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1. Introduction

The aim of this work is to study k-folding map-germs on complex surfaces in C3

and relate them to the extrinsic differential geometry of smooth surfaces in R3.
The standard Whitney fold of order k with respect to the plane π0 : y = 0 in C3

is the map ωk : C3 → C3, given by ωk(x, y, z) = (x, yk, z). The map ωk ‘folds’ the
space C3 along the plane π0, gluing the points (x, y, z), (x, ξy, z), . . . , (x, ξk−1y, z),
where ξ = e2πi/k is a primitive kth-root of unity. The Whitney fold of order k with
respect to any plane π, denoted by ωπ

k , is defined similarly in § 2.
Let M be a complex surface in C3. We call the restriction of ωπ

k to M the k-
folding map on M with respect to π. As our study is local, given a point p on M and
a plane π in C3 through p, we choose a coordinate system so that M is locally the
graph of a function z = f(x, y) and π = π0 : y = 0 (see remark 2.3(4)). Then the
germ at p0 of the k-folding map is represented in standard form by the map-germ
Fk : (C2, 0) → (C3, 0), given by

Fk(x, y) = (x, yk, f(x, y)). (1.1)
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k-Folding map-germs and hidden symmetries in the Euclidean 3-space 61

For an analytic (resp. smooth) surface M ⊂ R3, the k-folding map at a point p
on M is constructed by complexifying M (resp. a certain jet of a parametrization
of M) at p. The singularities of a k-folding map-germ encode the local symmetries
of M with respect to the (complex) reflection group of order k whose hyperplane
arrangement consists of the single plane π.

The study of 2-folding map-germs on surfaces in R3 was carried out by Bruce
and Wilkinson [5, 8, 32] (see [6, 12–15, 32] for more work on the subject), without
resorting to complexification. The real map-germs in [5, 8, 32] are called folding
map-germs and our 2-folding map-germs are their complexifications. Complexifying
does not give extra information when k = 2. For k � 3, per contra, k-folding maps
reveal a great deal of new geometric information. The local symmetries captured
by these map-germs cannot be seen in the real case, which is why we call them
hidden symmetries of M ⊂ R3. The loci of their singularities are visible on M and
capture extrinsic geometric information of the surface.

Bruce and Wilkinson showed that folding maps capture the sub-parabolic and
ridge curves, as well as umbilic points and other special points on these curves:
these are robust features of the surface (i.e. they are special geometric features
that can be traced on an evolving surface; see § 6.2 for details). Passing to the
complex setting, we show that the singularities of k-folding maps, k � 2, capture
in a unified way, known robust features obtained by considering the contact of
the surface with lines, planes or spheres (parabolic, sub-parabolic, ridge and flec-
nodal curves, umbilic points, B3, C3 and S3-points, A∗

2-points, cusps of Gauss
(gulls-points) and butterfly-points). Our approach also reveals a new robust fea-
ture on surfaces: when k is divisible by 3, we obtain a new curve, which we call the
H3-curve. We also obtain new special points on previously known curves as well
as on the H3-curve. This motivates the following question: can the H3-curve be
obtained via the contact of the surface with some special geometric object? Further
work is also required for understanding the link between local (hidden) symmetries
of a surface and its contact with lines and planes.

The paper is organized as follows. In § 2, we set notation and give some prelimi-
naries. In § 3, we obtain formulae for the invariants C, T, μ(D) and r(D) of k-folding
map-germs. These are respectively, the number of cross-caps, the number of triple
points, the Milnor number and the number of branches of the double-point curve.
These invariants determine the finite A-determinacy and the topological class of a
k-folding map-germ.

We show that there are no A-simple k-folding map-germs for k � 5; also the
modality of the map-germs is large for k large. This is why producing normal forms
of finitely A-determined germs, as is usually done in singularity theory, is not of
great use here. Our classification is of strata in the jet space which are manifolds
formed by unions of finitely A-determined germs with the property that all germs
in a given stratum are topologically equivalent.

We produce in § 4 a stratification of the l-jet space of k-folding map-germs in
standard form which is identified with the l-jet space of germs of functions J l(2, 1).
The stratification results are summarized as follows.
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Theorem 1.1. For any integer k � 2, there is a stratification Sk of J11(2, 1) such
that, for any stratum S in Sk of codimension �4, all k-folding map-germs in stan-
dard form with 11-jets in S are finitely A-determined and are pairwise topologically
equivalent.

We relate in § 6 the stratification of the jet space to the extrinsic differential
geometry of surfaces in R3. After clarifying what it means for a surface to be
generic, we deduce the following result about the topological classes of k-folding
map-germs.

Theorem 1.2. Let k � 3 be an integer and let M be a generic smooth surface in
R3 (or a complex surface in C3). Then, at any point p on M and for any plane π
through p, the k-folding map-germ at p with respect to π is finitely A-determined
and is topologically equivalent to one of the following map-germs:

Mk
0 (x, y) �→ (x, yk, y),

Mk
1 (x, y) �→ (x, yk, xy + y2),

Mk
l (x, y) �→ (x, yk, y2 + y3 + xly), l = 2, 3, 4,

Nk
l (x, y) �→ (x, yk, y2 + x2y + y2l−1), l = 3, 4,

Ok
4 (x, y) �→ (x, yk, y2 + x3y + xy3),

Pk
l (x, y) �→ (x, yk, xy + y3 + y3l−1), l = 2, 3, 4,

Qk
3 (x, y) �→ (x, yk, xy + y4 + y5 + y6),

Qk
4 (x, y) �→ (x, yk, xy + y4 + y6 + y8),

Q̃k
4 (x, y) �→ (x, yk, xy + y4 + y5 + y7),

Rk
4 (x, y) �→ (x, yk, xy + y5 + y6 + y7),

Uk
3 (x, y) �→ (x, yk, x2y + 2xy2 + y3 + y4),

Uk
4 (x, y) �→ (x, yk, x2y + 2xy2 + y3 + y8),

Vk,j,j′
4

(†) (x, y) �→ (x, yk, x2y + xy2 + aj,j′y3 + bj,j′x3y + y4),
Wk,j

4
(†) (x, y) �→ (x, yk, x2y + xy2 + cjy

3 + 4x2y2 + y4),
W3q,q

4
(†) (x, y) �→ (x, yk, x2y + y3 + y4 + y5),

Xk
4 (x, y) �→ (x, yk, xy2 + y3 + x3y + y4),

Yk
4 (x, y) �→ (x, yk,−xy2 + x2y + y4 + y5).

(†) The constants aj,j′ , bj,j′ (resp. cj) are as in proposition 4.23 (resp. 4.25) and
the conditions on the indices are as in table 6.

It is worth noting that 3-folding map-germs can have A-simple singularities and
their corresponding strata in S3 are A-constant. For k � 4, none of the k-folding
map-germs are A-simple, except for immersions and for M4

1 , which is the C3-
singularity. The strata of Sk give rise to moduli of finitely determined map-germs
with constant invariants C, T, μ(D) and r(D).

The representatives Mk
0 and Mk

1 are quasi-homogeneous, and Mk
l , with 2 � k,

Qk
3 , with 12 � k, Rk

4 , with 20 � k and Uk
4 , with 3 � k, can be replaced by quasi-

homogeneous representatives of the same topological class (see remarks 4.10). For
these cases, the invariants can be calculated in terms of the weights and degrees
[24] and the topological triviality of the strata in the jet space follows from
equisingularity results in [9].
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Figure 1. Robust features captured by k-folding map-germs away from umbilic points for
k � 4, even and divisible by 3 (see theorem 6.5 and remarks 6.6 for the robust curves at
umbilic points).

The robust features captured by k-folding map-germs on a generic surface are
sketched in figure 1. An interesting finding is that, having studied symmetries of
infinitely many orders (for any k � 2), we obtain a finite collection of robust features
that occur along curves and a finite collection of special points on these curves if
we discard the Vk,j,j′

and Wk,j-points.

2. Preliminaries

We introduce here k-folding map-germs and notation from singularity theory that
are needed in the paper. We start with the singularity theory notation, see for
example [25, 31] for more details.

2.1. Singularities of map-germs

We deal with germs F : (M,p) → (N,F (p)) of holomorphic maps between
complex manifolds. Taking coordinate charts, this is the same as dealing with
map-germs (Cn, 0) → (Cp, 0).

Let On be the local ring of germs of holomorphic functions (Cn, 0) → C and mn

its maximal ideal (which is the subset of germs that vanish at the origin). Denote
by O(n, p) the On-module of holomorphic map-germs (Cn, 0) → Cp, so O(n, p) =⊕

p On.
Let R (resp. L) be the group of bi-holomorphic germs (Cn, 0) → (Cn, 0) (resp.

(Cp, 0) → (Cp, 0)). The group A = R×L of right-left equivalence acts on mn ·
O(n, p) by (h1, h2) ·G = h2 ◦G ◦ h−1

1 . Two germs H,G are said to be A-equivalent,
and write H ∼A G, if H = (h1, h2) ·G for some (h1, h2) ∈ A.

The l-jet space of map-germs in mn · O(n, p) is by definition

J l(n, p) = mn · O(n, p)/ml+1
n · O(n, p).
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Given a germ G ∈ mn · O(n, p), we identified its l-jet jlG with its Taylor polynomial
of degree l at the origin. Let Al be the subgroup of A whose elements have l-
jets the germ of the identity. The group Al is a normal subgroup of A. Define
A(l) = A/Al. The elements of A(l) are the l-jets of the elements of A. The action
of A on mn · O(n, p) induces an action of the jet group A(l) on J l(n, p) as follows.
For jlG ∈ J l(n, p) and jl(h1, h2) ∈ A(l), jl(h1, h2) · jrG = jl((h1, h2) ·G).

A germ G is said to be finitely A-determined if there exist an integer l such that
G ∼A H for any H with jlH = jlG; jlG is then said to be a sufficient jet of G.
The germ G is then said to be l-A-determined. The least l satisfying this property
is called the degree of determinacy of G.

There are classifications of finitely determined map-germs for various pairs (n, p).
When p = 1, there is Arnold’s extensive list of the R-classification of germs of
functions [1]. For (n, p) = (2, 2), classifications were carried out by several authors,
the most extensive ones are given in [16, 29]. Here we need only the singularities
of Ae-codimension �2, which we reproduce in table 9. For (n, p) = (2, 3), Mond
[22] produced an extensive list of finitely A-determined map-germs. We use in this
paper the following singularities from [22]:

Immersion (x, y, 0)
Cross-cap (x, y2, xy)

Sk (x, y2, y3 + xk+1y), k � 1
Bk (x, y2, x2y + y2k+1), k � 2
C3 (x, y2, xy3 + x3y)
Hk (x, xy + y3k−1, y3), k � 2
X4 (x, y3, x2y + xy2 + y4)

The notion of a simple germ is defined in [1] as follows. Let X be a manifold and
G a Lie group acting on X. The modality of a point g ∈ X under the action of G on
X is the least number m such that a sufficiently small neighbourhood of g may be
covered by a finite number of m-parameter families of orbits. The point g is said to
be simple if its modality is 0, that is, a sufficiently small neighbourhood intersects
only a finite number of orbits. The modality of a finitely A-determined map-germ
is the modality of a sufficient jet in the jet-space under the action of the jet-group.

We also need the notion of topological equivalence. We say that two germs H,
G ∈ mn · O(n, p) are topologically equivalent if H = h2 ◦G ◦ h−1

1 for some germs of
homeomorphisms h1 and h2 of, respectively, the source and target.

2.2. Reflections and k-folding maps

In all this paper, we fix the inner product 〈a, b〉 =
∑

i aibi in C3.
Let π be an element of the affine Grassmannian Graff(2, 3) of planes in C3.

A plane π has equation 〈q, v〉 = d, where v is a fixed non-zero vector orthogonal to
π and d is a fixed scalar. However, any non-zero scalar multiple of (d, v) gives an
equation of π, so π is identified with the class (d, v) ∈ CP 3 of (d, v) ∈ C4.

Let π : 〈q, v〉 = d be a plane in C3. The orthogonal projection of a point p ∈ C3

to π along the vector v is the point q = p+ λv ∈ π with λ = (d− 〈p, v〉)/ 〈v, v〉.
Consider the map ωπ

k : C3 → C3 given by

ωπ
k (p) = q + λkv = p+ λv + λkv.
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If we take (d′, v′) = (αd, αv), α ∈ C \ 0, as another representative of π = (d, v), then

p+ λ′v′ + λ′kv′ = p+
α(d− 〈p, v〉))
α2 〈v, v〉 αv +

αk(d− 〈p, v〉)k)
α2k 〈v, v〉 αv

= p+ λv + λkα1−kv

= q + λkα1−kv.

Clearly, the map ωπ
k depends on the points on the line (αd, αv) ∈ C4 and not

merely on the class of the line (d, v) ∈ CP 3. However, all these maps are L-
equivalent: the bi-holomorphic map q − λv �→ q − λα

1−k
k v composed (on the left)

with the map ωπ
k with π represented by (d, v) gives the map ωπ

k with π represented
by (αd, αv). Therefore, the L-class of ωπ

k depends only on π.

Definition 2.1. The Whitney fold of order k (k-fold for short) with respect to
a plane π ∈ Graff(2, 3) is the L-class of the map ωk

π. We still denote by ωπ
k any

representative of ωπ
k obtained by choosing a representative (p, v) of π = (d, v) ∈

CP 3.

A k-fold may be viewed as generalization of the Whitney fold (x, y2, z) �→
(x, y2, z). While the Whitney fold folds the space along the plane {y = 0} and iden-
tifies the points (x, y, z) and (x,−y, z), the Whitney fold of order k with respect
to a plane π represented by (d, v) is a generically a k-to-1 branched cover, rami-
fied along π, and identifies k-tuples of points q − λv, q − ξλv, . . . , q − ξk−1λv, where
ξ = e2πi/k is a primitive kth-root of unity and q ∈ π.

The map ωπ
k can also be viewed as the quotient map associated to the action of

the cyclic group Z/kZ, regarded as a complex reflection group whose hyperplane
arrangement consist of the single plane π. We regard Z/kZ as the group generated
by the order k complex reflection q − λv �→ q − ξλv. Observe that, even though the
plane π does not determine ωπ

k uniquely (it depends on the choice of a representative
of π = (d, v) ∈ CP 3), the action of Z/kZ on C3 is determined uniquely by π.

Given any subset X ⊆ C3, ωπ
k (X) encodes the order k reflectional symmetries

of X with respect to π. See [17] for a recent work on singular maps related to
reflection groups.

Definition 2.2. Let M ⊂ C3 be a complex surface, p a point on M and k � 2 an
integer. Given π ∈ Graff(2, 3), the k-folding map-germ on M at p with respect to π
is the A-class of the restriction of ωπ

k to M at p. We denote any representative of
the class by Fπ

k : (M,p) → (C3, ωπ
k (p)).

Remarks 2.3.
1. All the map-germs Fπ

k with π represented by (αd, αv), α ∈ C, are A-equivalent
as the maps ωπ

k are L-equivalent. Thus, the A-class of Fπ
k depends only on π and

not on the choice of a representative (p, v) of π = (d, v) ∈ CP 3. In all the paper, we
work with a representative of the A-class of Fπ

k .
2. If p /∈ π, then Fπ

k is the germ of an immersion. Thus, to obtain any meaningful
local geometric information about the surface M we should take the plane π passing
through the point p ∈M .
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3. The image of Fπ
k is the image by ωπ

k of the germ (M,p), so for p ∈ π ∩M , Fπ
k

captures order k local symmetries of M with respect to π. The aim of this paper
is to understand how these local symmetries are captured by the A-singularities of
Fπ

k .
4. Let p0 ∈ π ∩M and (d, v) a representative of π. If v /∈ Tp0M , then Fπ

k is
a germ of an immersion and is A-equivalent to (x, y) �→ (x, yk, y). Suppose that
v ∈ Tp0M . We choose a coordinates system in C3 so that p0 is the origin, the
z-axis is along a normal vector to M at p0, the y-axis along v and the x-axis
orthogonal to the previous two axes. Then we can take M locally at p0 as the
graph z = f(x, y) of some holomorphic map f in a neighbourhood U of the origin.
In this coordinate system, we have π = π0 : y = 0. Consequently, the k-folding map-
germ on M at p0 is the germ Fk = Fπ0

k : (C2, 0) → (C3, 0), given in standard form
Fk(x, y) = (x, yk, f(x, y)). In view of this, we shall always take a given k-folding
map-germ in standard form (1.1).

5. Definition 2.2 is adapted as follows for the real case. When M is an analytic
surface in R3, denote by MC,p its local complexification at p and by πC the com-
plexification of π. The k-folding map-germ on M at p with respect to π is then
defined as the A-class of the restriction of ωπC

k to MC,p at p. When M is a smooth
surface, we consider the k-folding map-germ of a given jet of (a parametrization of)
M at p.

3. Topological invariants

We recall the definitions of some key A-invariants of map-germs (C2, 0) → (C3, 0).
These are the Milnor number of the double-point curve μ(D), the number of cross-
caps C and the number of triple points T . We give formulae for computing these
invariants for k-folding map-germs, and use the invariants to study the finite A-
determinacy and topological equivalence of these germs.

3.1. The double-point curve

We start by recalling the definition of the double- and triple-point spaces of a
corank one map-germ F : (Cn, 0) → (Cn+1, 0) from [19]. Any such germ can be writ-
ten in a suitable coordinate system in the form F (x, y) = (x, fn(x, y), fn+1(x, y)),
with x = (x1, . . . , xn−1) ∈ (Cn−1, 0) and y ∈ (C, 0).

Given h ∈ On, the iterated divided differences of h are defined as

h[x, y, y′] =
h(x, y′) − h(x, y)

y′ − y
∈ On+1,

h[x, y, y′, y′′] =
h[x, y, y′′] − h[x, y, y′]

y′′ − y′
∈ On+2.

The multiple point ideals of a map-germ F as above are defined as

I2(F ) = 〈fn[x, y, y′], fn+1[x, y, y′]〉 ⊆ On+1,

I3(F ) = 〈fn[x, y, y′], fn[x, y, y′, y′′], fn+1[x, y, y′], fn+1[x, y, y′, y′′]〉 ⊆ On+2.
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The double- and triple-point spaces of F are, respectively,

D2(F ) = V (I2(F )),

D3(F ) = V (I3(F )).

By counting variables and generators, it follows that D2(F ) (resp. D3(F )) is a
complete intersection whenever it has dimension n− 1 (resp. n− 2).

The double-point space D2(F ), as a subset of (Cn−1 × C × C, 0), consists of
points (x, y, y′) such that either y �= y′ and F (x, y) = F (x, y′) or y′ = y and F
is singular at (x, y).

To define the source double-point space, we assume that F is finite. Then, the
projection π : D2(F ) → Cn−1 × C given by (x, y, y′) �→ (x, y) is also finite. As a
consequence, the image of π can be given a complex structure as the 0-th Fitting
ideal F0(π∗OD2(F )) of the push forward module π∗OD2(F ) (see [26] for details). The
source double-point space D(F ) is defined as the projection π(D2(F )) endowed with
this complex space structure, that is,

D(F ) = V (F0(π∗OD2(F ))) ⊆ Cn.

To compute the source double-point space of a k-folding map-germ, we need the
following result.

Lemma 3.1. Let Z be a germ of an n-dimensional Cohen–Macaulay space and let
h1, . . . , hr in OZ be regular elements. Write Xj = V (hj) and X = V (h1 . . . hr). Let
φ : Z → (Cn, 0) be a germ of a morphism of complex spaces such that the restrictions
φ|Xj

: Xj → (Cn, 0) are finite. Then F0((φ|X)∗OX) =
∏r

j=1 F0((φ|Xj
)∗OXj

).

Proof. It is enough to prove the statement for the case r = 2. We can assume that
X1 and X2 have no common irreducible component as topological spaces. Indeed,
consider the two subspaces X1 = V (h1 − t) and X2 = V (h2) of Z × (C, 0) and the
map φ× Id : Z × (C, 0) → (Cn+1, 0). The spaces X1 and X2 have no common irre-
ducible component. Moreover, if the statement holds for φ× Id, then it holds for φ.
This is a consequence of the fact that Fitting ideals commute with base change
(see lemma 1.2 in [26]). Now consider the disjoint union X1 
X2 ⊆ Z 
 Z and the
commutative diagram

The map α is generically a local isomorphism (i.e. a local isomorphism on a
Zariski open and dense subset) because X1 and X2 are assumed to have no common
component. Moreover, both X and X1 
X2 are Cohen–Macaulay spaces, which
implies that the ideals F0(ψ∗OX1�X2) and F0((φ|X)∗OX) are principal. Since α
is generically a local isomorphism, they are necessarily equal. The statement then
follows from the equalities

F0(ψ∗OX1�X2) = F0((φ|X1)∗OX1 ⊕ (φ|X2)∗OX2))

= F0((φ|X1)∗OX1) · F0((φ|X2)∗OX2). �
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Theorem 3.2. For a k-folding map-germ Fk(x, y) = (x, yk, f(x, y)), the double-
point space D is the zero locus V (λ), where λ =

∏k−1
j=1 λj and

λj =
f(x, y) − f(x, ξjy)

(1 − ξj)y
,

for 1 � j � k − 1. We have thus a decomposition D =
⋃k−1

j=1 Dj, with Dj = V (λj).

Proof. The double-point space D2(Fk) is the intersection of the zero loci of the
divided differences

((y′)k − yk)
y′ − y

and
f(x, y) − f(x, y′)

y − y′
.

Since ((y′)k − yk)/(y′ − y) =
∏k−1

j=1 (y′ − ξjy), we conclude that, as a set, the
space D2(Fk) is the union of the spaces

D2
j =

{
(x, y, ξjy) ∈ (Cn−1 × C × C, 0) | f(x, y) − f(x, ξjy)

(1 − ξj)y
= 0
}
,

for j = 1, . . . , k − 1. Each of the sets D2
j projects to V (λj), which shows that

D(Fk) = V (λ) as sets.
To show the equality as complex spaces, observe that the possible dimension

of D2(Fk) is one or two. If D2(Fk) has dimension two, then some branch D2
j has

dimension two. Therefore, the corresponding function λj is identically zero, which
in turn implies λ = 0. Since Fk is finite by construction, the projection D2(Fk) is
finite, hence the image of D2

j is a germ of a 2-dimensional analytic closed subset of
(C2, 0), so is equal to (C2, 0). This implies that D(Fk) = (C2, 0) = V (0).

Suppose now that D2(Fk) has dimension one. This implies that the func-
tions

∏k−1
j=1 (y′ − ξjy) and f [x, y, y′] form a regular sequence. Applying lemma 3.1

with Z = V (f [x, y, y′]) gives D(Fk) = V (
∏k−1

j=1 F0((π|D2
j
)∗OD2

j
))), where the D2

j ,
j = 1, . . . , k − 1, are given the natural complex space structure. Each of the mor-
phisms π|D2

j
: D2

j → C2 consists of forgetting the third coordinate of the tuple
(x, y, ξjy), and this implies F0((π|D2

j
)∗OD2

j
)) = 〈λj〉. �

Now we introduce some results we use to check finite A-determinacy of a k-folding
map-germ Fk and topological triviality in families of such germs. The first of these
results was proven in [19] for corank one map-germs, then extended to arbitrary
corank in [20].

Theorem 3.3. A finite map-germ F : (C2, 0) → (C3, 0) is finitely A-determined if
and only if its double-point curve D is reduced.

The decomposition D =
⋃k−1

j=1 Dj in theorem 3.2 can be used to compute μ(D),
making it easier to apply theorem 3.3 (and theorem 3.10 below). We denote by
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Dj · Dj′ the intersection multiplicity of two distinct branches of the double-point
curve. Clearly, Dj · Dj′ = Dj′ · Dj , and

Dj · Dj′ = dimC

O2

〈λj , λj′〉 .

Proposition 3.4. A k-folding map-germ Fk is finitely A-determined if and only
if the Milnor numbers μ(Dj), j = 1, . . . , k − 1, and the intersection multiplicities
Dj · Dj′ of all pairs Dj and D′

j, with j′ �= j, are finite. In that case,

μ(D(Fk)) =
k−1∑
j=1

μ(Dj) + 2
k−1∑

j,j′=1
j<j′

Dj · Dj′ − k + 2.

Proof. By theorem 3.3, Fk is finitely A-determined if and only if μ(D(Fk)) is finite,
equivalently, D(Fk) has an isolated singularity. This occurs if and only if every
branch Dj has an isolated singularity and no pair of branches Dj and Dj′ , with
j �= j′, have a common component. Using the formula μ = 2δ − r + 1 for plane
curves (see [21]) and the property δ(X ∪ Y ) = δ(X) + δ(Y ) +X · Y , we get

μ(D(Fk)) = 2δ(D(Fk)) − r(D(Fk)) + 1

=
k−1∑
j=1

(2δ(Dj) − r(Dj) + 1) − k + 2 + 2
k−1∑

j,j′=1,j<j′
Dj · Dj′

=
k−1∑
j=1

μ(Dj) + 2
k−1∑

j,j′=1,j<j′
Dj · Dj′ − k + 2. �

Remarks 3.5. 1. Suppose that Dj is a germ of a regular curve parametrized by a
regular map-germ α : (C, 0) → (C2, 0). Then, Dj · Dj′ = ord(hj′ ◦ α), which is the
degree of the first non-zero term in the Taylor expansion of λj′(α(t)).

2. If both Dj and Dj′ are regular curves, we refer to Dj · Dj′ as the order of
contact between Dj and Dj′ . We have Dj · Dj′ = 1 if and only if the two curves
intersect transversally. Suppose they are tangential and parametrized, respectively,
by t �→ (t, γj(t)) and t �→ (t, γj′(t)). Then Dj · Dj′ = ord(γj − γj′).

3. Let Fk be a finitely A-determined k-folding map-germ. Then any pair of
branches Dj and D′

j , with j �= j′, cannot have any common irreducible component,
otherwise D(Fk) would fail to be reduced. Hence, we have r(D) =

∑k−1
j=1 r(Dj).

The defining functions λj of the branches Dj of the double-point curve play
a major role in our study of finite A-determinacy and topological equivalence of
k-folding map-germs. We take Fk(x, y) = (x, yk, f(x, y)) and write, for any given
integer p � 1,

jpf(x, y) =
p∑

q=1

q∑
s=0

aqsx
q−sys. (3.1)
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Then,

jp−1λj =
p∑

q=1

q∑
s=1

ϑsjaqsx
q−sys−1, (3.2)

with

ϑsj =
1 − ξsj

1 − ξj
= 1 + ξj + · · · + ξ(s−1)j .

The constants ϑsj play a significant role in determining the singularity type of
the germs λj and in computing Dj · Dj′ . The following properties are needed in § 4.

Lemma 3.6. The numbers ϑsj satisfy the following properties:

(1) ϑsj = 0 if and only if k | sj.
(2) ϑsj = 1 if and only if k | (s− 1)j.

(3) If ϑsj = ϑsj′ , then ϑsj is either 0 or 1.

Proof. We observe that ϑ0j = 0, ϑ1j = 1 and, for any integers m,n, we have ϑmj =
ϑ(m+n)j if and only if k | nj. For (1) we take m = 0 and n = s, and for (2) we take
m = 1 and n = s− 1.

For (3), we observe that the constants ϑsj lie in the images of the curves γn :
S1 ⊂ C → C given by γn(z) = (1 − zn+1)/(1 − z) = 1 + z + · · · + zn. We show that
the self intersection points of the curves γn are 0 and 1 (for n � 3).

Write z = eiθ, with θ ∈ [0, 2π). Then γn(θ) = x+ iy, with (x, y) ∈ R2, gives 1 −
ei(n+1)θ = (x+ iy)(1 − eiθ). Therefore,

cos((n+ 1)θ) = 1 − x+ x cos(θ) − y sin(θ),

sin((n+ 1)θ) = −y + y cos(θ) + x sin(θ).

Now the identity cos((n+ 1)θ)2 + sin((n+ 1)θ)2 = 1 gives

(1 − cos(θ))(x2 + y2 − x) − y sin(θ) = 0. (3.3)

Suppose that y = 0. Then equation (3.3) becomes (1 − cos(θ))x(x− 1) = 0, so
x = 0 or 1 or θ = 0.

When x = 0, we have 1 − eiθ �= 0, so 1 − ei(n+1)θ = 0. That gives θ =
2πj/(n+ 1), j = 1, . . . , n. Therefore, γn passes n-times through the origin.

When x = 1, we get einθ = 1, so θ = 2πj/n, j = 1, . . . , n− 1. Therefore, γn passes
(n− 1)-times through the point 1.

When θ = 0, we have γn(0) = n+ 1 and the curve has no self-intersections at
that point. See figure 2 for the cases n = 5, 6, 7.

Suppose now that y �= 0. Then equation (3.3) can be written as cot(θ/2) =
(x2 + y2 − x)/y. This shows that, for any (x, y) ∈ R2 with y �= 0, there is at most
one θ ∈ [0, 2π) satisfying γn(θ) = x+ iy. Therefore, the only self-intersection points
of γn are 0 and 1. �

https://doi.org/10.1017/prm.2022.90 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.90


k-Folding map-germs and hidden symmetries in the Euclidean 3-space 71

Figure 2. Maple plots of the curves γn for n = 5, 6, 7 (from left to right).

Remark 3.7. As k cannot divide j, the condition k | sj in lemma 3.6(1) can also be
written as d = gcd(k, s) �= 1 and j ∈ {k/d, . . . , ((d− 1)k)/d}. Of course, the same
applies to the condition k | (s− 1)j in lemma 3.6(2).

3.2. Cross-caps and triple points

The number of cross-caps and triple points are invariants of finitely A-determined
map-germs F : (C2, 0) → (C3, 0) that can be described using stable deformations.
A stable mapping U → (C3, 0) with U an open neighbourhood of the origin in C2

exhibits only regular points, transverse double points along curves, cross-caps and
isolated transverse triple points. Every stable deformation Ft of F exhibits the same
number C of cross-caps and T of triple points [23]. For a corank one map-germ,
these are given by the formulae

C = dimC

O2

JF
, T =

1
6

dimC

O4

I3(F )
,

where JF is the ideal generated by the 2 × 2 minors of the differential matrix of F
[23] (the formula for C holds without the corank one assumption).

For j, j′ ∈ {1, . . . , k − 1}, with j �= j′, we set

λj,j′ =
λj − λj′

y

and define

Tj,j′ = dimC

O2

〈λj , λj,j′〉 .

Observe that Tj,j′ = Tj′,j for all j �= j′.

Proposition 3.8. The number of cross-caps and of triple points of a finitely A-
determined k-folding map-germ Fk are given by

C = dimC

O2

〈yk−1, (∂f/∂y)(x, y)〉 and T =
1
3

∑
1�j<j′�k−1

Tj,j′ .
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Proof. The formula for C is trivial. For T , we claim that

J =

〈
y′k − yk

y′ − y
,

y′′k−yk

y′′−y − y′k−yk

y′−y

y′′ − y′

〉
⊆ I3(Fk)

is a radical ideal of O4 whose zero locus is

Z = {(x, y, y′, y′′) | y′ = ξjy, y′′ = ξj′
y for some j, j′ ∈ {1, . . . , k − 1} with j �= j′}.

Clearly, Z is contained in the zero locus V (J). The converse inclusion follows by
considering the degree of the generators of J and by the fact that V (J) is generically
reduced. Since V (J) is also a complete intersection, it is reduced. Thus J is a radical
ideal.

The irreducible decomposition of Z consists of the branches

Zj,j′ = {(x, y, ξjy, ξj′
y) | x, y ∈ C}.

Thus, we may decompose D3(Fk), as a set, as the union of the (not necessarily
irreducible) branches

D3
j,j′(Fk) = V (y′ − ξjy, y′′ − ξj′

y, f [x, y, y′], f [x, y, y′, y′′]).

Eliminating y′ and y′′, gives D3
j,j′(Fk) = 〈λj , λj,j′〉. Therefore, we only need to

show that dimC(O4/I
3(Fk)) =

∑
j �=j′ dimC(O2/(〈λj , λj,j′〉). It is clear that the same

decomposition of D3(Fk) applies to an unfolding F̃k(x, y, t) = (x, yk, ft(x, y), t) of
Fk, and fixing a representative and a nonzero parameter δ, the same holds for (F̃k)δ.
This gives a decomposition of D3((F̃k)δ) into the branches D3

j,j′((F̃k)δ).
It is possible to choose an unfolding where the branches D3

j,j′((F̃k)δ) are pairwise
disjoint. Indeed, it follows from their defining equations that two spaces D3

j,j′((F̃k)δ)
and D3

s,s′((F̃k)δ) can only intersect on {y = 0}, so it is enough to find an unfolding
where D3

j,j′((F̃k)δ) ∩ {y = 0} is empty. Again, it follows from the defining equa-
tions that a point (x, 0, 0, 0) ∈ D3

j,j′((F̃k)δ) if (∂fδ/∂x)(x, 0) = (∂f2
δ /∂x

2)(x, 0) = 0,
a condition that can be avoided by choosing a suitable deformation ft of f .

We take now an unfolding as above. Since Z is reduced, D3((F̃k)δ) is isomor-
phic to the union of the D3

j,j′((F̃k)δ) as complex spaces. The equality we need to
show follows now from the constancy of the numbers involved under continuous
deformations. Defining λδ

j and λδ
j,j′ in the obvious way, we obtain

dimC

O4

I3(Fk)
=

∑
(x,y,y′,y′′)

dimC

O4

I3((F̃k)δ)(x,y,y′,y′′)

=
∑
(x,y)

∑
j �=j′

dimC

O2

〈λδ
j , λ

δ
j,j′〉 =

∑
j �=j′

dimC

O2

〈λj , λj,j′〉 .

Since Tj,j′ = Tj′,j , we add only the numbers Tj,j′ , with j < j′, and replace 1/6
by 1/3. �
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3.3. Topological triviality

We say that two subspaces S and S′ of a topological space X have the same topo-
logical type if there is a homeomorphism X → X restricting to an homeomorphism
S → S′. Milnor showed that two isolated hypersurface singularities with same topo-
logical type have the same Milnor number. In the case of our invariants, a similar
result can be obtained using the results in [28, 30] (see [4] for details).

Proposition 3.9. Let F,G : (C2, 0) → (C3, 0) be finitely A-determined map-germs.
If F and G are topologically equivalent, then μ(D(F )) = μ(D(G)), r(D(F )) =
r(D(G)), C(F ) = C(G) and T (F ) = T (G).

The Milnor number of the double-point curve is enough to determine the
topological triviality of families of finitely A-determined map-germs.

Proposition 3.10 (Corollary 40 [3. )] A family of finitely A-determined map-
germs Gt : (C2, 0) → (C3, 0) is topologically trivial if and only if μ(D(Gt)) is
constant along the parameter t.

Using the upper semi-continuity of the numbers involved, proposition 3.10 can
be combined with proposition 3.4 to yield the following result.

Corollary 3.11. Let F t
k = (x, yk, ft(x, y)) be a family of finitely A-determined

k-folding map-germs. The following statements are equivalent:

(1) The family F t
k is topologically trivial.

(2) The numbers μ(Dj) and Dj · Dj′ are constant along the family F t
k.

(3) The numbers C, μ(Dj),Dj · Dj′ and Tj,j′ are constant along the family F t
k.

4. The jet space stratification

In this section, we study the singularities of k-folding map-germs which we take
in standard form Fk(x, y) = (x, yk, f(x, y)) (see remark 2.3(4)). We identify the set
of such germs with the set O2 of germs, at the origin, of holomorphic functions
f . For each k, we obtain a stratification Sk of J11(2, 1) (and hence of J l(2, 1)
for l � 11). The stratification consists of the strata of codimension �4 stated in
theorem 1.1 together with the complement of their union (i.e. the union of strata
of codimension �5). Every stratum of codimension �4 of Sk consists of finitely
A-determined and pairwise topologically equivalent k-folding map-germs. The jet
level l = 11 is determined by the conditions defining the strata of Sk which involve
the coefficients of f in (3.1) up to degree 11 (see tables 1, 2, 4, 6).

As pointed out in the Introduction, the case k = 2 was studied in [5, 8, 32].
The stratification S2 can be recovered from the results in this paper. The different
A-classes obtained in [5] correspond to different topological classes. This follows
by analysing the invariants C, T, μ(D) and r(D). We shall suppose here that k � 3
and write the jets of f as in (3.1).
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Table 1. Strata of S3 of codimension �4

Normal form Defining equations and open conditions Codim

Immersion a11 �= 0 0
S1 a11 = 0, a22a21 �= 0 1
S3 a11 = a21 = 0, a22a31 �= 0 2
S5 a11 = a21 = a31 = 0, a22a41 �= 0 3
S7 a11 = a21 = a31 = a41 = 0, a22a51 �= 0 4
H2 a11 = a22 = 0, a21 �= 0, CndH2 �= 0 2
H3 a11 = a22 = CndH2 = 0, a21 �= 0, CndH3 �= 0 3
H4 a11 = a22 = CndH2 = CndH3 = 0, a21 �= 0, CndH4 �= 0 4
X4 a11 = a21 = a22 = 0, a31a32a44 �= 0 4

U3
4 a11 = a21 = a22 = a44 = 0, a31a32 �= 0, CndUm8 �= 0 4

X3
4 a11 = a21 = a22 = a31 = 0, a32a41a44 �= 0 4

W3,1
4 a11 = a21 = a22 = a32 = 0, a31a44 �= 0, a31a55 − a42a44 �= 0 4

CndH2 = a32a44 − a55a21

CndH3 = a88a3
21 − (a77a32 + a44a65)a2

21 + a44(a42a44 + a32a54)a21 − a31a2
44a32.

CndH4 = a11,11a5
21 − (a44a98 + a10,10a32 + a77a65)a4

21

+ (a44a87a32 + a32a54a77 + a44a54a65 + 2a44a77a42 + a2
44a75)a3

21

− (a52a2
44 + a44a31a65 + 2a42a44a54 + a44a64a32

+ 2a77a32a31 + a2
54a32)a44a2

21

+ (2a44a31a42 + a44a41a32 + 3a32a54a31)a2
44a21 − 2a2

31a32a3
44

CndUm8 = a55(a31a55 − a54a32) + a77a2
32 (see table 6)

Table 2. Strata of codimension �4 in branch 2

Name
Defining equations and open condition
together with a11 = a21 = 0, a22 �= 0 Codim

Mk
2 , 2 � k a31 �= 0 2

Mk
2 , 2 | k a33a31 �= 0 2

Mk
3 , 2 � k a31 = 0, a41 �= 0 3

Mk
3 , 2 | k a31 = 0, a33a41 �= 0 3

Mk
4 , 2 � k a31 = a41 = 0, a51 �= 0 4

Mk
4 , 2 | k a31 = a41 = 0, a33a51 �= 0 4

Nk
3 , 2 | k a33 = 0, a31 �= 0, CndNA3 �= 0 3

Nk
4 , 2 | k a33 = CndNA3 = 0, a31 �= 0, CndNA5 �= 0 4

Ok
4 , 2 | k a31 = a33 = 0, a41a43 �= 0 4

CndNA3 = a2
43 − 4a31a55

CndNA5 = 8a3
31a77 − 4a65a43a

2
31 + 2a53a

2
43a31 − a2

41a
3
43
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Table 3. Topological invariants of germs in the strata in table 2

Name C T μ(D) r(D)

Mk
2 , 2 � k 2k − 2 0 2(k − 1)(k − 2) − k + 2 k − 1

Mk
2 , 2 | k 2k − 2 0 (k − 1)(k − 2) + 3 − k k

Mk
3 , 2 � k 3k − 3 0 3(k − 1)(k − 2) − k + 2 k − 1

Mk
3 , 2 | k 3k − 3 0 (k − 1)(k − 2) + 4 − k k − 1

Mk
4 , 2 � k 4k − 4 0 4(k − 1)(k − 2) − k + 2 k − 1

Mk
4 , 2 | k 4k − 4 0 (k − 1)(k − 2) + 5 − k k

Nk
3 , 2 | k 2k − 2 0 (2k − 3)(k − 2) + 3 k

Nk
4 , 2 | k 2k − 2 0 (2k − 3)(k − 2) + 5 k

Ok
4 , 2 | k 3k − 3 0 (3k − 4)(k − 2) + 4 k + 1

Table 4. Strata of codimension �4 in branch 3

Name
Defining equations and open conditions
together with a11 = a22 = 0, a21 �= 0 Codim

Pk
2 , 3 � k a33 �= 0 2

Pk
2 , 3 | k a33 �= 0, CndH2 �= 0 2

Pk
3 , 3 | k a33 �= 0, CndH2 = 0, CndH3 �= 0 3

Pk
4 , 3 | k a33 �= 0, CndH2 = CndH3 = 0, CndH4 �= 0 4

Qk
3 , 3 � k, 4 � k a33 = 0, a44 �= 0 3

Qk
3 , 3 | k, 4 � k a33 = 0, a44 �= 0, CndH2 �= 0 3

Qk
3 , 3 � k, 4 | k a33 = 0, a44 �= 0, CndQm5 �= 0 3

Qk
3 , 12 | k a33 = 0, a44 �= 0, CndH2 �= 0, CndQm5 �= 0 3

Qk
4 , 3 | k, 4 � k a33 = CndH2 = 0, a44 �= 0, CndH3 �= 0 4

Qk
4 , 12 | k a33 = CndH2 = 0, CndH3 �= 0, CndQm5 �= 0 4

Q̃k
4 , 3 � k, 4 | k a33 = CndQm5 = 0, a44 �= 0, CndQm6 �= 0 4

Q̃k
4 , 12 | k a33 = CndQm5 = 0, CndH2 �= 0, CndQm6 �= 0 4

Rk
4 , 4 � k, 5 � k a33 = a44 = 0, a55 �= 0 4

Rk
4 , 4 | k, 5 � k a33 = a44 = 0, a55 �= 0, CndQm5 �= 0 4

Rk
4 , 4 � k, 5 | k a33 = a44 = 0, a55 �= 0, CndRm5 �= 0 4

Rk
4 , 20 | k a33 = a44 = 0, a55 �= 0, CndQm5 �= 0, CndRm5 �= 0 4

CndQm5 = a32a55 − a21a66

CndQm6 = a43a55 − a21a77

CndRm5 = a32a66 − a21a77

It is clear that Fk is an immersion if and only if a11 �= 0. All immersions are
A-finitely determined and pairwise topologically equivalent. Moreover, only immer-
sions have D = ∅, hence r(D) = 0. We define a11 �= 0 as the open stratum of Sk

(corresponding to the jets of all immersions) and choose

Mk
0 : (x, y) �→ (x, yk, y)
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Table 5. Topological invariants of germs in the strata in table 4

Name C T μ(D) r(D)

Pk
2 , 3 � k k − 1

(k−1)(k−2)
6 (2k − 3)(k − 2) k − 1

Pk
2 , 3 | k k − 1

(k−1)(k−2)+4
6 (2k − 3)(k − 2) + 4 k − 1

Pk
3 , 3 | k k − 1

(k−1)(k−2)+10
6 (2k − 3)(k − 2) + 10 k − 1

Pk
4 , 3 | k k − 1

(k−1)(k−2)+16
6 (2k − 3)(k − 2) + 16 k − 1

Qk
3 , 3 � k, 4 � k k − 1

(k−1)(k−2)
3 (3k − 4)(k − 2) k − 1

Qk
3 , 3 | k, 4 � k k − 1

(k−1)(k−2)+1
3 (3k − 4)(k − 2) + 2 k − 1

Qk
3 , 3 � k, 4 | k k − 1

(k−1)(k−2)+6
3 (3k − 4)(k − 2) + 12 k − 1

Qk
3 , 12 | k k − 1

(k−1)(k−2)+7
3 (3k − 4)(k − 2) + 14 k − 1

Qk
4 , 3 | k, 4 � k k − 1

(k−1)(k−2)+4
3 (3k − 4)(k − 2) + 8 k − 1

Qk
4 , 12 | k k − 1

(k−1)(k−2)+10
3 (3k − 4)(k − 2) + 20 k − 1

Q̃k
4 , 3 � k, 4 | k k − 1

(k−1)(k−2)+9
3 (3k − 4)(k − 2) + 18 k − 1

Q̃k
4 , 12 | k k − 1

(k−1)(k−2)+10
3 (3k − 4)(k − 2) + 20 k − 1

Rk
4 , 4 � k, 5 � k k − 1

(k−1)(k−2)
2 (4k − 5)(k − 2) k − 1

Rk
4 , 4 | k, 5 � k k − 1

(k−1)(k−2)+2
2 (4k − 5)(k − 2) + 6 k − 1

Rk
4 , 4 � k, 5 | k k − 1

(k−1)(k−2)+8
2 (4k − 5)(k − 2) + 24 k − 1

Rk
4 , 20 | k k − 1

(k−1)(k−2)+10
2 (4k − 5)(k − 2) + 30 k − 1

as a normal form for topological equivalence of germs in this stratum. The strata
corresponding to singular germs are organized into four branches according to the
following result.

Lemma 4.1. For k � 3, every singular k-folding map-germ is A-equivalent to a
k-folding map-germ whose 2-jet is equal to (x, 0, xy + y2), (x, 0, y2), (x, 0, xy) or
(x, 0, 0).

Proof. As we are assuming Fk to be singular at the origin, we have a11 = 0. Then
Fk is A-equivalent to a germ whose 2-jet is (x, 0, a21xy + a22y

2). Depending on the
coefficients a21 and a22, the 2-jet can be taken to one of the following forms:

(x, 0, xy + y2) ⇐⇒ a11 = 0, a21a22 �= 0 (Branch 1)
(x, 0, y2) ⇐⇒ a11 = a21 = 0, a22 �= 0 (Branch 2)
(x, 0, xy) ⇐⇒ a11 = a22 = 0, a21 �= 0 (Branch 3)
(x, 0, 0) ⇐⇒ a11 = a21 = a22 = 0 (Branch 4)

�

We have the following about A-simplicity of germs of k-folding maps.

Proposition 4.2. There are no A-simple k-folding map-germs for k � 5.

Proof. It is enough to show that the orbit of a map-germ Fk with a 2-jet (x, 0,
xy + y2) is not simple as the orbits of germs in the remaining branches in lemma
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Table 6. Strata of codimension �4 in branch 4

Name
Defining equations and open conditions

together with a11 = a21 = a22 = 0 Codim

Uk
3 , 3 � k a31a33 �= 0, Δk

j �= 0, Ωj,k−j �= 0 3

Uk
3 , 3 | k a31a33 �= 0, a44 �= 0, Δk

j �= 0, Ωk
j,j′ �= 0 3

Uk
4 , 3 | k a31a33 �= 0, a44 = 0, Δk

j �= 0,

Ωk
j,j′ �= 0, CndUm8 �= 0

4

Vk,j,j′
4 , (*) a31a33 �= 0, Ωk

j,j′ = 0, a32 �= 0,
a44 �= 0, CndV m5j,j′ �= 0

4

Wk,j
4 , 3 � k, (**) a31a33 �= 0, Δk

j = 0, CndWA2 �= 0 4

Wk,j
4 , 3 | k, (**), (***) a31a33 �= 0, Δk

j = 0, CndWA2 �= 0,
a44 �= 0

4

W3p,p
4 , k = 3p a31a33 �= 0, a32 = 0, a44 �= 0,

CndW̃m8 �= 0
4

Xk
4 , 2 � k, 3 � k a32a33 �= 0, a31 = 0, a41 �= 0 4

Xk
4 , 2 | k, 3 � k a32a33 �= 0, a31 = 0, a41 �= 0 4

Xk
4 , 2 � k, 3 | k a32a33 �= 0, a31 = 0, a41 �= 0, a44 �= 0 4

Xk
4 , 6 | k a32a33 �= 0, a31 = 0, a41 �= 0, a44 �= 0 4

Yk
4 , 2 � k a32a31 �= 0, a33 = 0, a44 �= 0 4

Yk
4 , 2 | k a32a31 �= 0, a33 = 0, CndY A3 �= 0,

CndY m6j �= 0, a44 �= 0
4

Δk
j = (a2

32 − 4a31a33)ξ2j + 2(a2
32 − 2a31a33)ξj + a2

32 − 4a31a33

Ωk
j,j′ = a31a33(1 + ξj + ξj′

)2 − a2
32(ξ

j + ξj′
+ ξj+j′

)
CndUm8 = a55(a31a55 − a54a32) + a77a

2
32

CndV m5j,j′ = a2
32a44βj,j′ + a32a33(2a33a42 − a32a43)αj,j′ + a41a

3
33, with

αj,j′ = ξj+ξj′+ξj+j′

(1+ξj+ξj′ )2
,

βj,j′ = ξj+3j′+ξ3j+j′+ξ3j′+2ξ2j+j′+2ξj+2j′+ξ3j+2ξj+j′+ξj+ξj′

(1+ξj+ξj′ )4
.

CndWA2 = (a41a33 + a31a43)a3
32 − 2a31(a42a33 + 2a31a44)a2

32 + 8a3
31a33a44

CndW̃m8 = a31a55 − a42a44

CndY A3 = a2
43 − 4a31a55

CndY m6j = (a31a
2
44 + a55a

2
32 − a43a44a32)ξ4j

+a44(2a31a44 − a32a43)ξ2j + a31a
2
44

(∗) j < j′; (j, j′) �= (p, 2p)whenk = 3p
(∗∗) If2 | kthenj �= k/2

(∗ ∗ ∗) Ifk = 3p, thenj �= p, 2p

4.1 are adjacent to it. For such a germ, we have jkFk ∼A(k) (x, (y − (1/2)x)k, y2).
The result follows by theorem 1:1 in [22] as there are no A-simple germs of the
form (x, y2, f(x, y)) with j4f ≡ 0.

When k = 4 and for F4 in branch 1, we have j4F4 ∼A(4) (x, xy3 + x3y, y2). This
is a C3-singularity and is A-simple [22]. For F4 in branch 2, we have j4F4 ∼A(4)

(x, 0, y2) so it leads to non A-simple germs. By adjacency, the germs in branches
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3 and 4 also lead to non-A-simple germs. Therefore, the C3-singularity is the only
A-simple singularity of 4-folding map-germs.

The case k = 3 is treated in § 4.1 where there are several A-simple singularities
of 3-folding map-germs. �

Remarks 4.3. 1. The degree of A-determinacy of a singular germ Fk is greater
or equal to k (the germ (x, y) �→ (x, 0, f(x, y)) is not finitely A-determined for
any f).

2. For germs in branch 1 or branch 2, we have Fk ∼A (x, yp(x, y2), y2) for some
germ p. One can study the germ p, as was done in [22], instead of Fk, but this blurs
the order of the original k-folding map-germ. Also, the approach in [22] of reducing
the action of A on the set of 2-folding map-germs to the action of a subgroup of K
on m2 does not extend to germs of k-folding maps for k � 3.

4.1. The case k = 3

When k = 3 we get several A-simple map-germs. For this reason, we treat this
case separately.

Theorem 4.4. The only A-simple singularities a 3-folding map-germ F3 can have
are those of type S2l−1, l � 2, or Hs, s � 3. In the real case, the S2l−1-singularities
are of type S−

2l−1. The strata of S3 of codimension �4 are given in table 1.

Proof. We can write f(x, y) = f0(x, y3) + yf1(x, y3) + y2f2(x, y3), for some germs
of holomorphic functions fi, i = 0, 1, 2. Then F3 ∼A (x, y3, yf1(x, y3) + y2f2(x, y3)).

Suppose that a10 = 0 (F3 is singular) and a22 �= 0. Then

F3 ∼A (x, y3, y(g(x) + y3h(x, y3)) + y2(a22 + k(x, y3)))

for some germs of holomorphic functions g ∈ m1, h ∈ O2 and k ∈ m2. We can make
successive changes of coordinates in the target so that jpF3 ∼A(p) (x, y3, yL(x) +
a22y

2) for any p � 3. It is not difficult to show that F3 is finitely A-determined
if and only if ord(L) = ord(g) = ord(fy(x, 0)) is finite. Suppose that this is the
case and denote by l that order. Then jlL(x) = al1x

l, al1 �= 0, and the change
of coordinates y �→ y − (al1/2a22)xl in the source yields j2l+1F3 ∼A(2l+1) (x, y3 −
3(al1/2a22)2yx2l, a22y

2). This is an S2l−1-singularity, and since it is (2l + 1)-
A-determined, we have F3 ∼A (x, y3 − yx2l, y2). In the real case, this is an
S−

2l−1-singularity.
The above calculations show, in particular, that we do not get the simple

singularities B±
l , C±

l and F4 whose 2-jets are A(2)-equivalent to (x, 0, y2).
Similar calculations show that when a11 = a22 = 0 and a21 �= 0, we get an Hl-

singularity when the singularity of F3 is finitely A-determined.
The remaining cases are studied in the same way as in the case k � 4 (table 6). We

get three strata with topological normal forms U3
4,X

3
4 and W3,1

4 (the germs in these
strata are not A-simple) together with the stratum represented by the topological
normal form U3

3, which is topologically equivalent to Mond’s singularity X4 (see
§ 2 and [22]). �
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Table 7. Topological invariants of germs in strata in table 6

Name C T μ(D) r(D)

Uk
3 , 3 � k 2k − 2

(k−1)(k−2)
3 4(k − 1)(k − 2) + 1 2k − 2

Uk
3 , 3 | k 2k − 2

(k−1)(k−2)+1
3 4(k − 1)(k − 2) + 3 2k − 2

Uk
4 , 3 | k 2k − 2

(k−1)(k−2)+4
3 4(k − 1)(k − 2) + 9 2k − 2

Vk,j,j′
4 , 3 � k 2k − 2

(k−1)(k−2)+3
3 4(k − 1)(k − 2) + 7 2k − 2

Vk,j,j′
4 , 3 | k 2k − 2

(k−1)(k−2)+4
3 4(k − 1)(k − 2) + 9 2k − 2

Wk,j
4 , 3 � k 2k − 2

(k−1)(k−2)
3 4(k − 1)(k − 2) + 3 2k − 4

Wk,j
4 , 3 | k 2k − 2

(k−1)(k−2)+1
3 4(k − 1)(k − 2) + 5 2k − 4

W3p,p
4 , k = 3p 2k − 2

(k−1)(k−2)+4
3 4(k − 1)(k − 2) + 11 2k − 4

Xk
4 , 2 � k, 3 � k 3k − 3

(k−1)(k−2)
3 5(k − 1)(k − 2) + 1 2k − 2

Xk
4 , 2 | k, 3 � k 3k − 3

(k−1)(k−2)
3 5(k − 1)(k − 2) + 2 2k − 3

Xk
4 , 2 � k, 3 | k 3k − 3

(k−1)(k−2)+1
3 5(k − 1)(k − 2) + 3 2k − 2

Xk
4 , 6 | k 3k − 3

(k−1)(k−2)+1
3 5(k − 1)(k − 2) + 4 2k − 3

Yk
4 , 2 � k 2k − 2

(k−1)(k−2)
2 5(k − 1)(k − 2) + 1 2k − 2

Yk
4 , 2 | k 2k − 2

k(k−2)
2 5(k − 1)(k − 2) + 3(k − 1) 2k − 2

Remark 4.5. The invariants associated to the simple singularities can be found in
[23]; those associated to U3

4,X
3
4,W

3,1
4 are given in table 7.

4.2. The case k � 4

We consider here the case when k � 4, which we divide into the four branches
according to the A(2)-orbits in lemma 4.1. In all that follows, j ∈ {1, . . . , k − 1},
and subindices of singularities indicate the codimension of the stratum.

4.2.1. Branch 1: a11 = 0, a21a22 �= 0

Theorem 4.6. Any germ Fk of a k-folding map satisfying a11 = 0 and a21a22 �= 0
is finitely A-determined and is topologically equivalent to

Mk
1 : (x, y) �→ (x, yk, xy + y2).

The invariants take the values μ(D) = (k − 2)2, C = k − 1, T = 0 and r(D) = k − 1
and the double-point curve of Fk is the union of k − 1 regular curves intersecting
transversally.

Proof. The functions defining the branches Dj of the double-point curve (see
theorem 3.2) are given by λj = a21x+ (1 + ξj)a22y +O(2), where O(l) denotes
a remainder of order l. Clearly, all of the branches Dj are regular curves. As the
scalars 1 + ξj are pairwise distinct, the space D = D(Fk) =

⋃
j Dj consists of k − 1

regular curves intersecting transversally at the origin.
We have μ(Dj) = 0 and Dj · Dj′ = 1, and from proposition 3.4 we obtain μ(D) =

(k − 2)2. By theorem 3.3, any germ Fk satisfying the conditions in the statement of
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the theorem is finitely A-determined. These germs form a stratum of codimension 1
defined by {a11 = 0, a21a22 �= 0}. Since this stratum is path connected, we conclude
by theorem 3.10 that it consists of topologically equivalent germs. We choose for a
topological model the germ Mk

1 given in the statement of the theorem.
By proposition 3.11, it is enough to compute C and Tj,j′ for Mk

1 as these invari-
ants are constant along the stratum. We have C = dimC O2/〈yk−1, x+ 2y〉 = k − 1
and Tj,j′ = dimC O2/〈x+ (1 + ξj)y, 1〉 = 0. �

Remark 4.7. The singularity M4
1 is the A-simple singularity C3 (see the proof of

proposition 4.2).

The proofs for the cases in the remaining branches follow by similar arguments
used in the proof of theorem 4.6 (except for the calculations of T ). To avoid repeti-
tion, we highlight only key differences in each case. The notation for the conditions
that define the strata are those indicated in the tables.

4.2.2. Branch 2: a11 = a21 = 0, a22 �= 0

Theorem 4.8. The strata of codimension �4 of finitely A-determined k-folding
map-germs in the branch a11 = a21 = 0, a22 �= 0 are those given in table 2. The
invariants associated to the germs in each stratum are given in table 3.

Proof. The result follows from propositions 4.9, 4.11 and 4.12. �

For germs in this branch, the map-germ (x, y) �→ (x, f(x, y)) is finite and generi-
cally two-to-one. Therefore, T = 0 for any finitely A-determined map-germ in this
branch.

The germs of the functions defining the double-point branch Dj is given by

λj = ϑ2ja22y + a31x
2 + ϑ2ja32xy + ϑ3ja33y

2 +O(3).

The branch Dj is thus regular if and only if ϑ2j �= 0. By lemma 3.6, ϑ2j = 0 when
k is even and j = k/2.

Proposition 4.9. Any k-folding map-germ Fk satisfying a11 = a21 = · · · =
al1 = 0, a22a(l+1)1 �= 0, for some l � 2, and a33 �= 0 when k = 2p, is finitely
A-determined and is topologically equivalent to

Mk
l : (x, y) �→ (x, yk, y2 + y3 + xly).

The invariants C, T , μ(D) and r(D) are as in table 2. All the double-point
branches are regular curves except for the branch Dp, when k = 2p, which has an
Al−1-singularity. We have Dj · Dj′ = l, for all j �= j′.

Proof. Fix an index j and assume that 2 � k or that k = 2p but j �= p. Then
Dj is a regular curve and can be parametrized by t �→ (t, γj(t)), with γj(t) =
−(al+1,1/((1 + ξj)a22))tl +O(l + 1). Clearly, any two distinct branches have order
of contact equal to l.

Suppose now that k = 2p. As ϑ2
p = 0, the coefficients of xsy in λp vanish for

all s � 1. Moreover, since ϑ3
p = 1, the function λp is of the form λp = al+1,1x

l +
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a33y
2 + y3h(y). This implies that λp is R-equivalent to y2 + xl if and only if a33 �= 0,

in which case it has an Al−1-singularity. As for the contact between branches,
ord(λp(t, (−al+1,1/((1 + ξj)a22))tl +O(l + 1)) = l, hence Dj · Dp = l. This deter-
mines μ(D), and hence the topological triviality and the constancy of the invariants
along the stratum. �

Remarks 4.10. 1. Branch 1 can be considered as a particular case of the strata
Mk

l in proposition 4.9 (the condition a33 �= 0 is not needed when l = 1).
2. When 2 � k, the term y3 in Mk

l is irrelevant for topological equivalence. We
include it to represent both k even and k odd by the same map-germ. We do this
for all subsequent topological normal forms.

Proposition 4.11. Suppose that k = 2p. Any k-folding map-germ Fk satisfying
a11 = a21 = a33 = 0, a22a31 �= 0 and the additional conditions in (a) or (b) below
is finitely A-determined and is topologically equivalent to one of the germs

Nk
l : (x, y) �→ (x, yk, y2 + x2y + y2l−1), l = 3, 4.

The invariants μ(D(Fk)), C, T, r(D(Fk)) are as in table 3. The branches Dj are
regular curves for all j �= p and Dj · Dj′ = 2 for all j �= j′.

(a) If CndNA3 �= 0, then the branch Dp has an A3-singularity and the map-germ
is topologically equivalent to Nk

3 .
(b) If CndNA3 = 0 and CndNA5 �= 0, then Dp has an A5-singularity and the

map-germ is topologically equivalent to Nk
4 .

Proof. We have λp = a31x
2 + a41x

3 + a43xy
2 + a51x

4 + a53x
2y2 + a55y

4 +O(5). It
has an A3-singularity if and only if CndNA3 �= 0. When CndNA3 = 0, we need to
consider the 7-jet of λp. A calculation shows that λp has anA5-singularity if and only
if CndNA5 �= 0. In both cases, we have ord(λp(t,−a31/((1 + ξj)a22)t2 +O(3))) = 2
for all j �= p. �

Proposition 4.12. Suppose that k = 2p. Any k-folding map-germ Fk satisfy-
ing a11 = a21 = a31 = a33 = 0 and a22a41a43 �= 0 is finitely A-determined and is
topologically equivalent to

Ok
4 : (x, y) �→ (x, yk, y2 + x3y + xy3).

The codimension of the stratum is 4 and the invariants μ(D(Fk)), C, T, r(D(Fk))
are as in table 3. The branches Dj , j �= p, are regular curves and Dp has a D4-
singularity. We have Dj · Dj′ = 2 for the distinct regular branches and Dj · Dp = 3,
for j �= p.

Proof. The result follows from the fact that λp = a41x
3 + a43xy

2 +O(4). �

4.2.3. Branch 3: a11 = a22 = 0, a21 �= 0

Theorem 4.13. The strata of codimension �4 of finitely A-determined k-folding
map-germs in the branch a11 = a22 = 0, a21 �= 0 are those given in table 4. The
invariants of the germs in each stratum are given in table 5.
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Proof. The result follows from propositions 4.14, 4.16 and 4.18. �

For any finitely A-determined k-folding map-germ in this branch, we have C =
dimC O2/〈yk−1, a21x+O(2)〉 = k − 1.

The double-point branches are regular curves that can be parametrized by t �→
(γj(t), t), with

γj(t) = − 1
a21

ϑ3ja33t
2 − 1

a2
21

(ϑ2jϑ3ja32a33 − ϑ4ja21a44)t3

− 1
a3
21

(ϑ2
2jϑ3ja

2
32a33 − ϑ2jϑ4ja32a44a21 + ϑ2

3ja33(a31a33 − a43a21)

+ ϑ5ja55a
2
21)t

4 +O(5).

The strata are determined by the contact between the branches of the double-
point curve which depend on ϑsj as well as on the coefficients apq. We start with
the case a33 �= 0, where the strata depend on the divisibility of k by 3.

Proposition 4.14. Suppose that a11 = a22 = 0 and a21a33 �= 0. Any k-folding map-
germ Fk in case (a) or satisfying the additional conditions in (b) is finitely A-
determined and is topologically equivalent to one of the map-germs

Pk
l : (x, y) �→ (x, yk, xy + y3 + y3l−1), for l = 2, 3, 4.

The invariants μ(D), C, T, r(D) are as in table 5. We have contact Dj · Dj′ = 2,
except for Dp · D2p when k = 3p which is given in (b).

(a) If 3 � k, then Fk is topologically equivalent to Pk
2 .

(b) If k = 3p, then the strata are as follows:
If CndH2 �= 0, then Dp · D2p = 4 and Fk is topologically equivalent to Pk

2 .

If CndH2 = 0 and CndH3 �= 0, then Dp · D2p = 7 and Fk is topologically
equivalent to Pk

3 .

If CndH2 = CndH3 = 0 and CndH4 �= 0, then Dp · D2p = 10 and Fk is
topologically equivalent to Pk

4 .

Proof. If 3 � k, then by lemma 3.6 we have ϑ3j �= 0 and ϑ3j �= ϑ3j′ for all j �= j′.
This implies Dj · Dj′ = 2 for all j �= j′.

If k = 3p, then by lemma 3.6 the equality ϑ3j = ϑ3j′ holds only when {j, j′} =
{p, 2p}. Again, we obtain Dj · Dj′ = 2 for all j �= j′ with {j, j′} �= {p, 2p}.

We have ϑ3p = ϑ3(2p) = 0, ϑ4p = ϑ4(2p) = 1 and ϑ5p = ϑ2(2p) (lemma 3.6). Using
the parametrizations of Dp and D2p, we get Dp · D2p = 4 if and only if a32a44 −
a21a55 �= 0, equivalently, CndH2 �= 0.

When CndH2 = 0, the exceptional branches Dp and D2p are parametrized by x =
−(a44/a21)y3 + βsy

7 +O(9), s = 1, 2, with β1 − β2 �= 0 if and only if CndH3 �= 0.
Then, Dp · D2p = 7.

When CndH2 = CndH3 = 0, the exceptional branches are parametrized by x =
−(a44/a21)y3 + βsy

10 +O(11), s = 1, 2, with β1 − β2 �= 0 if and only if CndH4 �= 0.
Then, Dp · D2p = 10.
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The values of T can be computed using the models Pk
l . We have λj = x+ ϑ3jy

2 +
ϑ(3l−1)jy

3l−2 and λj,j′ = (ϑ3j − ϑ3j′)y + (ϑ3l−1,j − ϑ3l−1,j′)y3l−3. By lemma 3.6,
Tj,j′ = dimC(O2/〈x, y〉) = 1 when 3 � k or when k = 3p but {j, j′} �= {p, 2p}. For
k = 3p, we show that ϑ3l−1,p �= ϑ3l−1,2p so Tp,2p = 3l − 3. �

Remark 4.15. The singularity P4
2 : (x, y) �→ (x, y4, xy + y3 + y5) is topologically

equivalent to the singularity T4 : (x, y) �→ (x, y4, xy + y3) in [22]. Observe that
according to proposition 4.14, if k is not divisible by 3, then the y3l−1 term can be
removed from the expression of Pk

l , without changing the topological class of the
germ.

Proposition 4.16. Suppose that a11 = a22 = a33 = 0 and a21a44 �= 0. Any k-
folding map-germ Fk in case (a) or satisfying the additional conditions in (b), (c)
or (d) is finitely A-determined and is topologically equivalent to one of the following
map-germs:

Qk
3 : (x, y) �→ (x, yk, xy + y4 + y5 + y6)

Qk
4 : (x, y) �→ (x, yk, xy + y4 + y6 + y8)

Q̃k
4 : (x, y) �→ (x, yk, xy + y4 + y5 + y7)

The invariants are as in table 5. We have Dj · Dj′ = 3 except when j and j′ are
in the sets J or J ′ below.

(a) If 3 � k and 4 � k, then there are no exceptional branches and the germs in
this stratum are topologically equivalent to Qk

3 .

(b) If k = 3p and 4 � k, then J = {p, 2p}.
(b1) If CndH2 �= 0, then Dp · D2p = 4 and Fk is topologically equivalent to Qk

3 .

(b2) If CndH2 = 0 and CndH3 �= 0, then Dp · D2p = 7 and Fk is topologically
equivalent to Qk

4 .

(c) If k = 4p, 3 � k, then J = {p, 2p, 3p}.
(c1) If CndQm5 �= 0, then Dj · Dj′ = 5, for all j, j′ ∈ J, j �= j′, and Fk is

topologically equivalent to Qk
3 .

(c2) If CndQm5 = 0 and CndQm6 �= 0, then Dj · Dj′ = 6, for all j, j′ ∈ J, j �=
j′, and Fk is topologically equivalent to Q̃k

4 .

(d) If k = 12p, the exceptional contact between double-point branches occurs when
the indices are in J = {4p, 8p} or J ′ = {3p, 6p, 9p}. There are three strata:

(d1) If CndH2 �= 0 and CndQm5 �= 0, then Dj · Dj′ = 4 (resp. Dj · Dj′ = 5)
for all distinct pairs with j, j′ in J (resp. J ′), and Fk is topologically
equivalent to Qk

3 .

(d2) If CndH2 = 0, CndH3 �= 0 and CndQm5 �= 0, then Dj · Dj′ = 7 (resp.
Dj · Dj′ = 5) for all distinct pairs with j, j′ in J (resp. J ′), and Fk is
topologically equivalent to Qk

4 .
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(d3) If CndQm5 = 0, CndQm6 �= 0, and CndH2 �= 0, then Dj · Dj′ = 4 (resp.
Dj · Dj′ = 6) for all distinct pairs with j, j′ in J (resp. J ′), and Fk is
topologically equivalent to Q̃k

4 .

Proof. The branches Dj can be parametrized by t �→ (γj(t), t) with

γj(t) = − 1
a21

ϑ4ja44t
3 − 1

a2
21

(ϑ2jϑ4ja32a44 − ϑ5ja21a55)t4

− 1
a3
21

(ϑ2
2jϑ4ja

2
32a44 − ϑ3jϑ4ja43a44a21

− ϑ2jϑ5ja21a32a55 + ϑ6ja66a
2
21)t

5 +O(6).

(a) If 3 � k, 4 � k, then ϑ4j �= ϑ4j′ for all j, j′ with j �= j′ (lemma 3.6). Therefore,
Dj · Dj′ = 3 for all distinct pairs.

(b) If k = 3p and 4 � p, then ϑ4j �= ϑ4j′ for all distinct pairs with j or j′ not in
J = {p, 2p}. For such pairs, Dj · Dj′ = 3.

Using the fact that ϑ6p = ϑ6(2p) = ϑ3p = ϑ3(2p) = 0, ϑ4p = ϑ4(2p) = 1 and ϑ5p =
ϑ2p �= ϑ5(2p) = ϑ2(2p), the parametrization of the exceptional branch Dp becomes

γp(t) = −a44

a21
t3 − ϑ2p(a32a44 − a21a55)

a2
21

t4 − ϑ2
2pa32(a32a44 − a21a55)

a3
21

t5 +O(6).

A parametrization of D2p is obtained by replacing ϑ2p by ϑ2(2p) in the expression
of γp. Therefore, Dp · D2p = 4 if and only if a32a44 − a21a55 �= 0, i.e. CndH2 �= 0.

When CndH2 = 0, we have

γ1
p = −a44

a21
t3 − a31a

2
44 − a21a44a54 + a2

21a77

a3
21

t6 +
ϑ2

pCndH3

a4
21

t7 +O(8).

For γ2p, we replace ϑ2
p by ϑ2

2p in γp. It follows that Dp · D2p = 7 if and only if
CndH3 �= 0.

(c) If k = 4p and 3 � p, we have Dj · Dj′ = 3 for j or j′ not in {p, 2p, 3p}.
The parametrization of Dp becomes γp(t) = a55/a21t

4 + ϑ2
p(a32a55 − a21a66)/a2

21t
5 +

O(6), and similarly for γ2p and γ3p replacing p by 2p and 3p respectively. Conse-
quently, the branches Dp, D2p, D3p have pairwise order of contact 5 if and only if
a32a55 − a21a66 �= 0, i.e. CndQm5 �= 0.

When CndQm5 = 0, γp = −a55/a21t
4 − ϑ2pϑ3p(a21a77 − a43a55)/a2

21t
6 +O(7),

with similar adjustments as above for γ2p and γ3p. Therefore, the three excep-
tional branches have pairwise order of contact 6 if and only if a21a77 − a43a55 �= 0,
i.e. CndQm6 �= 0.

(d) This follows by lemma 3.6 and (b) and (c) above.
The contact between the branches determines μ(D), the topological types and

their associated strata. It remains to compute T for each normal form.
For Qk

3 we have λj = x+ ϑ4jy
3 + ϑ5jy

5 + ϑ6jy
5, and λj,j′ = (ϑ4j − ϑ4j′)y2 +

(ϑ5j − ϑ5j′)y3 + (ϑ6j − ϑ6j′)y4. Using the properties of ϑsj in lemma 3.6, we have
Tj,j′ = 2 unless k = 3p and j, j′ ∈ {p, 2p}, or k = 4p and j, j′ ∈ {p, 2p, 3p}. In the
first case we get Tj,j′ = 3 and in the second Tj,j′ = 4. The invariant for the germ

https://doi.org/10.1017/prm.2022.90 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.90


k-Folding map-germs and hidden symmetries in the Euclidean 3-space 85

Qk
4 differs from Qk

3 only when k is divisible by 3. For k = 3p, we have Tp,2p = 6 and
Tj,j′ = 4 if k = 4q and j, j′ ∈ {q, 2q, 3q}. All other indices j and j′ give Tj,j′ = 2.
Similarly, for the germ Q̃k

4 and for k = 4p, we get Tj,j′ = 5 if j, j′ ∈ {p, 2p, 3p}. If
k = 3q, then Tq,2q = 3. All other indices j and j′ give Tj,j′ = 2. �

Remark 4.17. When k is divisible by 12, the germs Qk
4 and Q̃k

4 have the same
invariants C, T, μ(D) and r(D) but they are not topologically equivalent as their
associated sets of contacts between double-points branches are distinct (see [33]).

Proposition 4.18. Suppose that a11 = a22 = a33 = a44 = 0 and a21a55 �= 0. Any
k-folding map-germ Fk in case (a) or satisfying the additional conditions in (b) or
(c) is finitely A-determined and is topologically equivalent to

Rk
4 : (x, y) �→ (x, yk, xy + y5 + y6 + y7).

The invariants associated to the germs in the stratum are as in table 5. We have
Dj · Dj′ = 4 except for the exceptional pairs of branches below.

(a) If 4 � k and 5 � k, there are no additional conditions and no exceptional
branches.

(b) If k = 4p, 5 � k and CndQm5 �= 0, then Dj · Dj′ = 5 for all distinct pairs with
j, j′ in J = {p, 2p, 3p}.

(c) If k = 5p, 4 � k and CndRm5 �= 0, Dj · Dj′ = 5 for all distinct pairs with j, j′

in J = {p, 2p, 3p, 4p}.
(d) If k = 20p, CndQm5 �= 0 and CndRm5 �= 0, then Dj · Dj′ = 5 for all distinct

pairs with j, j′ in J = {5p, 10p, 15p} or in J ′ = {4p, 8p, 12p, 16p}.

Proof. The branches Dj can be parametrized by t �→ (γj(t), t) with

γj(t) = − 1
a21

ϑ5ja55t
4 +

1
a2
21

(ϑ2jϑ5ja32a55 − ϑ6ja21a66)t5

+
1
a3
21

(a21(ϑ2jϑ6ja32a66 − ϑ7ja21a77)

− ((ϑ2j)2a2
32 − ϑ3ja21a43)ϑ5ja55)t6 +O(7).

(a) If 4 � k and 5 � k, then ϑ5j �= ϑ5j′ for all j, j′ with j �= j′ (by lemma 3.6).
Therefore, Dj · Dj′ = 4 for all distinct pairs.

(b) If k = 4p and 5 � k, then ϑ5p = 1, ϑ6p = ϑ2p, and we can write γp(t) =
−a55/a21t

4 + ϑ2pCndQm5/a
2
21t

5 +O(6). We get similarly γ2p(t) and γ3p(t) by sub-
stituting ϑ2p by, respectively, ϑ2(2p) and ϑ2(3p) in γp. The result follows as ϑ2s �= ϑ2s′

for s, s′ ∈ {p, 2p, 3p}, s �= s′.
(c) If k = 5p and 4 � k, then ϑ5p = 0, ϑ6p = 1, ϑ7p = ϑ2p, so γp(t) = −a66/a21t

5 +
ϑ2pCndRm5/a

2
21t

6 +O(7). The expressions γsp, s = 2, 3, 4, are obtaining by sub-
stituting ϑ2p by ϑ2(sp) in γp.

(d) The case k = 20p follows in a similarly way to that of proposition 4.16(d).
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The calculations for T are similar to those in the proof of proposition 4.16.
We obtain Tj,j′ = 4 if k = 4p and j, j′ ∈ {p, 2p, 3p}, and Tj,j′ = 5 if k = 5q and
j, j′ ∈ {q, 2q, 3q, 4q}. All remaining indices j and j′ give Tj,j′ = 3. �

Remark 4.19. The singularities Q4
3 and R4

4 have the same invariants, but the
contact of their double-point branches shows that they are not topologically
equivalent.

4.2.4. Branch 4: a11 = a21 = a22 = 0

Theorem 4.20. The strata of codimension �4 of finitely A-determined k-folding
map-germs in the branch a11 = a22 = a21 = 0 are those given in table 6. The
invariants of the germs in each stratum are given in table 7.

Proof. The result follows from propositions 4.22, 4.23, 4.25, 4.26 and 4.27. �

The functions defining the double-point branches Dj have the following initial
terms:

λj(x, y) = a31x
2 + a32ϑ2jxy + a33ϑ3jy

2 +O(3).

Consequently, the branches Dj are singular. A branch Dj has an A1-singularity
unless the discriminant Δk

j of the quadratic part of λj vanishes. We have

Δk
j = (a2

32 − 4a31a33)ξ2j + 2(a2
32 − 2a31a33)ξj + a2

32 − 4a31a33. (4.1)

An A1-singularity is a transverse intersection of two regular curves. Two branches
Dj and Dj′ with an A1-singularity may have one or both of their components
being tangential (i.e. the tangent cones of the two branches have a non-trivial
intersection). Taking the resultant of j2λj and j2λj′ with respect to one of the
variables, we find that this happens if and only if a31a33 = 0 or

Ωk
j,j′ = a31a33(1 + ξj + ξj′

)2 − a2
32(ξ

j + ξj′
+ ξj+j′

) = 0. (4.2)

We have 1 + ξj + ξj′
= 0 or ξj + ξj′

+ ξj+j′
= 0 if and only if k = 3p and j, j′ ∈

{p, 2p}. Therefore, if 3 � k or if k = 3p and j, j′ /∈ {p, 2p}, V (Ωk
j,j′) is a codimension

1 algebraic variety in J l(2, 1), for l � 3. For such pairs, we set

αj,j′ =
ξj + ξj′

+ ξj+j′

(1 + ξj + ξj′)2
and α =

a2
32

a31a33
. (4.3)

We have the following properties of Δk
j and Ωk

j,j′ when a31a33 �= 0; the case
a31a33 = 0 is dealt with in propositions 4.26 and 4.27.

Proposition 4.21. Suppose that a31a33 �= 0 and that 3 � k or k = 3p and j, j′ /∈
{p, 2p}. Then:

(1) Δk
j = ξ2jΔk

k−j, and if Δk
j = 0 then Δk

s �= 0 for s /∈ {j, k − j}, so the solutions
of Δk

j = 0 in the kth-roots of unity come in pairs.
(2) For Δk

j to vanish requires α in (4.3) to belong to the real semi-line (−∞, 3).
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(3) αj,j′ = αj′,j for all pairs (j, j′). We have αj,j′ = αk−j,j′−j = αk−j′,j−j′ and
the pairs (j, j′), (k − j, j′ − j), (k − j′, j − j′) are pairwise distinct. Furthermore,
αk

l,q = αk
j,j′ if and only if (l, q) or (q, l) is one of those 3 pairs.

(4) αj,j′ is real if and only if j′ = k − j or j′ = 2j. In that case, by (3), αk−j,2j

is also real. Then, αj,k−j = αj,2j = αk−j,2j = (1 + ξj + ξk−j)−1.
(5) If α is real then Ωk

j,j′ = 0 if and only if j′ = k − j or j′ = 2j. Then by (3),
we also have Ωk

k−j,2j = 0.
(6) If α is real, then Ωk

j0,k−j0
= 0 implies Δk

j �= 0 for all j. Conversely, if Δk
j0

= 0,
then Ωk

j,k−j �= 0 for all j.
(7) If Δk

j Δk
j′ �= 0 and Ωk

j,j′ �= 0 for all j, j′ with j′ �= j, then Dj · Dj′ = 4.

Proof. (1) As ξ−j = ξk−j , factoring out ξ2j in (4.1) gives Δk
j = ξ2jΔk

k−j .
If a2

32 − 4a31a33 = 0, then for Δk
j to vanish requires a2

32 − 2a31a33 = 0. This would
imply a31a33 = 0. Therefore, under the hypothesis of the proposition, we can assume
that a2

32 − 4a31a33 �= 0. Then

Δk
j = 0 ⇐⇒ ξ2j +

2(α− 2)
α− 4

ξj + 1 = 0

with α as in (4.3). If ξj is a solution of the above quadratic equation, then so is
ξk−j = ξ−j . Therefore, for α fixed, if Δk

j = 0, then Δk
s �= 0 for s /∈ {j, k − j}.

(2) When a31a33 �= 0, we can write Δk
j = a31a33((1 + ξj)2α− 4(1 + ξj + ξ2j)).

Clearly, Δk
j �= 0 when ξj = −1. Thus, Δk

j = 0 if and only if α = 4(1 + ξj + ξ2j)/(1 +
ξj)2, which shows that if Δk

j = 0 then α must be real. The discriminant of the
quadratic equation (ξj + 1)2α− 4(ξ2j + ξj + 1) = 0 in ξj is 4(α− 3), so α < 3 as
the solutions ξj are not real.

(3) Clearly as αj,j′ = (ξj + ξj′
+ ξj+j′

)/((1 + ξj + ξj′
)2), we have αj,j′ = αj′,j .

Factoring our ξ2j (resp. ξ2j′
) from the numerator and denominator gives αk−j,j′−j =

αk−j,j′−j = αk−j′,j−j′ .
We now seek pairs (l, q) for which αl,q = αj,j′ . We know from the above

that we have at least three such pairs. To show that these are the only ones,
we write αj,j′ = c+ id (so (c, d) �= (0, 0)) and represent points on the unit cir-
cle, with −1 removed, in the form z = (1 − t2)/(1 + t2) + i(2t/(1 + t2)) and w =
(1 − s2)/(1 + s2) + i(2s/(1 + s2)), with t, s ∈ R. We set

αz,w =
z + w + zw

(1 + z + w)2
.

The real and imaginary parts of αz,w − (c+ id) vanish if and only if P(c,d)(s, t) =
Q(c,d)(s, t) = 0, where

P(c,d)(s, t) = (cs4 + 4ds3 + s4 − 6cs2 − 4ds+ 2s2 + c+ 1)t4

+ 4(s2 + 1)(ds2−2cs− d+ s)t3−2(3cs4−s4 + 10cs2 + 8ds− c+ 1)t2

− 4(s2 + 1)(ds2 + 2cs+ 3d− s)t

+ cs4 − 4ds3 + s4 + 2cs2 − 12ds− 2s2 + 9c− 3,
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Figure 3. Red curve is the discriminant of R(c,d), the blue curve is the unit circle and the
green lines are the values of αp,w and α2p,w when k = 3p.

Q(c,d)(s, t) = −(ds4 − 4cs3 − 6ds2 + 4cs+ d)t4 + 4(s2 + 1)(cs2 + 2ds− c+ 1)t3

+ 2(3ds4 + 10ds2 + 2s3 − 8cs− d+ 2s)t2

− 4(s2 + 1)(cs2 − 2ds+ 3c− 1)t− ds4 − 4cs3 − 2ds2

+ 4s3 − 12cs− 9d+ 4s.

Observe that P(c,d) and Q(c,d) are symmetric polynomials. Their resultant with
respect to t vanishes if and only if s2 = 3 or R(c,d)(s) = 0, with

R(c,d)(s) = (c2 + d2 − 1)2s6 − (9c4 + 18c2d2 + 9d4 + 2c2 + 2d2 + 8c− 3)s4

+ (27c4 + 54c2d2 + 27d4 + 18c2 + 18d2 − 16c+ 3)s2

− 27c4 − 54c2d2 − 27d4 + 18c2 + 18d2 − 8c+ 1.

We have s2 = 3 if and only if k = 3p and w = ξp or w = ξ2p, and this is excluded
from the hypotheses. The component R(c,d) of the resultant is a cubic polynomial
in s2 provided c2 + d2 − 1 �= 0, i.e.|αj,j′ | �= 1. Suppose that |αj,j′ | �= 1. Then the
discriminant of R(c,d) vanishes if and only if d = 0 (i.e.αj,j′ is real and this is
treated in (4) below) or

δR = 27c4 + 54c2d2 + 27d4 − 18c2 − 18d2 + 8c− 1 = 0.

For (c, d) in the interior region bounded by the curve δR = 0 (see figure 3), R(c,d)

has a unique solution in s2. As we know that there are at least three distinct
solution pairs to the problem, it follows that (c, d) must be in the exterior region
(R+) bounded by the curve δR = 0.

Observe that s = 0 is a root of R(c,d) if and only if δR = 0. Therefore, the roots
of R(c,d) in s2 do not change sign in (R+). Choosing any point in that region, we
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find that they are all positive. It follows that R(c,d) has six roots ±s1,±s2,±s3.
These correspond to six points on the unit circle w1, w2, w3 and w1, w2, w3.

For each root of R(c,d) we show, by considering the subresultant (see e.g. [18])
of P(c,d) and Q(c,d) that P(c,d)(±si, t) and Q(c,d)(±si, t) have only one common
root. As P(c,d) and Q(c,d) are symmetric polynomials, that common root is a root
of R(c,d). Interchanging wi with wi if necessary, we can set w1 = ξj , w1 = ξk−j ,
w1 = ξk−j′

, Then the solutions of αz,w − c− id = 0 are exactly, up to permutation
of z and w, (ξj , ξj′

), (ξk−j , ξj′−j), (ξk−j′
, ξj−j′

).
We turn now to the case when |αj,j′ | = 1, i.e. c2 + d2 − 1 = 0. This occurs if

and only if 2 | k and j′ = j + k/2 or j′ = k/2. Suppose that 2 | k and j′ = j +
k/2. Then αj,j+k/2 = −ξ2j , and αl,l+k/2 = αj,j+k/2 if, and only if, l = j or l =
j + k/2. In both cases, we get only the pair (j, j + k/2). Now αk/2,l = −ξ−2l, so
αk/2,l = αj,j+k/2 if and only if l = k − j or l = k/2 − j. This shows that αj,j+k/2 =
αk−j,k/2 = αk/2−j,k/2 and the equality αj,j+k/2 = αl,q holds only for these three
pairs.

(4) We can write αj,j′ in the form

αj,j′ =
6(1 + �(ξj) + �(ξj′

) + �(ξj′−j)) + ξj−2j′
+ ξj+j′

+ ξj′−2j

|1 + ξj + ξj′ |2 .

Therefore, αj,j′ is real if and only if ζ = ξj−2j′
+ ξj+j′

+ ξj′−2j is real.
Setting θ = j − 2j′ and φ = j′ − 2j, we get �(ζ) = sin(2πθ/k) + sin(2πφ/k) −
sin((2π(θ + φ))/k). Then

�(ζ) = 0 ⇐⇒ sin
(

2πθ
k

)
+ sin

(
2πφ
k

)
= sin

(
2π(θ + φ)

k

)
⇐⇒ 2 sin

(
π(θ + φ)

k

)
cos
(
π(θ − φ)

k

)
= 2 sin

(
π(θ + φ)

k

)
cos
(
π(θ + φ)

k

)
.

Now, sin((π(θ + φ))/k) = 0 when j′ = k − j and cos((π(θ − φ))/k) = cos((π(θ+φ))
/k) when j′ = 2j or j = 2j′. Clearly, αj,k−j = 1/(1 + ξj + ξk−j) = αj,2j .

(5) As a31a33 �= 0, we can write Ωk
j,j′ = a31a33(1 − αj,j′α), so Ωk

j,j′ = 0 if and
only if αj,j′ = 1/α and the statement follows by (4).

(6) When α is real, by (4), we have Ωj0,k−j0 = 0 when ξj
0 + ξk−j0 + 1 =

α. It follows that ξj
0 = η1 with η1 = (α− 1)/2 ± i

√
1 − ((α− 1)/2)2. Suppose

that there exist a j for which Δk
j = 0, equivalently, ξ2j + (2(α− 2)/(α− 4))ξj +

1 = 0. Then ξj + ξk−j = −((2α− 2)/(α− 4)) which gives ξj = η2 with η2 =
−((α− 2)/(α− 4)) ± i

√
1 − ((α− 2)/(α− 4))2. We have η1 = η2 if and only if

α = 0 or 3. Then k = 3p and j0 = p or 2p, which is excluded from our hypotheses,
so η1 �= η2.

The complex number η1 (resp. η2) is a kth-root of unity if and only if α is a
root of the polynomial P1(α) (resp. P2(α)) of degree k obtained by taking the
numerator of �(η1k) − 1 (resp. �(η2k) − 1). But if P1 and P2 have one common
root, all the other roots must also be common. (This follows from the fact that the
map cos θ = −(α− 2)/(α− 4) is a bijection for α ∈ (−∞, 3] and cos θ = (α− 1)/2
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is also a bijection for α ∈ (−1, 3].) As P1 and P2 are distinct polynomials, it follows
that they have no common roots. Consequently, Δk

j �= 0 for all j.
The argument for showing that Ωk

j,k−j �= 0 when Δk
j0

= 0 is the same as above.
(7) We have, with the hypothesis, Dj · Dj′ = dimC O2/

〈
xy, x2 + y2

〉
= 4. �

In view of proposition 4.21(7), we give in the rest of this section Dj · Dj′ for the
exceptional branches only, i.e. when one or both branches have a singularity more
degenerate than A1 or one or both of their components are tangential (which is
equivalent to Dj · Dj′ > 4). We start with the case when all the branches have an
A1-singularity.

Proposition 4.22. Suppose that a11 = a21 = a22 = 0, a31a33 �= 0 and Δk
j �= 0 for

all j. Any k-folding map-germ Fk satisfying the additional conditions in (a) or (b) is
finitely A-determined and is topologically equivalent to one of the following germs:

Uk
l : (x, y) �→ (x, yk, x2y + 2xy2 + y3 + y3l−5), l = 3, 4.

Every branch of the double-point curve has an A1-singularity and the invariants
associated to the germs in these strata are as in table 7.

(a) If 3 � k and Ωk
j,j′ �= 0 for all distinct pairs, then Fk is topologically equivalent

to Uk
3 .

(b) Suppose that k = 3p and Ωk
j,j′ �= 0 for all distinct pairs with j, j′ �= {p, 2p}.

If a44 �= 0, then Dp · D2p = 5 and Fk is topologically equivalent to Uk
3 .

If a44 = 0 and CndUm8 �= 0, then Dp · D2p = 8 and Fk is topologically
equivalent to Uk

4 .

Proof. Each branch of the double-point curve consists of a transverse intersection
of two regular curves. In (a) all of these curves are pairwise transverse.

In (b), j2λs(x, y) = x(a31x+ a32ϑ2sy) for s = p, 2p. Observe that a32 �= 0 as we
supposed Δk

s �= 0, so the branches Dp and D2p have one common line x = 0 in their
tangent cone and their associated curves tangent to this line are parametrized by
t �→ (γs(t), t) with γs(t) = −(a44/(ϑ2sa32))t2 +O(3), so they have order of contact
2 when a44 �= 0. Then Dp · D2p = dimC O2/

〈
xy, x2 + y3

〉
= 5.

When a44 = 0, the two curves are parametrized by t �→ (γs(t), t) with

γs(t) = −a55

a32
t3 +

2
ϑ2sa3

32

(a55(a31a55 − a54a32) + a77a
2
32)t

5 +O(6),

and have contact order 5 when (a55(a31a55 − a54a32) + a77a
2
32 �= 0, i.e.CndUm8 �=

0. Then Dp · D2p = dimC O2/
〈
xy, x2 + y6

〉
= 8.

For the topological normal forms, we choose a31, a32, a33 real with α > 3. By
proposition 4.21(2), all Δk

j are non-zero. Also, by proposition 4.21(4) and (5)
Ωj,k−j = 0 when ξj + ξk−j + 1 = α, which cannot happen when α > 3, so the Ωk

j,j′

in (a) and (b) are non-zero. As the strata are connected sets, we can choose
a31 = a32 = 1, a32 = 2 so that the conditions on Δk

j and Ωk
j,j′ are satisfied.
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The number of triple points is calculated as in proposition 4.16. If k = 3p, the
germ Uk

3 (resp. Uk
4) has Tp,2p = 3 (resp. Tp,2p = 6), while all other indices j and j′

give Tj,j′ = 2. �

Proposition 4.23. Suppose that a11 = a21 = a22 = 0, a31a33 �= 0, a32 �= 0 and
Ωk

j0,j′
0

= 0 for some pair (j0, j′0), with j0, j
′
0 /∈ {p, 2p} when k = 3p. Then

Ds · Dq = 5 for (s, q) ∈ {(j0, j′0), (k − j0, j
′
0 − j0), (k − j′0, j0 − j′0)} if and only if

CndV m5j0,j′
0
�= 0. For k = 3p, we have Dp · D2p = 5 if and only if a44 �= 0. Any

k-folding map-germ Fk satisfying the above conditions is finitely A-determined and
is topologically equivalent to

Vk,j0,j′
0

4 : (x, y) �→ (x, yk, x2y + xy2 + αj0,j′
0
y3 +

(
1 − βj0,j′

0

α3
j0,j′

0

)
x3y + y4).

The invariants associated to germs in these strata are as in table 7.

Proof. When a32 = 0 and k = 3p, we have Δk
p = Δk

2p = 0. This case is dealt with
in proposition 4.25. With the hypothesis and proposition 4.21(5), we have Ωj0,j′

0
=

Ωk−j0,j′
0−j0 = Ωk−j′

0,j0−j′
0

= 0.
We need to consider the order of contact between the two tangential compo-

nents of the pairs (Ds,Dq) with (s, q) ∈ {(j0, j′0), (k − j0, j
′
0 − j0), (k − j′0, j0 − j′0)}.

Using the fact that if two quadratic equations x2 + aix+ bi = 0, i = 1, 2, have one
root in common, then the root is given by x = −(b1 − b2)/(a1 − a2), we can get
the initial terms of parametrizations of the tangential components of the above
pairs. These are given by t �→ (t, γl(t)), l = s, q, with γl(t) = −a33/a32(1 + ξs +
ξq)t+ λlt

2 +O(3), l = s, q. A calculation shows that λs − λq = 0 if and only if

CndV m5s,q = a2
32a44βs,q + a32a33(2a33a42 − a32a43)αs,q + a41a

3
33 = 0,

with

βj,j′ =
ξj+3j′

+ ξ3j+j′
+ ξ3j′

+ 2ξ2j+j′
+ 2ξj+2j′

+ ξ3j + 2ξj+j′
+ ξj + ξj′

(1 + ξj + ξj′)4
. (4.4)

Observe that βj,j′ = βk−j,j′−j = βk−j′,j−j′ , so CndV m5s,q has the same value
for (s, q) ∈ {(j0, j′0), (k − j0, j

′
0 − j0), (k − j′0, j0 − j′0)}. It follows that Ds · Dq =

dimC O2/
〈
xy, x2 + y3

〉
= 5 if and only if CndV m5j0,j′

0
�= 0.

For the topological model, we take a31 = a32 = 1 and a33 = αj0,j′
0

so Ωj0,j′
0

= 0.
We also set a44 = 1, a42 = a43 = 0, then CndV m5j0,j′

0
= βj0,j′

0
+ a41α

3
j0,j′

0
. We set

a41 = 1 − βj0,j′
0
/α3

j0,j′
0
, so that CndV m5j0,j′

0
�= 0. For calculating the triple points,

we find that Tj,j′ = 3 for all j and j′ with j �= j′. �

We deal now with the case when one pair of branches of the double-point curve
has a singularity more degenerate than A1 (see proposition 4.21(1)).

Remark 4.24. For k = 3p, the singularities Uk
4 and Vk,j,j′

4 have the same invari-
ants, but the intersection numbers between their double-point branches shows that
they are not topologically equivalent.
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Proposition 4.25. Suppose that a11 = a21 = a22 = 0, a31a33 �= 0. The strata below
are of codimension 4, and the invariants associated to germs in the strata are as in
table 7.

(1) Suppose that Δk
j0

= Δk
k−j0

= 0, with j0 /∈ {p, 2p} when k = 3p (so a32 �= 0).
The branches Dj0 and Dk−j0 have an A2-singularity if and only if CndWA2 �= 0.
We have Dj0 · Dj = Dk−j0 · Dj = 4 for all distinct pairs. When k = 3p and a44 �= 0,
we have Dp · D2p = 5. Any k-folding map-germ Fk satisfying the above conditions
is A-finitely determined and is topologically equivalent to

Wk,j0
4 : (x, y) �→

(
x, yk, x2y + xy2 +

(ξj0 + 1)2

4(ξ2j0 + ξj0 + 1)
y3 + 4x2y2 + y4

)
.

(2) If k = 3p and j0 = p, then Dp and D2p have an A2-singularity if and only
if a44 �= 0. We have Dp · D2p = 8 if and only if CndW̃m8 �= 0, and Ds · Dj = 5 for
s = p, 2p and j �= s. Any k-folding map-germ Fk satisfying the above conditions is
A-finitely determined and is topologically equivalent to

W3p,p
4 : (x, y) �→ (x, yk, x2y + y3 + y4 + y5).

Proof. The condition for an A2-singularity of Dj0 and Dk−j0 follows by analysing
the 3-jets of, respectively, λj0 and λk−j0 . Observe that when 2 | k, ξj0 = −1 is
a solution of Δk

j0
= Δk

k−j0
= 0 if and only if a31a33 = 0. As we are assuming

a31a33 �= 0, we have j0 �= k/2 in (1) when 2 | k.
With the hypothesis in (1), Dj0 · Dj = Dk−j0 · Dj = dimC O2/

〈
x2 + y3, x2 − y2

〉
= 4 for any distinct pairs.

For (2), we have Dp · D2p = dimC O2/
〈
x2 + y3, y4

〉
= 8 when CndW̃m8 �= 0.

For the topological normal forms, we use the fact that Δk
j0

= 0 if and only if
α = a2

32/(a31a33) = 4(ξ2j0 + ξj0 + 1)/(ξj0 + 1)2 (see the proof of proposition 4.21)
and set a31 = a32 = 1, so a33 = (ξj0 + 1)2/4(ξ2j0 + ξj0 + 1). We have Tj,j′ = 2 for
all j and j′ with j �= j′. �

Proposition 4.26. Suppose that a11 = a21 = a22 = 0, a31 = 0, a33a32 �= 0. All the
branches of the double-point curve share only one line in their tangent cones except
when k = 3p where the branches Dp and D2p have the same tangent cone. Any k-
folding map-germ Fk satisfying the additional conditions in (a), (b), (c) or (d) is
finitely A-determined and is topologically equivalent to

Xk
4 : (x, y) �→ (x, yk, xy2 + y3 + x3y + y4).

The stratum is of codimension 4, and the invariants associated to the germs in
the strata above are as in table 7.

(a) If 2 � k, 3 � k, all of the branches Dj of the double-point curve have an A1-
singularity and Dj · Dj′ = 5, j �= j′, when a41 �= 0.

(b) If k = 2p, 3 � k, the branches Dj, j �= p, behave as in (a). The branch Dp has
an A2-singularity if and only if a41 �= 0. We also have Dj · Dp = 5, j �= p.

(c) If k = 3p, 2 � k, the branches Dj behave as in (a) except for Dp and D2p where
Dp · D2p = 6 when a41a44 �= 0.
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(d) If k = 6p, when a41a44 �= 0, the exceptional branches of the double-point curve
behave as in (b) and (c), the remaining branches behave as in (a).

Proof. We have j2λj(x, y) = y(ϑ2ja32x+ ϑ3ja33y). For (a), ϑ2j �= 0 for all j and
ϑ2j/ϑ2j �= ϑ3j′/ϑ2j′ for j �= j′, so all of the branches of the double-point curve
have an A1-singularity and one common line y = 0 in their tangent cone. The
component of Dj with tangent y = 0 can be parametrized by t �→ (t, γj(t)) with by
γj(t) = −a41/((1 + ξj)a32)t2 +O(3). Therefore, when a41 �= 0, we have Dj · Dj′ =
dimC O2/

〈
xy, y2 + x3

〉
= 5.

The remaining parts of the proof follow similarly and are omitted. �

Proposition 4.27. Suppose that a11 = a21 = a22 = 0, a33 = 0, a31a32 �= 0. All the
branches of the double-point curve share only one line in their tangent cones. Any
k-folding map-germ Fk satisfying the additional conditions in (a) or (b) is finitely
A-determined and is topologically equivalent to

Yk
4 : (x, y) �→ (x, yk,−xy2 + x2y + y4 + y5).

The stratum is of codimension 4, and the invariants associated to germs in the
stratum are as in table 7.

(a) If 2 � k, all of the branches of the double-point curve have an A1-singularity
and Dj · Dj′ = 5, j �= j′, when a44 �= 0.

(b) If k = 2p, the branch Dp has an A3-singularity if and only if CndY A3 �=
0. Then Dp · Dj = 6, j �= p, and Dj · Dp+j = 6, 1 � j < p, if and only if
CndY m6j �= 0. The other pairs of branches behave as in (a).

Proof. We have j2λj(x, y) = x(a31x+ a32ϑ2jy) so when 2 � k, all of the branches of
the double-point curve have an A1-singularity as ϑ2j �= 0 for all j. All the branches
have only x = 0 as a common line in their tangent cone. The components of the
branches which are tangent to x = 0 are parametrized by t �→ (γj(t), t), with γj(t) =
−a44(1 + ξ2j)/a32t

2 +O(3). When a44 �= 0, Dj · Dj′ = dimC O2/
〈
xy, x2 + y3

〉
= 5.

When k = 2p, we have ϑ2p = ϑ4p = 0, so considering the 4-jet of λp, we find that
the branch Dp has an A3-singularity if and only if CndY A3 �= 0. When this is the
case, Dp · Dj = dimC O2/

〈
xy, x2 + y4

〉
= 6, for j �= p.

All pairs of branches Dj , Dp+j , 1 � j < p have tangential component
parametrized by t �→ (γs(t), t), with γs(t) = −a44(1 + ξ2j )/a32t

2 + αst
3 +O(4), s =

j, p+ j, with α1 − α2 �= 0 if and only if CndY m6j �= 0. When this is the case,
Dj · Dp+j = dimC O2/

〈
xy, x2 + y4

〉
= 6, for 1 � j < p. The other pairs of branches

behave as when 2 � k. �

Remark 4.28. The stratification Sk is determined, for each k � 4, by the conditions
in tables 2, 4 and 6 (S2 follows from the results in [8] and S3 is indicated in table 1).
One can easily check that the strata are smooth manifolds (they are also algebraic
sets so in particular, Sk admits a sub-stratification which is Whitney (a) and (b)
regular).

Germs in the following strata have pairwise the same Milnor number of their
double-point curves:
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Table 5: Qk
4 and Q̃k

4 for 12 | k,
Table 7: Uk

4 and Vk,j,j′
3 for 3 | k,

Table 7: Xk
4 and Yk

4 for 2 � k and 3 � k.
A simple calculation shows that all the Milnor numbers of the double-point curves

in tables 3, 5 and 7, except those of the above pairs, are pairwise distinct. Therefore,
removing the exceptional pairs, each stratum is precisely the connected component
of the jets for which the Milnor number of the double-point curve is constant.

5. Generic singularities of k-folding map-germs

We define, by varying the plane π ∈ Graff(2, 3), the family of Whitney k-folds
Ωk : C3 × Graff(2, 3) → C3, given by Ωk(p, π) = ωk

π(p), with ωk
π as in definition 2.2.

Given a complex surface M in C3, we call the restriction of Ωk to M the family
of k-folding maps on M and denote it by Fk. We have Fk(p, π) = Fπ

k (p) = ωk
π(p)

for all p ∈M and π ∈ Graff(2, 3).
Recall that a property of surfaces is said to be generic if it is satisfied in a residual

set of embeddings of the surfaces to C3. The image of a surface M by an embedding
in the residual set is then called generic, or simply that M is generic. When k is
large, the A-singularities of Fπ

k may have high Ae-codimensions (for the cases in
this paper, this means high modality). However, they do occur on generic surfaces.
To make sense of this, we follow a similar approach to that in [5] and proceed as
follows.

As we are interested here in the local singularities of k-folding maps, we consider
the setting in remark 2.3(4) at a point p0 ∈M and choose a suitable system of
coordinates so that π0 : y = 0 and Fk = Fπ0

k (x, y) = (x, yk, f(x, y)) for (x, y) in a
small enough neighbourhood U of the origin. A plane π = (d, v) near π0 is obtained
by applying a translation Tπ followed by an orthogonal transformation Rπ ∈ U(3)
to π0. We choose Tπ and Rπ as follows. The translation Tπ takes the origin to the
point of intersection of π with the y-axis (the point exists because π0 is orthogonal
to the y-axis and π is close to π0). The transformation Rπ near the identity (and
is taken to be the identity if v is parallel to v0) takes v/||v|| to v0 = (0, 1, 0) and
fixes the line through the origin orthogonal to v0 and v. By varying the planes π in
a neighbourhood V of π0 in Graff(2, 3), we get the family of k-folding maps given
by Fk : U × V → C3, with

Fk((x, y), π) = (Rπ ◦ Tπ) ◦ ωk ◦ (Rπ ◦ Tπ)−1(φ(x, y)),

with φ(x, y) = (x, y, f(x, y)). (We choose Rπ and Tπ to depend analytically on π.)
The A-type of the singularity of Fπ

k at a given point in U is the same as that of
the germ of

F̃k((x, y), π) = F̃ k
π (x, y) = (Rπ ◦ Tπ)−1 ◦ Fk((x, y), π) = ωk ◦ (Rπ ◦ Tπ)−1(φ(x, y))

at that point. At any point p = (x, y) ∈ U , there exist a bi-holomorphic map-germ
K : (C2, 0) → (C2, (x, y)) such that

(Rπ ◦ Tπ)−1(φ(K(X,Y )) = (x̄+X, ȳ + Y, z̄ + gp(X,Y )),
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for some germ of a holomorphic function gp, where (x̄, ȳ, z̄) = (Rπ ◦ Tπ)−1(φ(x, y)).
Composing F̃ k

π with K gives the germ (F̃ k
π )p of F̃ k

π at p

(F̃ k
π )p(X,Y ) = (x̄+X, (ȳ + Y )k, z̄ + gp(X,Y ))

∼A (X, (ȳ + Y )k, gp(X,Y )).

Observe that gp depends on the choice of Rπ, Tπ and of the coordinates system,
but the A-class of the resulting germs (F̃ k

π )p is independent of these choices.
Clearly, a necessary condition for (F̃π

k )p to be singular at the origin is ȳ = 0,
equivalently, p ∈ π. We define the family of maps Φ : U × V → C × J l(2, 1) given
by

Φ(p, π) = (〈v, p〉 − d, jlgp(0, 0)).

The map Φ plays a similar role in the Monge–Taylor map in [5]. Here we include
the first component to capture the planes through a given point p ∈M which can
give rise to singular k-folding map-germs at p.

We stratify C × J l(2, 1) by 0 × Sk, together with C × J l(2, 1) \ 0 × J l(2, 1). Fol-
lowing standard transversality arguments (see e.g. [5]), one can show that for a
residual set of local embeddings of M in C3, the map Φ is transverse to the strata
in C × J l(2, 1). As the domain of the family Φ is of dimension 5, for a generic local
embedding of M in C3, Φ intersects a stratum 0 ×X only when X has codimension
�4 in J l(2, 1). This means that the only singularities of k-folding maps that can
occur on a generic surface are those belonging to the strata listed in tables 1, 2, 4
and 6. Furthermore, Φ is transverse to these strata. Therefore, the locus of points
where the l-jets of the k-folding map-germs belong to a stratum X of codimension
3 (resp. 4) is a regular curve on M (resp. isolated points on this curve). The above
discussion also clarifies why the singularities of Fπ

k occur generically even though
they may have high Ae-codimensions: they belong to strata of low codimension.
(The strata can be viewed as a gluing of non A-equivalent orbits which depends on
a finite set of moduli.)

It is worth observing that the above discussion is valid for smooth surfaces in R3.

6. k-Folding map-germs on surfaces in R3

We consider in this section the geometry of k-folding maps-germs on smooth (i.e.
regular and of class C∞) surfaces in R3.

6.1. Robust features on surfaces

Robust features on a surface in R3 is a terminology introduced by Ian Porteous to
indicate special characteristic features that can be traced when the surface evolves.
What is sought after in applications are robust features which are represented by
curves or points on the surface as these form a ‘skeletal structure’ of the surface
(open regions bounded by robust curves are also robust features). They play an
important role in computer vision and shape recognition (see e.g. [27]) as they can
be used to distinguish two shapes (surfaces) from each other and, in some cases,
reconstruct the surface.
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We consider here the parabolic, ridge, sub-parabolic and flecnodal curves on a
smooth surface M in R3 and special points on these curves (see [14] for references
on work on these curves from a singularity theory point of view). These are robust
features on M . We recall briefly what they are.

The parabolic curve is the locus of points where the Gaussian curvature vanishes.
It is captured by the contact of the surface M with planes: it is the locus of points
where the height function along a normal direction to M has an A�2-singularity.
The parabolic curve is regular on a generic surface, and the height function has an
A2-singularity at its points except at isolated ones, called Cusps of Gauss, where it
has an A3-singularity.

The ridge is the locus of points on M where a principal curvature is extremal
along its associated lines of principal curvature. It is also the locus of points on M
which correspond to singular points on its focal set. The ridge is captured by the
contact of M with spheres: it is the locus of points on M where the distance squared
function from a given point in R3 (the point belong to the focal set) has an A�3-
singularity. Away from umbilic points (i.e. points where the principal curvatures
coincide), the ridge is a regular curve on a generic surface and the distance squared
function has an A3-singularity at its points except at isolated points where it has
an A4-singularity. At umbilics, the ridge consist of one regular curve or a transverse
intersection of three regular curves. (Umbilics and A4-points are used as seed points
for drawing ridges on a given shape, see [27].)

The sub-parabolic curve is the locus of points on M corresponding to parabolic
points of its focal set. It is the locus of geodesic inflections of the lines of principal
curvature; it is also the locus of points along which a principal curvature is extremal
along the other lines of curvature. It is captured by the singularities of the 2-folding
map on M : it is the locus of points where some map Fπ

2 has an S�2-singularity
(or one which is adjacent to an S2-singularity). The singularities of F2 and their
geometric characterization on a generic surface parametrized in Monge form z =
f(x, y) at a given non-umbilic point, with f as in (3.1), are as in table 8. At umbilics,
the sub-parabolic curve consist of one regular curve or a transverse intersection of
three regular curves. Observe that the ridge is also captured by the singularities of
Fπ

2 (see table 8).
The flecnodal curve is the locus of geodesic inflections of the asymptotic curves.

It is captured by the contact of the surface M with lines: it is the locus of points
where the orthogonal projection of the surface has a singularity of type swallowtail
or worse. We recall briefly some results on these projections as they are needed for
interpreting the singularities of k-folding maps. The orthogonal projection Pv of M
along the direction v ∈ S2 to the plane TvS

2 is given by Pv(p) = p− (p · v)v, with
p ∈M . This can be represented locally by a map-germ from the plane to the plane.
Varying v yields the family of orthogonal projections P : M × S2 → TS2 given by
P (p, v) = (v, Pv(p)).

A transversality theorem asserts that for an open and dense (i.e.generic) set of
embeddings φ : U → R3, the surface M = φ(U) has the following property: for any
v ∈ S2 the map-germ Pv has only local singularities A-equivalent to one in table 9 at
any point on M . By translating p0 ∈M to the origin and taking M locally at p0 in
Monge form, an open subset of M is parametrized by φ(x, y) = (x, y, f(x, y)), with
f having no constant nor linear terms. Projecting along the direction v = (0, 1, 0)
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Table 8. Geometric characterization of the singularities of the folding-map F2

Name Algebraic conditions and geometric meaning

Crosscap a21 �= 0
B1 = S1 a21 = 0, a31 �= 0, a33 �= 0

General smooth point of focal set

B2 a21 = 0, a31 �= 0, a33 = 0, CndNA3 = 4a31a55 − a2
43 �= 0

General cusp point of focal set corresponding to a point on the
ridge curve

B3 a21 = 0, a31 �= 0, a33 = 0, CndNA3 = 0,

CndNA5 = 8a3
31a77 − 4a65a43a2

31 + 2a53a2
43a31 − a2

41a3
43 �= 0

(Cusp) point of focal set in closure of parabolic curve on symmetry
set

S2 a21 = 0, a31 = 0, a33 �= 0, a41 �= 0
Parabolic smooth point of focal set corresponding to a point on the

sub-parabolic curve
S3 a21 = 0, a31 = 0, a33 �= 0, a41 = 0, a51 �= 0

Cusp of Gauss at smooth point of focal set
C3 a21 = 0, a31 = 0, a33 = 0, a41 �= 0, a43 �= 0

Intersection point of cuspidal-edge and parabolic curve on focal set

gives Pv(x, y) = (x, f(x, y)), which is singular at the origin. Table 9 shows the con-
ditions on the coefficients of f for the map-germ Pv to have a singularity at the
origin of Ae-codimension �2, where de(G,A) denotes the Ae-codimension of G (see
e.g. [14]).

The projection Pv has a fold singularity at p if, and only if, v is a non-asymptotic
tangent direction to M at p. The singularity at p is of type cusp or worse if, and
only if, v is an asymptotic direction at p. For a generic surface M , the closure of the
set of points where Pv has a swallowtail (resp. lips/beaks) singularity is a precisely
the flecnodal (resp. parabolic) curve. The flecnodal curve meets tangentially the
parabolic curve at the cusps of the Gauss map, which are the gulls singularities of
Pv [2]. We call a point where this happens a gulls-point of M .

The goose (resp. butterfly) singularities of Pv appear at special points on the
parabolic (resp. flecnodal) curve. We call a point on M where these singularities
occur a goose-point (resp. butterfly-point) on M .

The above robust features are defined in terms of the principal curvatures κ1

and κ2. We can suppose κ1 < κ2 (away from umbilic curves) and give different
colours to the robust features associated to each principal curvature. For instance,
we can have a blue ridge (associated to κ1) and a red ridge (associated to κ2).

6.2. The geometry of k-folding map-germs

We obtain here the robust features determined by the singularities of k-folding
map-germs, for k � 3. We start with the case where p is not an umbilic point and
treat the k = 3 case separately.
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Table 9. Ae-Codimension �2 singularities of map-germs G : (R2, 0) → (R2, 0)

Name Normal form de(G,A) Algebraic conditions on f in (3.1)
for the singularities of G(x, y) =
(x, f(x, y))

Fold (x, y2) 0 a22 �= 0

Cusp (x, xy + y3) 0 a22 = 0, a21 �= 0, a33 �= 0

Swallowtail (x, xy + y4) 1 a22 = 0, a33 = 0, a21 �= 0, a44 �= 0

Lips/beaks (x, y3 ± x2y) 1 a22 = 0, a21 = 0, a33 �= 0,
a2
32 − 3a31a33 �= 0

Goose (x, y3 + x3y) 2 a22 = 0, a21 = 0,
a2
32 − 3a31a33 = 0, a33 �= 0,

27a41a3
33 − 18a42a32a2

33 +
9a43a2

32a33 − 4a44a3
32 �= 0

Butterfly (x, xy + y5 ± y7) 2 a22 = 0, a33 = 0, a44 = 0, a21 �= 0,
a55 �= 0,

(8a55a77 − 5a2
66)a

2
21 +

2a55(a32a66 − 20a43a55)a21+

35a2
32a2

55 �= 0

Gulls (x, xy2 + y4 + y5) 2 a22 = 0, a21 = 0, a33 = 0, a32 �= 0,
a44 �= 0,

a55a2
32 − 2a43a44a32 + 4a31a2

44 �= 0

Theorem 6.1. Let M be a generic surface in R3, p a non-umbilical point on M and
π a plane through p and orthogonal to v. The map-germ Fπ

3 at p is an immersion
if and only if v is not tangent to M at p. It has an S1-singularity if and only
if v ∈ TpM but is neither a principal nor an asymptotic direction. We have the
following when v is a principal or an asymptotic direction at p.

(1) If v is a principal direction at p, then the possible singularities of Fπ
3 at p and

their geometric characterizations are as follows:

S3: p is not on the sub-parabolic curve associated to v.
S5: p is a generic point on the sub-parabolic curve associated to v.
S7: p is an S3-point on the sub-parabolic curve associated to v.

(2) Suppose that v is an asymptotic and that p is a hyperbolic point. Then Fπ
3

has a singularity at p of type Hk, k = 2, 3, 4. The H3-singularities occur on a
regular curve on M . We call its closure the H3-curve. The H4-singularities
occur at isolated points on this curve.

(3) If p is a parabolic point and v is the unique asymptotic direction at p which
is also a principal direction, then the possible topological classes of Fπ

3 at p
and their geometric characterizations are as follows:

X4: p is a generic point on the parabolic curve.
U3

4: p is an A∗
2-point (see [10, 11]); it is on the closure of the H3-curve.

https://doi.org/10.1017/prm.2022.90 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.90


k-Folding map-germs and hidden symmetries in the Euclidean 3-space 99

X3
4: p is on the sub-parabolic curve associated to v; the principal map with

value v at p has a beaks singularity at p [7].
W3,1

4 : p is on the sub-parabolic curve associated to the other principal direc-
tion v⊥; it is on the closure of the H3-curve; the frame map has a cross-cap
singularity at p [7].

Proof. The proof follows by considering the defining equations and the open con-
ditions of the strata of 3-folding map-germs in theorem 4.4 and the geometric
interpretation of the algebraic conditions in table 1 given in tables 8 and 9. �

Proposition 6.2. The H3-curve of a generic surface is a regular curve and meets
the parabolic curve tangentially at A∗

2 and W3,1
4 -points.

Proof. The regularity of the H3-curve follows by a transversality argument. We
compute the 1-jets of the parabolic and H3-curves and find that they are tangen-
tial at their points of intersection. This is expected as the H3-singularities of Fπ

3

occur when v is an asymptotic direction, so the H3-curve lies in the closure of the
hyperbolic region of the surface. �

We turn now to the case k � 4, still assuming p not to be an umbilical point.
We recall that some topological classes in tables 2, 4 and 6 come with divisibility
conditions on k. For example, the Nk

3 class requires 2 | k (see remarks 6.4).

Theorem 6.3. Let k � 4 and let M be a generic surface in R3, p a non-umbilical
point on M and π a plane through p and orthogonal to v. The map-germ Fπ

k at p is
an immersion if and only if v is not tangent to M at p. It has a singularity which
is topologically equivalent to Mk

1 if and only if v ∈ TpM but is neither a principal
nor an asymptotic direction at p. We have the following when v is a principal or
an asymptotic direction at p.

(1) If v is a principal direction at p, then Fπ
k belongs to a stratum in table 2. The

possible topological classes of Fπ
k and their geometric interpretations are as

follows:

Mk
2 : p is not on the sub-parabolic curve associated to v.

Mk
3 : p is a generic point on the sub-parabolic curve associated to v.

Mk
4 : p is an S3-point on the sub-parabolic curve associated to v.

Nk
3 : p is a generic point on the ridge curve associated to v.

Nk
4 : p is a B3-point on the ridge curve associated to v.

Ok
4 : p is a C3-point (intersection point of the ridge and sub-parabolic curves

associated to v).

(2) If p is a hyperbolic point and v is an asymptotic direction at p, then Fπ
k

belongs to a stratum in table 4. The possible topological classes of Fπ
k and

their geometric interpretations are as follows:

Pk
2 : p is not on the flecnodal curve associated to v, and is not on the H3-curve

associated to v when 3 | k.
Pk

3 : p is a generic point on the H3-curve associated to v.
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Pk
4 : p is an H4-point on the H3-curve associated to v.

Qk
3 : p is a generic point on the flecnodal curve associated to v.

Qk
4 : p is a point of intersection of the flecnodal and H3-curves associated to
v.

Q̃k
4 : p is a special point on the flecnodal curve associated to v.

Rk
4 : p is a butterfly-point on the flecnodal curve associated to v.

(3) If p is a parabolic point and v is an asymptotic (and a principal) direction at
p, then Fπ

k belongs to a stratum in table 6. The possible topological classes of
Fπ

k and their geometric interpretations are as follows:

Uk
3 : p is a generic point on the parabolic curve.

Uk
4 : p is an A∗

2-point.
Vk,j,j′

4 : p is a special point on the parabolic curve.
Wk,j

4 : p is a special point on the parabolic curve.
W3q,q

4 : p is on the sub-parabolic curve associated to v⊥; it is on the closure
of the H3-curve associated to v; the frame map has a cross-cap
singularity at p [7].

Xk
4 : p is on the intersection of the parabolic and sub-parabolic curves

associated to v; the principal map with value v at p has a beaks singularity
at p [7].

Yk
4 : p is a cusp of Gauss point and a gulls-point.

Proof. With the setting as in the proof of theorem 6.1, the results follow by
interpreting the conditions in tables 2, 4 and 6 using tables 8 and 9. �

Remarks 6.4. 1. The singularities in branches 1 and 2 are associated to principal
directions, those in branch 3 to asymptotic directions at hyperbolic points and those
in branch 4 to asymptotic directions at parabolic points.

2. Theorems 6.1 and 6.3 show clearly that k-folding maps capture the robust
features obtained by 2-folding maps and by the contact of the surface with lines,
planes and spheres, giving thus new geometric characterizations of these features
and a unified approach to study them. We also obtain a new 1-dimensional robust
feature (the H3-curve) and several 0-dimensional ones: the H4, Qk

4 , Q̃k
4 , Vk,j,j′

4 and
Wk,j

4 points.
3. The H3-curve is captured by k-folding maps when k is divisible by 3. The

sub-parabolic and flecnodal curves are captured by k-folding maps for any k while
the ridge curve is captured by k-folding maps when k is even. Regarding the ridge,
it is the locus of points where the surface has more infinitesimal symmetry with
respect to planes [8]. The map-germs (x, y) �→ (x, y2p, f(x, y)) identify the pair of
points (x, y) and (x,−y), which explains why all the F2p folding maps capture the
ridge curve.

4. The condition Δk
j = 0 can be satisfied for any k, j when the coefficients asl

are real, so Wk,j
4 -points can occur on surfaces in R3 for all k, j. For the Vk,j,j′

4

topological class, it follows from proposition 4.21 that only Vk,j,k−j
4 , Vk,j,2j

4 and
Vk,k−j,2j

4 -points can occur on surfaces in R3.
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5. Theorem 6.1 gives a new geometric interpretation for the A∗
2-points

in [10, 11].
6. Observe that the open conditions (those involving expressions �= 0) for the

singularities of the k-folding map in tables 1, 2, 4 and 6 and their associated ones
in tables 8 and 9 are not always identical. For the 0-dimensional robust features,
the open conditions in both tables are satisfied on a generic surface. For the 1-
dimensional robust features, this means that some special points in one setting
are not special in the other. For example, the 3-folding map does not distinguish
between a C3-point and a generic point on the sub-parabolic curve.

We consider now the situation at umbilic points. For a generic surface M , these
occur at isolated points in its elliptic region, and every direction in the tangent
plane of M at such points can be considered a principal direction. We take M
locally in Monge form z = f(x, y), consider the origin to be an umbilic point and
write f(x, y) = κ/2(x2 + y2) + C(x, y) +O4(x, y) where C is a homogeneous cubic
form in x, y. We can take C(x, y) to be the real part of z2 + βz2z, with z = x+ iy
and β = s+ it (see e.g. [8]). Then, C = (1 + s)x3 − tx2y + (s− 3)xy2 − ty3.

Theorem 6.5. Let k � 3 and let M be a generic smooth surface in R3, p an umbilic
point on M and π a plane through p and orthogonal to v ∈ TpM .

1. If 2 � k, then for almost all directions v in TpM the singularity of Fπ
k at

p is of type S3 when k = 3 and of type Mk
2 when k � 4. There are three

directions (resp. one direction) where the singularity is of type S5 when k = 3
and of type Mk

3 when k � 4 if β is inside (resp. outside) the outer hypocycloid
β = −3(2e2iθ + e−4iθ) in figure 4.

2. If 2 | k, then for almost all directions v in TpM the singularity of Fπ
k at

p is of type Mk
2 . There are three directions (resp. one direction) where

the singularity is of type Mk
3 if β is inside (resp. outside) the hypocycloid

β = −3(2e2iθ + e−4iθ). There are also three directions (resp. one direction)
where the singularity is of type Nk

3 when β is inside (resp. outside) the inner
hypocycloid β = 2e2iθ + e−4iθ in figure 4.

Proof. We take v = (cos(θ), sin(θ), 0), θ ∈ [0, 2π] and consider the rotation

R =

⎛⎝ sin(θ) cos(θ) 0
− cos(θ) sin(θ) 0

0 0 1

⎞⎠ ,

which takes the direction (0, 1, 0) to v. Then,

Fπ
k ◦R−1(x, y) = (x sin(θ) − y cos(θ), (x cos(θ) + y sin(θ))k, f(x, y)).

Changes of coordinates in the source give

Fπ
k ◦R−1(X,Y ) = (X,Y k, f(X sin(θ) + Y cos(θ),−X cos(θ) + Y sin(θ))).
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Figure 4. Partition of the space of cubic forms.

We denote by ālj the coefficient of X l−jY j in the Taylor expansion of f(X sin(θ) +
Y cos(θ),−X cos(θ) + Y sin(θ)). The proof follows then considering the conditions
for the singularities of Fπ

k in tables 1 and 2.
(1) We have

ā31 = (s− 3) cos(θ)3 − t cos(θ)2 sin(θ) + (9 + s) sin(θ)2 cos(θ) − t sin(θ)3.

When 2 � k and ā31 �= 0, the singularity of Fπ
k at the origin is of type S3 when

k = 3 or of type Mk
2 when k � 4.

The coefficient ā31 is a cubic form in cos(θ) and sin(θ). Its discriminant is
the hypocycloid β = −3(2e2iθ + e−4iθ). The cubic has three roots for β inside the
hypocycloid and one root when it is outside. For v corresponding to one of these
roots, the singularity of Fπ

k is of type S5 when k = 3 and of type Mk
3 when k � 4,

provided ā41 �= 0. The condition ā41 �= 0 is satisfied at umbilic points on generic
surfaces.

(2) We have

ā33 = (1 + s) cos(θ)3 − t cos(θ)2 sin(θ) + (s− 3) cos(θ) sin(θ)2 − t sin(θ)3.

When 2 | k (so k � 4) and ā33 �= 0, the singularity of Fπ
k at the origin is of type

Mk
2 . We also get the Mk

3 singularities as in (1) when ā31 = 0.
The coefficient ā33 is also a cubic form in cos(θ) and sin(θ). Its discriminant

is the hypocycloid β = 2e2iθ + e−4iθ. The cubic has three roots for β inside the
hypocycloid and one root when it is outside. For v corresponding to one of these
roots, the singularity of Fπ

k is of type Nk
3 if ā31 �= 0.

We have ā33 = ā31 = 0 if and only if β is on one of the tangent lines t(3s2 − t2) = 0
to the hypocycloids at their cusp points, see figure 4. (On these lines, the singularity
is of type Ok

4 or more degenerate. This singularity does not occur at umbilic points
on a generic surface.) �
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Remark 6.6. 1. Theorem 6.5 is merely another interpretation of the results in
[8, 32] when using the geometric characterizations of the singularities of k-folding
maps in theorems 6.1 and 6.3. We know from [5, 8, 32] that there are one or three
ridge curves and one or three sub-parabolic curves at umbilic points on a generic
surface. These curves meet transversally and change colour at the umbilic point.

2. Figure 4 is first obtained in [8] when considering 2-folding maps. In that case
both hypocycloids are present, whereas when k � 3 only one of them is present
when k is odd (both are present when k is even). Also in [8] is considered the
circle |β| = 3 which corresponds to the Monge–Taylor map failing to be transverse
to the umbilics stratum. The circle |β| = 1 is also exceptional and corresponds to
two ridges through the umbilic being tangential, see [6]. As these conditions are
geometric, the circles |β| = 1 and |β| = 3 can also be considered exceptional for
k-folding maps and are added to figure 4.

3. Umbilic points on a generic surface occur at elliptic points, that is why we do
not get flecnodal curves or H3-curves through such points.
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