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MINIMAL FINE DERIVATIVES AND BROWNIAN EXCURSIONS

KRZYSZTOF BURDZY

§ 1. Introduction

The paper will present some basic properties of minimal fine derivatives
which seems to be a new concept (or at least a new combination of well-
known ones). Why is it worthwhile to study this new concept? Why
hasn't it been done earlier?

As for the first question, it should be noted that:
i) The minimal fine convergence is better suited to the potential theory

than the nontangential convergence which has been traditionally used in
connection with the concept of the boundary derivative ("angular deriva-
tive"). See how natural, almost obvious, Theorem 3.2 sounds. An analo-
gous result for angular derivatives (Jackson (1965)) may seem puzzling at
the first sight.

ii) Many important theorems about existence of angular derivatives
have their counterparts for minimal fine derivatives. Showing this will
be the main goal of this paper. Since the minimal fine topology is stron-
ger than the "nontangential topology" (in the sense of Lemma 2.2), several
known theorems about angular derivatives follow immediately from the
results derived here.

iii) Minimal fine derivatives are much more useful in probability than
angular derivatives. The results of Section 4 could not have been ob-
tainned with the help of angular derivatives.

As for the second question posed at the beginning, the reason for the
neglect of the minimal fine derivatives may be the esoteric nature of the
minimal fine neighborhoods. A simple characterization of simply connected
minimal fine neighborhoods of a boundary point in halfplane will be given
in Lemma 2.1. This characterization has appeared in Burdzy (1986) (Theo-
rems 5.2 and 5.3). It should be pointed out, however, that it could have
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116 KRZYSZTOF BURDZY

been deduced from earlier results of Jackson (1965) and Rodin and Wars-

chawski (1977), for example. A related paper on minimal fine sets by

Essen and Jackson (1980) should be also mentioned here.

The present paper has been inspired by the article of Davis (1979).

It is impossible to give in the short "Preliminaries" section a thorough

review of all the concepts used in the paper. Thus the reader is referred

to Burdzy (1987), Doob (1984), Maisonneuve (1975), Nairn (1957), Pommerenke

(1975) and Rodin and Warschawski (1977) for more details.

§ 2. Preliminaries

The real and imaginary parts of x will be denoted dix and %x. The

sets of all real and complex numbers will be denoted R and C. R+ =

{x e R: x > 0} = {x e C: %x = 0,mx> 0}, D* = {x e C: Mx > 0}, S(a) =

{x e D*:\aτgx\ < a}. S(a) is called a Stolz angle. For ΰ c C , the no-

tation f:D-^D1 will indicate that / is an analytic function, one-to-one

and onto Dx.

"Lipscnitz function" will mean a function with the Lipschitz constant

equal to 1 i.e., a function / satisfying \f(x) — f(y)\ <C \x — y\ for all x and

y-
The Green function of a Greenian set D c C will be denoted GD.

Kx

D(y, z) = GD(y, z)IGD(y, x) will be called the Martin function (y Φ x).

There exists a unique up to a homeomorphism compactification DM of D

such that K% may be extended continuously to DM\{x} X D. It will be

called the Martin compactification and dMD = DM\D will be called the

Martin boundary of D. For simply connected plane domains, the Martin

boundary dMD, the minimal Martin boundary dfD and the Caratheodory

prime end boundary coincide (see Doob (1984) and Pommerenke (1975) for

definitions).

A set A C D will be called minimal thin in D at y e dfD if

lim f(z)/Kx

D(yt z) = oo for some superharmonic function / in D. This defini-
z-v
zGA

tiontells very little about properties of minimal thin sets. Doob (1984) and

Nairn (1957) are rich sources of relevant results. To define minimal fine

topology, call a set A c D a minimal fine neighborhood of y e 9fD if

D\A is minimal thin in D at x. The limits in the minimal fine topology

will be denoted mf-lim.

The Green function, minimal thinness and minimal fine topology are
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MINIMAL FINE DERIVATIVES 117

conformal invariants.

LEMMA 2.1. i) A simply connected open set D c D* is a minimal

fine neighborhood of 0 in D* if and only if there exist ε > 0 and a non-

negative Lipschitz function /ι:R -»R such that

Γ h(r)r~2dr < oo and {x e C: ΐHx > h(%x), \x\ < ε} c D.
J - i

ii) If D is a simply connected open set and a minimal fine neίghoor-

hood of 0 in D* then for each a <τr/2 there exists ε > 0 such that {x e S(a);

x\ < ε} C D.

ί
Proof i) See Theorems 5.2 and 5.3 of Burdzy (1986).

ii) The Lipschitz property of h and the finiteness of the integral
1

h(r)r~2dr imply easily that lim h(r)jr = 0. From this, the assertion

follows immediately. •

It will be said that a function / defined on D* has the angular limit

a at x e dD* if lim f(z) = a for every a < τr/2.
Z-* X

z-xGS(a)

The following result is known (see e.g. Davis (1979)) but the method

of proof seems to be new.

LEMMA 2.2. Suppose that f is analytic in D* and z e dD*. If mf-lim
x-*z

f(x) = a then the angular limit of f at z exists and equals a.

Proof. Assume without loss of generality that z = 0. Choose ε > 0

and let A = {x e D*: \f(x) — a\ < ε}. The set A is simply connected by

the maximum principle. Lemma 2.1 (ii) implies that for every a < ττ/2

there exists e1 > 0 such that {x e S(a): \x\ < εj C A. This implies that

the angular limit of / at 0 is a, since ε > 0 is arbitrary. •

Suppose that /: D* -> D and y e dD*. If the limit of f(x) exists for

x -> y along a single continuous line in D* then it exists in the minimal

fine topology (Jackson (1980)). By Lemma 2.2, it exists as an angular limit

as well. The common value of the limits will be denoted f(y), provided

they exist. If 0 e 3D and {x e R + : \x\ < ε} C D for some ε > 0 then this

line segment defines a prime end in D which will be denoted 0^.

The domains considered in the paper (usually denoted by D with a

subscript) will be always assumed open and simply connected as subsets
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118 KRZYSZTOF BURDZY

of the Riemann sphere.

Each time the function arg is used, a version of this function will

be chosen so that it will be continuous on the set of all arguments ap-

pearing in the statement.

A review of probabilistic concepts is offered in Section 4.

§ 3. Minimal fine derivatives

DEFINITION 3.1. For a function /: D* -> D, the minimal fine (angular)

limit of ff at x e dD* will be called the minimal fine (angular) derivative

of / at x and denoted mf-//(x)(a- /'(x)), provided it exists.

PROPOSITION 3.1. If mf-f'(x) — a then a-/;(jc) = α.

Proof. The function /' is analytic in D* so the result follows from

Lemma 2.2. •

The converse statement is false; see Example 3.1 below.

THEOREM 3.1. If f: D*->D, x e 3D* and m£-f'(x) = a e C then f(x)

exists and

mf- lim (f(z) - f(x))l(z - x) = a
z-*x

Z6D*

Proof. Assume without loss of generality that x = 0.

Choose an ε > 0 and let A = {z e C: \f'(z) - a\ < ε}. The set A is

simply connected by the maximum principle and it is a minimal fine neigh-

borhood of 0 in D^ by the assumption that mf-/'(()) = a. According to

Lemma 2.1, one can choose a nonnegative Lipschitz function h: R—>R

and εj > 0 such that

B = {z e C: mz> h(%z), \ΪRz\ < εu \%z\ < εj c A

and B is a minimal fine neighborhood of 0 in D*. Some initial segment

ί of R+ is contained in B. Since /' is continuous and bounded on /,

lim f(z) exists. It may be assumed without loss of generality that this
z-0

limit is equal to 0, i.e. f(0) = 0.

For each z e B choose a polygonal line Γ in B with endpoints z and

0, such that its length is not greater than 3|2| and it approaches 0 along

R+. In particular, lim f(z) = 0. One has
zeo
zer
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MINIMAL FINE DERIVATIVES 119

az\ = I ί f'(z)dz - az\
J Γ

= I f adz + ί (f'(z) - a)dz - az\

<, ί \f'(z)-a\dz£e 3\z\
J Γ

for z eB. Thus

lim sup
Z-0

ZGB

f(z)
Z

- Λ O )
- 0

— a = lim sup
Z-0

f^ _ a
Z

3e.

Since ε > 0 is arbitrary and B = B(e) is a minimal fine neighborhood of

0 in Z>*, mf- lim (f(z) - f(0))/(z - 0) = a. D
z—0

Remark 3.1. i) The existence of f(x) and mf-lim (/(z) — f(x))l(z — a)

does not guarantee that m£~f'(x) exists. A counterexample may be con-

structed along the lines of Example 9.2 of Burdzy (1987). Such a construc-

tion is extremely long and therefore it is omitted here.

ii) Both the theorem and its converse are true for angular derivatives

(Pommerenke (1975) Theorem 10.5).

iii) Later on, the following two simple facts about functions of the

form /: D*-^D will be used. If mf-lim f(x) == 0M then f(z) = 0. If mf-
x~*z

f'(z)e~R+ and f(z) = 0 then mf-lim f(x) = 0M. The last statement is a
x-*z

consequence of Theorem 3.1 and Lemma 2.2. •

EXAMPLE 3.1. Example 9.1 of Burdzy (1987) presents a domain D

with the following properties.

i) There exists a function /: D*-+D such that /(0) = C and a-/'(0) =

a e R+.

ii) The sets Ax = {z e D*\ arg f(z) >τr} and A2 = {z e D*: arg f(z)

< — π} are not minimal thin in D* at 0.

Suppose that mf-/X0) exists. Then mf-Z^O) = a by Proposition 3.1 and

mf-lim f(z)jz = a by Theorem 3.1. It follows that

mf- lim (arg f(z) — arg z) = arg a
Z-0

and
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120 KRZYSZTOF BURDZY

A, = {z e D*:\argf(z) - arg z - arg α| < ε}

is a minimal fine neighborhood of 0 in D*, for every ε > 0. At least one

set ^j or A2 lies in the complement of AB9 for small ε > 0. This is a con-

tradiction since Aj and A2 are not minimal thin in D* at 0.

It may be concluded that m£-f'(x) does not exist although a-/7^)

exists. Π

DEFINITION 3.2. It will be said that a set D c C has a minimal fine

derivative if there eixsts a function /: D* -* Z) such that mf-Z^O) e R +

and /(0) = 0.

PROBLEM 3.1 ("Minimal fine derivative problem"). Find necessary

and sufficient conditions of geometric nature for D so that it has a minimal

fine derivative.

REMARK 3.2. The above problem is analogous to the well known

"angular derivative problem". See Pommerenke (1975) and Rodin and

Warschawski (1977) for the history of that problem. •

THEOREM 3.2. A domain D c D* has a minimal fine derivative if and

only if it is a minimal fine neighborhood of 0 in D*.

Proof i) Suppose that D has a minimal fine derivative i.e., there

exists a function /: D* -> D such that /(0) = 0 and mf-/'(0) e R+. Then

a-/'(()) € R+, by Proposition 3.1. Theorem 5.2 of Burdzy (1986) implies
that D*\D is minimal thin in D at 0.

ii) Assume that D is a minimal fine neighborhood of 0 in D* and fix
some x e Zλ Since D is simply connected and open (a tacit assumption

introducced in Section 2), it follows easily from Lemma 2.1 that the prime

end 0M is well defined. The limits

(3.1) mf-lim G^(z, x)IGD(z, x)
zQD

and

lim sup GD£z, x)/GD(z, x)
zGD

exist and are equal by Theorem 1 XΠ 14 of Doob (1984). Theorem 11 of

Nairn (1957) shows that they are equal to some a e R+.

Explicit formulae for the Green function given in Section 1 XII 9 of Doob

(1984) yield
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MINIMAL FINE DERIVATIVES 121

(3.2) lim GDSz, y)/ΪRz = c = c(y) e R+ .
Z-0

Choose a function /: D* -» D such that mf- lim f(z) = 0 ' . Then /(0)
z-0

— 0. Recall that the Green function and minimal fine topology are con-

formal invariants and use this fact together with (3.1) and (3.2) to obtain

(3.3) mf- lim ϊftf(z)lϊftz = mf- lim 9tf(z)c(f-ι(x))IGDJiz9 f'ι(x))

= mf- lim mf(z)c(f-Kx))IGD(f(z), x)
z—0

= mf- lim GDt{f(z), x)c(f-\x))l[GD{f(,z), x)c(x)]
Z—0

= mf- lim Gφ, xW\x))l\βD(υ, x)c(x)]

= ac(f-\x))lc(x) ~ b e R + .

Let A(ε) = {z e D*:\ΪRf(z)IΪRz - b\ < ε} for ε > 0.

The set A(ε) is simply connected. To see this, suppose that there

exists a point y & A(ε) and a closed Jordan arc Γ C A(ε) around y. Let

μ be the harmonic measure on Γ relative to y, in the domain containing

y and bounded by Γ. The functions $ϊf(z) and ΐHz are positive and har-

monic in D* so

Λ Λ

The strict inequality between the integrals follows from the continuity of

the integrands. Thus 9ΐ/(y)/9ΐy — b < ε and analogously ΐftf(y)/diy — b >

— ε, contrary to the assumption that y £ A(ε). This contradiction shows

that A(ε) is simply connected.

Each set A(ε) is a minimal fine neighborhood of 0 in D*, by (3.3).

Use Lemma 2.1 to find nonnegative Lipschitz functions hε: R - ^ R such

that

{z e C: mz > h£%z\ \z\ < aB} c A(ε)

for some #ε > 0 and hε(r)r~2dr < oo. For each integer k < 1 find ^ > 0

such that ηk > α2-*

v — V)

2"*.
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122 KRZYSZTOF BURDZY

Let hl-k: E -> E be the largest Lipschitz function such that h\-k(r) = 0

for \r\ ;> 7]k and h\-ic(r) < h2-k(r) for all r. It is easy to see that h\~k{r) =

Λ2-*(r) for all r in some neighborhood of 0 and therefore

{z e C: Ste > ΛU3*),M < ft} c A(2"*)

for some βk > 0. Define g = sup /î -*. The function g is Lipschitz and

Γ ^(r)r-2rfr < Σ Γ /*Ur)r-2dr
J - l A = l J - l

< Σ P* hUr)r~*dr

fc = l J - V k

k lThus JB = {z e C: ~Rz > g(ΪRz)} is a minimal fine neighborhood of 0 in

by Lemma 2.1. Moreover {z e B: \z\ < βk} C A(2~k) so

(3.4) lim Mf(z)IΪRz = b.
z-*0
zGB

For each integer k construct a Lipschitz function gu as follows.

Fix k and assume without loss of generality that g(r) < 1 for all r.

Let Q be the family of all intervals I with the following properties.

i) / = [m2~n,(m + l)2~n] for some integers m and n, n > 1, m Φ 0,

ii) £(r) > 2~n+1 for some r e / ,

iii) g(r) < 2~s for all integers j , s, 0 < s < n — 1, such that / c

L/2—SO' + l)2-s-1] and all r e [j2~s~\(j + l)2-'-J].

It is easy to see that the intervals in Q are either disjoint or have one

point in common and g vanishes on R \ U /. Let g{ be the smallest
Q

nonnegative Lipschitz function such that gI

lc(m2~n) = 2"n+2k (here / =

\m2'\ (m + 1)2-]).
Observe that g(r)jr —> 0 as r —• 0 so there exists Tk > 0 such that

kg(r)lr < 1/4 for \r\ < ϊk. Let Jk = \ - rk, ϊkl Then gi(r) = 0 for / c J ,

and

fm2'n-1 if m > 0,

j + l ^ 7 1 1 i f m < - l .

It follows that for I c Jk and m > 0,

g'k(r)r-*dr <i.
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The Lipschitz property of g implies that inf g(r) > 2~n and therefore
/

Λ Λ(m+l)2-»

g(r)r~*dr > 2-[(ro + l)2-"]-2dr = (m + I)"2.
J I J m2~n

Thus

f gi(r)r-2dr < \2Wm-\m + I)2 ί g(r)r'2dr < 512&2 f g(r)r-*dr
J R JI Ji

for I c Jk, m > 0. An analogous proof shows that the inequality holds

also for m < — 1.

Define gk = supg'. Then gk is Lipschitz and

Γ £fc(r)r-2dr < Σ ί gί(
J -i /cJs: J R

Q
IGQ

512/32 ί g(r)r-*dr
c J I

Γ* g(r)r~2 dr < oo.

Recall how g has been constructed from Λ2-*'s. Repeat the same con-

struction with gk's to obtain a Lipschitz function g : R — * R such that

g>0,

(3.5)

and for each k > 1, g(r) > gk(r) for all r in some neighborhood of 0 (de-

pending on h). Denote

C = {z e D*: ΐfiz > #($2)}.

Elementary geometry shows that \z — y\ > ξJKz for all z e D* such

that ΐflz > gl(%z) and y e D* such that %y e I, dϊy < g(%y). The con-

stants ξk may be chosen so that lim ξk = 1. It follows that \z — y\ > ξkίfiz

for all z e D* such that diz > gkffiz) and y e D* such that $j> e Jfc,

My < g(%y)> This in turn implies that distfe, 3S) > ξkΪRz for all z e C

provided |«ε| is sufficiently small. Thus

(3.6) lim dist (z, dB)/ΐfiz = 1.

Denote gz = dist (z, dB), Vz = {y e C: |z - y | < q,} and V = {̂  6 C:

\y\ < 1}. For each z e C with ς, > 0 define a function fz: V^-C by
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124 KRZYSZTOF BURDZY

fXy) = fte.y + z)/mz.
Fix some e > 0. Choose z e C so close to 0 that

b - e ^ S»/(y)ARy < 6 + β

for all y e Vz (see (3.4)) and 1 - ε < qJVtz < 1 + ε. Then for y e V,

mf,(y) =

< (b + ε)(ίfiy(l + ε) + 1).

Analogously,

(6 -

Thus the family {ΪΆfz(y)} of positive harmonic functions converges uni-

formly on V to b(ΐfty + 1) as z -> 0, 2; e C. An easy variation of the

Harnack's Convergence Theorem (Doob (1984) 1 II 3(a) and (b)) shows

that the first partial derivatives of ΪRfg(y) converge uniformly on compact

subsets of V to those of b(dϊy + 1). It follows that

lim f'M = b.
Z-+Q

zee
Notice that

f(y) = fX(y - «)/g.)ffte

for (y — z)fqz e V and, therefore,

f'(y) = my - z)lq.)fΛzlq.
and

In view of (3.6), this implies that lim f'(z) — b. The set C is a minimal
zee

fine neighborhood of 0 in D^, by (3.5) and Lemma 2.1. It follows that

mf-/'(()) = b e R+. D

COROLLARY 3.1. Suppose that ft: D* -> A cz D^, /2: Z)̂  -> A , /i(0) = 0

and mf-/ί(0) e R + /or Jfe = 1, 2. 7%βn mf- (/2 o ffiφ) e R+.

Proo/. Let Ak be a minimal fine neighborhood of 0 in D* such that

lim fί(z) = mf-f'k(0), for A = 1, 2. Such sets Afc exist by Theorem 1 XII

16 of Doob (1984). The set A is a minimal fine neighborhood of 0 in D*,
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by Theorem 3.2. Therorem 15 of Nairn (1957) shows that A3 = A2 Π A is

a minimal fine neighborhood of 0^ in A By the conformal invariance of

the minimal fine topology, the sets A4 = f{\Az) and A5 = A4 Π A1 are

minimal fine neighborhoods of 0 in ΰ ^ . No w it is easy to see that

lim (f2°fiY(z) = lim f'2(f\{z))f[(z)
z-0 z->0

= πrf-/2'(0) mf-/ί(0)

and this completes the proof. •

COROLLARY 3.2. Suppose that fk: D*-+D and mf-limfk(z) = 0M e

d?D for k = 1, 2. 1/ mf-/ί(0) e R+ ίΛen mf-/ί(0) e R+.

Proof. The function /3 = fϊι°f2 maps Z)^ onto D* and /g(0) = 0 so by

Theorem 10.2 of Pommerenke (1975), mf-^O) e R + . Corollary 3.1 implies

that

mf-/ί(0) - mf-(Λ o/3X(0) e R+ . D

COROLLARY 3.3. Suppose that A c A ^^^ 0iT/ e 3f A w w e// defined.

Assume that Dk has a minimal fine derivative (k = 1 or 2). Γ/iβw A-& has

minimal fine derivative if and only if A \ A is minimal thin in A &t QM

Proof, i) If A and A have minimal fine derivatives then they have

angular derivatives and A \ A is minimal thin in A at 0M, by Corollary

9.1 of Burdzy (1987).

ii) Suppose that A has a minimal fine derivative and A \ A is mini-

mal thin in A at 0*. Let f2: D*->D2,f2(0) = 0, mf-/£(0) e R+. The set

fϊKDi) is a minimal fine neighborhood of 0 in D*, by the conformal invari-

ance of the minimal fine topology. Thus Λ'XA) has a minimal fine de-

rivative, by Theorem 3.2. Let

/,: A* -^/ίXA), Λ(0) = 0, mf-/ί(0) e R +

and U = U % Then /,: D # -> A , /i(0) - 0 and

by Corollary 3.1. It may be concluded that A has a minimal fine deriva-

tive.

iii) Assume that A has a minimal fine derivative and A \ A is mini-
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126 KRZYSZTOF BURDZY

mal thin in A at 0*. Choose functions fx and /2 so that fx: D* -> A ,

fx(0) = 0, mf-lim/(z) = 0^ and let f3 = frofr. Then /,: D* -+fς\Dx) and
z-0

mf- lim fz(z) — 0M. The set /2~XA) is a minimal fine neighborhood of 0 in
2-0

A*, by the conformal invariance of such neighborhoods. It follows that

/JΓXA) has a minimal fine derivative (Theorem 3.2) and mf-Z^O) e R +

(Corollary 3.2). Let Ax and A3 be minimal fine neighborhoods of 0 in D*

such that lim fί(z) = m£-f'k(0) for k = 1, 3 (see Theorem 1 XII 16 of Doob
2-0

(1984)). Define A2 = Ax f) A3 and A = /3CA2) The set A is a minimal

fine neighborhood of 0^ in fϊKDx), by conforml invariance. Theorem 15

of Nairn (1957) implies that this set is a minimal fine neighborhood of 0

in D* as well. One has

lim fί(z) = lim (f o/rO'O)
0-0

zQA zGA

z-0

= mf-/ί(0) X mf-/3(0) e R +

and it follows from Theorem 1 XII 16 of Doob (1984) that mf-/^(0) e R+.

Thus A has a minimal fine derivative. •

COROLLARY 3.4. If A c: A c A ^ ^ A «̂ o? A Λαue minimal fine

derivatives then so does D2.

Proof. By Corollary 3.3, A \ A is minimal thin in A at 0* e d? A

and the same may be said about its subset A \ A Thus A has a mini-

mal fine derivative, by the same Corollary 3.3. •

For a domain A let VF£)D denote the smallest Lipschitz function g:

R -» R such that

{* e C: s e A |^| <e}c{^eC:fe

THEOREM 3.3. i) Suppose that 0 6 dD and for some ε > 0

(3.7) Γ max (Wε>D(r), 0)r~2dr < 00.

Then the domain D has a minimal fine derivative if and only if

(3.8) J 1

1 min (WΛtD(r), O)r~2dr > - 00 .
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ii) Suppose that 0 e 3D and let D1 = D U D*. Assume that

min (W.fl)l(r), 0)r"2dr > - oo

for some ε > 0. 77ιen Z) /ιαs a minimal fine derivative if and only if

^ max(Wεi,D(r\O)r-*dr < oo

for some et > 0.

Proof. Corollary 3.3 and Theorem 3.3 are true when "minimal fine

derivative" is replaced by "angular derivative" in their statements. This

has been proved in Corollary 9.1 and Theorems 9.3 and 9.4 of Burdzy

(1987) and will be applied here to give a quick poof of the theorem.

i) Assume (3.7). Theorem 9.3 of Burdzy (1987) shows that flίlfl^

has an angular derivative which in turn implies that D*\D is minimal

thin in £>* at 0, by Corollary 9.1 of Burdzy (1987). It follows from Theorem

3.2 that D f) D* has a minimal fine derivative. D has an angular deriva-

tive if and only if (3.8) holds, by Theorem 9.3 of Burdzy (1987). Thus (3.8)

is equivalent to minimal thinness of D\(D Π D*) in D at 0M, by Corollary

9.1 of Burdzy (1987). It remains to use Corollary 3.3 to see that (3.8)

holds if and only if D has a minimal fine derivative.

ii) This part may be proved in a completely analogous way. •

DEFINITION 3.3. Consider a function /: D* -> D. A point x e 3D*

will be called an /-twist point if f(x) exists and for every continuous path

{Γ(t), t e (0, 1)} in D* with lim Γ(t) = x, one has

- lim inf arg (f(Γ(t)) - /(*)) = lim sup arg (f(Γ(t)) - /(*)) = 00. •

THEOREM 3.4. Suppose that f: D* -> D. Then for almost all x e 3D*,

either m£-f'(x) exists and belongs to C\{0} or x is an f-twist point.

Proof. Consult the next section for the probabilistic notation used in

this proof.

It is well known that f(x) exists for almost all x e 3D*.

Fix some y e D*. The arguments given in Section 4 of Davis (1979)

or Section 5.4 of Durrett (1984) show that for almost every x e 3D* either

i) lim f'(Xt) exists and belongs to C\{0}P|-a.s. (Pv

x is the distribution

of the Λ-process in D* starting from y and converging to x at its lifetime

R) or
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ii) f(S(a) + x) is dense in C for all a < π/2.

In the first case, mΐ-f'(x) = mf- lim f\z) exists and belongs to C\{0},

by Theorem 3 III 3 of Doob (1984).

Lemmas 10.8 and 10.9 of Pommerenke (1975) prove that almost all

points satisfying (ii) are /-twist points. •

Remarks 3.3. i) Theorem 3.4 is a slight generalization of McMillan's

Theorem (Pommerenke (1975), Theorem 10.15).

ii) Theorems 3.1-3.4 and Corollaries 3.1-3.4 remain true when minimal

fine limits and derivatives are replaced by angular limits and derivatives

in their statements (see Burdzy (1986, 1987), Jackson (1965) and Pommerenke

(1975)). They are among the strongest results about angular derivatives

available now.

§ 4. Brownian excursions

A detailed review of probabilistic concepts presented here may be

found in Doob (1984) and Burdzy (1987).

The canonical stochastic process will be denoted X i.e., Xt(ώ) = ω(t)

for t > 0 and ω e β. Ω is the family of all paths ω: R+ —• C U {δ}9 con-

tinuous on (0, R) and equal to δ afterwards. Thus R is the lifetime of X

The point δ is a "coffin" state outside C. The distribution and the cor-

responding expectation of the standard Brownian motion in C starting

from x will be denoted Px and Ex. The symbol PX

D will stand for the

distribution of Brownian motion in a domain D i.e., Brownian motion

killed at the hitting time TDC of Dc, TDC = inf {t > 0: Xt & D}. The dis-

tribution of an /i-process in D starting from x and converging to y e d^D

at its lifetime in the Martin topology will be denoted Px. This symbol

has been used in Section 3 and will not be used any more.

For a domain D and x in 3D or df D9 a standard excursion law Hx

in D is a σ-finite measure on Ω such that

i) X is strong Markov with respect to PX

D transition probabilities,

ii) ίP(lim Xt Φ x) = 0 where the limit is taken in the Euclidean or

Martin topology, depending on whether x e 3D or x e dfD,

iii) 0 < HX(TB < oo) < oo for all compact nonpolar sets B C Zλ

If x e 3f D and a standard excursion law Hx in D exists then it is

unique up to a multiplicative constant.

A prime end x e 3?D will be called accessible if there exists a con-
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tinuous path in D which converges to x in the Martin topology and to
some y e C in the Euclidean topology. If x e df D is accessible then the
standard excursion law Hx in D exists.

For t > 0 such that X(t) e 3D define excursions in D as

X(t + s) if inf {u > t: Xu 6 D}> t + s,

otherwise.

The excursion e,(s) is defined for s > 0 and the possibility β( ) = δ is not
excluded. Let Lt be the local time of Brownian motion on 3D. Then
there exists a family {ίP, xeC} of σ-finite measures such that

(4.1) E'( Σ Zu(f(e)) = E (Γ ZsH*if)dLs)

for all predictable processes Z and universally measurable / which vanish
on excursions constantly equal to δ (Maisonneuve (1975)). The measures
Hx may be chosen so that each Hx is either null or it is a standard ex-
cursion law in D. Every pair (dL, H) satisfying (4.1) will be called an
exist system in D.

Consider a function /: Dx —> D2, an accessible prime end x e 9f A
and a standard excursion law Hx in A Put f'(y) = 0 for y g Dx and
define

(4.2) c(t) = Γ \f'(X(s))\*ds for t e (0, 22)
Jo

and

γ(c(t)) = ί Λ^(0) if < e (0, 22) and c(ί) > ™,

{δ otherwise.

If X has the distribution Hx and / maps x onto an accessible prime end
in D2 then c(t) < oo and the distribution of Y is a standard excursion law
in A, denoted /(2P).

DEFINITION 4.1. Consider a domain D, x e 3D and an excursion law
i P in D. Hx will be called

i) almost locally flat or
ii) a twist excursion law
if there exists a function f:D*—>D and a standard excursion law

Hy in ΰ * such that Hx = f(Hy) and
i) mf-/'(χ) e C\{0},
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ii) y is an /-twist point. •

Remark 4.1. See Burdzy (1987) for the comparison and explanation

of the terminology.

THEOREM 4.1. For each domain D there exists an exit system (dL, H)

in D such that all measures Hx are either null measures, twist excursion

laws, almost locally flat excursion laws or mixtures of such measures.

Proof. The proof is completely analogous to the proof of Theorem

10.1 of Burdzy (1987) and therefore it will be only sketched here.

Let /: D* -> D and for each x e dD* let Hx be the standard excursion

law in D*. For almost all xedD*, mf-lim/(2) is an accessible prime end

and f{Hx) is a twist or almost locally flat excursion law in D, by Theorem

3.4. By the uniqueness of the standard excursion laws and conformal in-

variance of the Martin boundary, almost all standard excursion laws in

D (starting from points of 3f D) are either twist or almost locally flat.

This essentially completes the proof. Q

THEOREM 4.2. Consider a domain D, x e 3D and an almost locally

fiat excursion law Hx in D. Then

i) Km inf arg(X, — x) = lim sup arg(X, — x) — π Hx-a.e. and

ii) lim sup \χt - *l s = = 1 H*-a.e.
. t-o V2t log log(l/t)

Proof. Let /: D*->D and y e dD* be such that mf-f'(y) = a e C\{0}

and Hx = f(Hv) where Hv is the standard excursion law in D*. Observe

that necessarily f(y) = x.

i) Xt converges to y in the minimal fine topology Hy-a.e. (Burdzy

(1987) Remark 3.4 (i)) so

(4.3) lim f\Xt) = lim (f(Xt) - x)/(Xt - y) = a ψ 0
ί-»0 ί-*0

Hy-z.e., by Theorem 3.1. Remark 5.2 (iii) of Burdzy (1987) implies that

lim inf axg(Xt — y) = lim sup arg(Xf — y) — π
i-o ί-o

Hv-dL.e. and this combined with (4.3) shows that

lim inf arg(/(X,) — x) — lim sup arg

Hv~2i.e. This is equivalent to the assertion (i).

lim inf arg(/(X,) — x) — lim sup arg (f(Xt) — x) — π
t-0 ί-0
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ii) (4.3) implies that

(4.4) lim \f(Xt) - x\l\Xt - y\ = \a\ iP-a.e.

Since Xt converges to y in the minimal fine topology iP-a.e.,

lim/'CSQ = a ff*-a.e.
ί->0

and, by (4.2),

(4.5) lim c(t)lt = a Hv-a.e.
ί—0

The following Law of Iterated Logarithm holds for Hv (Burdzy (1987)

Remark 5.2 (ii)).

(4.6) lim sup . l * ' - y l = 1 H^a.e.
t-o V2t log log(l/0

Formulae (4.4)-(4.6) yield

V2(c(t)l\a\y\oglog(\aflc(t))

= lim sup

which is equivalent to the second assertion. •

COROLLARY 4.1. Suppose that an exit system (dL, H) in a domain D

does not contain any twist excursion laws. Then for all x e C, Px-a.s.

all nonconstant excursions {et(s), s > 0} of Brownian motion in D have the

following properties.

i) lim inf arg(e,(s) — e£(0+)) = lim sup arg (et(s) — et(0+)) — π

and

ii) lim sup !«.(«>-««(0+>l =,1.
s-o v2s log log(l/s)

Proof. The result follows immediately from the exit system formula

(4.1) and Theorems 4.1 and 4.2. D

Remarks 4.2. i) Twist excursion laws may be precluded by the shape

of the domain D. For example, there are no twist excursions in Lipschitz

domains, starshaped domains etc.

ii) If Hx is almost locally flat, it need not be true that the range of

{aτg(Xt — x), 0 < t < ε] is an interval of length π (open or closed) ί P -
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-a.e., even for small ε > 0. Proposition 3.1 of Burdzy and Williams (1986)

presents a C^domain such that the range of {arg(et(s) — ^(0+)), 0 < s <

ε} is an interval of length greater than π for every nonconstant excursion

et, every ε > 0, P*-a.s. for all x e C D
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