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Abstract

We study Granger Causality in the context of wide-sense stationary time series. The focus of the analysis
is to understand how the underlying topological structure of the causality graph affects graph recovery by
means of the pairwise testing heuristic. Our main theoretical result establishes a sufficient condition (in
particular, the graph must satisfy a polytree assumption we refer to as strong causality) under which the
graph can be recovered by means of unconditional and binary pairwise causality testing. Examples from
the gene regulatory network literature are provided which establish that graphs which are strongly causal,
or very nearly so, can be expected to arise in practice. We implement finite sample heuristics derived from
our theory, and use simulation to compare our pairwise testing heuristic against LASSO-based methods.
These simulations show that, for graphs which are strongly causal (or small perturbations thereof) the pair-
wise testing heuristic is able to more accurately recover the underlying graph. We show that the algorithm
is scalable to graphs with thousands of nodes, and that, as long as structural assumptions are met, exhibits
similar high-dimensional scaling properties as the LASSO. That is, performance degrades slowly while the
system size increases and the number of available samples is held fixed. Finally, a proof-of-concept appli-
cation example shows, by attempting to classify alcoholic individuals using only Granger causality graphs
inferred from EEG measurements, that the inferred Granger causality graph topology carries identifiable
features.

Keywords: Granger-causality; LASSO regression; sparsity; autoregressive models; time series analysis; electroencephalogram

1. Introduction

We study the use of Granger causality (Granger, 1969, 1980; Caines, 1976) as a means of uncov-
ering an underlying causal structure in multivariate time series. There are two basic ideas behind
Granger’s notion of causality. First, that causes should precede their effects. Second, that the cause
of an event must be external to the event itself. Granger’s methodology uses these ideas to test a
necessary condition of causation: whether forecasting a process x. (the purported caused process)
using another process x, (the external, or purported causing process), in addition to its own his-
tory, is more accurate than using the past data of x. alone. If x, is in fact a cause of x, then it must
be that the combined estimator is more accurate. If our data of interest can be appropriately mod-
eled as a multivariate process in which Granger’s test for causation is also sufficient, then Granger
causality tests provide a means of defining a network of causal connections. The nodes of this net-
work are individual stochastic processes, and the directed edges between nodes indicate Granger
causal connections. This causality graph is the principal object of our study.
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In practice, the underlying causality graph cannot be observed directly, and its presence is
inferred as a latent structure among observed time series data. This notion has been used in a vari-
ety of applications, for example, in Neuroscience as a means of recovering interactions amongst
brain regions (Bressler & Seth, 2011; Korzeniewska et al., 2008; David et al., 2008; Seth et al., 2015);
in the study of the dependence and connectedness of financial institutions (Billio et al., 2010); gene
expression networks (Fujita et al., 2007; Nguyen, 2019; Lozano et al., 2009; Shojaie & Michailidis,
2010; Ma et al., 2014); and power system design (Michail et al., 2016; Yuan & Qin, 2014). For addi-
tional context in applications (Michailidis & d’Alché-Buc, 2013) reviews some methods (not only
Granger causality) for the general problem of gene expression network inference, and He et al.
(2019) for the case of EEG brain connectivity.

Granger’s original discussions (Granger, 1969, 1980) did not fundamentally assume the use
of linear time series models, but their use in practice is so widespread that the idea of Granger
causality has become nearly synonymous with sparse estimation of vector autoregressive (VAR)
models. The problem has also been formulated for the more general linear state space setting as
well (Solo, 2015; Barnett & Seth, 2015). This focus is in part due to the tractability of linear models
(Granger’s original argument in their favor) but clear generalizations beyond the linear case in
fact exhibit some unexpected pathologies (James et al., 2016), and it is challenging to apply the
notion to rigorously define a causal network. Thus, it is henceforth to be understood that we are
referring to Granger causation in the context of linear time series models.

1.1 Background and overview

Our primary goal is to estimate the Granger causal relations amongst processes in a multivari-
ate time series, that is, to recover the Granger Causality Graph (GCG). One formulation of the
problem of GCG recovery, for finite data samples, is to search for the best (according to a chosen
metric) graph structure or sparsity pattern consistent with observed data. This becomes a difficult
discrete optimization problem (best subset selection) and is only tractable for relatively small sys-
tems (Hastie et al., 2017), particularly because the number of possible edges scales quadratically in
the number of nodes.

An early heuristic approach to the problem in the context of large systems is provided by
Bach & Jordan (2004), where the authors apply a local search heuristic to the Whittle likelihood
with an AIC (Akaike Information Criterion) penalization. The local search heuristic is a common
approach to combinatorial optimization due to its simplicity, but is liable to get stuck in shallow
local minima.

Another successful and widely applied method is the LASSO regularizer (Tibshirani, 1996;
Tibshirani et al., 2015), which can be understood as a natural convex relaxation to penalizing the
count of non-zero edges in a graph recovery optimization problem. There are theoretical guaran-
tees regarding the LASSO performance in linear regression (Wainwright, 2009), which remain at
least partially applicable to the case of stationary time series data, as long as there is a sufficiently
fast rate of dependence decay (Basu & Michailidis, 2015; Wong et al., 2016; Nardi & Rinaldo,
2011). There is by now a vast literature on sparse machine learning and numerous variations on
the basic LASSO regularization procedure have been studied including grouping (Yuan & Lin,
2006), adaptation (Zou, 2006), covariance selection (graph lasso) (Friedman et al., 2008), post-
selection methods (Lee et al., 2016), bootstrap-like procedures (stability selection) (Bach, 2008;
Meinshausen & Biithlmann, 2010), and Bayesian methods (Ahelegbey et al., 2016).

This variety of LASSO adaptations has found natural application in Granger causality analysis.
For a sample of this literature consider: Haufe et al.(2008) and Bolstad et al. (2011) which applies
the group LASSO for edge-wise joint sparsity of VAR model coefficients; Hallac et al. (2017)
applies grouping to a non-stationary dataset; He et al. (2013) applies Bootstrapping, a modified
LASSO penalty, and a stationarity constraint to fundamental economic data; Lozano et al. (2009)
considers both the adaptive and grouped variations for gene expression networks; Haury et al.
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(2012) applies stability selection, also to gene expression networks; Shojaie & Michailidis (2010)
develops another tailored LASSO-like penalty to the problem of model order selection in p order
VAR models; and Basu et al. (2019) includes a penalty which also encourages low-rank solutions
(via the nuclear norm).

In the context of time series data, sparsity assumptions remain important but there is significant
additional structure induced by the directionality of causation. This directionality induces graph-
ical structure, that is, the graph topological aspects, are specific to the time series case. Directly
combining topological assumptions with the concept of Granger causality is a radically different
approach than the use of LASSO regularization. Indeed, the LASSO is particularly designed for
static linear regression, where there is no immediate notion of directed causation. Taking directed
graphical structure into account is therefore a major avenue of possible exploration. A famous
early consideration of network topologies (though not directly in the context of time series) is
due to Chow & Liu (1968) where a tree structured graph is used to approximate a joint probabil-
ity distribution. The work is further generalized to polytree structured graphs in Rebane & Pearl
(1987). Recent work in the case of Granger causality includes (Jézsa, 2019) with a detailed analysis
of Granger causality in star-structured graphs, and Datta-Gupta & Mazumdar (2013) for acyclic
graphs.

Part of the impetus of this approach follows since it is now known that many real world net-
works indeed exhibit special topological structure. For instance, “small-world” graphs (Newman
& Watts, 1999; Watts & Strogatz, 1998) are pervasive—they are characterized by being highly clus-
tered yet having short connections between any two nodes. Indeed, analysis of network topology
is now an important field of neuroscience (Bassett & Sporns, 2017), where Granger causality has
long been frequently applied.

1.2 Contributions and organization

The principal contributions of this paper are as follows: First, in Section 2 we study pairwise
Granger causality relations, providing theorems connecting the structure of the causality graph
to the “pairwise causal flow” in the system, that is, if there is a path from x; to xj, when can that
connection be detected by observing only those two variables? These results can be seen as a con-
tinuation of the related work of Datta-Gupta & Mazumdar (2013), from where we have drawn
inspiration for our approach. The contributions made here are firstly technical: we are careful to
account for some pathological cases not recognized in this earlier work. Moreover, we are able to
derive results which are able to fully recover the underlying graph structure (sec 2.7) with pairwise
testing alone, which was not possible in Datta-Gupta & Mazumdar (2013).

This work also builds upon Materassi & Innocenti (2010) and Tam et al. (2013) that have pio-
neered the use of pairwise modeling as a heuristic. The work of Innocenti & Materassi (2008)
and Materassi & Innocenti (2010) studies similar questions and provides similar results to ours,
namely, they prove elegant results on graph recovery using minimum spanning trees (where dis-
tance is a measure of coherence between nodes) which recovers the graph whenever it is, in fact,
a tree (or more generally, a polytree or forest). By contrast, our theoretical results show that com-
plete graph recovery of polytrees (which we have referred to as strongly causal graphs) is possible
with only binary measurements of directed Granger causality. That is, while the final conclusion
is similar (a causality graph is recovered), we are able to do so with weaker pairwise tests.

We present simulation results in Section 3. These results establish that considering topological
information provides significant potential for improvement over existing methods. In particu-
lar, a simple implementation of our pairwise testing and graph recovery algorithm outperforms
the adaptive LASSO (adaLASSO) (Zou, 2006) in relevant regimes and exhibits superior compu-
tational scaling. Indeed, one of our simulations was carried out on graphs with up to 1500 nodes
and a VAR lag length of 5 (this system has over 2 million possible directed edges, and over 10
million variables) and shows statistical scaling behavior similar to that of the LASSO itself where
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performance degrades slowly as the number of variables increases but the amount of data remains
fixed. Moreover, while our algorithm is asymptotically exact only when the underlying graph has a
special “strongly causal” structure, simulation shows that performance can still exceed that of the
adaLASSO on sparse acyclic graphs that do not have this property, even though the adaLASSO is
asymptotically exact on any graph.

Following our simulation results, a small proof-of-concept application is described in Section 4
where Granger causality graphs are inferred from the EEG readings of multiple subjects, and
these causality graphs are used to train a classifier that indicates whether or not the subject has
alcoholism.

2. Graph topological aspects

2.1 Formal setting

Consider the usual Hilbert space, L,(£2), of finite variance random variables over a probabil-
ity space (2, .#, P) having inner product (x, y) = E[xy]. We will work with a discrete time and
wide-sense stationary (WSS) N-dimensional vector valued process x(n) (with n € Z) where the N
elements take values in L. We suppose that x(n) has zero mean, Ex(n) = 0, and has absolutely

summable matrix valued covariance sequence R() 2 Ex(n)x(n — m)T, and hence an absolutely
continuous spectral density.
We will also work frequently with the spaces spanned by the values of such a process.

P
A = |3 A x(n — m), AGm) e RN, pe N} € Lo(e)
m=0

HY = {ax(n) | a € R} C Ly()

(1)

where the closure is in mean-square. We will often omit the superscript (x), which should be clear
from context. These spaces are separable, and as closed subspaces of a Hilbert space they are them-
selves Hilbert. We will denote the spaces generated in analogous ways by partlcular components

of x as, for example, 57, () , A or by all but a particular component as %ﬂ -,
From the Wold decomposmon theorem (Lindquist & Picci, 2015), every WSS sequence has the
moving average MA(oo) representation

x(n) = c(n) + Z A(m)v(n — m) ()

m=0

where ¢(n) is a purely deterministic sequence, v(n) is an uncorrelated sequence and A(0) = 1. We
will assume that c(n) =0 Vn, which makes x(n) a regular non-deterministic sequence. This rep-
resentation can be inverted (Lindquist & Picci, 2015) to yield the Vector Autoregressive VAR(co)
form

x(n) = Z B(m)x(n — m) + v(n) (3)

m=1

The Equations (2) and (3) can be represented as x(n) = A(z)v(n) = B(z)x(n) 4+ v(n) via the action
of the operators

Az):= > A(m)z™
m=0
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and
B(z):= Z B(m)z™™"
m=1

where the operator z~! is the backshift operator acting on £’ (<), the space of square summable
sequences of N-vectors having elements in L,(2) that is:

Bjj(2)xj(n):= Y _ Bij(m)xj(n— m) (4)

m=1

The operator A(z) contains only non-positive powers of z and is therefore called causal, and if
A(0) = 0 then it is strictly causal. An operator containing only non-negative powers of z, for exam-
ple, C(z) =co+ 1z + 2% + - - - is anti-causal. These operators are often referred to as filters in
signal processing, terminology which we often adopt as well.

Finally, we have the well known inversion formula

Alz)=(—-B(2)"' =) B2 (5)

k=0

The above assumptions are quite weak, and are essentially the minimal requirements needed to
have a non-degenerate model. The strongest assumption we require is finally that ¥, is a diagonal
and positive-definite matrix. Equivalently, the Wold decomposition could be written with A(0) #
I'and ¥, =1, and we would be assuming that A(0) is diagonal. This precludes the possibility of
instantaneous causality (Granger, 1969) or of processes being only weakly (as opposed to strongly)
feedback free, in the terminology of Caines (1976). We formally state our setup as a definition:

Definition 2.1 (Basic Setup). The process x(n) is an N dimensional, zero mean, wide-sense station-
ary process having invertible VAR(co) representation (3), where v(n) is sequentially uncorrelated and
has a diagonal positive-definite covariance matrix. The MA(0co) representation of Equation (2) has
c(n)=0Vnand A(0)=1.

2.2 Granger causality
Definition 2.2 (Granger Causality). We will say that component x; Granger-causes component x;

(with respect to x) and write x; s¢ x; if
£lxi(n) | A1) < Elxi(n) | A7) (©)
where &[x | ] .= E(x — I@I[x | #))? is the linear mean-squared estimation error and
E[x | ] = projy(x)

denotes the (unique) projection onto the Hilbert space 7.

This notion captures the idea that the process x; provides information about x; that is not avail-
able from elsewhere. The notion is closely related to the information theoretic measure of transfer
entropy, indeed, if the distribution of v(n) is known to be Gaussian then they are equivalent
(Barnett et al., 2009).

The notion of conditional orthogonality is the essence of Granger causality, and enables us to
obtain results for a fairly general class of WSS processes, rather than simply VAR(p) models.
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Definition 2.3 (Conditional Orthogonality). Consider three closed subspaces of a Hilbert space <7,
B, Z'. We say that <f is conditionally orthogonal to & given 2~ and write o/ L B | X if

(a—TFEla| Z1,b—Eb| 2))=0Vac o/, be B
An equivalent condition is that (see Lindquist & Picci (2015) Proposition 2.4.2)

Rl 2)=RIB| Z1VBePB

The following theorem captures a number of well known equivalent definitions or characteri-
zations of Granger causality:

Theorem 2.1 (Granger Causality Equivalences). The following are equivalent:

(@) x; gﬁcxi

(b) Yme N, Bjj(m) =0, thatis, B;j(z) =0
© HY LAY 147

(d) Blxin) | 201 =Rlxin) | A i)

Proof. These facts are quite well known. (a) = (b) follows as a result of the uniqueness of orthogo-
nal projection (i.e.,, the best estimate is necessarily the coefficients of the model). (b) = (¢) follows
since in computing (y — IAE[y | %’;(__{)]) forye H,(j) it is sufficient to consider y = x;(n) by linearity,

A

then since Hﬁi)_l C %ﬂn(—_{) we have (x;(n) — E[x;(n) | %‘j(__lj)]) = vj(n) since Bjj(z) = 0. The result
follows since v;(n) L .74,_1. (¢) <= (d) is a result of the equivalence in Definition 2.3. And,
(d) = (a) follows directly from the Definition. g

2.3 Granger causality graphs

We establish some graph theoretic notation and terminology, collected formally in definitions for
the reader’s convenient reference.

Definition 2.4 (Graph Theory Review). A graph & = (V, &) is a tuple of sets respectively called
nodes and edges. Throughout this paper, we have in all cases V = [N] := {1,2,..., N}. We will also
focus solely on directed graphs, where the edges & C V x V are ordered pairs.

A (directed) path (of length r) from node i to node j, denoted i— ---— j, is a sequence
ag, A, - - . > ar—1, ar withag =iand a, = j such that V 0 < k <r (ay, agy1) € &, and where (ay, ar_1)
are distinct for 0 <k <.

A cycle is a path of length 2 or more between a node and itself. An edge between a node and itself
(i, i) € & (which we do not consider to be a cycle) is referred to as a loop.

A graph 9 is a directed acyclic graph (DAG) if it is a directed graph and does not contain any
cycles.

Definition 2.5 (Parents, Grandparents, Ancestors). A node j is a parent of node i if (j, i) € &. The
set of all i’s parents will be denoted pa(i), and we explicitly exclude loops as a special case, that is,
i & pa(i) even if (i,i) € &.

The set of level £ grandparents of node i, denoted gpe (i), is the set such that j € gp (i) if and only
if there is a directed path of length £ in & from j to i. Clearly, pa(i) = gp1 (i).

Finally, the set of level £ ancestors of i: Z4(i) = U, —, gpa(i) is the set such that j € <7 (i) if and
only if there is a directed path of length £ or less in 4 from j to i. The set of all ancestors of i (i.e.,
2N (1)) is denoted simply 7 (i).
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Recall that we do not allow a node to be its own parent, but unless 4 is a DAG, a node can be
its own ancestor. We will occasionally need to explicitly exclude i from </ (i), in which case we will

write o/ (i) \ {i}.

Our principal object of study will be a graph determined by Granger causality relations as
follows.

Definition 2.6 (Causality graph). We define the Gmnger causality graph 4 = ([N], &) to be the
directed graph formed on N vertices where an edge (j, i) € & if and only if x; Granger-causes x; (with
respect to x). That is,

(i) € & <= jepali) <= ij—>Cx,-

The edges of the Granger causality graph ¢ can be given a general notion of “weight” by asso-
ciating an edge (j, i) with the strictly causal operator B;;(z) (see Equation (4)). Hence, the matrix
B(z) is analogous to a weighted adjacency matrix® for the graph 4. And, in the same way that the
k™ power of an adjacency matrix counts the number of paths of length k between nodes, (B(z)k),-j
is a filter isolating the “action” of j on 7 at a time lag of k steps, this is exemplified in the inversion
formula (5).

From the VAR representation of x(n) there is clearly a close relationship between each node and
its parent nodes, the relationship is quantified through the sparsity pattern of B(z). The work of
Caines & Chan (1975) starts by defining causality (including between groups of processes) via the
notion of feedback free processes in terms of A(z). The following proposition provides a similar
interpretation of the sparsity pattern of A(z) in terms of the causality graph ¢.

Proposition 2.1 (Ancestor Expansion). The component x;(n) of x(n) can be represented in terms
of its parents in 4:

xi(n) =vi(n) + Bi(@)xi(n) + Y By(2)xi(n) (7)
kepa(i)
Moreover, xi( - ) can be expanded in terms of its ancestor’s v(n) components only:
xi(m) =Ai@vim) + > Ax(@)vi(n) ©)
kea (i)\{i}

where A(z) =) o A(m)z™™ is the filter from the Wold decomposition representation of x(n),
Equation (2).

Proof. Equation (7) is immediate from the VAR(co) representation of Equation (3) and
Theorem 2.1, we are left to demonstrate (8).
From Equation (3), which we are assuming throughout the paper to be invertible, we can write

x(n) = (I - B(2))~'v(n)

where necessarily (I — B(z))~! = A(z) due to the uniqueness of the Wold decomposition. Since
B(z) is stable we have

(I-B(2))” Z B(2)* 9)

Invoking the Cayley-Hamilton theorem allows writing the infinite sum of (9) in terms of finite
powers of B.

Let S be a matrix with elements in {0, 1} which represents the sparsity pattern of B(z), from
Lemma D.1 § is the transpose of the adjacency matrix for ¢ and hence (Sk),-j is non-zero if and
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only if j € gpi(i), and therefore B(z)g- = 01ifj & gpx(i). Finally, since &7 (i) = Uszl gpk(i) we see that

Aij(2) is zero if j & <7 (i).
Therefore
xi(n) = [(I - B(2)) " v(n)];
N
=) Aj(z)vj(n)
j=1
= Aii(z)vi(n) + Z Aij(z)vj(n)
jedt (i)
Jj#i
This completes the proof. O

Proposition 2.1 is ultimately about the sparsity pattern in the Wold decomposition matrices
A(m) since xj(n) = Zﬁ:o Z]Iil Ajj(m)vj(n — m). The proposition states that if j & </(i), then

2.4 Pairwise granger causality

Recall that Granger causality in general must be understood with respect to a particular universe
. GC . . .

of observations. If x; — x; with respect to x_y, it may not hold with respect to x. For example, x;

may be a common ancestor which when observed, completely explains the connection from x; to

x;. In this section we study pairwise Granger causality, and seek to understand when knowledge
of pairwise relations is sufficient to deduce the fully conditional relations of &.

Definition 2.7 (Pairwise Granger causality). We will say that x; pairwise Granger-causes x; and
write xj — x; if x; Granger-causes x; with respect only to (x;, x;).

This notion is of interest for a variety of reasons. From a purely conceptual standpoint, we will
see how the notion can in some sense capture the idea of “flow of information” in the underly-

ing graph, in the sense that if j € .o/ (i) we expect that j AT, may also be useful for reasoning
about the conditions under which unobserved components of x(n) may or may not interfere with
inference in the actually observed components. Finally, motivated from a practical standpoint
to analyze causation in large systems, practical estimation procedures based purely on pairwise
causality tests are of interest since the computation of such pairwise relations is substantially easier
than the full conditional relations.

The following propositions are essentially lemmas used for the proof of the upcoming
Proposition 2.4, but remain relevant for providing intuitive insight into the problems at hand.

Proposition 2.2 (Fully Disjointed Nodes; Proof in Section D.2). Consider distinct nodes i,j in a
Granger causality graph 4. If

(a) j& /(i) andig o/ (j)
(b) o ()N (j)=0

then %(i) 1 %10), that is, VI, m € Z E[xi(n — [)xj(n — m)] = 0. Moreover, this means that j Wi
and E[xi(n) | "] =o0.
Remark 2.1. It is possible for components of x(n) to be correlated at some time lags without

resulting in pairwise causality. For instance, the conclusion j Wiof Proposition 2.2 will still hold

https://doi.org/10.1017/nws.2023.11 Published online by Cambridge University Press


https://doi.org/10.1017/nws.2023.11

Network Science 439

even if i € &7 (j), since j cannot provide any information about i that is not available from observing
iitself.

Proposition 2.3 (Not an Ancestor, No Common Cause; Proof in Appendix D.2). Consider distinct
nodes i, j in a Granger causality graph & If

(a) j& (i)
(b) dHNA(f)=9

then j i)

The previous result can still be strengthened significantly; notice that it is possible to have some
k e /(i) N </ (j) where still j 2V an example is furnished by the three node graph k — i — j
where clearly k € <7 (i) N </ (j) but j 2 i. We must introduce the concept of a confounding variable,
which effectively eliminates the possibility presented in this example.

Definition 2.8 (Confounder). A node k will be referred to as a confounder of nodes i, j (neither of
which are equal to k) if k € o/(i) N </ (j) and there exists a path k — - - - — i not containing j, and
apath k — - - - — j not containing i. A simple example is furnished by the “fork” graph i < k — j.

A similar proposition as the following also appears as [Datta-Gupta, (2014), Prop. 5.3.2]:

Proposition 2.4 (Necessary Conditions). If in a Granger causality graph ¢ where j i then je
& (i) or 3k € &7 (i) N <7 (j) which is a confounder of (i, j).

Proof. The proof is by way of contradiction. To this end, suppose that j is a node such that:

(@) j&(i)

(b) everyk € o7(i) N <7 (j) every k — - - - — j path contains i.

Firstly, notice that every u € (pa(j) \ {i}) necessarily inherits these same two properties. This
follows since if we also had u € &7 (i) then u € &7 (i) N &7 (j) so by our assumption everyy — - - - —
j path must contain i, but u € pa(j) so u — jis a path that doesn’t contain i, and therefore u ¢ o7 (i);

moreover, if we consider w € &7 (i) N <7 (u) then we also have w € &7 (i) N <7 (j) so the assumption
implies that every w — - - - — j path must contain i. These properties therefore extend inductively

to every u € (/(j) \ {i}).
In order to deploy a recursive argument, define the following partition of pa(u), for some
node u:
Co(u) ={kepa(u) |ig o (k), (i) Nd(k)=0,k+# i}
Ci(u)={kepa(u)|iec (k) ork=i}
Co(u) ={k € pa(u) | i ¢ o (k), o/ (i) N o (k) # 0, k # i}
We notice that for any u having the properties (a), (b) above, we must have C,(u) = since
if k € Cy(u) then Iw € &7 (i) N (k) (and w € &7 (i) N o/ (u), since k € pa(u)) such that i & o7 (k)
and therefore there must be a path w — - -+ — k — u which does not contain i, contradicting
property (b). Moreover, for any u € (,527 M\ {i}) and k € Cy(u), Proposition 2.3 shows that H,(f) 1
AL
In order to establish j Wi, choose an arbitrary element of %”tg)l and represent it via the action

of a strictly causal filter ®(z), that is, ®(2)x;(n) € %”n@ 1> by Theorem 2.1 it suffices to show that

A

(xi(n), D(2)xi(n) — B[D(2)xi(n) | £ ]) =0 (10)
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(a)

Figure 1. Examples illustrating the difficulty of obtaining a converse to Proposition 2.4. (a) Path cancelation: j € o7 (i) & j by
i. (b) Cancellation from time lag: j € pa(i) # j g3

S(j . . .
Denote ¢; := e»(J ), we can write x;j(n) = eijg(j)(n), and therefore from Equation (D3) there exist
strictly causal filters I'¢(z) and A (2) (defined for ease of notation) such that

K=Y T@vm+ Y. Ax@xn)
s€S(j) seS(j)
kepa(s)NS(j)©

When we substitute this expression into the left hand side of Equation (10), we may cancel each
term involving v; by Lemma D.2, and each k € Cy(s) by our earlier argument, leaving us with

Y (), @ Aw(@xn) ~ BO@Ax@xn) | 47])
seS(j)
kecl(s)%sg)c

Since each k € C;(s) with k # i inherits properties (a) and (b) above, we can recursively expand
each x; of the above summation until reaching k = i (which is guaranteed to terminate due to the
definition of C; (1)) which leaves us with some strictly causal filter F(z) such that the left hand side
of Equation (10) is equal to

(xi(n), D(2)F(2)xi(n) — E[D(2)F(2)xi(n) | A1)

and this is 0 since ®(z)F(z)x;(n) € %l(?l. O

. . . e PW | .
Remark 2.2. The interpretation of this proposition is that for j — i then there must either be
“causal flow” from j to i (j € &7(i)) or there must be a confounder k through which common
information is received.

An interesting corollary is the following:
Corollary 2.1. If the graph & is a DAG then j iy i, ill/vj = 3k € (i) N (j) confounding (i, j).

i L . .PW .
It seems reasonable to expect a converse of Proposition 2.4 to hold, that is, j € &7 (i) = j — i.
Unfortunately, this is not the case in general, as different paths through ¢ can lead to cancelation

(see Figure 1(a)). In fact, we do not even have j € pa(i) = j iy i (see Figure 1(b)).

2.5 Strongly causal graphs

In this section and the next we will seek to understand when converse statements of
Proposition 2.4 do hold. One possibility is to restrict the coefficients of the system matrix, for
example, by requiring that Bjj(m) > 0. Instead, we think it more meaningful to focus on the
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Figure 2. Reproduced under the creative commons attribution non-commercial license (http://creativecommons.
org/licenses/by-nc/2.5) is a known gene regulatory network for a certain strain of E.Coli. The graph has only a single edge
violating strong causality.

defining feature of time series networks, that is, the topology of 4. To this end, we introduce
the following notion of a strongly causal graph (SCG).

Definition 2.9 (Strongly Causal). We will say that a Granger causality graph ¥ is strongly causal if
there is at most one directed path between any two nodes. That is, if the graph is a polytree. Strongly
Causal Graphs will be referred to as SCGs.

Examples of strongly causal graphs include directed trees (or forests), the diamond shaped
graph containing i — j < k and i — j/ < k, and Figure 4 of this paper. Importantly, a maximally
connected bipartite graph with 2N nodes is also strongly causal, demonstrating both that the num-
ber of edges of such a graph can still scale quadratically with the number of nodes. It is evident
that the strong causal property is inherited by subgraphs.

Example 2.1. Though examples of SCGs are easy to construct in theory, should practitioners
expect SCGs to arise in application? While a positive answer to this question is not necessary for
the concept to be useful, it is certainly sufficient. Though the answer is likely to depend upon the
particular application area, examples appear to be available in biology, in particular, the authors
of Shojaie & Michailidis (2010) cite an example of the so called “transcription regulatory network
of E.coli” (reproduced in Figure 2), and Ma et al. (2014) study a much larger regulatory network
of Saccharomyces cerevisiae. These networks, which we reproduce in Figure 3, appear to have at
most a small number of edges which violate the strong causality condition.

For later use, and to get a feel for the topological implications of strong causality, we explore
a number of properties of such graphs before moving into the main result of this section. The
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Figure 3. Reproduced under the creative commons attribution license (https://creativecommons.org/licenses/by/4.0/) is a
much larger gene regulatory network. It exhibits similar qualitative structure (a network of hub nodes) as does the much
smaller network of Figure 2.

following important property essentially strengthens Proposition 2.4 for the case of strongly causal

graphs.

Proposition 2.5. In a strongly causal graph, if je o/ (i) then any ke &/(i)N ./ (j) is not a
confounder, that is, the unique path from k to i contains j.

Proof. Suppose that there is a path from k to i which does not contain j. In this case, there are
multiple paths from k to i (one of which does go through j, since j € #7(i)) which contradicts the
assumption of strong causality. U

Corollary 2.2. If ¢ is a strongly causal DAG then iy jand j € </ (i) are alternatives, that is ay
j=j¢ ).

Proof. Suppose that i jand j € &7(i). Then since ¢ is acyclic i € <7(j), and by Proposition 2.4
there is some k € .27 (i) N &7 (j) which is a confounder. However, by Proposition 2.5 k cannot be a
confounder, a contradiction. 0

Corollary 2.3. If ¢ is a strongly causal DAG such that i w] and j iy i,theni & < (j) and j & <7 (i).
In particular, a pairwise bidirectional edge indicates the absence of any edge in 4.

Proof. This follows directly from applying Corollary 2.2 to iy jandj iy U

In light of Proposition 2.5, the following provides a partial converse to Proposition 2.4, and
supports the intuition of “causal flow” through paths in ¢.

Proposition 2.6 (Pairwise Causal Flow). If ¢ is a strongly causal DAG, then j € </ (i) = j .
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Proof. We will show that for some y € %”n(]_)l we have
(W —Ely | 4,21 xi(n) = Elxi(n) | 4,2,1) #0 (11)

and therefore that H” L (%”n(]_) 1 (%‘jf’_)l, which by Theorem (2.1) is enough to establish that j 2

Firstly, we will establish a representation of x;(n) that involves xj(n). Denote by a,1 — a, —
-+« — a; — ag with a,11 := j and ag := i the unique j — - - - — i path in ¢, we will expand the
representation of Equation (7) backwards along this path:

xi(n) =vi(n) + Bi(2)xi(n) + Y B(2)xi(n)
kepa(i)

=y (1) + Bagay (2)xi(n) + Y Bagk(2)xk(n) +Baga, (2)xay (n)

kepa(ao)
k#a;

=a(ag,a1)

= &(ag, a1) + Baga, (2)[@(a1, a2) + Baa, (2)xa, (1) ]

r £—1 r
D3 (TT Baomans@) Faesaes) + ( [T Bawman @) e, ()
=0 m=0

m=0

=F(2)
,
=Y Fu@)d(ar, ag41) + Fry1 (2)x;(n)
=0

where (a) follows by a routine induction argument and where we define ]_[;1:0 o:=1 for
notational convenience.

Using this representation to expand Equation (11), we obtain the following cumbersome
expression:

(W —Bly | A1, Fri1(2)xi(n) — BIF, 41 (2)xi(n) | A7)

— (W —Bly | £ LED F@ala acen) | £0)))
=0

+(y —Bly | 22, Fu@a(ar, ari1))
£=0
Note that by the orthogonality principle, ¥ — Ry | %pn(i)l] L L%’jfi)l, the middle term above is 0.
Choosing now the particular value ¥ = F,11(2)x;(n) € ji’jfj_) | wWe arrive at
(v —Bly | 2,1, xi(n) — Blxi(n) | A,°,1)
=E|F,41(2)xi(n) — BIF,41(2xi(n) | 2,011

+ (Fr1(2)xi(n) — E[Frp1 (2)x;(n) | %jfi)l], Z Fy(z)a(ag, ag41))
=0

Now since Fy.11(z) # 0 by Theorem 2.1, and F,11(2)x;(n) ¢ %(i)p we have by the Cauchy-Schwarz
inequality that this expression is equal to 0 if and only if

Y Fu@d(ag, ap1) B RBIE1(@)xi(n) | 2] = Fri1(2)x(n)
£=0
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or by rearranging and applying the representation for x;(n) obtained earlier, if and only if
xi(n) B EF 1 @)xi(n) | 7,2]
But, this is impossible since x;(n) & Jél(i)l. O
We immediately obtain the corollary, which we remind the reader is, surprisingly, not true in
a general graph.
. .GC.  .PW.
Corollary 2.4. If ¢ is a strongly causal DAG thenj— i= j — i.

Example 2.2. As a final remark of this subsection we note that a complete converse to Proposition
2.4 is not possible without additional conditions. Consider the “fork” system on 3 nodes (i.e.,
2 <~ 1 — 3) defined by

0 0 O
x(m)=|a 0 0|x(n—1)+v(n)
a 0 0

In this case, node 1 is a confounder for nodes 2 and 3, but x3(n) = v3(n) — v2(n) + x2(n) and 2 s
(even though x,(n) and x3(n) are contemporaneously correlated).
If we were to augment this system by simply adding an autoregressive component (i.e., some

“memory”) to x;j(n), for example, x;(n) = v1(n) + bx;(n — 1) then we would have 2 iy 3 since
then x3(n) = v3(n) +avi(n — 1) — bva(n — 1) + bxp(n — 1). We develop this idea further in the
next section.

2.6 Persistent systems

In Section 2.5 we obtained a converse to part (a) of Proposition 2.4 via the notion of a strongly
causal graph topology (see Proposition 2.6). In this section, we study conditions under which a
converse to part (b) will hold.

Definition 2.10 (Lag Function). Given a causal filter B(z) = Z%:o b(m)z~™ define
mgy(B) = inf {m € Z, | b(m) # 0} (12)

Moo(B) = sup {m € Z | b(m) # 0} (13)

that is, the “first” and “last” coefficients of the filter B(z), where mso(B) := oo if the filter has an
infinite length, and my(B) := oo if B(z) =0.

Definition 2.11 (Persistent). We will say that the process x(n) with Granger causality graph & is
persistent if for every i € [N] and every k € o7 (i) we have my(Aj) < 00 and moo(Aj) = 00.

Remark 2.3. In the context of Granger causality, “most” systems should be persistent. In particu-
lar, VAR(p) models are likely to be persistent since these naturally result in an equivalent MA(co)
representation, see Example 2.3 for a more formal statement.

Moreover, persistence is not the weakest condition necessary for the results of this section:
by inspecting our proofs, the condition that for each i, j there is some k € &7 (i) N #(j) such that
mo(Ajk) < moo(Ajx) can be seen to be sufficient. The intuition being that nodes i and j are not
receiving temporally disjoint information from k.

The etymology for the persistence condition can be explained by supposing that the two nodes
i, j each have a loop (i.e., Bji(z) # 0, Bjj(z) # 0) then this autoregressive component acts as “mem-
ory,” and so the influence from the confounder k persists in x;(n), and m(Aj ) = oo for each
confounder can be expected.

https://doi.org/10.1017/nws.2023.11 Published online by Cambridge University Press


https://doi.org/10.1017/nws.2023.11

Network Science 445

Example 2.3 (Ubiquity of Persistent Systems; Proof in Section D.2). Consider a process x(n) gen-
erated by the VAR(1) model? having B(z) = Bz~!. If B is diagonalizable, and has at least 2 distinct
eigenvalues, then x(n) is persistent. A proof of this fact is provided in the Appendix.

This example shows that the collection of finite VAR(p) systems which are not persistent are
pathological, in the sense that their system matrices have zero measure.

In order to eliminate the possibility of a particular sort of cancelation, an ad hoc assumption
is required. Strictly speaking, the persistence condition is not a necessary or sufficient condi-
tion for the following, but cases where the following fails to hold, and persistence does hold, are
unavoidable pathologies.

Assumption 2.1 (no-cancellation). Fix i, j € [N] and let Hi(z) be the strictly causal filter such that
Hi(2)xi(n) = Blxi(n) | )]

and similarly for Hj(z). Then define

Tiz)= Y ofAx(z )1 — Hi(z )1 — Hj(2))Ak(2) (14)
ke.o/ ()N (j)

where ak2 = Evi(n)>.

We will say that Assumption 2.1 is satisfied if for every i,j € [N], Tjj(2) is either constant over
z (i.e., each Z* coefficient for k € 7.\ {0} is 0), or is neither causal (i.e., containing only z=* terms,
for k> 0) or anti-causal (i.e., containing only ZF terms, for k> 0). Put succinctly, Tij(z) must be
two-sided.

Remark 2.4. Under the condition of persistence, the only way for Assumption 2.1 to fail is through
cancelation in the terms defining Tj;(z). For example, the condition is assured if x(n) is persistent,
and there is only a single confounder. Unfortunately, some pathological behavior resulting from
confounding nodes seems to be unavoidable without some assumptions (regarding sets of zero
measure) about the parameters of the MA(co) system defining x(n).

Proposition 2.7 (Pairwise Causation and Confounders). Fix i,j € [N] and suppose 3k € o7 (i) N
4 (j) which confounds i, j. Then, if Tjj(z) is not causal we have j ny i, and if Tij(z) is not anti-causal

PW | ) . o PW . PW .
we have i — j. Moreover, if Assumption 2.1 is satisfied, then j — i <= i — j.

Proof. Recalling Theorem 2.1, consider some y € %’jq(]_) | and represent it as y(n) = F(z)xj(n) for
some strictly causal filter F(z). Then

W (m) — By (n) | 22, xi(n) — Blxi(n) | 49

€ (F@x(n), xi(n) — Elxi(n) | 471)

Y F@Ri@vm + Y Au@vm), (- H@) (Au@vim) + Y Ael@vem))

ke (j) ted (i)

© Z (F2)Aik(2)vi(n), (1 — Hi(2)Aik(2)vi(n)),
ke ()N (j)

where (a) applies the orthogonality principle, (b) expands with Equation (8) with H;(z)xi(n) =

I@[x,-(n) | Jf;@l], and (c) follows by performing cancelations of v(n) L v¢(n) and noting that by
the contra-positive of Proposition 2.5 we cannot have i € &7(j) or j € <7 (i).

https://doi.org/10.1017/nws.2023.11 Published online by Cambridge University Press


https://doi.org/10.1017/nws.2023.11

446 R.J. Kinnear and R. R. Mazumdar

Through symmetric calculation, we can obtain the expression relevant to the determination of

i jforg e (%71(1)1 represented by the strictly causal filter G(z) : ¢(n) = G(2)x;(n)
(@(m) — Bl (n) | 77,1, x5(m) — Bl () | 77,))

= Z (G(2)Ai(2)vi(n), (1 — Hj(2))Ajik(2)vi(n))
ke ()N (j)

where Hj(2)x;j(n) = I@[xj(n) | %’;@1].
We have therefore

(2% i):3F() sit. Y (F@ARE)V(n), (1 — Hi(2)Ag(2)vi(n)) # 0 (15)
ke ()N (j)

(i% ):36(2) stt. Y {(G@AREV(), (1 — Hi(2)Aj(2)vi(n)) # 0 (16)
ket ()N (j)

The persistence condition, by Corollary D.1, ensures that for each k € o7 (i) N &7 (j) there is some
F(z) and some G(z) such that at least one of the above terms constituting the sum over k is non-
zero. It remains to eliminate the possibility of cancelation in the sum.

The adjoint of a linear filter C(z) is simply C(z~1), which recall is strictly anti-causal if C(z) is
strictly causal. Using this, we can write

> (F@ARE@)vi(n), (1 — Hi(2))Au(2)vi(n)
keo ()N (j)
= Y (A = Hilz ) F@AxE)i(n), vi(n))

ket ()Nt (j)
Moreover, it is sufficient to find some strictly causal F(z) of the form F(z)(1 — H;(z)) (abusing
notation) since 1 — Hj(z) is causal. Similarly for G(z2), this leads to symmetric expressions for j g
and i Y j respectively:

> Ak — Hiz ))F(2)(1 — Hi(2)Ak(2)vi(n), vi(n)) (17)
ke.o/ ()N (j)

Y (AkETH = Hiz7 )G — Hi(@)Aj(2)vi(n), vi(m) (18)
ke.of ()N ()

Recall the filter from Assumption 2.1
Tij(z) = Z oAz (1 — Hi(z1))(1 — Hj(2)Ai(2) (19)

ke o ()Nt (j)
Since each vi(n) is uncorrelated through time, (T;j(z)vi(n), vi(n)) = akz T;j(0), and therefore we
have j iy iif Tjj(z) is not causal and i iy j if Tjj(2) it not anti-causal. Moreover, we have iPﬁY»V jand

PW PW | PW |,

j— iif Tjj(z) is a constant. Therefore, under Assumption 2.1j — i <= i — j.
This follows since if Tjj(z) is not causal then 3k > 0 such that the Zk coefficient of Tij(z) is
non-zero, and we can choose strictly causal F(z) = 2z such that (D11) is non-zero and therefore

.PW .
j— i
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Figure 4. Black arrows indicate true parent-child relations. Red dotted arrows indicate pairwise causality (due to non-
parent relations), green dash-dotted arrows indicate bidirectional pairwise causality (due to the confounding node 1). Blue
groupings indicate each Py in Algorithm 1.

Similarly, if Tj;(z) is not anti-causal, then 3k > 0 such that the z7* coefficient of Tjj(2) is non-
zero, and we can choose strictly causal G(z) so that G(z™!) = ZF, and then (D12) is non-zero and

therefore i 5 j. O

. . . PW ..
Remark 2.5. The importance of this result is that when i — j is a result of a confounder k, then

PW . .PW . - . . -1 . -

i — j <= j— i. This implies that in a strongly causal graph every bidirectional pairwise causal-
ity relation must be the result of a confounder. Therefore, in a strongly causal graph, pairwise
causality analysis is immune to confounding (since we can safely remove all bidirectional edges).

2.7 Recovering ¢ via pairwise tests
We arrive at the main conclusion of the theoretical analysis in this paper.

Theorem 2.2 (Pairwise Recovery; Proof in Section D.3). If the Granger causality graph & for the
process x(n) is a strongly causal DAG and Assumption 2.1 holds, then & can be inferred from pair-
wise causality tests. The procedure can be carried out, assuming we have an oracle for pairwise
causality, via Algorithm (1).

Example 2.4. The set W of Algorithm 1 collects ancestor relations in ¢ (see Lemma D.5). In
reference to Figure 4, each of the solid black edges, as well as the dotted red edges will be included
in W, but not the bidirectional green dash-dotted edges, which we are able to exclude as results of
confounding. The groupings Py, . . ., P3 are also indicated in Figure 4.

The algorithm proceeds first with the parent-less nodes 1,2 on the initial iteration where the
edge (1, 3) is added to E. On the next iteration, the edges (3, 4), (2, 4), (3, 5) are added, and the false
edges (1,4), (1, 5) are excluded due to the paths 1 - 3 — 4 and 1 — 3 — 5 already being present.
Finally, edge (4, 6) is added, and the false (1, 6), (3, 6), (2, 6) edges are similarly excluded due to
the ordering of the inner loop.

That we need to proceed backwards through Py_, as in the inner loop on r can also be seen
from this example, where if instead we simply added the set

k
D = (e (UPer) x Peli™
r=1

to Ex then we would infer the false positive edge 1 — 4. Moreover, the same example shows that
simply using the set

, . PW
Dy ={(i,j) € Pr_y x P | i— j}

causes the edge 1 — 3 to be missed.
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Algorithm 1: Pairwise Granger Causality Algorithm

1 Algorithm: Pairwise Graph Recovery

input  : Pairwise Granger causality relations between a persistent process of
dimension N whose joint Granger causality relations are known to form
a strongly causal DAG ¥¢.
output : Edges & = {(i,j) € [N] x [N] | i 5§ j} of the graph ¢.
initialize: Sy = [N] # unprocessed nodes
Ey=0# edges of ¥
k=1# a counter
2 W () [ .5 i)
3 # parentless nodes
4 PBh{i€So|VseSy(s,i) gW}
s while S;_; # 0 do
6 # remove nodes with depth k—1
7| Sk Sie1 \ P
8 # candidate children
9 P {ie S| Vse S (s,i) g W}
10 Dy 0
11 forr=1,...,kdo

12 # currently known edges
13 0« E_1U(U)—y D)

14 Dkrk{(ivj)epk—rxpk|

15 (i,j) € W, no i — j path in Q}

16 # update E; with new edges
17 E.«+—E._ U (Ulif:l Dkr)
18 k< k+1

19 return £,

3. Simulations

We implement an heuristic inspired by Algorithm 1 by replacing the population statistics with
finite sample tests, the details of which can be found in the supplementary material Section B.5
(see Algorithm 2). The heuristic is essentially controlling the false discovery rate substantially
below what it would be with a threshold based pairwise scheme. The methods are easily paralleliz-
able, and can scale to graphs with thousands of nodes on simple personal computers. By contrast,
scaling the LASSO to this large of a network (millions of variables) is not trivial.

We first ran experiments using two separate graph topologies having N = 50 nodes, and with a
total of T samples drawn from the resulting system. The graphs we consider are a strongly causal
graph (SCG) and a directed acyclic graph (DAG), and the filters along each edges are constructed
by uniformly at random placing p = 5 poles in a disc of radius 3/4. We compare our results against
the adaptive LASSO (adaLASSO) (Zou, 2006), which, since it enjoys the oracle property should
be expected to, asymptotically, fully recover the underlying causality graph. Indeed, we found
early on that this LASSO variant drastically out-performed alternative LASSO-based procedures
including the ordinary LASSO, grouped LASSO, and elastic net by wide margins.

The usual methodology of applying the LASSO to Granger causality is to split the square
one-step-ahead prediction error into separate terms, one for each group of incident edges on a
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Figure 5. Representative random graph topologies on N =50 nodes.

node, and estimating the collection of N incident filters {B,-j(z) }Jlil that minimizes giLASSO in the
following:

Pmax N

e(n) = xij(n) — Z Z B; j(m)x(n — m)
m=1 j=1
1 T Pmax N (20)
LASSO . 2
§ANO0) =min - Y e+ )] Z |Bij(m)]
n=Pmax+1 m=1 j=1

1

£LASSO _ ‘{g‘{} [SiLASSO()L) + BIC(B}ASSO(A))]

where we are choosing A, the regularization parameters, via the Bayesian Information Criteria
(see, i.e., Claeskens et al. (2008)). This is similar to the work of Arnold et al. (2007), except that we
have replaced the LASSO with the better performing adaLASSO.

Remark 3.1 (Graph Topologies). We depict in Figure 5 some representative graph topologies used
in our empirical evaluation. To construct these graphs we first use simple Erdos-Renyi graphs
% (N, q) with N nodes and edge probability g, and then remove edges until the graph is acyclic.
For values of g close to %l, the resulting random graphs tend to have a topology which is, at least
qualitatively, close to the SCG. As the value of g increases, the random graphs deviate farther
from the SCG topology, and we therefore expect the LASSO to outperform PWGC for larger
values of g.

Remark 3.2 (MCC as a Support Recovery Measurement). We apply Matthew’s Correlation
Coefficient (MCC) (Matthews, 1975; Chicco & Jurman, 2020) as a statistic for measuring support
recovery performance (see also Chicco (2017) tip # 8). This statistic synthesizes the confusion
matrix into a single score appropriate for unbalanced labels and is calibrated to fall into the range
[ — 1, 1] with 1 being perfect performance, 0 being the performance of random selection, and —1
being perfectly opposed.

Remark 3.3 (Error Measurement). We estimate the out of sample 1-step ahead prediction error
by forming the variance matrix estimate

Tout
Suim o Y (<) = T x() K0T
out n=1

on a long stream of Ty samples of out-of-sample data. We then report the Log-Relative-Error:

where £, = ¥, is the best possible performance.
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Table 1. Simulation results—PWGC vs AdaLASSO

Metric LRE MCC
Algorithm alasso pwgc alasso pwgc
T q
50
SCG 1.71 1.55 0.46 0.55
0.04 1.97 1.77 0.41 0.53
0.08 2.95 2.72 0.36 0.39
0.32 9.02 8.17 0.14 0.10
250
SCG 1.30 1.18 0.70 0.81
0.04 1.40 1.31 0.68 0.76
0.08 2.49 2.21 0.55 0.57
0.32 8.67 7.62 0.18 0.15
1250
SCG 1.20 1.11 0.68 0.88
0.04 1.28 1.20 0.64 0.84
0.08 2.12 2.05 0.60 0.64
0.32 7.78 7.39 0.21 0.18

1. Results of Monte Carlo simulations comparing PWGC and AdaLASSO (N = 50, p = 5, pmax = 10) for
small samples and when the SCG assumption doesn’t hold. The superior result is bolded when the
difference is statistically significant, as measured by scipy.stats.ttest_rel. 100 iterations are
run for each set of parameters.

2. LRE: Log-Relative-Error, that is, the log sum of squared errors at each node relative to the strength
of the driving noise " {2 . MCC: Matthew’s Correlation Coefficient.

3. Values of g (edge probability) range between 2/N, 4/N, 16 /N where 2/N has the property that the
random graphs have on average the same number of edges as the SCG.

3.1 Results

Our first simulation results are summarized in Table 1. It is clear that the superior performance
of PWGC in comparison to AdaLASSO is as a result of limiting the false discovery rate. It is
unsurprising that PWGC exhibits superior performance when the graph is an SCG, but even in
the case of more general DAGs, the PWGC heuristic is still able to more reliably uncover the graph
structure for small values of g. We would conjecture that for small g, random graphs are “likely”
to be “close” to SCGs in some appropriate sense. As q increases, there are simply not enough edges
allowed by the SCG topology for it to be possible to accurately recover ¥.

Figures 6 and 7 provide an empirical analysis of how the algorithm scales with increasing N,
and for a small number of training samples T. It is surprising that even for general DAGs (which
don’t necessarily have the SCG property) performance degrades extremely slowly with respect to
N, and that performance is markedly better than random even when N > T. These observations
are reminiscent of results for the LASSO algorithm applied to linear regression (Tibshirani et al.,
2015). For example, under certain conditions, it holds that

5 N
||BLasso — B*113 = 6’(? InN)
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Figure 6. Measures support recovery performance as the number of nodes N increases, and the edge proportion as well
as the number of samples T is held fixed. Remarkably, the degradation as N increases is limited, it is primarily the graph
topology (SCG or non-SCG) as well as the level of sparsity (measured by g) which are the determining factors for support
recovery performance.

where s is the number of non-zero parameters of 8* in the ground-truth linear regression model
(Wainwright, 2009).

Additional experimental results, and a detailed description of the heuristic algorithm based on
the theory of Section 2.7 is available in Appendix C.

4. Application example: Alcoholism classification from EEG networks

As was reviewed in the introduction to this paper, Granger causality analysis is frequently utilized
for the analysis of brain connectivity networks in Neuroscience. This application is by now well
established (Bressler & Seth, 2011), but is not without criticism. In particular, the critical paper of
Haufe et al. (2013) states that “Many problems in neuroimaging (such as brain connectivity analysis)
are inherently unsupervised, which means that the ‘ground truth’ cannot be retrieved. In these cases,
simulations are the only way to benchmark a method’s ability to solve the task if theoretical results
are not available, while a neuroscientific finding on real data that matches prior expectations should
not be mistaken for a proof-of-concept of the method.” This critical point has clear merit. Indeed,
the motivation behind the simulation results of Section 3 is to apply our methodology to real data
in a situation where we can identify the ground truth (since we constructed it), and therefore make
certain types of comparisons between algorithms.

In the present application example, we challenge this dichotomy. We apply the Granger causal-
ity inference heuristic derived in this paper to construct estimates of signal space EEG causality
networks for a large number of patients. A proportion of the patients in the data set have alco-
holism, and we will show that, using only the inferred causality network, a logistic regression
classifier can be constructed which discriminates between networks calculated from control sub-
jects, and alcoholic subjects. The fact that it is possible to successfully perform this classification,
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Figure 7. Provides a support recovery comparison for very small values of, T typical for many applications. The system has
a fixed number N = 50 nodes.

at a rate better than random, is evidence that the Granger causality analysis detects and recovers
consistent differences in the GCG networks of control and alcoholic EEG readings. This mode of
analyzing the validity of a causality inference algorithm is a third method, conceptually distinct
from the theory-or-simulation dichotomy identified by Haufe et al. (2013).

The data set we make use of was obtained from the “EEG Database Data Set”® (Zhang et al.,
1995) from the UCI machine learning repository (Dua & Graff, 2017). This data set contains 1s
long measurements of 64 channel EEG signals from patients who are given visual stimuli. The
original data set contributors have filtered the frequencies of the recorded signals to lie between
0.02 and 50 Hz, and removed samples having excessive artifacts. As well as various important
pre-processing steps particular to EEG data.

Precisely, the data set is described by

9 = {(x(i)(n))le, z(i)}ﬁi1

where T = 256, x)(n) € R, z() e {control, alcoholic}, and N = 10,723. That is, x\?(n) is the EEG
recordings of example i, and z” is a binary marker indicating the presence or absence of alco-
holism in the subject. There are on average 90 trials for each subject, ranging between 30 and 119.

Applying a Granger causality inference algorithm to this data set results in a derivative data
set 7 = {A®), z(i)}fi 1» where AW € {0, 1}4%64 js the adjacency matrix of the estimated causality
network 4 from example i.

By fitting a classifier clf : ¢ — {control, alcoholic}, which uses only the information available in
the estimated causality network, we are able to make inference about whether or not the estimated
causality graphs G are uncovering relevant factors.
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Figure 8. Is a low-dimensional embedding representing the classification of alcoholic and non-alcoholic subjects based
entirely on the Granger causality graphs constructed from EEG signals. Figure 8b further illustrates a classification task using
EEG causality graphs. In this case, one particular subject can be almost perfectly separated from another particular subject
with a binary classifier. These results indicate the causality graph carries consistent and identifiable cross-subject patterns.

4.1 Classifier methodology and evaluation

The classifier we apply is an off-the-shelf polynomial kernel logistic regression model:
sklearn.linear_model.LogisticRegression (Pedregosa et al., 2011), using a Nystroem
kernel approximation (with 240 components): sklearn.kernel_approximation.
Nystroem(kernel = ‘poly’). Hyperparameters are chosen via 10-fold cross validation
with Bayesian Optimization (Kumar & Head, 2017), using 80% of the data. The remaining 20% of
the data is held out for a final validation step. A polynomial kernel is natural for this task since the
input features are binary (the adjacency matrix); a kernel degree of, say, 3, indicates that graphical
substructures no more complicated than triangles can be used by the classifier. Similarly to our
simulation results, we use the MCC as the metric for evaluation.

As a final verification, a label permutation test (“Test 1” in Ojala & Garriga (2010)) is applied
to verify that A®) and (z(") are not independent, and to alleviate the fear that the classifier may
simply be picking up on spurious patterns in the estimated causality graphs. This test consists of
refit our classifier on randomly relabeled data and comparing the results those of the classifier fit
on the correctly labeled data. An inability of the model to accurately discriminate between the
labels in an incorrectly labeled data set is further evidence that accurate classification is not simply
a result of overfitting or of picking up on spurious variation in the data A,

4.2 Results

The final value of the MCC for the alcoholism classification task, computed on a 10-fold cross
validation is MCC = 0.305, with the individual folds falling into the interval [0.229, 0.396]. The
MCC obtained on the final held-out validation set (i.e., data which was not used for picking any
model parameters) was 0.29. The p-value estimated from the label permutation test satisfies p <
0.01 and where the average MCC obtained on the validation data, by the 100 classifiers fit on data
with randomly permuted labels, was zero through two decimal places. While the performance of
the classifier is not exemplary, these results establish clearly that the performance is statistically
significantly better than random.

The EEG alcoholism data set has other potential classification labels. One natural example is
to classify the subject label. That is, to identify the subject to which the EEG example belongs
(each subject had multiple EEG recordings taken). We do not report the details as the task is
considerably easier and the methodology is similar to that described in Section 4.1. However, a
classifier trained on any two specific subjects is able to discern out-of-sample causality graphs
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between the two subjects with almost perfect accuracy. Specifically, we obtained an MCC of 0.99
and the p-value estimated by a permutation test satisfied p < 0.001.

An illustration of the alcoholism classifier, as well as a particular example from the subject-
subject classifier is provided in Figure 8. The visualization is constructed by projecting onto two
basis dimensions by partial least squares (a supervised dimensionality reduction technique). These
visualizations are provided entirely for qualitative context, but drawing substantive conclusions
from them is not appropriate. In particular, the low-dimensional visualization does not necessarily
accurately capture the high-dimensional decision surface utilized by the classifiers.

5. Conclusion

We have argued that considering particular topological properties of Granger causality networks
can provide substantial insights into the structure of causality graphs with potential for providing
improvements to causality graph estimation when structural assumptions are met. In particu-
lar, the notion of a strongly causal graph has been exploited to establish conditions under which
pairwise causality testing alone is sufficient for recovering a complete Granger causality graph.
Moreover, examples from the literature suggest that such topological assumptions may be reason-
able in some applications. And secondly, even when the strong causality assumption is not met, we
have provided simulation evidence to suggest that our pairwise testing algorithm PWGC can still
outperform the LASSO and adaLASSO, both of which are commonly employed in applications.

In addition to this simulation study, we have constructed an application example using EEG
data. In this example, we use off-the-shelf machine learning classifiers to detect the presence
or absence of alcoholism based entirely upon the Granger causality graph topology. While this
alcoholism classification task is quite challenging, we demonstrate that classifying between dis-
tinct subjects in the study, again based only upon the inferred Granger causality graphs, is easy:
such classifiers can obtain nearly 100% accuracy. This evidence demonstrates that consistent and
meaningful features are being extracted by the Granger causality analysis.

We emphasize that the causality graph topology is one of the key defining features of time series
analysis in comparison to standard multivariate regression and therefore advocate for further
study of how different topological assumptions may impact the recovery of causality graphs.

Competing interests. None.
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Notes

1 We are using the convention that B;;(z) is a filter with input x;( - ) and output x;( - ) so as to write the action of the system as
B(2)x(n) with x(n) as a column vector. This competes with the usual convention for adjacency matrices where A;; = 1 if there
is an edge (i, j). In our case, the sparsity pattern of B;; is the transposed conventional adjacency matrix.

2 Recall that any VAR(p) model with p < oo can be written as a VAR(1) model, so we lose little generality in considering this
case.

3 http://archive.ics.uci.edu/ml/datasets/EEG+Database
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