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HARMONIC ANALYSIS ON THE QUOTIENT
SPACES OF HEISENBERG GROUPS

JAE-HYUN YANG

A certain nilpotent Lie group plays an important role in the study
of the foundations of quantum mechanics ([Wey]) and of the theory of
theta series (see [C], [I] and [Wei]). This work shows how theta series
are applied to decompose the natural unitary representation of a Heisen-
berg group.

For any positive integers g and h, we consider the Heisenberg group

HEm = {[(2, W, k]|, p e R™® ke R™M k4 p'2 symmetric}
endowed with the following multiplication law

(R @), 61 [, 1), 1 = (A + X, p+ i)k + & + 25 — 2],
The mapping
‘u
HE" 5 (2, ), 6] —> o

h

E, 0
1 E,
0 0
0 0

o= o

defines an embedding of H%™ into the symplectic group Sp(g + h, R).
We refer to [Z] for the motivation of the study of this Heisenberg group
HE», HEM denotes the discrete subgroup of H$™ consisting of integral
elements, and LY H$¢"\H$") is the L*-space of the quotient space H$ ™\
H$™ with respect to the invariant measure

day - dzh,g—ldlhgdflll ce d,uh.,g—ld‘uhgdlclldlcﬂ ce d"h-x,ndﬁhh-

We have the natural unitary representation p on LHE"\H$")
given by

P([(ZI’ /",)? El])¢([(l> /,t), /5]) = ¢([(2’ /1)1 K] ° [('2,& //)s Kl])-
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The Stone-von Neumann theorem says that an irreducible representation
p of HE™ is characterized by a real symmetric matrix ¢ e R™™ (c +# 0)
such that

([0, 0), £]) = exp {ria(ck)}], k= 'ke Rem

where I denotes the identity mapping of the representation space. If ¢ = 0,
then it is characterized by a pair (k, m) e R*¢& X R™# such that

e[, 1), £]) = exp {2xia(k ‘2 + m ‘p}I.

But only the irreducible representations p, with .# ='# even integral
and p, , (k, me Z*™#) could occur in the right regular representation p in
L HE\HE").

In this article, we decompose the right regular representation p. The
real analytic functions defined in (1.5) play an important role in decom-
posing the right regular representation p.

Notations. We denote Z, R and C the ring of integers, the field of
real numbers and the field of complex numbers respectively. F %" denotes
the set of all £ X ! matrices with entries in a commutative ring F. E,
denotes the identity matrix of degree g. o(A) denotes the trace of a
square matrix A.

209 = [J = (J,) e Z%9 |y, > 0 for all &, 1},
EEDIEA
Ji . =(Jm ...,Jkl + 1, ""Jhg))
A+ N+ A =@+ Nu+ A - (g + Nop + A, )08

§1. Theta series

Let H, be the Siegel upper half plane of degree g. We fix an ele-
ment £ € H, once and for all. Let .# be a positive definite, symmetric
even integral matrix of degree A. A holomorphic function f: C*#® - C
satisfying the functional equation

(1.1) f(W+ 29 + ) = exp{— mio(AQ2 ‘2 + 22" W)} (W)

for all 2, pe Z™# is called a theta series of level .# with respect to Q.
The set T ,(2) of all theta series of level .# with respect to Q is a vector
space of dimension (det .#)¢ with a basis consisting of theta series
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(1.2)
go[8]@ Wyi= 3 exp riol 4N + AW + 4) + 2W N + A},

NEZh.&)

where A runs over a complete system of representatives of the cosets
‘/ﬂ—lZ(hvg)/Z(h,g).

DerFinITION 1.1. A function ¢: C*® X C™® — C is called an aux-
iliary theta series of level .# with respect to 2 if it satisfies the following
conditions (i) and (ii):

(i) o(U, W) is a polynomial in W whose coefficients are entire
functions,

() oU 4+ 2, W + 22 + p) = exp{— ail(A(A2 ‘2 + 24 W))}o(U, W) for
all A, weZ®e X Z™o,

The space 0§ of all auxiliary theta series of level .# with respect
to 2 has a basis consisting of the following functions:

ay  oe[f]@au+a0:= 3 a+N+ay

NeZh.g)
X exp {zig(A(N + A)Q' (N + A) + (¢ + 22 (N + A))}.
where A (resp. J) runs over the cosets A~ 'Z™&[Z™& (vesp. Z%#).

DerFINITION 1.2. A real analytic function ¢: R®® X R™#& - C is
called a mixed theta series of level .# with respect to 2 if ¢ satisfies the
following conditions (1) and (2):

(1) (2, p) is a polynomial in 2 whose coefficients are entire functions
in complex variables Z = pu + 192;

@ ¢Q+ 4 p+ f) = exp{— nia(AUG2 '+ 2(x + 22) D}, 1) for all
(2, /i)e Zme) . Zme),

If Ae £ 'Z™®|Z™8 and Je ZL4#,

(1.4) 193”[3](9]3, p4+29) = 3 G+ N+ Ay

NeZ 8
X exp {zig(A(N + A)Q'(N + A) + 2(x + 22 (N + A))}
is a mixed theta series of level .#.
Now for a positive definite symmetric even integral matrix .# of de-
gree h, we define a function on H™.

@8 05 8@ o, kD = explmio(c — 1)} T G+ N+ Ay

NezZh,g)

X exp {nig(#(2 + N + A)R' A+ N + A) + 22+ N + A)‘p)},
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where Aec M~ 1ZW8 |7,

ProposiTION 1.3.
(1.6) @30[‘3](9 114, 2), &)

— exp (2eia( e )05 0 |(@112 ), 1< (4,0, 0D.

L7 @3”[‘3](91 [, ), £ [, ), €]) = @5&[‘3](9 114, 2), 6]) -
(aQ, D, Fle HP®, (A, 1), k] e H¥®, Ae M Z®8[Z™0),
Proof.

o3| g |@ita+ 4w e — pap
= exp{mio( (e —p'A =G+ A)')} T A+ A+ NY

X exp {zig(A (2 + A+ N)2‘QA+ N+ A) + 22+ N + A) ')}
= exp {— 2rio(u AN05] @11 1, 8D -
On the other hand, if [(, @), #] € H®,
o5 @11 2. 71 (G . 6D
= exp{nio(M(FE +r+ A'p— a2 —@A+ D+ ﬂ)))}Ne;‘;hg)(i + 2+ N+ A)
X exp{rio(A+ A+ N+ A)Q' A+ 2+ N+ A) + 2A+ 2+ N+ A) ‘(7 Hp)}

_ @w[g‘](m [(4, 1), K]) .

Here in the last equality we used the facts that o(#(% — ‘i%)) € 2Z and
a(MAp)e Z q.e.d.

Remark. Proposition 1.3 implies that d)(f”[‘g](QH(l, W, k) (J e Z&®
are real analytic functions on the quotient space H$'™\ H$™.
The following matrices

0 00 O
0

Xgl:: g g g ‘E(')kl ) 1£k£lgh’
000 O
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00 0 ‘E;

s . [0 0 E; O
Xit=|o 0 o ol 1<i<h, 1<j<e,

0 0 O 0

0 0 O 0

. |E; 00 0
X, = 0 00 —'&,| 1<i<h, 1<j<g

0 0 O 0

form a basis of the Lie algebra #$™ of the Heisenberg group H$™.
Here EY, (k1) and h X h symmetric matrix with entry 1/2 where the
k-th (or I-th) row and the I-th (or k-th) column meet, all other entries 0,
E¢, is an h X h diagonal matrice with the k-th diagonal entry 1 and all
other entries 0 and E,; is an A X g matrix with entry 1 where the i-th
row and the j-th column meet, all other entries 0. By an easy calcula-
tion, we see that the following vector fields

D=2, 1<k<i<h,

0k -
il 02 )
D,, = —
" a’lmp ’;pkp a km k=m+1 ﬂ ! a mk ’

A h
D"'LP a + (ch Rkp a + Z 2kp a ) ’

B alump =1 a’ckm k=m+1 a":mk
form a basis for the Lie algebra of left invariant vector fields on H$™,

THEOREM 1.
0 A ;s M A
a8 Duog| 2@l m ) =m0 : |c@it .,

19 Do,op| ¢ |@1G W, ) = 20 33 05, 4 @11 . D,

w10 D,,0%[ 4@l . x])=2m’iiu//,map.,@s@m[g‘]mu(z, ), £)

l=1¢q=1

+ o0 £ @11 . D

1<k<I<h l<m<h 1<p<g)

Proof. (1.8) follows immediately from the definition of @3‘)[‘3](91
(4, ), £]).
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A (A A
D..,05| 5 | .
= — i 3 2,05 £ ]@11R 2, 6D

+ Znilzia( (s — 1'W)} T @+ N+ AY 3 Mold+ N+ A),
X exp {mio(#((A + N+ ARG+ N+ A) + 20 + N + A) ‘1)
+ iy szlzl,,@y”[‘(‘)‘](.o 11, 2, 5D

-2y V//,,”q)f,@w[‘(‘)‘](g &, p), £]) .
=1
We compute

3 s0|A
T | 5]t m.a

> //kmm,,@sw[‘(‘)‘](m [, 1), )
20 35 3 2,050, | @11 . )
(M A
+ J@[ : ](m (&, ), £)

P z ﬁkmﬂkp@gt>[‘3](9 1, ), D) .

Therefore we obtain (1.8) and (1.10). g.e.d.

COROLLARY 1.4.

(Da = 2 0uBur)052| S @11 . 6D = 052, [ £ @1 D

Let H };")[‘3] be the completion of the vector space spanned by dif,*)[‘g](gl

[, ), &) (Je Z¢®) and let H },"['3] be the complex conjugate of H y{‘é].

THEOREM 2. H ﬁ;"[‘(ﬂ and H. };"[‘3] are trreducible invariant subspaces

of L(HP®\H®) with respect to the right regular representation p. In
addition, we have
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H;,m[ﬂ — exp (2rio( A p ‘A)}H};‘)[g] ,

o0, 0), 1D = exp (rio(D)p (s Hy[2]),

(10, 0), 3 = exp {— mia(udlg (3 eHp|2]).

Proof. It follows from Theorem 1, Proposition 1.3 and the definition
of 050[ ¢ |21t 4. ged.

§2. Proof of the Main Theorem

We fix an element e H, once and for all. We introduce a system
of complex coordinates with respect to 0:

(2.1) Z=pu+22, Z=p+ 212, i preal.
We set
a DY a
dZu . dZ,g] 07, aZm
az-| =
\dz, - dz,,) oz I
| 0Z,, 0Z,,
Then an easy computation yields
9 _9d L0
04 oZ oz
3 _ 9 F)
op oz tz

Thus we obtain the following

2.2) 9 -
LEMMmA 2.1.
w[A
o3| ! |c@rta m.
— exp {mic( ML A+ X' + x))}sw[‘g](mz, 4+ 10).

Proof. It follows immediately from (1.4) and (1.5).
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Lemma 2.2, Let O([(4, p), k]) be a real analytic function on HEM\
HSE™ such that

1) exp{— rmio(Ak)}D([(Z, p), £]) is independent of k,

i) Dy — 31 2,,D0)® =0 for all 1<m < h and 1< p < g, where
M is a positive definite symmeiric even integral matrix of degree h. Let

2.3 U@, p) = exp {— wia( A2 2 + 22 + )} D((Z, p), £]) .
Then ¥'(2, p) is a mixed theta function of level 4 in Z = p+ 22 with re-
spect to 0.

Proof. By the assumption (i), we have

@+ e+ 2

=exp{— mio(A(A+ DR A+ D+ Q@+ D e+ D +e+i+ip— i}

O([(2, @), £ = [(2, p), £])
= exp {— nio(M(AQ 7 + 2u + 22) DR, 1) ,

where [(1,2), (le H®™®. In the last equality, we used the facts that
o( M + 2tf)) € 2Z because & + ji‘1 is symmetric. This implies that ¥'(2, z)
satisfies the condition (2) in Definition 1.2. Now we must show that
(2, 1) is holomorphic in Z = u + 22, that is,

bl
2.4 P 0, Z=p+i0.
@4 oz pt

By (2.2) the equation (2.4) is equivalent to the equation

@5 (2 -2, 0 paw=0, 1<m<h, 1<p<g.
04 =1 Oftmq

But according to (1.9) and (1.10), we have

mp q

A

P g
qu = wa - qz.n:l “ququ + P,

1 Oltng

FYRR

a g
where

m h m &
P = Z ;ulch(I)cm + Z /‘lka(*r)nk - Z Z ququD%m
k=1 k=m+1 k=1 q=1
&g

h
— 352 Qe Dl

k=m+1 g=

We observe that P-¥(1, p) = 0 because ¥ (1, ) is independent of x by the
assumption (1). We let
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fAQ, ), £]) = exp {— 7io(MQAQ A+ 2ip + K))} .
Then ¥ (4, p) = f(l(4, p), kDO, 1), £]). Then in order to show that ¥'(2, »)

is holomorphic in the complex variables Z = p -+ 22 with respect to £,
by the assumption (ii), it suffices to show the following:

2.6) (Dmp - z: Qmﬁm.,)m(z, 2 6) = 0.

By an easy computation, we obtain (2.6). This completes the proof of
Lemma 2.2. g.e.d.

The Stone-von Neumann theorem says that an irreducible representa-
tion p, of H$™ is characterized by a real symmetric matrix ¢ € R*®™ (c = 0)
such that

2.7) o[, p), k1) = exp {zic(cr)}L, £k ='ke R®"M

where I denotes the identity map of the representation space. If ¢ =0,
it is characterized by a pair (k, m) e R®#& X R™& guch that

(2.8) pe.n([(4, ), £]) = exp {2aio(k ‘2 + m‘p}I.
If @ e D(H$P\HE™) and 7 = ‘% € Z™», then

O([2, ), £]) = &([(0, 0), &] » [(4, ), £])
= &2, p), £1° [(0, 0), Z])
= 0.([(0, 0), XDO([(2, p), £])
= exp {nla(ck)}D([(4, w), £) .

Thus if ¢ = 0, o(ck) € 2Z for all 7 = ‘k e Z™™. It means that ‘c = ¢ = (¢;;)
must be even integral, that is, all diagonal elements c;; (1 < i < h) are
even integers and all ¢;; (i + j) are integers. If ¢ = 0, ¢(k ‘2 + m'y) e Z for
all 2, peZ™# and hence k, me Z™#®. Therefore only the irreducible re-
presentation p, with .# = '/ even integral and o, (k,me Z®#) could
occur in the right regular representation p in LH$\ HE™).

Now we prove

MAIN THEOREM. Let A" # 0 be an even integral matrix of degree h
which is neither positive nor negative definite. Let R(A") be the sum of irre-
ducible representations p, which occur in the right regular representation
o of HE". Let Hg‘)[g] be defined in Theorem 2 for a positive definite

even integral matrix # > 0. Then the decomposition of the right regular
representation p is given by
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vz nHE) = @ Hie[ g o (@ 1 (]) @ (2 ren)

®( & C exp {2rig(k ‘2 + m‘p)}) .

(k,m) € Z(7.8)

where M (resp. A") runs over the set of all positive definite symmetric, even
integral matrices of degree h (resp. the set of all even integral nonzero
matrices of degree h which are neither positive nor negative definite) and A
runs over a complete system of representatives of the cosets M~'Z "8 [Z®©,
H ‘5"[‘3] and H 5{’[‘3] are irreducible invariant subspaces of LH$ ™\
HE™M) such that

p(((0, 0), EDH([Q2, ), £]) = exp {zia(AR}H(Q, ), £]) ,
o([(0, 0), ZDg([(2, ), £]) = exp {— mia(ARNS((2, 1), £])

for all ¢eH§,"[‘3]. And we have

H};‘)[‘g] — exp {2ﬁiu(J//,,¢tA)}H§,»«>[ g ]

This result generalizes that of H. Morikawa ([M]).

Proof. Let .« be the space of real analytic functions on L*H$ ™\
H§™), Since o is dense in L(H$"\H¥™) and & is invariant under p,
it suffices to decompose /. Let W be an irreducible invariant subspace
of o7 such that p([(0, 0), #)w = exp {2ric(Ak)}w for all we W, where # =
!4 is a positive definite even integral matrix of degree h. Then W is

isomorphic to H},”[‘g] N/ for some Ae A~'Z™"® |Z™#& and Qe H,. Since

H ﬁ;"[‘g] N &/ contains an element @3*’[‘3](9}[(2, W), £]) (see Corollary 1.4)

satisfying
R A
(Das = 25 20uDue )25 5 |21, 1, 6D = 0

for all 1 <m < h, 1<p<g, there exists an element @\([(2, p),«]) in W
such that

<Dm” - qZ: ‘me)mq)@o([(z, W, k]) =0

foralll1<m<h, 1<p<g On the other hand, we have
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P2, 19, £1) = p([(0, 0), £DD([(2, 1), O)
= €Xp {ﬂ:lo‘(ﬂx)}@o([(x’ ﬂ)y O]) .

Therefore @ ([(4, p), £]) satisfies the conditions of Lemma 2. Thus we have

O,([(2, p), £]) = exp {aia(A QAR '2 + 2 ' + K)} ;; “AJW%”[?](QU, 4+ 29)
= AZ; “AJ@(J”)[?](Q I[(2, w), k])  (by Lemma 2.1),

where A (resp. J) runs over A Z®® |Z®™e (vesp. Z%%). Hence &, ¢

D, H‘g‘)[’g]. By the way, since W is spanned by D%®,, D, @, and ﬁmp@o,

we have WC_‘@AHg‘”[‘g]. So W:H};‘)[‘g]ﬂ% for some Ae

MZ Mo |Zme)  Similarly, W = H§;‘>[‘3] N «Z. Clearly for each (k, m)e
Zme) . Zmg)

Wi m 1= Cexp 2ri(k ‘2 + m ‘p)}
is a one dimensional irreducible invariant subspace of L*(H &\ H$").

The latter part of the above theorem is the restatement of Theorem 2.
This completes the main theorem. g.e.d.

CoroLLARY. For even integral matrix M = ‘4 > 0 of degree h, the
multiplicity m, of p, in p is given by
m, = (det .#)%.
CoNJECTURE. For any even integral matrix A + 0 of degree h which
is neither positive nor negative definite, the multiplicity m, of o, in p is a
zero, that is, R(A") vanishes.

§3. Schrédinger representations

Let 2 ¢ H, and let # = '.# be a positive definite even integral matrix
of degree h. We set Q = 2, + iQ, (2, 2, R®#). Let L(R™®, u5¥) be
the L*-space of R™& with respect to the measure

#fi:)(dé) = exp {— 2ne(AEQ, LE)}d‘S .

It is easy to show that the transformation f(§) — exp {zie(A#£Q, ‘€)}f(&) of
L*(R™® ut0) into L(R™®,d¢) is an isomorphism. Since the set {¢’|J ¢
Z{®} is a basis of LY R™®, us?), the set {exp (aig(AER'E))E|J e Z¥y®} is
a basis of LA(R™#, d§g).
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LEmMmA 3.1.

(o 4] @1i 6D, 02 £ |11, , D)

= L(Zg,mmg,m @5”[‘3](9 |2, ), £)) -@?[‘(‘)‘](Q 14, ), K)dadpds

{j Y exp (— 2no(MyQyVydy  if M = .4, A=A (mod.4),
= RS
0, otherwise .

It is easy to prove the above lemma and so we omit its proof. Ac-
cording to the above argument and Lemma 3.1, we obtain the following:

LemMmaA 3.2, The transformation of LY(R™#, u§”) onto Hg”[‘g] given
by

(31 g 0| Cl@im D, Tezyr

is an isomorphism of Hilbert spaces.

Now we define a unitary representation of H{¥# on L*(R™#®, d¢) by

B2 U@, ), £Df(@) = exp {— aio(M(k + ‘2 + 2u O} (E + D),

where [(2, p), k] e HE" and fe L(R™#,d&). U, is called the Schrodinger
representation of H®® of index A.

ProposiTiON 3.3, If we set f,(&) = exp {nia(MAEQ E)}E’ (Je Z%®), we
have

(3.3) AU (D)8 = — il uf(5), 1<kLI<Lh.

Bo)  AUADIA) = 28 35 3 Miualr e + Tl ().

B UMD = — 73, e
Proof.

AU D8 = % U.exp (X3 f1(§)

_d

. U (0, 0), tE%]) ,(8)

t=0

— lim &XP {— nic(tAE)} — 1 £,8)

£—0 4

= — ﬂid/{szJ(S) .
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dU (D, )@ = %

dt =0 U/(exp (tme))fJ(E)

0 U/([(tEmp, 0)1 O])f.l(g)

exp {nio(A (¢ + 'E, )R (6 + tE, )} + tE,,)’

=0

-~

>

g
= 27'Ci Zl ‘//{mlgqu.]+em(€) + J’m.pr—Emp(S) .
lg=

Finally,

AUDu)fu® = 4| Udexp (Ru)f0)

_d

dt

UM, ¢E..), 0Df(®)

_ fim ©XP{= 2rio(l B, — I ¢ o)

-0 t

h
= - 7'L'i l; ‘/”mLfJ+s“,(E) . q'e'd'

THEOREM 3. Let (b};”[‘g ] be the transform of L R™#®,6dEf) onto
Hf;"’[‘g] defined by

(36) 05| 4| (exp (rio(60 )G, 19, 1)

— o[ S@uam ), Jezye.

Then @w[‘g] is an isomorphism of the Hilbert space L*(R™®, dg) onto the

Hilbert space Hg‘)[’g] such that

(37 o0, 05 8| = 059 ] UG 1, 4D,
(3.8) 0| 8] = exp (2riaaA holica, 0, 0pog| U]

where ¢ is the unitary representation of H&" on H ;,»0[‘3] defined by

ol ), D = o3, — 19, — 6D, e H;,-"[‘g] .
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Proof. For brevity, we set f,(§) = exp {nio(A#EQ &)}¢’ (Je Z%#). Using
Proposition 3.3, we obtain

050 £ |@U.(— DO 1, 5D
- niufmw[‘g](fJ(s))([(z, ), 5])
- niv/tm@w[*g]m 114, 2), &)

= do(r) 0| 4! | (@G ), 41}
0| £ | @U.D. )N 1, )
= 20 31 30 02050 [ 4 [N 0, D)
0,050 8 ] - XU 2 0, 8D
= 2i 3 qu J/mlgm@ygzm[?](.o A, ), #)
+ 7,00, 0 |@iia w0
= dp(D,,)05°| £ ] @11 . )

= dp(D,){ 05| 4! (@1 w. D)}

Finally, we obtain
03[ 4 ]@U= Du(F@2 1, 5D
= i 33 05| |0 OXIG 0, 8D
= i3, /zml@m,[‘g](m (2, ), £)
b g A
= dp(D,)05°| £ @116 . 4D

= do(B, {057 £ |1 . D)

where 1< k< I< h, 1<p<g The last statement is obvious. q.e.d.
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Remark 3.4. Theorem 3 means that the unitary representation g of
HE™ on H};”’[‘g] is equivalent to the Schroédinger representation U, of

index .#. Thus the Schrédinger representation U, is irreducible.
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