < a11 = a1 = a9 =0 (Branch 4)

We have the following about A-simplicity of germs of k-folding maps.
PROPOSITION 4.2. There are no A-simple k-folding map-germs for k > 5.

Proof. It is enough to show that the orbit of a map-germ Fj with a 2-jet (z,0,
xy + y?) is not simple as the orbits of germs in the remaining branches in lemma
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Table 6. Strata of codimension <4 in branch 4

Defining equations and open conditions

Name together with a11 = a21 = ag2 =0 Codim
U§, 31k asirasz # 0, A;C #0,Q,_;#0 3
U 3|k agrasz # 0, azs # 0, AF £0,QF ., £ 0 3
U]i, 3|k asz1a3s # 0, agq = 0, A;ﬁ #0, 4
QF . #0, CndUmg # 0
Vi (%) agiazs # 0, QF 5, =0, agy # 0, 4
agq # 0, Cndeg,j’j/ #0
W 34k, (F%) agiass £ 0, A =0, CndW Az # 0 4
WHT 3| ke, (5%), (%) asiass £ 0, AY =0, CndW Az # 0, 4
agq #0
Wip,p’ k=3p azrazz # 0, aza =0, agq # 0, 4
CndWmg # 0
XK 21k, 31k asaass £ 0, azi =0, as1 # 0 4
X5 2|k 31k azzazz # 0, az1 =0, ag; #0 4
X5 21k, 3]k az2azz # 0, az1 =0, aq1 #0, agq #0 4
XZ, 6|k aszgasz #0,a31 =0, ag; #0, agq #0 4
Y5 21k agoazy £ 0, asz =0, asq # 0 4
Ylf, 2 ‘ k a32a31 76 0, as3z = 07 CndYA3 7& O, 4
CndYmeg; # 0, agq # 0
A¥ = (a3, — dag1a33)E¥ + 2(a35 — 2a31a33)€7 + a3, — 4agiass
Q= anap(l+8 +8)? —ad(E + "+ 1)
CndUms = ass(asiass — assasz) + arrad,
Cnde5j,j/ = (1%2(144[31'73‘/ + a32a33(2a33a42 — a32a43)o¢j,j/ -+ (141&%3, with
_ gl et
W' T rgren
e+’ 30t 30" | 9e2i+i  (ogi 20’ ¢80 yogiti’ L eiy el
ﬁj,j' = (14&i+€i")4 :
CndWA; = (asass+ a31043)a3, — 2a31(a42a33 + 2a31044) a3, + 803 a33044
C’ndWmS = 31055 — 42044
CndYA3 = aig — 4(1310,55
C’nde(;j = (a31a?14 + a55a§2 — a43a44a32)§4j
ta4a(2a31a44 — az2a43)6% + az1ai,
(%) J<7'3,7") # (p,2p)whenk = 3p
() 1f2 | kthenj # k/2
(s * ) Ifk = 3p, thenj # p,2p

4.1 are adjacent to it. For such a germ, we have j*Fy ~ 4 (7, (y — (1/2)2)*, y?).
The result follows by theorem 1:1 in [22] as there are no A-simple germs of the
form (z,y?, f(z,y)) with j4f = 0.

When k = 4 and for Fy in branch 1, we have j4Fy ~ 4 (7, zy® + 2%y, y?). This
is a Cs-singularity and is A-simple [22]. For Fj in branch 2, we have j*Fy ~ 4
(2,0,52) so it leads to non A-simple germs. By adjacency, the germs in branches
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3 and 4 also lead to non-A-simple germs. Therefore, the Cs-singularity is the only
A-simple singularity of 4-folding map-germs.

The case k = 3 is treated in §4.1 where there are several A-simple singularities
of 3-folding map-germs. O

REMARKS 4.3. 1. The degree of A-determinacy of a singular germ F}, is greater
or equal to k (the germ (z,y) — (z,0, f(x,y)) is not finitely A-determined for
any f).

2. For germs in branch 1 or branch 2, we have Fy, ~4 (x,yp(x,y?),y?) for some
germ p. One can study the germ p, as was done in [22], instead of F}, but this blurs
the order of the original k-folding map-germ. Also, the approach in [22] of reducing
the action of A on the set of 2-folding map-germs to the action of a subgroup of
on my does not extend to germs of k-folding maps for k > 3.

4.1. The case k = 3

When k = 3 we get several A-simple map-germs. For this reason, we treat this
case separately.

THEOREM 4.4. The only A-simple singularities a 3-folding map-germ Fs3 can have
are those of type So;_1, 1 > 2, or Hs, s > 3. In the real case, the So;_1-singularities
are of type Sy,_;. The strata of S3 of codimension <4 are given in table 1.

Proof. We can write f(x,y) = fo(x,v®) + yfi(z,y?) + y? f2(x,3?), for some germs
of holomorphic functions f;, i = 0,1,2. Then F3 ~4 (z, 3>, yf1(x,y%) + v? f2(z,y3)).
Suppose that a;g = 0 (F3 is singular) and asy # 0. Then

Fs ~a (z,9%,y(g9(x) + ¥z, 4%)) + v (a2 + k(z,1°)))

for some germs of holomorphic functions g € my, h € O3 and k € ms. We can make
successive changes of coordinates in the target so that jPFs ~ 40 (z,y3 yL(x) +
agy?) for any p > 3. It is not difficult to show that Fj is finitely .A-determined
if and only if ord(L) = ord(g) = ord(f,(x,0)) is finite. Suppose that this is the
case and denote by [ that order. Then j'L(z) = anz!, a;y # 0, and the change
of coordinates y — y — (a;1/2a2)x! in the source yields j2 1y ~ 441y (2,9° —
3(ar1/2a22)*yx?' azey?). This is an Sy_i-singularity, and since it is (21 + 1)-
A-determined, we have F3 ~4 (z,y° —y2?,9?). In the real case, this is an
Sy, _1-singularity.

The above calculations show, in particular, that we do not get the simple
singularities Bj*, Ci* and Fj whose 2-jets are A(?-equivalent to (z,0,y?).

Similar calculations show that when a;; = ags = 0 and ag; # 0, we get an H-
singularity when the singularity of F3j is finitely A-determined.

The remaining cases are studied in the same way as in the case k > 4 (table 6). We
get three strata with topological normal forms U?%, X3 and W' (the germs in these
strata are not A-simple) together with the stratum represented by the topological
normal form U3, which is topologically equivalent to Mond’s singularity X, (see
§2 and [22]). O
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Table 7. Topological invariants of germs in strata in table 6

Name C T u(D) r(D)
Uk, 31k 2% — 2 ) (k=2) Ak —1)(k —2) + 1 2% — 2
Uk, 3|k ok —2  (=DE=2)H Ak —1)(k—2) +3 2% — 2
Uk, 3|k ok —2  (=D(=2)Hd Ak —1)(k—2)+9 2% — 2
vhiad' gy ok —2  (k=D(E=2)+3 Ak —1)(k—2)+7 % — 2
vEad 3|k ok —2  (k=DE=2)wd Ak —1)(k—2)+9 2% — 2
Wk 34k 2% — 2 () (k=2) Ak —1)(k—2) +3 % — 4
wWhI 3|k ok —2  (=LE=2)H 4k —1)(k—2)+5 2% — 4
WP p—3p  ok—2  (k=D(=2)H Ak —1)(k —2) + 11 % — 4
Xk 2t k,3tk  3k—3 (1) (k2) 5(k—1)(k—2)+1 2% — 2
Xk 2k 31k  3k—3 (k=1)(k=2) 5(k — 1)(k — 2) + 2 2%k — 3
X5 2¢k,3 |k 3k—3 (DG 5(k—1)(k—2)+3 2% — 2
Xk 6k 3k—3 (DG 5(k—1)(k—2)+4 2% — 3
Yk 21k 2% — 2 (1) (k—2) 5k —1)(k —2) + 1 2% — 2
Yk 2|k 2% — 2 kk-2) 5(k—1)(k—2)+3(k—1)  2k—2

REMARK 4.5. The invariants associated to the simple singularities can be found in
[23]; those associated to U3, X3, W' are given in table 7.

4.2. The case k > 4

We consider here the case when k > 4, which we divide into the four branches
according to the A®-orbits in lemma 4.1. In all that follows, j € {1,... k—1},
and subindices of singularities indicate the codimension of the stratum.

4.2.1. Branch 1: a11 =0, asjage # 0

THEOREM 4.6. Any germ Fy of a k-folding map satisfying a1y = 0 and asiase # 0
is finitely A-determined and is topologically equivalent to

M{: (z,y) — (z,9", 2y + v°).

The invariants take the values u(D) = (k —2)2,C =k —1,T =0 andr(D) =k — 1
and the double-point curve of Fy, is the union of k — 1 reqular curves intersecting
transversally.

Proof. The functions defining the branches D; of the double-point curve (see
theorem 3.2) are given by \; = a2z + (1 + &/)asy + O(2), where O(I) denotes
a remainder of order [. Clearly, all of the branches D; are regular curves. As the
scalars 1+ &/ are pairwise distinct, the space D = D(Fy) = Uj D; consists of k — 1
regular curves intersecting transversally at the origin.

We have ((D;) = 0 and D; - D;s = 1, and from proposition 3.4 we obtain (D) =
(k — 2)2. By theorem 3.3, any germ F}, satisfying the conditions in the statement of
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the theorem is finitely A-determined. These germs form a stratum of codimension 1
defined by {a1; = 0, az1a22 # 0}. Since this stratum is path connected, we conclude
by theorem 3.10 that it consists of topologically equivalent germs. We choose for a
topological model the germ MY given in the statement of the theorem.

By proposition 3.11, it is enough to compute C' and Tj ;- for MY as these invari-
ants are constant along the stratum. We have C' = dim¢ O/ (y* =1, 2 +2y) =k — 1
and T} j» = dime Oz /{z + (1 + &)y, 1) = 0. 0

REMARK 4.7. The singularity M7 is the A-simple singularity C3 (see the proof of
proposition 4.2).

The proofs for the cases in the remaining branches follow by similar arguments
used in the proof of theorem 4.6 (except for the calculations of T'). To avoid repeti-
tion, we highlight only key differences in each case. The notation for the conditions
that define the strata are those indicated in the tables.

4.2.2. Branch 2: a11 = a21 =0, ass # 0

THEOREM 4.8. The strata of codimension <4 of finitely A-determined k-folding
map-germs in the branch a1y = a1 =0, ags # 0 are those given in table 2. The
invariants associated to the germs in each stratum are given in table 3.

Proof. The result follows from propositions 4.9, 4.11 and 4.12. g

For germs in this branch, the map-germ (x,y) — (z, f(z,y)) is finite and generi-
cally two-to-one. Therefore, T'= 0 for any finitely A-determined map-germ in this
branch.

The germs of the functions defining the double-point branch D; is given by

\j = Vajany + az12? + Jojazery + I35a33y> + O(3).

The branch D; is thus regular if and only if ¥5; # 0. By lemma 3.6, ¥2; = 0 when
k is even and j = k/2.

PROPOSITION 4.9. Any k-folding map-germ Fy satisfying a11 = a9y = -+ =
apn =0, azaqqry #0, for some | =2, and azz #0 when k=2p, is finitely
A-determined and is topologically equivalent to

My (z,y) = (2,95, 9% + 4% + 2ly).

The invariants C, T, u(D) and r(D) are as in table 2. All the double-point
branches are regular curves except for the branch Dy, when k = 2p, which has an
Ay_1-singularity. We have D - Dy =1, for all j # j'.

Proof. Fix an index j and assume that 21k or that k =2p but j # p. Then
Dj is a regular curve and can be parametrized by ¢ — (t,7;(t)), with ~;(t) =
—(ar41.1/((1 4+ &)age))tt + O(1 + 1). Clearly, any two distinct branches have order
of contact equal to [.

Suppose now that k = 2p. As 19129 =0, the coefficients of x°y in A, vanish for
all s > 1. Moreover, since 1913, =1, the function A, is of the form A\, = al+1,1xl +
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aszsy® + y3h(y). This implies that A, is R-equivalent to y* + 2! if and only if azs # 0,
in which case it has an A;_i-singularity. As for the contact between branches,
ord(\p(t, (—ar41.1/((1 + &)ag))t! + O(l + 1)) = I, hence D, - D, = I. This deter-
mines (D), and hence the topological triviality and the constancy of the invariants
along the stratum. O

REMARKS 4.10. 1. Branch 1 can be considered as a particular case of the strata
MY in proposition 4.9 (the condition azs # 0 is not needed when [ = 1).

2. When 21k, the term y3 in Mf is irrelevant for topological equivalence. We
include it to represent both k even and k odd by the same map-germ. We do this
for all subsequent topological normal forms.

PrOPOSITION 4.11. Suppose that k = 2p. Any k-folding map-germ Fy, satisfying
a11 = ag = aszz = 0, asgaz; # 0 and the additional conditions in (a) or (b) below
is finitely A-determined and is topologically equivalent to one of the germs

Ni: (z,y) = (2,95, 02 + 2%y + 7 71), 1=3,4

The invariants ((D(Fy)), C,T,r(D(F}y)) are as in table 3. The branches D; are
regular curves for all j # p and D - Dy =2 for all j # j'.

(a) If CndN As # 0, then the branch D, has an As-singularity and the map-germ
18 topologically equivalent to N’?’f.

(b) If CndNAs =0 and CndNAs # 0, then D, has an As-singularity and the
map-germ is topologically equivalent to N¥.

Proof. We have A\, = az17? + ag1 23 + agzwy® + as12t + aszx?y? + assyt + O(5). It
has an As-singularity if and only if CndN As # 0. When CndN Az = 0, we need to
consider the 7-jet of A,. A calculation shows that A, has an As-singularity if and only
if CndN As # 0. In both cases, we have ord(\, (¢, —az1/((1 + &)ag)t? + O(3))) = 2
for all j # p. O

PRrROPOSITION 4.12. Suppose that k = 2p. Any k-folding map-germ F}, satisfy-
ing ay1 = asy = as; = agz = 0 and assagiags # 0 is finitely A-determined and is
topologically equivalent to

Of: (z,y) — (z,9%,y> + 2%y + 2y°).

The codimension of the stratum is 4 and the invariants w(D(Fy)), C, T, r(D(Fy))
are as in table 3. The branches Dj, j # p, are regular curves and D, has a Dy-
singularity. We have D; - D = 2 for the distinct reqular branches and D; - Dy = 3,

for j #p.

Proof. The result follows from the fact that A\, = a4123 + aszzy® + O(4). O
4.2.8. Branch 3: ay1 = a9 =0, as1 # 0

THEOREM 4.13. The strata of codimension <4 of finitely A-determined k-folding

map-germs in the branch a;; = ass =0, ag1 # 0 are those given in table 4. The
invariants of the germs in each stratum are given in table 5.
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Proof. The result follows from propositions 4.14, 4.16 and 4.18. O

For any finitely .A-determined k-folding map-germ in this branch, we have C' =
dime O/ (y* 71, a1+ O(2)) =k — 1.

The double-point branches are regular curves that can be parametrized by t +—
(7;(),t), with

1 1
v;(t) = ———Vsja33t” — — (V2;935a32a33 — Vajaz1a4a)t?
az1 asy

1
2 2 2
- 7a3 (192j193ja32a33 - 792j194ja32a446121 + 193]-6133(&31&33 - a43a21)
21

=+ 195ja55a§1)t4 + 0(5)

The strata are determined by the contact between the branches of the double-
point curve which depend on 9,; as well as on the coefficients a,,. We start with
the case azz # 0, where the strata depend on the divisibility of k& by 3.

PROPOSITION 4.14. Suppose that a11 = azs = 0 and asiazs # 0. Any k-folding map-
germ Fy in case (a) or satisfying the additional conditions in (b) is finitely A-
determined and is topologically equivalent to one of the map-germs

PF: (z,y) = (29" 2y +y° + 7Y, forl=2,3,4.

The invariants p(D), C,T,r(D) are as in table 5. We have contact D; - Dj = 2,
except for D, - Do, when k = 3p which is given in (b).

(a) If 31k, then F}, is topologically equivalent to P5.

(b) If k = 3p, then the strata are as follows:
If CndHsy # 0, then D, - Do, = 4 and Fy, is topologically equivalent to P5.

If CndHy = 0 and CndHsz # 0, then Dy, - Dy, = 7 and F, is topologically
equivalent to P%.

If CndHy = CndH3z = 0 and CndHy4 # 0, then D, - Dy, = 10 and Fj, is
topologically equivalent to P .

Proof. If 31k, then by lemma 3.6 we have ¥3; # 0 and 03; # 35 for all j # j'.
This implies D; - D;» = 2 for all j # j'.

If k = 3p, then by lemma 3.6 the equality ¥3; = U3, holds only when {j,j'} =
{p, 2p}. Again, we obtain D; - D;; = 2 for all j # j" with {j, j'} # {p, 2p}.

We have 193p = 193(217) = O, ’19411 = 194(21,) =1 and 195p = 192(217) (lemma 36) Using
the parametrizations of D, and Dy, we get D, - Dy, = 4 if and only if azzasq —
as1as5 # 0, equivalently, CndHy # 0.

When CndH; = 0, the exceptional branches D,, and Dy, are parametrized by x =
—(a44/a21)y3 + ﬁ5y7 + O<9), s=1,2, with 8y — B2 # 0 if and only if CndH3 # 0.
Then, Dy, - Dyp =T7.

When CndHs; = CndHs = 0, the exceptional branches are parametrized by = =
—(aga/az1)y® + Bsy'? + O(11), s = 1,2, with 3; — B2 # 0 if and only if CndH, # 0.
Then, D), - Dy, = 10.
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The values of T can be computed using the models Pf. We have \j =z + 193jy2 +
ﬁ(glfl)jy?’l_Q and )‘jJ' = (193j — ﬁgj/)y + (193[,1,3‘ — 193l,1’j/)y3l_3. By lemma 3.6,
T = dimg(O2/(z,y)) =1 when 31k or when k= 3p but {j,;j'} # {p,2p}. For
k= 3p, we show that 1931_1,1, 7é ’1931_1,21, SO Tp72p =3l - 3. O

REMARK 4.15. The singularity P3: (z,9) — (z,y*, 2y + y> +9°) is topologically
equivalent to the singularity Ty: (z,y) — (z,y* 2y + 1) in [22]. Observe that
according to proposition 4.14, if k is not divisible by 3, then the y3~! term can be
removed from the expression of PF, without changing the topological class of the
germ.

PROPOSITION 4.16. Suppose that a11 = ass = asz3 =0 and asjagq #0. Any k-
folding map-germ Fy, in case (a) or satisfying the additional conditions in (b), (c)
or (d) is finitely A-determined and is topologically equivalent to one of the following
map-germs:

Qb (z,y) = (v,9% 2y +y* +y° +3°%)
QY (2,y) = (v, 9%, 2y +y* +4° +45)

Qf: (z,y) — (v, zy+y* +v° +y")

The invariants are as in table 5. We have D; - Dj = 3 except when j and j' are
in the sets J or J' below.

(a) If 3tk and 41k, then there are no exceptional branches and the germs in
this stratum are topologically equivalent to Q’?f,

(b) If k =3p and 41 k, then J = {p, 2p}.
(bl) If CndHs # 0, then Dy, - Doy, = 4 and F}, is topologically equivalent to QF.

b2) If CndHs = 0 and CndHs # 0, then D, - Do, = 7 and F}, is topologically
P P
equivalent to Qf.

(¢) If k =4p, 31k, then J = {p,2p,3p}.
(cl) If CndQms # 0, then D;-Dj =5, for all j,j' € J,j#j', and Fy is
topologically equivalent to QY.

(c2) IfCndQms = 0 and CndQme # 0, then D; - Dy = 6, for allj,j' € J,j #
§', and Fy, is topologically equivalent to QF.

(d) If k = 12p, the exceptional contact between double-point branches occurs when
the indices are in J = {4p,8p} or J' = {3p,6p,9p}. There are three strata:
(d1) If CndHs # 0 and CndQms # 0, then D; - Dy =4 (resp. Dj - Dy =5)
for all distinct pairs with 4,7 in J (resp. J'), and Fy is topologically
equivalent to Q5.

(d2) If CndHs; =0,CndHs # 0 and CndQms # 0, then D;j-Dji =T (resp.
D;-Dj =5) for all distinct pairs with j,j" in J (resp. J'), and Fy is
topologically equivalent to QY.
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(d3) If Cnd@Qms = 0,CndQme # 0, and CndHy # 0, then D; - Dj» = 4 (resp.
D;-Dj =6) for all distinft pairs with 3,3 in J (resp. J'), and F} is
topologically equivalent to QF.
Proof. The branches D; can be parametrized by ¢ — (y;(t),t) with

1 1

3 4
Vi (t) = ?94ja44t ) (1923'194]‘&326144 - 195j6l21a55)t
a1 a
21
= V294,02 V3,0
- 3 ( 2;V4jA32044 — VU3;jV4;043044021
21

— ¥2;U5ja01a32a55 + Ysjaseas; )t° + O(6).

(a) If 31k, 41k, then ¥y # ¥4 for all j, j* with j # j’ (lemma 3.6). Therefore,
D; - Dj = 3 for all distinct pairs.

(b) If k= 3p and 41 p, then ¥4, # ¥4, for all distinct pairs with j or j' not in
J = {p, 2p}. For such pairs, D; - D;s = 3.

Using the fact that J¢, = Jg(2p) = V3p = U3(2p) = 0, Vap = Vy(2p) = 1 and U5, =
Vap # Us(2p) = VYa(2p), the parametrization of the exceptional branch D, becomes

2
vp(t) _ —%tg B ﬁgp(a32a442— a21a55)t4 B 19217062(043204;14 - a21a55)t5 I 0(6)
a21 s as

A parametrization of Dy, is obtained by replacing 2, by ¥3(2p) in the expression
of vp,. Therefore, D, - Dy, = 4 if and only if asaass — aziass # 0, i.e. CndHy # 0.
When CndHs = 0, we have

a a (12 — A91Q44Q + ((2 a 192C7ldH

44 31 2144054 T P 3

7p1 = = 44 3 2171046 4 1 t" 4+ O(8).
@21 Aoy Qg

For 7,,, we replace 19?, by ﬁgp in v,. It follows that D,, - Dy, = 7 if and only if

(c) If k = 4p and 3 { p, we have D; - D;; = 3 for j or j’ not in {p, 2p, 3p}.

The parametrization of D, becomes v, (t) = ass/as1t* + 19?,(@32(155 — agia66) /a3 td +
0O(6), and similarly for v, and -3, replacing p by 2p and 3p respectively. Conse-
quently, the branches D,,, Dy, D3, have pairwise order of contact 5 if and only if
32055 — 21066 7& 0, ie. Cnde5 7é 0.

When CndQms =0, v, = —ass/ast* — 99p03p,(as1a77 — asgass) /a3t + O(7),
with similar adjustments as above for vz, and +v3,. Therefore, the three excep-
tional branches have pairwise order of contact 6 if and only if asjary — agzass # 0,
i.e. CndQme # 0.

(d) This follows by lemma 3.6 and (b) and (c) above.

The contact between the branches determines p(D), the topological types and
their associated strata. It remains to compute T for each normal form.

For Q]?f we have \; =z + 194jy3 + ’195]‘y5 + 196]’?-/5; and A; ;= (194]' — 194j/)y2 +
(955 — 9551 )y> + (965 — I )y*. Using the properties of ¥5; in lemma 3.6, we have
Tj;» =2 unless k = 3p and j,j" € {p,2p}, or k =4p and j,j' € {p,2p,3p}. In the
first case we get Tj ;v = 3 and in the second T} ;7 = 4. The invariant for the germ
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QY differs from Q& only when k is divisible by 3. For k = 3p, we have Tp,2p = 6 and
T; ;o =4 if k=4q and j, 5" € {q,2q¢,3q¢}. All other indices j and j" give Tj ;; = 2.
Similarly, for the germ ij and for k = 4p, we get T; ;» =5 if 7,7 € {p, 2p,3p}. If
k = 3q, then T, o, = 3. All other indices j and j' give Tj ; = 2. O

REMARK 4.17. When k is divisible by 12, the germs Q} and ij have the same
invariants C, T, u(D) and r(D) but they are not topologically equivalent as their
associated sets of contacts between double-points branches are distinct (see [33]).

PROPOSITION 4.18. Suppose that ay1 = ase = azz = agq = 0 and azass # 0. Any
k-folding map-germ Fy, in case (a) or satisfying the additional conditions in (b) or
(c) is finitely A-determined and is topologically equivalent to

RY: (z,y) = (2,9, 2y +y° + 5 + 7).

The invariants associated to the germs in the stratum are as in table 5. We have
D;-Dj =4 except for the exceptional pairs of branches below.

(a) If 41k and 51k, there are no additional conditions and no exceptional
branches.

(b) Ifk =4p, 51 k and CndQms # 0, then D; - Dj» =5 for all distinct pairs with
j.3" in J = {p,2p, 3p}.

(c) If k=5p, 41k and CndRms # 0, D; - Dy =5 for all distinct pairs with j, j'
in J = {p,2p,3p,4p}.

(d) If k =20p, Cnd@Qms # 0 and CndRms # 0, then D; - Dy =5 for all distinct
pairs with j,j" in J = {5p, 10p, 15p} or in J' = {4p,8p, 12p, 16p}.

Proof. The branches D; can be parametrized by ¢ — (v;(t),t) with

1
v, (t) = —aﬁ5ja55t4 + (9295 a32a55 — Vg;a21a66)t°

2
as

1
+ 3 (az1(V25V65a32a66 — V7ja21a77)
21

— ((¥2;)?a3y — ¥35a21043)U55055)t° + O(7).

(a) If 41k and 51k, then ¥s5; # 55 for all j,5" with j # 5 (by lemma 3.6).
Therefore, D; - D = 4 for all distinct pairs.

(b) If k=4p and 51k, then U5, =1, Usp = V2p, and we can write 7,(t) =
—ass5/a21t* + 92, CndQms /a3, 5 + O(6). We get similarly s, (t) and vz, (¢) by sub-
stituting 2, by, respectively, ¥a(2,) and ¥o(3p) in ;. The result follows as o5 # Jas
for s,s" € {p,2p,3p}, s # ¢.

(c) If k = 5p and 4 1 k, then U5, = 0, Jgp = 1, U7, = Jap, 50 7, (t) = —aes/aat® +
V2,CndRms/a3,t° + O(7). The expressions vsp, s = 2,3,4, are obtaining by sub-
stituting Jap by Va(sp) in vp-

(d) The case k = 20p follows in a similarly way to that of proposition 4.16(d).
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The calculations for T are similar to those in the proof of proposition 4.16.
We obtain T =4 if k=4p and j,j’ € {p,2p,3p}, and T} ;» =5 if k =5q and
J. 7" €44,2q,3q,4q}. All remaining indices j and j’ give Tj ;; = 3. O

REMARK 4.19. The singularities Q4 and R} have the same invariants, but the
contact of their double-point branches shows that they are not topologically
equivalent.

4.2.4. Branch 4: a11 = az1 = a2 =0

THEOREM 4.20. The strata of codimension <4 of finitely A-determined k-folding
map-germs in the branch a1 = azs = as; = 0 are those given in table 6. The
invariants of the germs in each stratum are given in table 7.

Proof. The result follows from propositions 4.22, 4.23, 4.25, 4.26 and 4.27. 0

The functions defining the double-point branches D; have the following initial
terms:

)\j (l‘, y) = a31x2 + a32192jxy + a33193jy2 + 0(3)
Consequently, the branches D; are singular. A branch D; has an A;-singularity
unless the discriminant A? of the quadratic part of A\; vanishes. We have

A-I; = ((Z%Q — 4a31a33)§2j + 2(0,32 - 2&310,33)§j + a§2 — 4(1310,33. (41)

An A;-singularity is a transverse intersection of two regular curves. T'wo branches
D; and Dj with an A;-singularity may have one or both of their components
being tangential (i.e. the tangent cones of the two branches have a non-trivial
intersection). Taking the resultant of j?\; and j?)\; with respect to one of the
variables, we find that this happens if and only if agjass = 0 or

O ;o = anags(1+ & + )7 —ady (¢ + ¢+ M) =0. (4.2)

We have 1 + &7 + &7 =0 or & + &' + €3+ = 0 if and only if k = 3p and j,j’ €
{p,2p}. Therefore, if 3tk or if k = 3p and 4, ;" ¢ {p,2p}, V(Q;?’j,) is a codimension
1 algebraic variety in J'(2, 1), for I > 3. For such pairs, we set

_ g et %

5 = TS . 43
! (1487 +¢&0")2 (31033 (43)

We have the following properties of A? and ij, when azyass # 0; the case
aziaszz = 0 is dealt with in propositions 4.26 and 4.27.

PROPOSITION 4.21. Suppose that agiass # 0 and that 3tk or k=3p and j,j ¢
{p,2p}. Then:

(1) A? = §2jA’,§7j, and zfAzC =0 then AF # 0 for s ¢ {j,k — j}, so the solutions
of A? =0 in the kth-roots of unity come in pairs.

(2) For A? to vanish requires o in (4.3) to belong to the real semi-line (—oo, 3).
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(3) o v = e j for all pairs (j,j"). We have ajjr = ap—j ji—j = Qup_jr j—j and
the pairs (4,7"), (k — 34,7 —4),(k—j',5 —j') are pairwise distinct. Furthermore,
a{fq = a?)j, if and only if (1,q) or (¢,1) is one of those 3 pairs.

(4) «j o is real if and only if i =k — j or j' = 2j. In that case, by (3), ax—j2;
is also real. Then, ajp—j = joj = Qp_jo; = (1 + & +&F9)~L,

(5) If « is real then Q;j’ =0 if and only if j' =k —j or j/ =2j. Then by (3),
we also have Qﬁfﬂj =0.

(6) If c is real, then Q?O,k7j0 = 0 implies A? £ 0 for all j. Conversely, ifA?o =0,
then Q?’k_j #0 for all j.

(7) If ARAY 20 and QF , # 0 for all j,j' with j' # j, then D; - Dji = 4.

Proof. (1) As €77 = &M, factoring out €% in (4.1) gives AF = E2TA} .

If a3, — 4aziaszz = 0, then for A? to vanish requires a3, — 2a3;asz = 0. This would
imply asiass = 0. Therefore, under the hypothesis of the proposition, we can assume
that a§2 — 4aziazsz # 0. Then

A =0 = 521+72(O‘ 2)£ﬂ'+1=0

a—4
with o as in (4.3). If & is a solution of the above quadratic equation, then so is
£F=J = ¢7J. Therefore, for « fixed, if A? =0, then A¥ £ 0 for s ¢ {j, k — j}.

(2) When agiags # 0, we can write A¥ = agiass((14&7)%a —4(1 + & 4 £%)).
Clearly, A¥ # 0 when &/ = —1. Thus, A¥ = 0 if and only if o = 4(1 + &7 + £%7) /(1 +
€72, which shows that if A;‘? =0 then o« must be real. The discriminant of the
quadratic equation (&7 +1)%a —4(€% + ¢/ 4+1) =0 in & is 4(a —3), so a < 3 as
the solutions &7 are not real.

(3) Clearly as o ; = (&7 + & +&49") /(1 4+ &7 + ¢7')?), we have a; i = a;r ;.
Factoring our €27 (resp. £ /) from the numerator and denominator gives ag—j, j—; =
Qk—j,j'—j = k=g’ j—j-

We now seek pairs (I,¢q) for which o, = ;. We know from the above
that we have at least three such pairs. To show that these are the only ones,
we write a; ;y =c+id (so (¢,d) # (0,0)) and represent points on the unit cir-
cle, with —1 removed, in the form z = (1 —2)/(1 +t2) +i(2t/(1 +t?)) and w =
(1—35%)/(1+ %) +i(2s/(1 + s?)), with t,s € R. We set

z+ w4+ zw
(1+z+w)?

Az w

The real and imaginary parts of a. ,, — (¢ +id) vanish if and only if Py qy(s,t) =
Q(c,a)(8,t) = 0, where
Peay(s,t) = (es* +4ds® + s — 6es® — 4ds + 25° + ¢+ 1)t!
+4(s% 4 1)(ds* —2cs — d + s)t3 —2(3cs —s* 4 10cs? + 8ds — ¢ + 1)t2
— 4(s* +1)(ds® + 2cs + 3d — s)t
+ st — 4ds?® 4 st + 2¢5® — 12ds — 25% 4 9¢ — 3,
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1.57

NS

-1.5-

Figure 3. Red curve is the discriminant of R(. gy, the blue curve is the unit circle and the
green lines are the values of ap w and agp . when k = 3p.

Qe,a)(s,t) = —(ds* — 4cs® — 6ds® + des + d)t* + 4(s? + 1) (es? + 2ds — e+ 1)t3
+ 2(3ds* 4 10ds? + 25® — 8cs — d + 2s)t?
—4(s? +1)(cs* — 2ds + 3¢ — 1)t — ds* — 4es® — 2ds*
+45% —12¢s — 9d + 4s.
Observe that P, q) and Q. q) are symmetric polynomials. Their resultant with
respect to t vanishes if and only if s2 = 3 or Rc,q)(s) = 0, with
Rieay(s) = (2 +d®> —1)%s° — (9c* + 18¢°d® + 9d* + 2¢* + 2d* + 8¢ — 3)s*
+ (27¢* + 54c?d? + 27d* + 18¢* + 18d* — 16¢ + 3)s*
—27c* — 54c?d® — 27d" + 18¢% + 18d* — 8¢ + 1.
We have s2 = 3 if and only if £k = 3p and w = £” or w = €27, and this is excluded
from the hypotheses. The component R, gy of the resultant is a cubic polynomial
in s? provided ¢® +d? —1+#0, i.e.|oj /| # 1. Suppose that |a; /| # 1. Then the

discriminant of R(. 4 vanishes if and only if d =0 (i.e.c; ;s is real and this is
treated in (4) below) or

Or = 27¢* 4+ 54c¢%d? 4+ 27d* — 18¢® — 18d% + 8¢ —1 = 0.

For (c,d) in the interior region bounded by the curve dr = 0 (see figure 3), R q
has a unique solution in s2. As we know that there are at least three distinct
solution pairs to the problem, it follows that (c,d) must be in the exterior region
(R*) bounded by the curve g = 0.

Observe that s = 0 is a root of R 4) if and only if g = 0. Therefore, the roots
of R q) in s? do not change sign in (RT). Choosing any point in that region, we
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find that they are all positive. It follows that R gy has six roots +si,+s2, £s3.
These correspond to six points on the unit circle wy, ws, w3 and Wy, W, W3.

For each root of R 4y we show, by considering the subresultant (see e.g. [18])
of P.qy and Q.ay that Py qy(£s;,t) and Q. ay(£s;,t) have only one common
root. As P, gy and Q. qy are symmetric polynomials, that common root is a root
of R qy. Interchanging w; with w; if necessary, we can set w; = &, wy = &R,
wy = fk’j/, Then the solutions of «, ,, — ¢ — id = 0 are exactly, up to permutation

of 2 and w, (€7,¢7), (657,¢7"77), (¢"7,¢77").

We turn now to the case when |o; ;/ | =1, ie 2 +d*>—1=0. This occurs if
and only if 2|k and j —j+k/2 or j —k:/2 Suppose that 2 | k and j' =j+
k/2 Then a; /2 = —£% and q I+k/2 = @ jrk/2 if, and only if, [ =j or [ =

j +k/2. In both cases, we get only the pair (j,j + k/2). Now a2, = —£72, so

Qp/20 = @ jp/2 if and only if { = k — j or [ = k/2 — j. This shows that aj’jJrk/g =
Qp—jk/2 = Qgja—j k2 and the equality o j41r/2 = a4 holds only for these three
pairs.

(4) We can write «; j in the form

B RE) +RE) + R ) + @ gt
e +&+¢P

Therefore, «;j is real if and only if (= €720 4 gt 4 ¢'2 s real.
Setting 0 =j — 25’ and ¢ =j —2j, we get I(¢) = sin(2w0/k) + sin(2mwp/k) —
sin((27(0 + ¢))/k). Then

() =0 <= sin <27kr0> + sin (27:)) = sin <27r(9k+¢)>

<= 2sin (W(Hl;k(b) cos 777(9]{—@

Now, sin((7(6 + ¢))/k) = 0 when j' = k — j and cos((7w(6 — ¢))/k) = cos((n(0+¢))
/k) when j' = 2j or j = 24’. Clearly, ozj pej =1/(1+ & 4+ &k9) = ozj 2j-

(5) As azjazs # 0, we can write QF L= = asjazs(l — aj /), so Q ;=0 if and
only if a; j» = 1/a and the statement follows by (4).

(6) When « is real, by (4), we have Qj, 4 j, =0 when & + & o 41 =
a. Tt follows that & = with 9 = (o —1)/2+1i/1 — ((— 1)/2)2. Suppose
that there exist a j for which A% =0, equivalently, £* + (2(a —2)/(a — 4))&7 +

=0. Then & +¢* 7 =—((2a —2)/(a —4)) which gives & =ns with 7y =
—((@—=2)/(a—4)) £iy/1 = ((a« — 2)/(w — 4))2. We have 71 =7 if and only if
a =0 or 3. Then k = 3p and jy = p or 2p, which is excluded from our hypotheses,
SO 11 # 7.

The complex number 7; (resp. 72) is a kth-root of unity if and only if « is a
root of the polynomial Pj(a) (resp. Py(a)) of degree k obtained by taking the
numerator of R(n;*) — 1 (resp. R(n2"*) — 1). But if P; and P, have one common
root, all the other roots must also be common. (This follows from the fact that the
map cosf = —(a —2)/(a — 4) is a bijection for @ € (=00, 3] and cosf = (o —1)/2
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is also a bijection for o € (—1,3].) As P; and P, are distinct polynomials, it follows
that they have no common roots. Consequently, A? # 0 for all j.
The argument for showing that ijf ; # 0 when A?O = 0 is the same as above.

(7) We have, with the hypothesis, D; - D;s = dim¢ Oz / (zy, #* 4 y?) = 4. O

In view of proposition 4.21(7), we give in the rest of this section D; - D; for the
exceptional branches only, i.e. when one or both branches have a singularity more
degenerate than A; or one or both of their components are tangential (which is
equivalent to D; - D;r > 4). We start with the case when all the branches have an
Aj-singularity.

PROPOSITION 4.22. Suppose that a1; = as; = ase =0, aziazs # 0 and A? #£0 for
all j. Any k-folding map-germ Fy, satisfying the additional conditions in (a) or (b) is
finitely A-determined and is topologically equivalent to one of the following germs:

U (z,y) — (2,98, 2%y + 20 + 2 +457°), 1=3,4.

Every branch of the double-point curve has an Aj-singularity and the invariants
associated to the germs in these strata are as in table 7.

(a) If 3tk and Qij, # 0 for all distinct pairs, then Fy, is topologically equivalent
to U%.

(b) Suppose that k = 3p and Qﬁj, # 0 for all distinct pairs with j, 5" # {p, 2p}.
If asa # 0, then D), - Doy =5 and Fy, is topologically equivalent to Uk,

If asa =0 and CndUmg # 0, then D, - Doy =8 and Fj, is topologically
equivalent to U¥.

Proof. Each branch of the double-point curve consists of a transverse intersection
of two regular curves. In (a) all of these curves are pairwise transverse.

In (b), j2Xs(2,y) = x(az1x + aza¥asy) for s = p,2p. Observe that azs # 0 as we
supposed A¥ £ 0, so the branches D, and Dy, have one common line z = 0 in their
tangent cone and their associated curves tangent to this line are parametrized by
t = (7s(t),t) with v4(t) = —(assa/(V2sa32))t> + O(3), so they have order of contact
2 when aqq # 0. Then D, - Dy, = dime¢ Oz/ (zy, 2 + y*) = 5.

When aygq = 0, the two curves are parametrized by ¢ — (v5(t),t) with

——9§§t3-+ 2

od (as5(as1as5 — asaasz) + arrady)t” + O(6),
asz2 25039

Vs(t) =

and have contact order 5 when (ass(asiass — assazz) + arra3y # 0, i.e.CndUmg #
0. Then D, - Dy, = dim¢ O2/ <:17y,:172 + y6> =8.

For the topological normal forms, we choose asi,ass,as3s real with a > 3. By
proposition 4.21(2), all A% are non-zero. Also, by proposition 4.21(4) and (5)
2 k—; = 0 when &+ ¢F=7 41 = o, which cannot happen when a > 3, so the Q;?’j,
in (a) and (b) are non-zero. As the strata are connected sets, we can choose
az1 = aze = 1,a32 = 2 so that the conditions on A? and nyj/ are satisfied.
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The number of triple points is calculated as in proposition 4.16. If k& = 3p, the
germ U (resp. U%) has T}, 2, = 3 (resp. T) 2, = 6), while all other indices j and j’
give Tj,j’ = 2. O

PRrROPOSITION 4.23. Suppose that ay; = azy = ase =0, aziazs #0, azs #0 and
Q?o,j{] =0 for some pair (jo,Jjy), with jo,jo & {p,2p} when k=3p. Then
D, Dy =5 for (5,0) € {Giosgb)s Uk — G 3y — Go)s (k — G jo — Gb)} if and only if
CndVmsj, jo # 0. For k = 3p, we have Dy - Dap =5 if and only if ass # 0. Any
k-folding map-germ F}, satisfying the above conditions is finitely A-determined and
1s topologically equivalent to

L ﬁ .,
VT (2, y) e (2,97, 2y + xy? + g, P+ (1 — % Py +yt).
J0,J4

The invariants associated to germs in these strata are as in table 7.

Proof. When aso =0 and k = 3p, we have A’; = Agp = 0. This case is dealt with
in proposition 4.25. With the hypothesis and proposition 4.21(5), we have Q;

0:Jh =
Qr—jo.ig—do = —jg 50—y = 0-

We need to consider the order of contact between the two tangential compo-
nents of the pairs (Ds, D,) with (s, q) € {(Jo,J0), (k — jo, Jo — o), (k — jo, Jo — 76) }-
Using the fact that if two quadratic equations 22 + a;x + b; = 0, i = 1,2, have one
root in common, then the root is given by x = —(by — b2) /(a1 — az), we can get
the initial terms of parametrizations of the tangential components of the above
pairs. These are given by t — (t,v(t)), I = s,q, with v,(t) = —asz/az2(1 + & +
ENE+ Nt? + O(3),1 = s,¢. A calculation shows that A; — A\, = 0 if and only if

2 3
CndVmsg , = 390440s,q + a32033(2a33042 — A32043) 5 g + 41033 = 0,
with

Cir33" o g3itd" 4 30" 4 9g2Hi' 4 9gdt 2’ 4 ¢35 9eitd 4 ¢l 4 T

Pia = (L+& &)

(4.4)

Observe that 8; ;= Bk—j -5 = Bk—jr.j—j» 80 CndVms, , has the same value
for (s,q) € {(Jo. Jo). (k — jo, 36 — jo), (k — 44, jo — jo)}. It follows that Dy Dy =
dime Oy / (zy, 2% +y*) =5 if and only if CndVmsy, j; # 0.

For the topological model, we take as; = ass = 1 and asgs = Qjo g4 SO Qjo,jg =0.
We also set aqq = 1, ags = as3 = 0, then Cndeg,jO’jé = 6]'07]'6 + a41a§?0’j6. We set
as1 = 1— By s /cu?0 jg» SO that CndVms, j, # 0. For calculating the triple points,

we find that T} ;» = 3 for all j and j" with j # j'. O

We deal now with the case when one pair of branches of the double-point curve
has a singularity more degenerate than A; (see proposition 4.21(1)).

REMARK 4.24. For k = 3p, the singularities U% and Vi’j’j, have the same invari-

ants, but the intersection numbers between their double-point branches shows that
they are not topologically equivalent.
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PROPOSITION 4.25. Suppose that a11 = a1 = age = 0, agiass # 0. The strata below
are of codimension 4, and the invariants associated to germs in the strata are as in
table 7.

(1) Suppose that A = Ak_ _jy =0, with jo ¢ {p,2p} when k =3p (so azs #0).
The branches Dj, and Dy—j, have an As-singularity if and only if CndW Ay # 0.
We have Dj, - Dj = Dy_j, - Dj = 4 for all distinct pairs. When k = 3p and asq # 0,
we have Dy, - Doy = 5. Any k-folding map-germ Fj, satisfying the above conditions
1s A-finitely determined and is topologically equivalent to

k.jo . ko2 2 (¢ +1) 3 2.2 4
Wi (2,y) = (wy YT Tan gy TV Y )

(2) If k =3p and jo = p, then D, and Da, have an As-singularity if and only
if asa # 0. We have D), - Doy, = 8 if and only if CndWmg # 0, and Ds - D; =5 for
s=p,2p and j # s. Any k-folding map-germ Fy, satisfying the above conditions is
A-finitely determined and is topologically equivalent to

WIPPs (2,y) = (29" ey +o° + ' +9P).

Proof. The condition for an As-singularity of D;, and Dy_;, follows by analysing
the 3-jets of, respectively, \;, and Ax_j;,. Observe that when 2|k, &0 = —1 is
a solution of Ak Ak =0 if and only if azjazs =0. As we are assuming
aziazs # 0, we have Jo 7£ k/2 in (1) when 2| k.

With the hypothesis in (1), Dj, - D; = Dj—j, - D; = dim¢ O/ (22 + y3, 2% — y?)
= 4 for any distinct pairs. .

For (2), we have D), - Dy, = dim¢ O/ <x2 + 3, y4> = 8 when CndWmg # 0.

For the topological normal forms, we use the fact that A?O =0 if and only if
a = a?y/(az1az3) = 4(£290 + ¢90 +1) /(&% +1)? (see the proof of proposition 4.21)
and set az; = agy = 1, s0 aszz = (£70 +1)2/4(£%0 + &I +1). We have Tj j = 2 for
all j and 7’ Wlthj;réj. O

PROPOSITION 4.26. Suppose that a1 = as1 = a2 =0, agz; = 0, agzaze # 0. All the
branches of the double-point curve share only one line in their tangent cones except
when k = 3p where the branches D, and Day, have the same tangent cone. Any k-
folding map-germ Fy, salisfying the additional conditions in (a), (b), (c) or (d) is
finitely A-determined and is topologically equivalent to

X5 (2,y) = (2,98, 2y + 07 + 28y + o).

The stratum is of codimension 4, and the invariants associated to the germs in
the strata above are as in table 7.

(a) If 21k, 31k, all of the branches D; of the double-point curve have an A;-
singularity and D;j - Dy =5, j # j', when aq1 # 0.

(b) If k =2p, 31k, the branches D;, j # p, behave as in (a). The branch D, has
an As-singularity if and only if as1 # 0. We also have Dy - Dy, =5, j # p.

(¢) Ifk =3p, 21k, the branches D; behave as in (a) except for D, and Da, where
D, - Doy = 6 when asrasq 7 0.
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(d) If k = 6p, when aqyasq # 0, the exceptional branches of the double-point curve
behave as in (b) and (c), the remaining branches behave as in (a).

Proof. We have j2\;(z,y) = y(92ja32x + Usjas3y). For (a), ¥a; # 0 for all j and
Voj/Va; # U35 /U2 for j#j', so all of the branches of the double-point curve
have an Aj-singularity and one common line y =0 in their tangent cone. The
component of D; with tangent y = 0 can be parametrized by ¢ — (¢,~;(t)) with by
v (t) = —as1 /((1 4 & )az2)t* + O(3). Therefore, when aq, # 0, we have D; - Dy =
dime Oy / (zy, y? + 2®) = 5.

The remaining parts of the proof follow similarly and are omitted. O

PROPOSITION 4.27. Suppose that a11 = ao1 = agg = 0, azs = 0, a31a32 7é 0. All the
branches of the double-point curve share only one line in their tangent cones. Any
k-folding map-germ Fy, satisfying the additional conditions in (a) or (b) is finitely
A-determined and is topologically equivalent to

Y (z,y) = (2", —2y® + 2%y + ¥t +°).

The stratum is of codimension 4, and the invariants associated to germs in the
stratum are as in table 7.

(a) If 21k, all of the branches of the double-point curve have an A;-singularity
and D; - Dj =5, j # j', when asq # 0.

(b) If k =2p, the branch D, has an Asz-singularity if and only if CndY Az #
0. Then D, -Dj =6, j#p, and D;j-Dpyj =6, 1 < j<p, if and only if
CndYmg; # 0. The other pairs of branches behave as in (a).

Proof. We have j2)\j(x,y) = x(az12 + az2¥a;y) so when 2 { k, all of the branches of
the double-point curve have an A;-singularity as ¥2; # 0 for all j. All the branches
have only z = 0 as a common line in their tangent cone. The components of the
branches which are tangent to & = 0 are parametrized by t — (;(t),t), with v;(¢) =
—a44(1 + fgj)/a32t2 + O<3) When ay4 # 0, Dj . Dj/ = dim¢ 02/ <,’L‘y,.’172 + y3> = 5.

When k£ = 2p, we have 95, = 14, = 0, so considering the 4-jet of \,, we find that
the branch D, has an As-singularity if and only if CndY A3 # 0. When this is the
case, D, - D; = dimg Oa/ (zy, x? + y*) = 6, for j # p.

All pairs of branches D;, Dpyj, 1<j<p have tangential component
parametrized by t — (v4(t), 1), with 7s(t) = —ass(1 + &7)/asat® + ast® + O(4), s =
Jsp+ 7, with a3 —ag # 0 if and only if CndYme; # 0. When this is the case,
D;j - Dpyj = dime Oz/ (wy, x* + y*) = 6, for 1 < j < p. The other pairs of branches
behave as when 2t k. O

REMARK 4.28. The stratification Sy is determined, for each k& > 4, by the conditions
in tables 2, 4 and 6 (Sa follows from the results in [8] and S; is indicated in table 1).
One can easily check that the strata are smooth manifolds (they are also algebraic
sets so in particular, S; admits a sub-stratification which is Whitney (a) and (b)
regular).

Germs in the following strata have pairwise the same Milnor number of their
double-point curves:
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Table 5: Q% and Q} for 12 | k,

Table 7: U and Vlg’j’j/ for 3 | k,

Table 7: X% and Y¥ for 24k and 3 1 k.

A simple calculation shows that all the Milnor numbers of the double-point curves
in tables 3, 5 and 7, except those of the above pairs, are pairwise distinct. Therefore,
removing the exceptional pairs, each stratum is precisely the connected component
of the jets for which the Milnor number of the double-point curve is constant.

5. Generic singularities of k-folding map-germs

We define, by varying the plane 7 € Graff(2,3), the family of Whitney k-folds
QF : C? x Graff(2,3) — C3, given by Q¥(p, 7) = wk(p), with wF as in definition 2.2.

Given a complex surface M in C3, we call the restriction of Q¥ to M the family
of k-folding maps on M and denote it by Fi. We have Fy(p,7) = F7 (p) = w(p)
for all p € M and 7 € Graff(2, 3).

Recall that a property of surfaces is said to be generic if it is satisfied in a residual
set of embeddings of the surfaces to C3. The image of a surface M by an embedding
in the residual set is then called generic, or simply that M is generic. When £k is
large, the A-singularities of F7 may have high A.-codimensions (for the cases in
this paper, this means high modality). However, they do occur on generic surfaces.
To make sense of this, we follow a similar approach to that in [5] and proceed as
follows.

As we are interested here in the local singularities of k-folding maps, we consider
the setting in remark 2.3(4) at a point pg € M and choose a suitable system of
coordinates so that my : y = 0 and Fy, = F7°(z,y) = (z,y*, f(z,y)) for (z,y) in a
small enough neighbourhood U of the origin. A plane © = m near 7 is obtained
by applying a translation T}, followed by an orthogonal transformation R, € U(3)
to mg. We choose T, and R, as follows. The translation 7} takes the origin to the
point of intersection of 7 with the y-axis (the point exists because g is orthogonal
to the y-axis and 7 is close to mp). The transformation R, near the identity (and
is taken to be the identity if v is parallel to vg) takes v/||v|| to vo = (0,1,0) and
fixes the line through the origin orthogonal to vy and v. By varying the planes 7 in
a neighbourhood V' of 7y in Graff(2,3), we get the family of k-folding maps given
by Fi : U x V — C3, with

Fi((z,y),m) = (Rx 0 Tr) 0wy © (R 0 Tr) " ((2, 1)),
with ¢(z,y) = (z,y, f(x,y)). (We choose R, and T to depend analytically on 7.)
The A-type of the singularity of FJ at a given point in U is the same as that of
the germ of
Fil(,y),m) = Fx(2,y) = (R 0 Tr) ™" o Fi((2,y), ™) = wi o (Re 0 Tr) " (2, y))

at that point. At any point p = (z,y) € U, there exist a bi-holomorphic map-germ
K : (C%,0) — (C?,(z,y)) such that

(Re o Tr) M(B(K(X,Y)) = (24 X, 5+ Y, 2+ gp(X,Y)),
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for some germ of a holomorphic function g,, where (Z,7, 2) = (R o Ty) "  (é(z, y)).
Composing F¥ with K gives the germ (F¥), of F¥ at p

(FDp(X,Y) =@+ X, [+ Y)", 24 g,(X,Y))
~A (X7 (y + Y)kng(Xv Y))

Observe that g, depends on the choice of R, T and of the coordinates system,
but the A-class of the resulting germs (EF¥),, is independent of these choices.

Clearly, a necessary condition for (ﬁ’,? )p to be singular at the origin is § =0,
equivalently, p € 7. We define the family of maps ® : U x V — C x J(2,1) given
by

®(p,m) = ((v,p) — d,5'gp(0,0)).

The map ® plays a similar role in the Monge-Taylor map in [5]. Here we include
the first component to capture the planes through a given point p € M which can
give rise to singular k-folding map-germs at p.

We stratify C x J'(2,1) by 0 x Sk, together with C x J'(2,1)\ 0 x J'(2,1). Fol-
lowing standard transversality arguments (see e.g. [5]), one can show that for a
residual set of local embeddings of M in C3, the map ® is transverse to the strata
in C x J!(2,1). As the domain of the family ® is of dimension 5, for a generic local
embedding of M in C3, ® intersects a stratum 0 x X only when X has codimension
<4 in JY(2,1). This means that the only singularities of k-folding maps that can
occur on a generic surface are those belonging to the strata listed in tables 1, 2, 4
and 6. Furthermore, ® is transverse to these strata. Therefore, the locus of points
where the [-jets of the k-folding map-germs belong to a stratum X of codimension
3 (resp. 4) is a regular curve on M (resp. isolated points on this curve). The above
discussion also clarifies why the singularities of F] occur generically even though
they may have high A.-codimensions: they belong to strata of low codimension.
(The strata can be viewed as a gluing of non A-equivalent orbits which depends on
a finite set of moduli.)

It is worth observing that the above discussion is valid for smooth surfaces in R3.

6. k-Folding map-germs on surfaces in R3

We consider in this section the geometry of k-folding maps-germs on smooth (i.e.
regular and of class C°°) surfaces in R3.

6.1. Robust features on surfaces

Robust features on a surface in R? is a terminology introduced by Ian Porteous to
indicate special characteristic features that can be traced when the surface evolves.
What is sought after in applications are robust features which are represented by
curves or points on the surface as these form a ‘skeletal structure’ of the surface
(open regions bounded by robust curves are also robust features). They play an
important role in computer vision and shape recognition (see e.g. [27]) as they can
be used to distinguish two shapes (surfaces) from each other and, in some cases,
reconstruct the surface.
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We consider here the parabolic, ridge, sub-parabolic and flecnodal curves on a
smooth surface M in R? and special points on these curves (see [14] for references
on work on these curves from a singularity theory point of view). These are robust
features on M. We recall briefly what they are.

The parabolic curve is the locus of points where the Gaussian curvature vanishes.
It is captured by the contact of the surface M with planes: it is the locus of points
where the height function along a normal direction to M has an A>s-singularity.
The parabolic curve is regular on a generic surface, and the height function has an
As-singularity at its points except at isolated ones, called Cusps of Gauss, where it
has an Ag-singularity.

The ridge is the locus of points on M where a principal curvature is extremal
along its associated lines of principal curvature. It is also the locus of points on M
which correspond to singular points on its focal set. The ridge is captured by the
contact of M with spheres: it is the locus of points on M where the distance squared
function from a given point in R? (the point belong to the focal set) has an As3-
singularity. Away from umbilic points (i.e. points where the principal curvatures
coincide), the ridge is a regular curve on a generic surface and the distance squared
function has an As-singularity at its points except at isolated points where it has
an Ay-singularity. At umbilics, the ridge consist of one regular curve or a transverse
intersection of three regular curves. (Umbilics and A4-points are used as seed points
for drawing ridges on a given shape, see [27].)

The sub-parabolic curve is the locus of points on M corresponding to parabolic
points of its focal set. It is the locus of geodesic inflections of the lines of principal
curvature; it is also the locus of points along which a principal curvature is extremal
along the other lines of curvature. It is captured by the singularities of the 2-folding
map on M: it is the locus of points where some map FJ has an S>-singularity
(or one which is adjacent to an Ss-singularity). The singularities of Fy and their
geometric characterization on a generic surface parametrized in Monge form z =
f(z,y) at a given non-umbilic point, with f asin (3.1), are as in table 8. At umbilics,
the sub-parabolic curve consist of one regular curve or a transverse intersection of
three regular curves. Observe that the ridge is also captured by the singularities of
FJ (see table 8).

The flecnodal curve is the locus of geodesic inflections of the asymptotic curves.
It is captured by the contact of the surface M with lines: it is the locus of points
where the orthogonal projection of the surface has a singularity of type swallowtail
or worse. We recall briefly some results on these projections as they are needed for
interpreting the singularities of k-folding maps. The orthogonal projection P, of M
along the direction v € S? to the plane T, 52 is given by P,(p) = p — (p - v)v, with
p € M. This can be represented locally by a map-germ from the plane to the plane.
Varying v yields the family of orthogonal projections P : M x S? — T'S? given by
P(p,v) = (v, Ps(p))-

A transversality theorem asserts that for an open and dense (i.e.generic) set of
embeddings ¢ : U — R3, the surface M = ¢(U) has the following property: for any
v € 52 the map-germ P, has only local singularities .A-equivalent to one in table 9 at
any point on M. By translating pyp € M to the origin and taking M locally at pg in
Monge form, an open subset of M is parametrized by ¢(x,y) = (z,y, f(z,y)), with
f having no constant nor linear terms. Projecting along the direction v = (0,1, 0)

https://doi.org/10.1017/prm.2022.90 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.90

k-Folding map-germs and hidden symmetries in the Euclidean 3-space 97

Table 8. Geometric characterization of the singularities of the folding-map F>

Name Algebraic conditions and geometric meaning
Crosscap az; #0
By =5 a1 =0, az1 #0, azz #0
General smooth point of focal set
Bs a1 = 0,a31 # 0,a33 = 0,CndN A3z = 4asziass — aig #0

General cusp point of focal set corresponding to a point on the
ridge curve
Bs a1 = 0,a31 # 0,a33 = 0,CndN A3 =0,
CndN As = 8a3,a77 — 4agsaszad, + 2as3a35a31 — asyais # 0
(Cusp) point of focal set in closure of parabolic curve on symmetry
set
S a1 =0, az1 =0, azz #0, a1 #0
Parabolic smooth point of focal set corresponding to a point on the
sub-parabolic curve

S3 az1 =0, az1 =0, agg #0, a41 =0, as1 #0
Cusp of Gauss at smooth point of focal set
Cs a1 =0, az1 =0, az3 =0, ag1 #0, ag3 #0

Intersection point of cuspidal-edge and parabolic curve on focal set

gives P,(z,y) = (z, f(z,y)), which is singular at the origin. Table 9 shows the con-
ditions on the coefficients of f for the map-germ P, to have a singularity at the
origin of A.-codimension <2, where d.(G,.A) denotes the A.-codimension of G (see
e.g. [14]).

The projection P, has a fold singularity at p if, and only if, v is a non-asymptotic
tangent direction to M at p. The singularity at p is of type cusp or worse if, and
only if, v is an asymptotic direction at p. For a generic surface M, the closure of the
set of points where P, has a swallowtail (resp. lips/beaks) singularity is a precisely
the flecnodal (resp. parabolic) curve. The flecnodal curve meets tangentially the
parabolic curve at the cusps of the Gauss map, which are the gulls singularities of
P, [2]. We call a point where this happens a gulls-point of M.

The goose (resp. butterfly) singularities of P, appear at special points on the
parabolic (resp. flecnodal) curve. We call a point on M where these singularities
occur a goose-point (resp. butterfly-point) on M.

The above robust features are defined in terms of the principal curvatures xi
and k9. We can suppose k1 < ko (away from umbilic curves) and give different
colours to the robust features associated to each principal curvature. For instance,
we can have a blue ridge (associated to x1) and a red ridge (associated to k2).

6.2. The geometry of k-folding map-germs

We obtain here the robust features determined by the singularities of k-folding
map-germs, for £ > 3. We start with the case where p is not an umbilic point and
treat the k = 3 case separately.
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Table 9. Ae-Codimension <2 singularities of map-germs G : (R?,0) — (R%,0)

Name Normal form de(G, A) Algebraic conditions on f in (3.1
for the singularities of G(z,y) =
(z, f(z,y))
Fold (z, y2) 0 az #0
Cusp (z, 2y + y°) 0 a2 =0, az1 #0, azz #0
Swallowtail — (z,zy +y*) 1 azz =0, azgzg =0, a21 # 0, agqa #0
Lips/beaks (z, v+ :L’2y) 1 agzz =0, ag1 =0, azz # 0,
a3y — 3aziass #0
Goose (z,y + 23y) 2 aga =0, ag1 =0,
a3y — 3agiazs = 0, ags # 0,
27@41&%3 — 18a42a32a§3 +
9(143(1%2(133 - 4a44a§2 #£0
Butterfly (z, 2y +vy° £y") 2 aze =0, azz =0, agq =0, a1 # 0,
ass 7é 07
(8assarr — 5agg)as; +
2a55(az2a66 — 20a43a55)az1 +
35a3a35 # 0
Gulls (z,z® +y* + %) 2 aze =0, a1 =0, azgz3 =0, azz # 0,

ag4 # 0,
2 2
as5a39 — 2043044032 + 4aziazy # 0

THEOREM 6.1. Let M be a generic surface in R?, p a non-umbilical point on M and
m a plane through p and orthogonal to v. The map-germ F5 at p is an immersion
if and only if v is not tangent to M at p. It has an Si-singularity iof and only
if v € T,M but is neither a principal nor an asymptotic direction. We have the
following when v is a principal or an asymptotic direction at p.

(1) Ifw is a principal direction at p, then the possible singularities of F at p and
their geometric characterizations are as follows:

S3: p is not on the sub-parabolic curve associated to v.
S5: p is a generic point on the sub-parabolic curve associated to v.
Sr7:pis an Ss-point on the sub-parabolic curve associated to v.

(2) Suppose that v is an asymptotic and that p is a hyperbolic point. Then FJ
has a singularity at p of type Hy, k = 2,3,4. The Hs-singularities occur on a
reqular curve on M. We call its closure the Hs-curve. The H,-singularities

occur at isolated points on this curve.

(3) If p is a parabolic point and v is the unique asymptotic direction at p which
s also a principal direction, then the possible topological classes of Fif at p
and their geometric characterizations are as follows:

X4:pis a generic point on the parabolic curve.
U3: p is an Aj-point (see [10, 11]); it is on the closure of the Hz-curve.
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X3: p is on the sub-parabolic curve associated to v; the principal map with
value v at p has a beaks singularity at p [7].

Wi’l: p is on the sub-parabolic curve associated to the other principal direc-
tion v ; it is on the closure of the Hs-curve; the frame map has a cross-cap
singularity at p [7].

Proof. The proof follows by considering the defining equations and the open con-
ditions of the strata of 3-folding map-germs in theorem 4.4 and the geometric
interpretation of the algebraic conditions in table 1 given in tables 8 and 9. O

PROPOSITION 6.2. The Hs-curve of a generic surface is a reqular curve and meets
the parabolic curve tangentially at A% and Wi’l-points.

Proof. The regularity of the Hs-curve follows by a transversality argument. We
compute the 1-jets of the parabolic and Hs-curves and find that they are tangen-
tial at their points of intersection. This is expected as the Hs-singularities of F
occur when v is an asymptotic direction, so the Hz-curve lies in the closure of the
hyperbolic region of the surface. O

We turn now to the case k > 4, still assuming p not to be an umbilical point.
We recall that some topological classes in tables 2, 4 and 6 come with divisibility
conditions on k. For example, the N4 class requires 2 | k (see remarks 6.4).

THEOREM 6.3. Let k > 4 and let M be a generic surface in R3, p a non-umbilical
point on M and m a plane through p and orthogonal to v. The map-germ F at p is
an immersion if and only if v is not tangent to M at p. It has a singularity which
is topologically equivalent to MY if and only if v € T,M but is neither a principal
nor an asymptotic direction at p. We have the following when v is a principal or
an asymptotic direction at p.

(1) Ifv is a principal direction at p, then FT belongs to a stratum in table 2. The
possible topological classes of F} and their geometric interpretations are as
follows:

M5 : p is not on the sub-parabolic curve associated to v.

M&: p is a generic point on the sub-parabolic curve associated to v.

MK : p is an Ss-point on the sub-parabolic curve associated to v.

N%: p is a generic point on the ridge curve associated to v.

N¥%: p is a Bs-point on the ridge curve associated to v.

O%: p is a Cs-point (intersection point of the ridge and sub-parabolic curves
associated to v).

(2) If p is a hyperbolic point and v is an asymptotic direction at p, then F[
belongs to a stratum in table 4. The possible topological classes of F}T and
their geometric interpretations are as follows:

P%: p is not on the flecnodal curve associated to v, and is not on the Hsz-curve
associated to v when 3 | k.
P’g: p is a generic point on the Hs-curve associated to v.
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P%: p is an Hy-point on the Hs-curve associated to v.

Qk: p is a generic point on the fleenodal curve associated to v.

Qk: p is a point of intersection of the fleenodal and Hs-curves associated to
.

Qk: p is a special point on the flecnodal curve associated to v.

R%: p is a butterfly-point on the flecnodal curve associated to v.

(3) If p is a parabolic point and v is an asymptotic (and a principal) direction at
p, then FJT belongs to a stratum in table 6. The possible topological classes of
E7 and their geometric interpretations are as follows:

U§ :pis a generic point on the parabolic curve.

Uk: p is an Aj-point.

Vf’j’jl: P s a special point on the parabolic curve.

Wh p is a special point on the parabolic curve.

W %9 pis on the sub-parabolic curve associated to v ; it is on the closure
of the Hs-curve associated to v; the frame map has a cross-cap
singularity at p [7).

XEk: p is on the intersection of the parabolic and sub-parabolic curves

associated to v; the principal map with value v at p has a beaks singularity
at p [7].
Y5%: pis a cusp of Gauss point and a gulls-point.

Proof. With the setting as in the proof of theorem 6.1, the results follow by
interpreting the conditions in tables 2, 4 and 6 using tables 8 and 9. ]

REMARKS 6.4. 1. The singularities in branches 1 and 2 are associated to principal
directions, those in branch 3 to asymptotic directions at hyperbolic points and those
in branch 4 to asymptotic directions at parabolic points.

2. Theorems 6.1 and 6.3 show clearly that k-folding maps capture the robust
features obtained by 2-folding maps and by the contact of the surface with lines,
planes and spheres, giving thus new geometric characterizations of these features
and a unified approach to study them. We also obtain a new 1-dimensional robust
feature (the Hs-curve) and several 0-dimensional ones: the Hy, Qf, QfL Vi’j 7" and
Wf’j points.

3. The Hs-curve is captured by k-folding maps when k is divisible by 3. The
sub-parabolic and flecnodal curves are captured by k-folding maps for any k while
the ridge curve is captured by k-folding maps when k is even. Regarding the ridge,
it is the locus of points where the surface has more infinitesimal symmetry with
respect to planes [8]. The map-germs (x,y) — (z,y??, f(z,y)) identify the pair of
points (z,y) and (x, —y), which explains why all the F5, folding maps capture the
ridge curve.

4. The condition Af = 0 can be satisfied for any k,;7 when the coefficients ag
are real, so Wi’j—points can occur on surfaces in R? for all k,j. For the Vi’j’j/

topological class, it follows from proposition 4.21 that only Vf’j k=g , Vf’j’Qj and

kk—3.2j . .
V"% points can occur on surfaces in R?.
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5. Theorem 6.1 gives a new geometric interpretation for the Aj-points
in [10, 11].

6. Observe that the open conditions (those involving expressions # 0) for the
singularities of the k-folding map in tables 1, 2, 4 and 6 and their associated ones
in tables 8 and 9 are not always identical. For the 0-dimensional robust features,
the open conditions in both tables are satisfied on a generic surface. For the 1-
dimensional robust features, this means that some special points in one setting
are not special in the other. For example, the 3-folding map does not distinguish
between a Cs-point and a generic point on the sub-parabolic curve.

We consider now the situation at umbilic points. For a generic surface M, these
occur at isolated points in its elliptic region, and every direction in the tangent
plane of M at such points can be considered a principal direction. We take M
locally in Monge form z = f(z,y), consider the origin to be an umbilic point and
write f(z,y) = k/2(x? + y?) + C(x,y) + O4(x,y) where C is a homogeneous cubic
form in z,y. We can take C(z,y) to be the real part of 22 + 322z, with z = x + iy
and 3 = s + it (see e.g. [8]). Then, C = (1 + s)x3 — tay + (s — 3)zy? — ty°.

THEOREM 6.5. Let k > 3 and let M be a generic smooth surface in R3, p an umbilic
point on M and 7 a plane through p and orthogonal to v € T, M.

1. If 21k, then for almost all directions v in T,M the singularity of FJ at
p is of type Ss when k=3 and of type M5 when k > 4. There are three
directions (resp. one direction) where the singularity is of type S5 when k = 3
and of type ME when k > 4 if 3 is inside (resp. outside) the outer hypocycloid
B = —3(2e%% +e=49) in figure 4.

2. If 2| k, then for almost all directions v in T,M the singularity of F at
p is of type MK. There are three directions (resp. one direction) where
the singularity is of type M if (3 is inside (resp. outside) the hypocycloid
B = —3(2e%% + e=49). There are also three directions (resp. one direction)
where the singularity is of type N& when (3 is inside (resp. outside) the inner
hypocycloid 3 = 2e*% + e~ in figure 4.

Proof. We take v = (cos(f),sin(d),0), 6 € [0,27] and consider the rotation
sin(f)  cos(6)
0

R=| —cos(f) sin(d)
0 0

0
01,
1
which takes the direction (0, 1,0) to v. Then,
FF o R Y(z,y) = (zsin(h) — ycos(8), (x cos(8) + ysin(h)), f(z,y)).

Changes of coordinates in the source give

FFoRYX,Y) = (X,Y* f(Xsin(d) + Y cos(d), —X cos(f) + Y sin(h))).
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Figure 4. Partition of the space of cubic forms.

We denote by a;; the coefficient of X'~7Y7 in the Taylor expansion of f(X sin() +
Y cos(6), —X cos(f) + Y sin()). The proof follows then considering the conditions
for the singularities of F} in tables 1 and 2.

(1) We have

a3 = (s — 3) cos(6)® — tcos(0)? sin(6) + (9 + s) sin(#)? cos() — tsin(h)>.

When 2tk and as; # 0, the singularity of FJ at the origin is of type S5 when
k = 3 or of type M} when k > 4.

The coefficient as; is a cubic form in cos(f) and sin(d). Its discriminant is
the hypocycloid 3 = —3(2e%? 4+ ¢=%%). The cubic has three roots for 3 inside the
hypocycloid and one root when it is outside. For v corresponding to one of these
roots, the singularity of I} is of type S5 when k& = 3 and of type MY when k > 4,
provided a4; # 0. The condition a4 # 0 is satisfied at umbilic points on generic
surfaces.

(2) We have

az3 = (14 8)cos(0)® — tcos(f)?sin(h) + (s — 3) cos(#) sin(0)? — tsin(6)>.

When 2 | k (so k > 4) and ags # 0, the singularity of Fj7 at the origin is of type
M5. We also get the M5 singularities as in (1) when a@z; = 0.

The coefficient as3 is also a cubic form in cos(¢) and sin(f). Its discriminant
is the hypocycloid 3 = 2¢2% 4 ¢=4¢ The cubic has three roots for 3 inside the
hypocycloid and one root when it is outside. For v corresponding to one of these
roots, the singularity of F]' is of type Nk if ag; # 0.

We have dz3 = a3; = 0 if and only if 3 is on one of the tangent lines (3s% — t2) = 0
to the hypocycloids at their cusp points, see figure 4. (On these lines, the singularity
is of type O% or more degenerate. This singularity does not occur at umbilic points
on a generic surface.) O
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REMARK 6.6. 1. Theorem 6.5 is merely another interpretation of the results in
[8, 32] when using the geometric characterizations of the singularities of k-folding
maps in theorems 6.1 and 6.3. We know from [5, 8, 32| that there are one or three
ridge curves and one or three sub-parabolic curves at umbilic points on a generic
surface. These curves meet transversally and change colour at the umbilic point.

2. Figure 4 is first obtained in [8] when considering 2-folding maps. In that case
both hypocycloids are present, whereas when k > 3 only one of them is present
when k is odd (both are present when k is even). Also in [8] is considered the
circle |3| = 3 which corresponds to the Monge—Taylor map failing to be transverse
to the umbilics stratum. The circle |5] =1 is also exceptional and corresponds to
two ridges through the umbilic being tangential, see [6]. As these conditions are
geometric, the circles |5] =1 and |5] = 3 can also be considered exceptional for
k-folding maps and are added to figure 4.

3. Umbilic points on a generic surface occur at elliptic points, that is why we do
not get flecnodal curves or Hs-curves through such points.

Acknowledgements

The authors would like to thank the referee for useful and pertinent comments. GPS
was partially supported by the Basque Government through the BERC 2018-2021
programme and Gobierno Vasco Grant IT1094-16, by the Spanish Ministry of
Science, Innovation and Universities: BCAM Severo Ochoa accreditation SEV-2017-
0718, by the ERCEA Consolidator Grant 615655 NMST, and by Programa de Becas
Posdoctorales en la UNAM, DGAPA, Instituto de Matematicas, UNAM. FT was
partially supported by the FAPESP Thematic project grant 2019/07316-0 and the
CNPq research grant 303772/2018-2.

References

1 V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of differentiable maps.
Vol. 1. The classification of critical points, caustics and wave fronts. In Monographs in
Mathematics, vol. 82 (Bosto. Birkhauser, 1985).

2 T. F. Banchoff, T. J. Gaffney and C. McCrory, Cusps of Gauss mappings. In Research
Notes in Mathematics, vol. 55 (Pitman, London, 1982).

3 J. F. Bobadilla and M. Pe Pereira. Equisingularity at the normalisation. J. Topol. 1 (2008),
879-909.

4 J. F. Bobadilla, G. Penafort and J. E. Sampaio, Topological invariants and Milnor
fibre for A-finite germs C2? — C3. Dalat University Journal of Science. 12 (2022).
https://doi.org/10.37569/DalatUniversity.12.2.864(2022).

5 J. W. Bruce. Generic reflections and projections. Math. Scand. 54 (1984), 262-278.

6 J. W. Bruce, P. J. Giblin and F. Tari. Families of surfaces: focal sets, ridges and umbilics.
Math. Proc. Camb. Philos. Soc. 125 (1999), 243-268.

7 J. W. Bruce and F. Tari. Frame and direction mappings for surfaces in R3. Proc. Roy. Soc.
Edinb. A 149 (2019), 795-830.

8 J. W. Bruce and T. C. Wilkinson, Folding maps and focal sets. In Lecture Notes in
Mathematics, vol. 1462, pp. 63-72 (Springer, Berlin, 1991).

9 J. N. Damon, Topological triviality and versality for subgroups of A and K. Mem. Am.
Math. Soc. 75 (1988), 389.

10 P. J. Giblin and S. Janeczko. Bifurcation sets of families of reflections on surfaces in R3.
Proc. Roy. Soc. Edinb. A 1477 (2017), 337-352.

11 P. J. Giblin, J. P. Warder and V. M. Zakalyukin. Bifurcations of affine equidistants. Proc.
Steklov Inst. Math. 267 (2009), 57-75.

https://doi.org/10.1017/prm.2022.90 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.90

104

12
13

14

15
16

17
18

19
20
21
22
23
24
25

26

27
28
29
30
31
32

33

G. Penafort Sanchis and F. Tari

P. J. Giblin and F. Tari, Local reflexional and rotational symmetry in the plane. In Lecture
Notes in Mathematics, vol. 1462, pp. 154-171 (Springer, Berlin, 1991).

P. J. Giblin and F. Tari. Perpendicular bisectors, duals and local symmetry in the plane.
Proc. Roy. Soc. Edinb. A 125 (1995), 181-194.

S. Izumiya, M. C. Romero-Fuster, M. A. S. Ruas and F. Tari, Differential geometry form
a singularity theory viewpoint. (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ,
2016).

S. Izumiya, M. Takahashi and F. Tari. Folding maps on spacelike and timelike surfaces and
duality. Osaka J. Math. 47 (2010), 839-862.

V. V. Goryunov. Singularities of projections of complete intersections. Curr. Prob. Math.
22 (1983), 167-206 (in Russian). English translation: J. Soviet Math. 27 (1984), 2785-2811.
G. Penafort Sanchis. Reflection maps. Math. Ann. 378 (2020), 559-598.

M. El Kahoui. An elementary approach to subresultants theory. J. Symb. Comp. 35 (2003),
281-292.

W. L. Marar and D. Mond. Multiple point schemes for corank 1 maps. J. London Math.
Soc. 39 (1989), 553-567.

W. L. Marar, J. J. Nuho-Ballesteros and G. Penafort-Sanchis. Double point curves for
corank 2 map germs from C2? to C3. Topol. Appl. 159 (2012), 526-536.

J. Milnor, Singular points of complex hypersurfaces. In Annals of Mathematics Studies, vol.
61 (London. Princeton University Press, 1968).

D. M. Q. Mond. On the classification of germs of maps from R2 to R3. Proc. London Math.
Soc. 50 (1985), 333-369.

D. M. Q. Mond. Some remarks on the geometry and classification of germs of maps from
surfaces to 3-space. Topology 26 (1987), 361-383.

D. Mond. The number of vanishing cycles for a quasihomogeneous mapping from C2 to C3.
Quart. J. Math. Ozford 42 (1991), 335-345.

D. Mond and J. J. Nuno-Ballesteros, Singularities of mappings. In Grundlehren der
mathematischen Wissenschaften (Switzerland. Springer, 2020).

D. Mond and R. Pellikaan, Fitting ideals and multiple points of analytic mappings. In
Algebraic geometry and complex analysis (Pétzcuaro, 1987), Lecture Notes in Mathematics,
vol. 1414, pp. 107-161 (Berlin: Springer, 1989).

Musuvathy, et al. Principal curvature ridges and geometrically salient regions of parametric
B-spline surfaces. Computer-Aided Des. 43 (2011), 756-770.

A. Nemethi and G. Pinter. Immersions associated with holomorphic germs. Comment.
Math. Helv. 90 (2015), 513-541.

J. H. Rieger. Families of maps from the plane to the plane. J. London Math. Soc. 36 (1987),
351-369.

D. Siersma. Hypersurfaces with singular locus a plane curve and transversal type Aj.
Banach Center Publications 20 (1988), 397-410.

C. T. C. Wall. Finite determinacy of smooth map-germs. Bull. London Math. Soc. 13
(1981), 481-539.

T. C. Wilkinson, The geometry of folding maps, Ph.D. thesis, University of Newcastle-upon-
Tyne, 1991.

O. Zariski. General theory of saturation and of saturated local rings II: Saturated local
rings of dimension 1. Am. J. Math. 93 (1971), 872-964.

https://doi.org/10.1017/prm.2022.90 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.90

	1 Introduction
	2 Preliminaries
	2.1 Singularities of map-germs
	2.2 Reflections and k-folding maps

	3 Topological invariants
	3.1 The double-point curve
	3.2 Cross-caps and triple points
	3.3 Topological triviality

	4 The jet space stratification
	4.1 The case k= 3
	4.2 The case k4
	4.2.1 Branch 1: a11=0, a21a22=0
	4.2.2 Branch 2: a11=a21=0, a22=0
	4.2.3 Branch 3: a11=a22=0, a21=0
	4.2.4 Branch 4: a11=a21=a22=0


	5 Generic singularities of k-folding map-germs
	6 k-Folding map-germs on surfaces in R3
	6.1 Robust features on surfaces
	6.2 The geometry of k-folding map-germs

	References

