A NOTE ON THE PERMUTATION BEHAVIOUR OF THE DICKSON POLYNOMIALS OF THE SECOND KIND

M. HENDERSON

In this note known factorisation results for the Dickson polynomials of the second kind, $f_k(X, a)$, are used to obtain simple restrictions on those k for which $f_k(X, a)$ is a permutation polynomial over \mathbb{F}_q .

1. Introduction

Let \mathbb{F}_q denote the finite field of order q where $q=p^e$ and p is a prime. Let \mathbb{F}_q^* represent the non-zero elements of \mathbb{F}_q and η denote the quadratic character on \mathbb{F}_q^* . A polynomial $f \in \mathbb{F}_q[X]$ is called a *permutation polynomial* of \mathbb{F}_q if the mapping induced by f permutes \mathbb{F}_q . If $f \in \mathbb{F}_q[X]$ has no repeated roots over any extension of \mathbb{F}_q then f will be called *simple*. Let $a \in \mathbb{F}_q^*$ and k be a positive integer. Every $x \in \mathbb{F}_q$ may be written as $x = u + au^{-1}$ where $u \in \mathbb{F}_{q^2}$ is a root of the quadratic $Z^2 - xZ + a$. Under these circumstances u will satisfy $u^{q-1} = 1$ or $u^{q+1} = a$. The Dickson polynomial of the second kind (DPSK), $f_k(X, a) \in \mathbb{F}_q[X]$, can be defined by

$$f_k(x,a) = \frac{u^{k+1} - a^{k+1}u^{-(k+1)}}{u - au^{-1}}$$

with the condition that $u \neq \pm b$ if $a = b^2$ for some $b \in \mathbb{F}_q$. The excluded values are calculated using $f_k(2b, a) = (k+1)b^k$ and $f_k(-2b, a) = (k+1)(-b)^k$. Other definitions of these polynomials can be found in the monograph [5] which is devoted to Dickson polynomials of the first and second kind. Some results on the permutation behaviour of the DPSK have been found, see [7, 4]. If q = p or $q = p^2$ then the conditions given in [7] were shown to be both necessary and sufficient in [2] (case q = p) and [3] (case $q = p^2$).

Some factorisations of the Dickson polynomials of the first kind are contained in [5, Chapter 2]. In [1] the factorisation of both types of Dickson polynomials over a finite field was determined. The permutation properties of the Dickson polynomials of the first kind are well understood, see [5, Chapter 2]. Here we use results from [1] to obtain simple restrictions on those k for which $f_k(X, a)$ can be a permutation polynomial.

The factorisation of the DPSK over \mathbb{F}_q is closely connected to the factorisation of the cyclotomic polynomials. We can use the formulas for the factorisation of $X^{k+1} - 1$ into cyclotomic polynomials, see [6], to obtain similar factorisations for the DPSK.

Received 17th March, 1997.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

LEMMA 1.1. Suppose that k+1 is not divisible by p. Then the factorisation of $f_k(X,a)$ is given by

$$f_k(x,a) = \prod_{\substack{d \mid (k+1) \\ d \neq 1}} \prod_{\substack{m=1 \\ (m,d)=1}}^d (u - \zeta_d^m a u^{-1})$$

where ζ_d is a dth root of unity over \mathbb{F}_q .

PROOF: From the definition of the DPSK we have

$$f_k(x,a) = \frac{u^{k+1} - a^{k+1}u^{-(k+1)}}{u - au^{-1}} = a^k u^k \left(\frac{(u^2a^{-1})^{(k+1)} - 1}{u^2a^{-1} - 1}\right).$$

By substituting y for u^2a^{-1} the problem of factorising $f_k(x,a)$ becomes the problem of determining the factors of the polynomial $(y^{k+1}-1)(y-1)$. By using the factorisation of the cyclotomic polynomials

$$\begin{split} f_k(x,a) &= \frac{a^{(k+1)}u^{-(k+1)}}{u - au^{-1}} \prod_{\substack{d \mid (k+1) \\ d \mid (k+1)}} Q_d(a^{-1}u^2) \\ &= \frac{a^{(k+1)}u^{-(k+1)}}{u - au^{-1}} \prod_{\substack{d \mid (k+1) \\ (m,d) = 1}} \prod_{\substack{m=1 \\ (m,d) = 1}}^d (a^{-1}u^2 - \zeta_d^m) \\ &= (u - au^{-1})^{-1} \prod_{\substack{d \mid (k+1) \\ d \neq 1}} \prod_{\substack{m=1 \\ (m,d) = 1}}^d (u - \zeta_d^m au^{-1}). \end{split}$$

Suppose that p^n is the largest power of p dividing k+1. Then $k+1=mp^n$ for some $m \in \mathbb{Z}$ and it is a simple matter to show

(1)
$$f_{mp^{n-1}}(X,a) = f_{m-1}^{p^{n}}(X,a)(X^{2} - 4a)^{(p^{n}-1)/2}.$$

We can completely factorise a DPSK over \mathbb{F}_q using this identity and Lemma 1.1. We end this section with a simple but useful identity for the DPSK.

LEMMA 1.2. Let $a, a' \in \mathbb{F}_q^*$ satisfy $\eta(aa') = 1$. Then $f_k(X, a)$ permutes \mathbb{F}_q if and only if $f_k(X, a')$ permutes \mathbb{F}_q .

PROOF: As $\eta(aa')=1$ then there exists $b\in \mathbb{F}_q^*$ such that a=ba'. Then for $x=u+au^{-1}\in \mathbb{F}_q$

$$b^{k} f_{k}(x, a) = \frac{(bu)^{k+1} - (b^{2}a)^{k+1} (bu)^{-(k+1)}}{bu - b^{2}a(bu)^{-1}} = f_{k}(bx, b^{2}a).$$

It now follows that either both of the polynomials permute \mathbb{F}_q or both do not permute \mathbb{F}_q .

2. Linear factors of the DPSK where q is odd

In this section we assume q is odd. Lemma 1.1 leads to the next lemma concerned with linear factors of $f_k(X, a)$, or rather, their absence.

LEMMA 2.1. Let $\eta(a) = 1$. Then $f_k(X, a)$ has no roots in \mathbb{F}_q if and only if $(k+1, p(q^2-1)) = 1$.

PROOF: Let $\eta(a)=1$ and suppose $f_k(X,a)$ has no roots in \mathbb{F}_q . Let $b\in\mathbb{F}_q$ satisfy $b^2=a$. If p did divide k+1 then from (1), $(X^2-4a)=(X-2b)(X+2b)$ are factors of $f_k(X,a)$. Suppose (k+1,q-1)=d>1. Then d divides q-1 and there exist non-trivial dth roots of unity in \mathbb{F}_q . If d is even then -1 is a dth root over \mathbb{F}_q and from Lemma 1.1 $x=u+au^{-1}$ divides $f_k(x,a)$. If d is odd then let m be an even integer satisfying 1< m< d and (m,d)=1. Let ζ_d be a primitive dth root of unity in \mathbb{F}_q . Then from Lemma 1.1

$$(u - \zeta_d^m a u^{-1})(u - \zeta_d^{-m} a u^{-1}) = (u + a u^{-1})^2 - a(\zeta_d^{m/2} + \zeta_d^{-m/2})^2$$
$$= (x + b(\zeta_d^{m/2} + \zeta_d^{-m/2}))(x - b(\zeta_d^{m/2} + \zeta_d^{-m/2}))$$

divides $f_k(x, a)$ over \mathbb{F}_{q^2} . Hence (k+1, q-1)=1. Suppose (k+1, q+1)=d>1. As (k+1, q-1)=1 then d must be odd. Since d>1 there are non-trivial dth roots of unity in \mathbb{F}_{q^2} . Again let m be an even integer satisfying 1 < m < d and (m, d) = 1. Let ζ_d be primitive dth root of unity in \mathbb{F}_{q^2} . From Lemma 1.1

$$(u - \zeta_d^m a u^{-1}) (u - \zeta_d^{-m} a u^{-1}) = (x + b(\zeta_d^{m/2} + \zeta_d^{-m/2})) (x - b(\zeta_d^{m/2} + \zeta_d^{-m/2}))$$

divides $f_k(x, a)$. As d divides q + 1 then

$$\left(\zeta_d^{m/2} + \zeta_d^{-m/2}\right)^q = \left(\zeta_d^{-1}\zeta_d^{q+1}\right)^{m/2} + \left(\zeta_d^{-1}\zeta_d^{q+1}\right)^{-m/2} = \zeta_d^{-m/2} + \zeta_d^{m/2}.$$

Therefore the divisors of $f_k(x,a)$ found are divisors of $f_k(x,a)$ over \mathbb{F}_q . Hence (k+1,q+1)=1. From these arguments we can conclude $(k+1,p(q^2-1))=1$.

Conversely, let $(k+1, p(q^2-1)) = 1$. Then for any d dividing k+1 there are no dth roots of unity in \mathbb{F}_{q^2} . Suppose that $f_k(X, a)$ has a linear factor. Then there is a solution $x \in \mathbb{F}_{q^2}$ to $f_k(x, a) = 0$. Therefore one of the factors in Lemma 1.1 must satisfy $u - \zeta_d^m a u^{-1} = 0$ for some $u \in \mathbb{F}_{q^2}$. By rearranging, $u^2 a^{-1} = \zeta_d^m$. Hence ζ_d^m is an element of \mathbb{F}_{q^2} . This contradicts the observation that there are no dth roots of unity in \mathbb{F}_{q^2} for any divisor d of k+1.

We have a similar result for non-square $a \in \mathbb{F}_q$.

LEMMA 2.2. Let $\eta(a) = -1$. Then $f_k(X, a)$ has no roots in \mathbb{F}_q if and only if k+1 is odd.

PROOF: From the definition of the DPSK, X is a factor of $f_k(X,a)$ if and only if k+1 is even. Suppose k+1 is odd and $f_k(X,a)$ has a non-zero root in \mathbb{F}_q . Then there is a non-zero root $u \in \mathbb{F}_{q^2}$ to $u^{2(k+1)} = a^{k+1}$ where either $u^{q-1} = 1$ or $u^{q+1} = a$. If $u^{q-1} = 1$ then

$$(a^{k+1})^{(q-1)/2} = (u^{2(k+1)})^{(q-1)/2} = 1.$$

But as k+1 is odd then $(a^{k+1})^{(q-1)/2} = -1$. Hence $u^{q-1} \neq 1$. If $u^{q+1} = a$ then

$$(a^{k+1})^{(q+1)/2} = (u^{2(k+1)})^{(q+1)/2} = (u^{q+1})^{k+1} = a^{k+1}.$$

In this case, as k+1 is odd, $(a^{(q+1)/2})^{k+1} = (a^{(q-1)/2}a)^{k+1} = -a^{k+1}$ and we again have a contradiction. Hence $f_k(X,a)$ has no roots in \mathbb{F}_q .

The next theorem is taken from [1].

THEOREM 2.3. [Chou] Let q be odd and k be a positive integer. Fix $a \in \mathbb{F}_q^*$ and let $b \in \mathbb{F}_{q^2}^*$ satisfy $b^2 = a$. Set e = 1 if $b \in \mathbb{F}_q$ and e = 2 if $b \notin \mathbb{F}_q$. Write $k+1 = p^r(m+1)$ with (m+1,p)=1 and $r \geqslant 0$. For each divisor d>2 of 2(m+1), let n_d be the smallest integer satisfying $q^{n_d} \equiv \pm 1 \mod d$. Then,

- (1) If $f \in \mathbb{F}_q[X]$ satisfies: if e = 1 then $f(X) \neq (X \pm 2b)$ and if e = 2 then $f(X) \neq (X^2 4a)$; then f is an irreducible factor of $f_m(X, a)$ if and only if f(X) is an irreducible factor of $f_k(X, a)$ of multiplicity p^r .
- (2) if e = 1 then (X 2b) and (X + 2b) are irreducible factors of $f_k(X, a)$ of multiplicity $(p^r 1)/2$, and if e = 2 then $(X^2 4a)$ is an irreducible factor of $f_k(X, a)$ of multiplicity $(p^r 1)/2$,
- (3) $f_m(X, a)$ is simple,
- (4) $f_m(X, a)$ has the linear factor X whenever m is odd,
- (5) for any divisor d > 4 of 2(m+1) with $d \equiv 0 \mod 4$,
 - (a) if n_d is even, $n_d/2$ is odd, e=2 and either $(d,q^{n_d/2}-1)=d/2$ or $(d,q^{n_d/2}+1)=d/2$ then there are exactly $\phi(d)/n_d$ irreducible factors of $f_m(X,a)$ over \mathbb{F}_q with degree $n_d/2$ where every such factor is of the form

$$f(x) = \prod_{i=0}^{n_d/2-1} \left(x - b^{q^i} (\zeta_d + \zeta_d^{-1})^{q^i} \right)$$

where ζ_d is a primitive dth root of unity,

(b) otherwise, there are exactly $\phi(d)/(2 \operatorname{lcm}(e, n_d))$ irreducible factors over \mathbb{F}_q of $f_m(X, a)$ with degree $\operatorname{lcm}(e, n_d)$ and any such factor is of the form

(2)
$$f(x) = \prod_{i=0}^{\operatorname{lcm}(e, n_d) - 1} \left(x - b^{q^i} (\zeta_d + \zeta_d^{-1})^{q^i} \right),$$

where ζ_d is a primitive dth root of unity,

(6) for any divisor d > 2 of 2(m+1) with $d \not\equiv 0 \mod 4$, if d is even put $t = \phi(d)/(2 \operatorname{lcm}(e, n_d))$ and if d is odd put $t = (\phi(d) + \phi(2d))/(2 \operatorname{lcm}(e, n_d))$. Then there are exactly t irreducible factors of $f_m(X, a)$ of degree $\operatorname{lcm}(e, n_d)$ so that any such factor is of the form (2). Moreover, if d > 2 is an odd divisor of 2(m+1), the set of all irreducible factors of $f_m(X, a)$ over \mathbb{F}_q corresponding to d equals the set of all irreducible factors of $f_m(X, a)$ over \mathbb{F}_q corresponding to 2d.

We note that the next lemma is an extension of [2, Lemma 3] as it includes all square $a \in \mathbb{F}_a$.

LEMMA 2.4. Let $\eta(a) = 1$. If $f_k(X, a)$ permutes \mathbb{F}_q then either

- (i) $q \equiv \pm 3 \mod 8$ and $(2(k+1), p(q^2-1)) = 8$, or
- (ii) $(k+1, p(q^2-1)) = 2$.

PROOF: As $f_k(X,a)$ permutes \mathbb{F}_q then it has one linear factor. If p divides k+1 then $(x^2-4a)=(x+2\sqrt{a})(x-2\sqrt{a})$ divides $f_k(x,a)$. Therefore (k+1,p)=1 and in Theorem 2.3 k=m. From (3) of Theorem 2.3 $f_k(X,a)$ is simple so each of its factors has multiplicity one.

Put $D = (2(k+1), q^2 - 1)$. If D = 2 then $(k+1, q^2 - 1) = 1$ and from Lemma 2.1 $f_k(X, a)$ has no linear factors. Let d > 1 be an odd prime divisor of D. As (q-1, q+1) = 2 then d divides one of q-1 or q+1 and $q \equiv \pm 1 \mod d$. In Theorem 2.3 $n_d = 1$. From (6) of Theorem 2.3 $f_k(X, a)$ has $(\phi(d) + \phi(2d))/2 > 1$ linear factors over \mathbb{F}_q . This contradicts that $f_k(X, a)$ permutes \mathbb{F}_q , so $D = 2^r$ where r > 1.

Suppose that $d=2^s$, where s>2 is a divisor of D and $q\equiv \pm 1 \bmod d$. Then from (5b) of Theorem 2.3 $f_k(X,a)$ has $\phi(d)/2>1$ distinct linear factors over \mathbb{F}_q . Again this contradicts the permutation property of $f_k(X,a)$, so D=4 and $(k+1,q^2-1)=2$ which establishes (ii).

Now suppose $q \not\equiv \pm 1 \mod d$ for any $d = 2^s$ dividing D where s > 2. In particular, $q \equiv \pm 3 \mod 8$, so 8 is the highest power of 2 dividing $q^2 - 1$ and $(2(k+1), q^2 - 1) = 8$. This is the condition in (i).

We could also have proven this lemma by combining [2, Lemma 3] and Lemma 1.2. [2, Lemma 4] can also be extended to all square $a \in \mathbb{F}_q$ by applying Lemma 1.2.

LEMMA 2.5. If $f_k(X, a)$ permutes \mathbb{F}_q and $\eta(a) = 1$ then $(k(k+2), q^2 - 1) = 1$ if p = 3 and $(k(k+2), q^2 - 1) = 3$ otherwise.

We have a result similar to Lemma 2.4 for non-square $a \in \mathbb{F}_q$.

LEMMA 2.6. Let $\eta(a) = -1$. If $f_k(X, a)$ permutes \mathbb{F}_q then either

- (i) $q \equiv \pm 1 \mod d$ for all d > 4 dividing $(2(k+1), q^2 1)$ with $d \equiv 0 \mod 4$, or
- (ii) $(k+1, q^2-1)=2$.

PROOF: As $f_k(x, a)$ permutes \mathbb{F}_q , it has exactly one linear factor. If k+1 is odd then from Lemma 2.2 $f_k(X, a)$ has no roots in \mathbb{F}_q . Therefore k+1 is even and X must be the

only linear factor of $f_k(X, a)$ over \mathbb{F}_q . Put $k+1=p^r(m+1)$ where (m+1, p)=1. From (1) $f_k(X, a)=f_m^{p^r}(X, a)(X^2-4a)^{(p^r-1)/2}$ and we can consider linear factors of $f_m(X, a)$ instead. From Theorem 2.3 part (3) $f_m(X, a)$ is simple so each factor has multiplicity one.

Let $D=\left(2(m+1),q^2-1\right)$. We have $D\equiv 0 \bmod 4$. Let d be a divisor of D such that $d\equiv 0 \bmod 4$ and d>4. If $q\equiv \pm 1 \bmod d$ then in Theorem 2.3 $n_d=1$ and there are no linear factors to be found, other then X. Part (i) now follows. If $q\not\equiv \pm 1 \bmod d$ then $n_d=2$ (as d divides q^2-1) and there are $\phi(d)/2$ linear factors over \mathbb{F}_q of $f_k(X,a)$. But this contradicts the permutation property of $f_k(X,a)$ as d>4 so $\phi(d)/2>1$. Therefore D=4 and $(k+1,q^2-1)=2$, establishing part (ii).

3. Linear factors of the DPSK where q is even

Throughout this section we assume q is even. We have the following result which is analogous to Lemma 2.1. The proof is omitted as it is similar to the proof of Lemma 2.1.

LEMMA 3.1. Let q be even. Then $f_k(X,a)$ has no roots in \mathbb{F}_q if and only if $(k+1,2(q^2-1))=1$.

The following theorem is taken from [1].

THEOREM 3.2. [Chou] Let q be even and k be a positive integer. Fix $a \in \mathbb{F}_q$ and let $b \in \mathbb{F}_q$ satisfy $b^2 = a$. Write $k + 1 = 2^r(m+1)$ where m is even and $r \ge 0$. For each divisor d > 1 of m + 1 let n_d be the smallest integer satisfying $q^{n_d} \equiv \pm 1 \mod d$. Then,

- (1) if $f \in \mathbb{F}_q[X]$ and $f(X) \neq X$, then f is an irreducible factor of $f_m(X, a)$ if and only if f is an irreducible factor of $f_k(X, a)$,
- (2) for m > 0, $f_m(X, a) = h(X)^2$ where h(X) is simple and $h(0) \neq 0$,
- (3) $X^{2^{r-1}}$ is a factor of $f_k(X, a)$ and any other irreducible factor of $f_k(X, a)$ has multiplicity 2^{r+1} ,
- (4) for any divisor d > 1 of m + 1 there are exactly $\phi(d)/(2n_d)$ irreducible factors of $f_m(X, a)$ over \mathbb{F}_q with degree n_d so that any such factor is of the form

$$f(X) = \prod_{i=0}^{n_d-1} \left(x - b^{q^i} (\zeta_d + \zeta_d^{-1})^{q^i} \right)$$

where ζ_d is a primitive dth root of unity.

We have the following result which relies on the above theorem and is similar to Lemmas 2.4 and 2.6.

LEMMA 3.3. If q is even and $f_k(X,a)$ permutes \mathbb{F}_q then $(k+1,q^2-1)=3$ if k+1 is odd and $(k+1,q^2-1)=1$ if k+1 is even.

PROOF: As $f_k(X,a)$ permutes \mathbb{F}_q it must have one linear factor over \mathbb{F}_q . Put $D=(k+1,q^2-1)$ and suppose D>1. From part (3) of the previous theorem, X is a factor of $f_k(X,a)$ if and only if k+1 is even. Suppose that k+1 is odd. Put $d_1=(k+1,q-1)$ and $d_2=(k+1,q+1)$. At least one of d_1 or d_2 must be greater then 1. Now $q\equiv 1 \mod d_1$ and $q\equiv -1 \mod d_2$ which means $n_{d_1}=n_{d_2}=1$ in Theorem 3.2.

Suppose that $d_1 > 1$. Using part (4) of Theorem 3.2 we obtain $\phi(d_1)/2$ distinct linear factors of $f_k(X,a)$ over \mathbb{F}_q . As $f_k(X,a)$ is a permutation polynomial of \mathbb{F}_q then $\phi(d_1) = 2$ which means $d_1 = 3$, 4 or 6. As k+1 and q-1 are odd then $d_1 = 3$. Similarly, if $d_2 > 1$ then $d_2 = 3$. As 3 may only divide one of q-1 or q+1 then we deduce exactly one of d_1 or d_2 must be 3. Hence D=3.

If k+1 is even then X is a factor of $f_k(X,a)$. Put $k+1=2^r(m+1)$ where (m+1,2)=1. From (1) $f_k(X,a)=X^{2^r-1}f_m^{2^r}(X,a)$. As $f_k(X,a)$ is a permutation polynomial $f_m(X,a)$ can have no linear factors, so from Lemma 3.1 $(m+1,q^2-1)=1$. \square

We do not include a proof of our final result as it can be established in much the same way as Lemma 2.5, see [2, Lemma 4].

LEMMA 3.4. Let q be even and $f_k(X,a)$ permute \mathbb{F}_q . Then $(k(k+2), q^2-1)=1$ if k+1 is odd and $(k(k+2), q^2-1)=3$ if k+1 is even.

REFERENCES

- W.S. Chou, 'The factorization of Dickson polynomials over finite fields', Finite Fields Appl. 3 (1997), 84-96.
- [2] S.D. Cohen, 'Dickson polynomials of the second kind that are permutations', Canad. J. Math 46 (1994), 225–238.
- [3] S.D. Cohen, 'Dickson permutations', in Number-theoretic and algebraic methods in Computer Science (Moscow 1993) (World Scientific Publishing, River Edge, NJ, 1995), pp. 29-51.
- [4] M. Henderson and R. Matthews, 'Permutation properties of Chebyshev polynomials of the second kind over a finite field', Finite Fields Appl. 1 (1995), 115-125.
- [5] R. Lidl, G.L. Mullen and G. Turnwald, *Dickson polynomials*, Pitman Monographs and Surveys in Pure and Applied Maths 65 (Longman Scientific and Technical, Essex, England, 1993).
- [6] R. Lidl and H. Niederreiter, *Finite fields*, Encyclopedia Math. Appl. **20** (Addison-Wesley, Reading, 1983), (now distributed by Cambridge University Press).
- [7] R. Matthews, Permutation polynomials in one and several variables, Ph.D. Thesis (University of Tasmania, Tasmania, Australia, 1982).

School of Information Technology The University of Queensland Queensland 4072 Australia e-mail: marie@it.uq.edu.au