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A NOTE ON THE PERMUTATION BEHAVIOUR OF THE
DICKSON POLYNOMIALS OF THE SECOND KIND

M. HENDERSON

In this note known factorisation results for the Dickson polynomials of the second
kind, fi(X,a), are used to obtain simple restrictions on those k for which fx(X,a) is
a permutation polynomial over F.

1. INTRODUCTION

Let Fy denote the finite field of order ¢ where ¢ = p® and p is a prime. Let F;
represent. the non-zero elements of F, and 7 denote the quadratic character on F,. A
polynomial f € Fy[X] is called a permutation polynomial of F, if the mapping induced by
f permutes Fy. If f € Fy[X] has no repeated roots over any extension of F, then f will
be called simple. Let a € F; and k be a positive integer. Every z € F, may be written
as £ = u + au”' where u € Fp2 is a root of the quadratic Z2 — zZ + a. Under these
circumstances u will satisfy u9=! = 1 or u9™! = a. The Dickson polynomial of the second
kind (DPSK), fi(X,a) € F,[X], can be defined by

uk+l _ gkt —(k+1)

fe(z,a) =

u— aqu~!
with the condition that u # +b if a = % for some b € F,. The excluded values are
calculated using fx(2b,a) = (k + 1)b* and f.(—2b,a) = (k + 1)(=b)*. Other definitions
of these polynomials can be found in the monograph [5] which is devoted to Dickson
polynomials of the first and second kind. Some results on the permutation behaviour of
the DPSK have been found, see (7, 4]. If ¢ = p or ¢ = p? then the conditions given in [7]
were shown to be both necessary and sufficient in [2] (case ¢ = p) and [3] (case ¢ = p?).

Some factorisations of the Dickson polynomials of the first kind are contained in [5,
Chapter 2]. In [1] the factorisation of both types of Dickson polynomials over a finite
field was determined. The permutation properties of the Dickson polynomials of the first
kind are well understood, see [5, Chapter 2]. Here we use results from [1] to obtain simple
restrictions on those k for which fi(X,a) can be a permutation polynomial.

The factorisation of the DPSK over F, is closely connected to the factorisation of
the cyclotomic polynomials. We can use the formulas for the factorisation of X**! — 1
into cyclotomic polynomials, see [6], to obtain similar factorisations for the DPSK.
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LEMMA 1.1. Suppose that k + 1 is not divisible by p. Then the factorisation of
(X, a) is given by

(z,a) = H H u—(Tau™t)
d[(l;—H)( md)l .
where (4 is a dth root of unity over F,.

ProOF: From the definition of the DPSK we have

k+1 _ k+1, —(k+1) 2g-1)(k+1) _
fk(‘rva) = u ¢ u = akuk (Lu__a.___)__.__.l__)

u—oau! ula~l —

By substituting y for u?a™! the problem of factorising fi(z,a) becomes the problem of
determining the factors of the polynomial (y*+! — 1)(y — 1). By using the factorisation
of the cyclotomic polynomials

(k+1),, —(k+1)
a u -
fe(z,0) = —————=— [] Qala™'v?)

U —au”
dj(k+1)

(k+1),,—(k+1) d

A T ~1,2 _

T u—au! H H au ¢
:1

d[(k+1)

=(u-a)" [] H (u—¢Fau™")

dl(k =
D) e

d
I Il -G

dq(k+1) i

O

Suppose that p™ is the largest power of p dividing £+ 1. Then £+ 1 = mp™ for some
m € Z and it is a simple matter to show

(1) Frmpr1(X, @) = fR_1(X, 0)(X? = 4a)?" "1/,
We can completely factorise a DPSK over I, using this identity and Lemma 1.1. We end
this section with a simple but useful identity for the DPSK.

LEMMA 1.2. Leta,d’ € F; satisfy n(aa’) = 1. Then fi(X,a) permutes F, if and
only if fy(X,a') permutes F,.

PROOF: As n(aa’) = 1 then there exists b € F; such that a = ba’. Then for
r=u+au! €F,
(bu)k“ _ (b2a)k+1(bu)—(k+1)

bu — b?a(bu)~!

bkfk(mva) = =fk(bz7b2a)'
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It now follows that either both of the polynomials permute F, or both do not permute
F,. i

2. LINEAR FACTORS OF THE DPSK WHERE ¢ IS ODD

In this section we assume ¢ is odd. Lemma 1.1 leads to the next lemma concerned
with linear factors of fy(X,a), or rather, their absence.

LEMMA 2.1. Let n(a) = 1. Then fi(X,a) has no roots in F, if and only if
(k+1,p(¢*> - 1)) = 1.

PROOF: Let n(a) = 1 and suppose fi(X,a) has no roots in F,. Let b € F, satisfy
b’ = a. If p did divide k + 1 then from (1), (X2 — 4a) = (X — 2b)(X + 2b) are factors of
fr(X,a). Suppose (k+1,¢q—1) =d > 1. Then d divides ¢ — 1 and there exist non-trivial
dth roots of unity in Fy. If d is even then ~1 is a dth root over F; and from Lemma
1.1 z = u + au”! divides fi(z,a). If d is odd then let m be an even integer satisfying
1 <m < dand (m,d) = 1. Let (4 be a primitive dth root of unity in F,. Then from
Lemma 1.1

(u— (Pau™)(u - ¢T™au™t) = (u+ au)? — a(¢]/% + %)
= (z+ b+ ™)) (- oG + ™)

divides fi(z,a) over Fp2. Hence (k41,9 —1) = 1. Suppose (k + 1,9+ 1) =d > 1. As
(k+1,¢—1) =1 then d must be odd. Since d > 1 there are non-trivial dth roots of unity
in Fp2. Again let m be an even integer satisfying 1 < m < d and (m,d) = 1. Let {; be
primitive dth root of unity in Fp2. From Lemma 1.1

(u — C;"au_l) (u - (d_"‘au“l) = (:1: + b(} m/2 4 Cd_mﬂ)) (x — b(Cm/2 +¢, m/2))
divides fi(z,a). As d divides ¢ + 1 then
( m/2 +¢ m/2) (Cd 1 q+1)m/2 (CJ1<3+1)—m/2 C—m/2 + Cm/2

Therefore the divisors of fi(x,a) found are divisors of fi(z,a) over F,. Hence (k + 1,
q+1) = 1. From these arguments we can conclude (k + 1,p(¢? — 1)) = 1.

Conversely, let (k +1,p(g? — 1)) = 1. Then for any d dividing k + 1 there are no
dth roots of unity in Fp2. Suppose that fi(X,a) has a linear factor. Then there is a
solution z € Fp to fx(z,a) = 0. Therefore one of the factors in Lemma 1.1 must satisfy
u — (Pau' = 0 for some u € Fp2. By rearranging, uv?a™! = {J*. Hence (J* is an element
of Fpz. This contradicts the observation that there are no dth roots of unity in Fg: for

any divisor d of k£ + 1. ad

We have a similar result for non-square a € F,.
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LEMMA 2.2. Letn(a) = —1. Then fi(X,a) has no roots in F, if and only if k+1
is odd.

PROOF: From the definition of the DPSK, X is a factor of fi(X,a) if and only if
k+1is even. Suppose k + 1 is odd and fx(X, a) has a non-zero root in F,. Then there is
a non-zero root u € Fp2 to u?*+1) = gk*1 where either u9~' =1 or ud*! = qa. fu? ! =1
then

(ak+1)(q—1)/2 — (u2(k+1))(q—l)/2 =1.

But as k + 1 is odd then (a**1)l@=1/2 = —1, Hence u9! # 1. If u?*! = @ then

(ak+1)(q+1)/2 — (u2(k+1))(q+l)/2 — (uq+l)k+l = gkl
In this case, as k + 1 is odd, (al9tV/2)k+1 = (g(a-1/2g)k+1 — _g*¥+1 and we again have a
contradiction. Hence fi(X,a) has no roots in F,,. 0

The next theorem is taken from [1].

THEOREM 2.3. [Chou] Let g be odd and k be a positive integer. Fix a € F; and
letb € F, satisfy b> = a. Sete =1ifb € F, ande = 2 ifb ¢ F,. Writek+1 =p"(m+1)
with (m+1,p) = 1 and r 2 0. For each divisor d > 2 of 2(m + 1), let nyg be the smallest
integer satisfying ¢"¢ = +1 mod d. Then,

(1) If f € F,[X] satisfies: if e = 1 then f(X) # (X £ 2b) and if e = 2 then f(X) #
(X? — 4a); then f is an irreducible factor of fn,(X,a) if and only if f(X) is an
irreducible factor of fi(X,a) of multiplicity p".

(2) ife =1 then (X —2b) and (X +2b) are irreducible factors of fi(X,a) of multiplicity
(pr — 1)/2, and if e = 2 then (X? — 4a) is an irreducible factor of fi(X,a) of
multiplicity (p™ — 1)/2,

(3) fm(X,a) is simple,

(4) fn(X,a) has the linear factor X whenever m is odd,

(5) for any divisor d > 4 of 2(m + 1) with d = 0 mod 4,

(a) ifng is even, ng/2 is odd, e = 2 and either (d, ¢"/?~1) = d/2 or (d, ¢"/?+1) =
d/2 then there are exactly ¢(d)/ny irreducible factors of fm(X, a) over F, with
degree ny/2 where every such factor is of the form

nd/2-—1

f@) = [ @-o"+¢hHT)

i=0
where (4 is a primitive dth root of unity,
(b) otherwise, there are exactly ¢(d)/(2lcm (e,nq)) irreducible factors over Fy of
fm(X,a) with degree lcm (e, ng) and any such factor is of the form
Iem(e,ng)—1 ) 4
(2) f@y= I @-0"C+hn),
i=0
where (4 is a primitive dth root of unity,
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(6) for any divisor d > 2 of 2(m + 1) with d # 0 mod 4, if d is even put
t = ¢(d)/(2lcm (e,nq)) and if d is odd put t = (¢(d) + ¢(2d))/(2lem (e,nq)).
Then there are exactly t irreducible factors of f,(X,a) of degree lcm (e, ny) so that
any such factor is of the form (2). Moreover, if d > 2 is an odd divisor of 2(m + 1),
the set of all irreducible factors of f,(X,a) over F, corresponding to d equals the
set of all irreducible factors of f(X,a) over Fy corresponding to 2d.

We note that the next lemma is an extension of [2, Lemma 3] as it includes all square
acF,

LEMMA 2.4. Letn(a) = 1. If fi(X, a) permutes F, then either

(i) ¢ = £3mod8 and (2(k + 1),p(¢* — 1)) = 8, or

(i) (k+1,p(¢* - 1)) =2.

PROOF: As fi(X,a) permutes F, then it has one linear factor. If p divides k + 1
then (z? — 4a) = (z + 2v/a)(z — 2v/a) divides fi(z,a). Therefore (k + 1,p) = 1 and in
Theorem 2.3 k = m. From (3) of Theorem 2.3 fi(X,a) is simple so each of its factors
has multiplicity one.

Put D = (2(k+1),¢* —1). If D =2 then (k+ 1,¢*> — 1) = 1 and from Lemma 2.1
fx(X, a) has no linear factors. Let d > 1 be an odd prime divisor of D. As (g—1,q+1) =2
then d divides one of ¢ —1 or ¢+ 1 and ¢ = £1 modd. In Theorem 2.3 ny = 1. From (6)
of Theorem 2.3 f¢(X, a) has (¢(d) +¢(2d))/2 > 1 linear factors over F,. This contradicts
that fr(X,a) permutes F,, so D = 2" where r > 1.

Suppose that d = 2%, where s > 2 is a divisor of D and ¢ = £1modd. Then from
(5b) of Theorem 2.3 fi(X,a) has ¢(d)/2 > 1 distinct linear factors over F,. Again this
contradicts the permutation property of fx(X,a), so D = 4 and (k+1,¢? — 1) = 2 which
establishes (ii).

Now suppose ¢ # +1modd for any d = 2° dividing D where s > 2. In particular,
g = £3mod8, so 8 is the highest power of 2 dividing ¢> — 1 and (2(k + 1),¢®> — 1) = 8.
This is the condition in (i).

We could also have proven this lemma by combining [2, Lemma 3] and Lemma 1.2.
[2, Lemma 4] can also be extended to all square a € F, by applying Lemma 1.2.

LEMMA 2.5. If fi(X,a) permutes Fq and n(a) =1 then (k(k+2),¢>—1) =1 if
p =3 and (k(k +2),¢* — 1) = 3 otherwise.

We have a result similar to Lemma 2.4 for non-square a € F,.

LEMMA 2.6. Letn(a) =-1. If fx(X,a) permutes F, then either

(i) ¢ = £1modd for all d > 4 dividing (2(k + 1), ¢% — 1) with d = 0mod4, or
(i) (k+1,¢2—1)=2.

PROOF: As fi(z,a) permutes Fy, it has exactly one linear factor. If k+1 is odd then

from Lemma 2.2 f,(X,a) has no roots in F,. Therefore £+ 1 is even and X must be the
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only linear factor of fr(X,a) over F,. Put k+1 =p"(m+1) where (m+1,p) = 1. From
(1) fu(X,a) = f2 (X,a)(X? — 4a)?"~1/? and we can consider linear factors of f,(X,a)
instead. From Theorem 2.3 part (3) f.(X,a) is simple so each factor has multiplicity
one.

Let D = (2(m +1),¢> — 1). We have D = 0mod4. Let d be a divisor of D such
that d = O0mod4 and d > 4. If ¢ = +1 modd then in Theorem 2.3 ngy = 1 and there are
no linear factors to be found, other then X. Part (i) now follows. If ¢ # +1 modd then
ng = 2 (as d divides ¢> — 1) and there are ¢(d)/2 linear factors over F, of f(X,a). But
this contradicts the permutation property of fr(X,a) as d > 4 so ¢(d)/2 > 1. Therefore
D =4 and (k + 1,¢% — 1) = 2, establishing part (ii). 0

3. LINEAR FACTORS OF THE DPSK WHERE ¢ IS EVEN

Throughout this section we assume ¢ is even. We have the following result which is
analogous to Lemma 2.1. The proof is omitted as it is similar to the proof of Lemma 2.1.

LEMMA 3.1. Let g be even. Then fi(X,a) has no roots in F, if and only if
(k+1,2(¢*-1)) = 1.

The following theorem is taken from [1].

THEOREM 3.2. [Chou] Let q be even and k be a positive integer. Fixa € F, and
let b € F, satisfy b = a. Write k + 1 = 27(m + 1) where m is even and r > 0. For each
divisor d > 1 of m + 1 let ny be the smallest integer satisfying q"¢ = 1 mod d. Then,

(1) if f € Fy{X] and f(X) # X, then f is an irreducible factor of f,,(X,a) if and only
if f is an irreducible factor of fr(X,a),

(2) form > 0, fm(X,a) = h(X)? where h(X) is simple and h(0) # 0,

(3) X¥~!is a factor of fr(X,a) and any other irreducible factor of fi(X,a) has mul-
tiplicity 27+,

(4) for any divisor d > 1 of m + 1 there are exactly ¢(d}/(2nq) irreducible factors of
fm(X, a) over Fy with degree ny so that any such factor is of the form

nd—l

FX) =T (@@= 6"+ ¢gH7)

1=0
where (g is a primitive dth root of unity.

/e have the following result which relies on the above theorem and is similar to
Lemmas 2.4 and 2.6.

LEMMA 3.3. Ifgq is even and fi(X,a) permutes F, then (k +1,¢* — 1) = 3 if
k+1isodd and (k+1,¢>—-1)=1ifk+1 is even.
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PROOF: As fi(X,a) permutes F, it must have one linear factor over F,. Put D =
(k+1,¢%> — 1) and suppose D > 1. From part (3) of the previous theorem, X is a factor
of fe(X,a) if and only if k+1 is even. Suppose that k+1isodd. Putd; = (k+1,¢—1)
and dy = (k+1,g+1). At least one of d; or d, must be greater then 1. Now ¢ = 1 mod d,
and ¢ = —1 mod d; which means ng4, = nyg, = 1 in Theorem 3.2.

Suppose that d; > 1. Using part (4) of Theorem 3.2 we obtain ¢{(d;)/2 distinct
linear factors of fi(X,a) over Fy. As fi(X,a) is a permutation polynomial of F, then
¢(dy) = 2 which means d, = 3,4 or 6. As k+1 and ¢ — 1 are odd then d; = 3. Similarly,
if dy > 1 then d; = 3. As 3 may only divide one of ¢ — 1 or ¢+ 1 then we deduce exactly
one of d, or d, must be 3. Hence D = 3.

If £+ 1 is even then X is a factor of fi(X,a). Put k+1 = 2"(m + 1) where
(m+1,2) = 1. From (1) fe(X,a) = X7 'f¥(X,a). As fi(X,a) is a permutation
polynomial f,,(X,a) can have no linear factors, so from Lemma 3.1 (m+1,¢°~1) =1. [

We do not include a proof of our final result as it can be established in much the
same way as Lemma 2.5, see [2, Lemma 4].

LEMMA 3.4. Letq be even and fi(X,a) permute Fy. Then (k(k+2),¢°~1)=1
ifk+1isodd and (k(k+2),¢° —1) =3 ifk+ 1 is even.
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