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Abstract

Background: Tumour immunotherapy holds great promise as a treatment for cancer, which
ranks as the second highest cause of mortality worldwide. This therapeutic approach can be
broadly categorized into two main types: active immunotherapy and passive or adoptive
immunotherapy. Active immunotherapy, such as cancer vaccines, stimulates the patients’
immune system to target tumour cells. On the other hand, adoptive immunotherapy involves
supplying in vitro activated immune cells, such as T cells, natural killer cells andmacrophages, to
the patient to combat the tumour. Induced pluripotent stem cells are extensively utilized in both
active and adoptive tumour immunotherapy due to their pluripotency and ease of gene editing.
They can be differentiated into various types of immune cells for direct cancer treatment and can
also function as tumour vaccines to elicit an immune response against the tumour. Importantly,
iPSCs can be leveraged to develop off-the-shelf allogenic immunotherapy products.
Conclusion: This article provides a comprehensive review of the application of iPSCs in tumor
immunotherapy, along with a discussion of the opportunities and challenges in this evolving
field.

Introduction

In 2006, Yamanaka’s team from Kyoto University made a significant breakthrough by demon-
strating the induction of pluripotent cells from mouse fibroblasts through the retroviral introduc-
tion of four transcription factors –Oct3/4, Sox2, c-Myc andKlf4 – collectively known as Yamanaka
factors (Ref. 1). These reprogrammed cells, termed induced pluripotent stem cells (iPSCs), exhibit
many similar characteristics to embryonic stem cells (ESCs) but without the ethical controversies
associatedwith the latter. Furthermore, iPSCs offer two additional key advantages for their practical
application: high pluripotency and facile gene-editing capabilities. Their high pluripotency enables
their differentiation into various target cell types, while their amenability to gene editing makes
them valuable for disease modelling and investigating the function of mutant genes. As a result,
iPSCs hold great promise for diverse applications in regenerativemedicine, including tissue and cell
replacement, disease modelling, understanding of pathogenesis, development and selection of
therapeutic drugs and even organ synthesis (Ref. 2). This breakthrough in iPSC technology has
ushered in a new era of stem cell therapy, culminating in the awarding of the 2012 Nobel Prize in
Physiology or Medicine to Shinya Yamanaka and John Gurdon for their pioneering discovery that
mature cells can be reprogrammed to become pluripotent (Ref. 3).

The development of iPSCs has sparked significant interest due to their potential applications.
To enhance the safety and efficacy of this technology, extensive efforts have been directed towards
replacing the oncogenes c-Myc and Klf4 with non-viral small molecules or proteins, thereby
avoiding the introduction of exogenous genes (Ref. 4). As a result, a variety of commercially
available culture media have been established to facilitate the generation of iPSCs from diverse
somatic cell types, as illustrated in Figure 1, paving the way for clinical applications.

Tumours represent the second leading cause of death globally (Ref. 5). The conventional
approaches of surgery, chemotherapy and radiotherapy have long been the mainstays of cancer
treatment (Ref. 6), yet their efficacy in advanced or recurrent tumours remains limited. Both basic
and clinical research have underscored the pivotal role of the tumour microenvironment,
comprising cancerous, stromal and immune cells, in driving cancer progression. Recent studies
have demonstrated the potential of immunotherapies in targeting the tumourmicroenvironment
and enhancing the clinical management of oral cancer (Ref. 7). Immunotherapy has emerged as a
promising avenue for the treatment of advanced or recurrent tumours, aiming to harness the host
immune system to confer passive or active immunity against malignant tumours. Passive
immunity involves the ex vivo activation and transfer of immune cells to patients, exemplified
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by chimeric antigen receptor (CAR)-T therapy, while active
immunity entails in vivo activation of patients’ own immune cells
through exposure to a foreign antigen, as seen in cancer vaccines.

The use of iPSCs in tumour immunotherapy is a promising area
of research to conquer the challenges associated with obtaining
sufficient numbers and the high cost of autologous immune cells.
iPSCs possess pluripotency, allowing them to differentiate into
various immune cells, including T cells, natural killer (NK) cells,
macrophages and dendritic cells (DCs), as illustrated in Figure 2.
Their genetic modification capabilities enable the replication of gene
mutations found in patients, facilitating the study of mutation func-
tion. Furthermore, iPSCs can be modified to develop allogeneic off-
the-shelf immunotherapy drugs, evading allogeneic immune

rejection and reducing the risk of graft-versus-host disease
(GvHD). The application of iPSCs in tumour immunotherapy pre-
sents opportunities for the development of personalized treatments,
but also comes with challenges that need to be addressed. We
summarized the published pre-clinical and clinical studies of iPSC
in tumour immunotherapy in Table 1 and discussed them in detail
in the following.

iPSC-derived NK cells

NK cells that mature in the bonemarrow are the first defence line of
our body. In the realm of traditional NK cell immunotherapy
research, the sources of NK cells have primarily been peripheral

Figure 1. Schematic presentation of the methods and process for iPSCs production.

Figure 2. Schematic presentation of iPSCs differentiation into immune cells.
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blood, umbilical cord blood and immortalized cell lines. While
umbilical cord blood contains a higher proportion of NK cells
compared to peripheral blood, obtaining a sufficient quantity
for cell therapy remains challenging (Ref. 8). Immortalized NK
cell lines, on the other hand, often exhibit limitations, such as
the absence of CD16 for mediating antibody-dependent cyto-
toxicity or weakened cytotoxicity due to irradiation before
patient transfer (Refs. 9, 10). In light of these challenges, iPSCs
have emerged as a promising source of NK cells. By deriving
iPSCs from a small number of somatic cells and subsequently
differentiating them into NK cells, the cost and labour associ-
ated with autologous NK cell therapy can be significantly
reduced (Refs. 11, 12).

Over the past decade, significant progress has been made in the
differentiation of iPSCs into NK cells. Drawing from the method-
ology used for ESCs differentiation, iPSCs differentiation to NK
cells (iNK) has advanced considerably (Ref. 13). Initially, iPSCs
differentiation relied onmouse stromal cell lines as feeder cells, with
the process taking ~2 months (Ref. 14). However, concerns regard-
ing unknown factors secreted by the feeder cells prompted a shift
towards feeder-free methods. A breakthrough came in 2013 when a
new approach involving the formation of embryoid bodies (EBs)
without feeder layer cells, followed by cytokine-directed differen-
tiation, was proposed (Ref. 15). Thismethod eliminated the reliance
on feeder layer cells and opened up possibilities for the mass
production of differentiated NK cells. In order to keep the consist-
ency between batches, the number of iPSCs and the speed of
centrifugation used to form EBs should be constant. Subsequent
advancements in 2019 introduced the use of Rho-related protein
kinase inhibitors, resulting in shortened differentiation times and
increased efficacy. Additionally, a separate protocol demonstrated
the differentiation of iPSCs into a mixed cell population of NK/in-
nate lymphoid cells, showing promising results in amousemodel of
ovarian cancer (Ref. 16). These findings have paved the way for the

clinical use of iPSC-derived NK cells, offering potential for thera-
peutic applications.

Compared to traditional sources of NK cells, iNK cells offer a
homogeneous and highly standardized alternative that is convenient
for gene editing. Unlike blood NK cells, which can vary between
donors and even within the same donor at different stages, iNK cells
maintain high consistency due to the controlled iPSC characteristics
and differentiation conditions.Additionally, gene editing of iNK cells
can be performed during the iPSC stage, making it easier to operate
compared to directly editing primary NK cells. This allows for the
passage of edited genes to differentiated cells, resulting in homogen-
ous engineered NK cells across multiple batches (Ref. 17). Pre-
clinical and clinical trials implementing iPSCs, including iNK, are
currently underway for various diseases (Ref. 18). Themost common
use of iPS-NK cells is in the form of iPS-CAR-NK or CAR-iNK
against cancer, such as CD276-targeted CAR-iNK cells against
human oesophageal squamous cell carcinoma and MUC1-targeted
CAR-iNK cells against human tongue squamous cell carcinoma.
Both of them have demonstrated effective anti-tumour efficacy
(Refs. 19, 20). In addition to the direct cytotoxicity to tumour cells,
iNK can also recruit T cells into tumour tissues and, thus, enhance the
efficacy of anti-PD1 therapy (Ref. 21). However, it is important to
note that iNK cells have disadvantages as well. Researchers have
found that due to immaturity and imbalance of activating and
inhibitory NK cell receptors, iNK cells are sensitive to the cytotoxic
potential of autologousNKcells, leading to reduced therapeutic effect
and short internal duration of iNK cells in vivo (Ref. 22).

iPSC-derived T cells

T cells, matured in the thymus, are the main ingredient of lympho-
cytes. Currently, CAR-T cell therapies approved for commercial use
have demonstrated significant efficacy in treating haematological
malignancies, particularly in patients with advanced-stage tumours
that have relapsed or are refractory to other treatments. These
therapies typically utilize the patient’s own T cells as a starting
material. However, autologous T cells present challenges, such as
manufacturing delays, high production costs, standardization dif-
ficulties and potential production failures due to T-cell dysfunction
in the patient. For solid tumours, CAR-T cell therapies are not as
effective as in haematological malignancies because the acidic and
hypoxic microenvironment inhibits the expansion and persistence
of most T cells. Recently, researchers found that central memory T
cells (TCMs) have superior expansion and persistence ability in a
solid tumour environment. Stem cell memory T cells are evenmore
effective than TCMs in solid tumours (Refs. 23–25). Therefore,
iPSCs are considered a good candidate for solving these problems.

The differentiation of T cells from iPSCs presents a promising
avenue akin to the success of iNK. However, it is noteworthy
that the differentiation process of iPSCs to T cells is notably more
intricate and time-consuming compared to iNK cells. Both
methods necessitate EB formation and haematopoietic progenitor
cell (HPC) differentiation as initial steps (Ref. 26). Notch signalling
transduction plays a pivotal role in the differentiation and matur-
ation of T cells from HPCs, with Delta-like ligand 4 shown to
induce high-level Notch signalling crucial for desired T-cell pro-
duction (Ref. 27). Cytokines, such as Flt3L, interleukin (IL)-7 and
OP9-DL1, are also essential in the differentiation process, leading to
the production of pro-T cells that can be activated to obtain mature
T cells (Ref. 28). The use of artificial thymus organs, simulating the
thymic environment, provides a unique innovation for T-cell dif-
ferentiation, offering a flexible approach for iPSCs to differentiate

Table 1. Summarization of the process of iPSCs’ utilization in tumour
immunotherapy

Stages Key points Detail factors

Induction Starting cells Blood cells, fibroblasts, endothelial
cells and so forth

Generation
technology

Ectopic expression of transcription
factors, episomal plasmid, mRNA,
micro-RNAs, proteins and small
molecules

Gene editing Gene correction, gene insertion, gene
knockdown and gene activation

Differentiation Progenitor cell
differentiation

Haematopoietic progenitor cell for
immune cell differentiation

Tissue-specific progenitor cell for
tumour vaccine

Target cell
differentiation

Immune cells: T cells, NK cells,
macrophages and DCs

Tissue-specific tumour cell

Target cell
characterization

Purity and function

Application Immune cell
therapy

CAR or TCR-T/NK/macrophage,
antigen presentation and so forth

Cancer vaccine Activation of the receptor’s immune
response to the tumour

Expert Reviews in Molecular Medicine 3

https://doi.org/10.1017/erm.2025.10006 Published online by Cambridge University Press

https://doi.org/10.1017/erm.2025.10006


into mature T cells (Refs. 29, 30). Furthermore, the removal of
feeder cells and foetal bovine serum during the differentiation
process for clinical immunotherapy is imperative. Researchers
incorporate Notch ligands into the culture system using proteins
as carriers to avoid feeder layer cells (Ref. 31). Challenges also exist
regarding the random T-cell receptors (TCRs) of iPSC-derived
T cells (iT), prompting the induction of T-iPSCs from donor
effector T cells to ensure similar TCR expression (Refs. 28, 32).
Alternatively, the ectopic expression of TCR genes in iPSCs through
gene-editingmethods has been explored to generate tumour antigen-
specific cytotoxic T lymphocytes (CTLs) (Refs. 33–35). As research
progresses, simplifying the process of T-cell differentiation and
improving the function remain imperative for iT cells’ large-scale
clinical applications (Ref. 36).

To avoid the immune rejection of allogenic iPSC-derived CAR-T
cells, also known as CAR-iT, researchers have deleted β2-microglo-
bulin, class-II major histocompatibility complex (MHC) trans
activator and NK cell-ligand poliovirus receptor CD155, while over-
expressing single-chain MHC class-I antigen E in iPSCs. These
modifications allow the resulting CD20 CAR-iT cells to evade rec-
ognition by various immune cells andmaintain anti-tumour potency
in pre-clinical models. To enhance the proliferation and persistence
of effector T cells within solid tumours, researchers knock out the
diacylglycerol kinase gene and transduce genes encodingmembrane-
bound IL-15 and its receptor subunit IL-15Rα to CAR-iT cells. These
engineered CAR-iT cells have demonstrated therapeutic outcomes
comparable to primary CD8+ T cells bearing the same CAR in
multiple animal models with tumours. These advancements hold
promise for improving the effectiveness of CAR T-cell immunother-
apies against solid tumours (Refs. 37, 38). Additionally, to prevent
GvHD, researchers deleted TCRby knocking out the TCR α constant
gene and found that no GvHD occurred (Refs. 39, 40).

In light of current advancements, it is evident that iPSCs-T,
when coupled with CARs (CAR-iT), are still in the nascent stages of
development and warrant additional pre-clinical and clinical inves-
tigations (Ref. 41).

iPSCs-derived macrophages

Macrophages play a crucial role as major innate immune cells,
contributing to various functions in immunity, inflammation and
tissue repair. Their significant phagocytic ability, antigen-presenting
activity and secretion of cytokines and chemokines enable them to
effectively infiltrate dense tissues and accumulate in tumours. In fact,
macrophages represent the largest population of immune infiltrates in
solid cancers, constituting nearly 50% of the cell mass in most cases
(Ref. 42). These characteristics position macrophages as promising
candidates for manipulation in tumour immunotherapy (Ref. 43).
However, despite the progress made in macrophage immunother-
apy, there are notable concerns, such as limited cell resources,
resistance to gene transfer and potential inflammatory pathology,
which currently hinder their application as potent cancer
immunotherapy (Ref. 42). The integration of iPSCs preparation
and genetic editing technology offers the potential for solving
these problems and developing next-generation macrophages
with specific tumour antigen recognition units, feasible genetic
modification and enhanced expansion capability (Refs. 44, 45).

As mature tissue-resident macrophages are derived from yolk-
sac (YS) macrophages that arise from YS progenitors during
embryogenesis, iPSCs need to undergo a process similar to
YS-haematopoiesis to get functional macrophages in vitro. Differ-
entiation protocols commonly utilize EB-based or monolayer-

basedmethods, with studies indicating that themonolayer-directed
approach yields a significantly higher quantity of macrophages
compared to the EB-based method (Refs. 46, 47). These methods
differentiatedmacrophages are primarymacrophages, and they can
terminally differentiate into specialized mature macrophages
in vivo or with the help of organ cues in vitro (Ref. 46).

Macrophages have shown promise as targets for CAR technology
due to their potential to infiltrate and influence solid malignancies
(Ref. 48). A notable development in this area is the CAR-expressing
macrophages (CAR-iMacs) technologyplatformderived from iPSCs,
which confers antigen-dependent macrophage functions and
demonstrates anti-tumour activity in vivo (Ref. 49). Before the
usage of CAR-iMacs in tumour immunotherapy, researchers
should guarantee that these CAR-iMacs are M1 subtype and have
pro-inflammatory responses, asmost of the primarymacrophages
that are derived from iPSCs are M2 subtype. The direct method to
convert M2 macrophages to M1 subtype is stimulation by lipo-
polysaccharide (LPS) or interferon-γ in vitro. One study showed
that Anti-CD19-CAR-iMacs exhibit enhanced and antigen-
dependent phagocytosis, with increased pro-inflammatory responses
when co-cultured with CD19+ tumour cells or tumour cells from
patients with leukaemia (Ref. 50). Additionally, another research
demonstrated that ACOD1-depleted CAR-iMacs showed enhanced
capacity in repressing tumours and increased survival in ovarian or
pancreatic cancer mouse models, especially when combined with
immune checkpoint inhibitors (ICIs) (Ref. 51). Mechanistically,
depletion of ACOD1 reduces levels of the immuno-metabolite ita-
conate and allows KEAP1 to prevent Nuclear factor erythroid 2-
related factor 2 (NRF2) from entering the nucleus to activate an anti-
inflammatory programme. Furthermore, another research group
improved the structure of CAR with the addition of a Toll-like
receptor 4 (TLR4) intracellular Toll/IL-1R (TIR) domain in the
intracellular activation domain (Ref. 52). Mechanistically, once
stimulated by LPS, TLR4 interacts with adaptor molecules via its
TIR signal transduction domain and leads to nuclear translocation of
nuclear factor kappa B/p65, promoting the expression of pro-
inflammatory cytokines (Ref. 53). Researchers found that introdu-
cing this domain into the CAR would increase the M1-like pheno-
type of iMacs upon engaging antigens and improve anti-tumour
efficacy (Ref. 52).

iPSC-derived DCs

DCs derived from the bone marrow play a crucial role as the
primary antigen-presenting cells within the immune system, facili-
tating the initiation and coordination of immune responses (Ref.
54). These cells are heterogeneous in nature and can be broadly
categorized into different groups: conventional or classical DCs,
plasmacytoid DCs, inflammatory DCs, and Langerhans cells (Ref.
55). DCs have extracellular and intracellular pattern recognition
receptors that can identify danger signals. After sensing danger
signals, DCs can be activated to endocytic or phagocytic antigens
and present them to both CD4+ and CD8+ T cells. The activated
DCs can also secrete cytokines and chemokines to recruit T cells.
These features enable DCs to be utilized in the development of
immunogenic vaccines for targeted disease treatments, such as
cancer (Refs. 56, 57). In the field of cancer treatment, DCs loaded
with tumour-specific antigens are utilized as a form of cancer
immunotherapy. In 2010, the US Food and Drug Administration
approved Sipuleucel-T (Provenge®), the DC-based vaccine to treat
prostate cancer patients. It has increased the average overall sur-
vival of hormone-refractory prostate cancer patients for about
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4 months (Ref. 58). Besides prostate cancer, lots of clinical trials of
DCs vaccines are also proceeding on many other tumour types,
such as ovarian cancer, gastric cancer lung cancer and so forth.

However, challenges in sourcing DCs from conventional ori-
gins, such as the bone marrow, peripheral blood and cord blood,
have significantly impeded their routine application (Ref. 59).
With high differentiation ability, iPSCs offer a promising alterna-
tive for generating ample quantities of DCs (iDCs) suitable for
basic and preclinical studies (Ref. 60). As DCs are haematopoietic
cells, the initial differentiation of DCs from iPSCs involves the
generation of HPCs. After HPCs, many different cytokines are
used to stimulate DC specification and maturation, such as basic
fibroblast growth factor, bonemorphogenic protein 4, fms-related
tyrosine kinase 3 ligand, stem cell factor, TLR, tumour necrosis
factor alpha, thrombopoietin and so forth. OP9 cells or Matrigel is
used to coculture with the differentiated cells. Therefore, various
research groups have endeavoured to establish DC differentiation
protocols from human iPSCs, with differences in timelines,
feeder/Xeno-free conditions and yields among these protocols
(Refs. 61–71).

The iDC-based vaccines also showed efficacy in cancer treatment.
For example, fully matured iDCs expressing tumour-associated anti-
gens have been shown to present specific peptides to MHC I and
induceCTL stimulation in immunizedmice (Ref. 72). Another study
has indicated that granulocyte–macrophage colony-stimulating fac-
tor producing iDCs can suppress myeloid-derived suppressor cells
and facilitate a CTL-mediated anti-tumour response (Ref. 73).
Recent research has shown that, in combination with local radio-
therapy, in situ-delivered iDCs exhibit an enhanced ability tomigrate
to tumour-draining lymph nodes, interact with T cells, promote CTL
infiltration and sensitize programmed death ligand-1 blockade. This
result suggested that the iDC vaccine can combine with radiotherapy
and ICIs to improve anti-tumour efficacy (Ref. 74).

While human-engineered iDCs have achieved progress in pre-
clinical settings, there are still some concerns that need to be
addressed. The first one is to increase differentiation efficacy; the
development of bioinformatic methods and information generated
by single-cell transcriptomics and proteomics can help the discov-
ery of important molecules in the differentiation of DCs, and the
usage of thesemoleculesmay increase the yield of iDCs. The second
one is to decrease the cost of producing iDCs. The replacement of
cytokines with small chemical molecules can reduce the costs of the
differentiation process.

iPSC-derived cancer vaccines

Besides iDC-based cancer vaccines, iPSCs alone can also be used as
cancer vaccines, as previous studies have identified numerous
similarities between iPSCs and tumour cells, including the capacity
for self-renewal and infinite cellular proliferation, high telomerase
activity promoting telomere elongation and a metabolic pattern
characterized by glycolysis in response to rapid proliferation (Ref.
75). The four Yamanaka transcription factors (Oct4, Sox2, Klf4 and
c-Myc) that are used in iPSC induction contribute to the carcino-
genesis of iPSCs. Overexpression of Oct4 can induce miR-125b
expression to prevent tumour cell apoptosis and maintain the
stemness of many types of cancer cells (Refs. 76, 77). Sox2 can form
a heterodimer withOct4 and downregulate the expression of CDX2
to help maintain the stem-like state of tumour cells (Ref. 78). Klf4
can also help convert cancer cells into a stem-like state through
increasing the expression of E-cadherin (Ref. 79). c-Myc is a well-
defined oncogene.

While recent clinical results have shown promise for cancer cell
vaccines in treating cancer, their efficacy against established
tumours remains limited, and personalized vaccines based on a
patient’s unique neoantigens can be time-consuming to produce.
Patient somatic cell-derived iPSCs can be used as personalized
cancer vaccines both in prevention and in treatment. In 2018,
Kooreman et al. made a significant advancement by identifying
that vaccination of mice with iPSCs induces prophylactic and
therapeutic anti-cancer immunity to shared antigens, suggesting
a potential avenue for the rapid development of iPSC-based per-
sonalized cancer vaccines (Ref. 80). Later studies have improved the
therapeutic efficacy of iPSC-based cancer vaccines in different
ways. For instance, neoantigen-engineered iPSC cancer vaccines
have demonstrated the ability to trigger neoantigen-specific T-cell
responses and improve the therapeutic efficacy of radiotherapy in
poorly immunogenic colorectal cancer and triple-negative breast
cancer (Ref. 81). Additionally, researchers have explored the use of
iPSC-differentiated tumour cells as a potential tumour vaccine,
achieving promising results in orthotopic mouse models of pan-
creatic and lung cancer (Refs. 82, 83).

Opportunities and challenges

The utilization of autologous immune cells in cancer therapy is
widely known to be both costly and time-consuming, posing
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Figure 3. Overview of iPSC-derived immunotherapy.
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challenges for patients who require immediate treatment. Fortu-
nately, the combination of iPSC technology with gene-editing
technology holds great promise in addressing these issues by enab-
ling the production of allogenic off-the-shelf immune cell products,
as illustrated in Figure 3.

With the development of iPSC technology, the reprogramming
of somatic and cancer cells into iPSCs has become increasingly
feasible. The successful application of small-molecule cocktails
during the inducing process further enhanced the safety and clinical
potential of iPSCs (Ref. 84). These also led to the establishment of
numerous iPSC banks in different regions. Researchers collected
human leukocyte antigen homozygous donors’ somatic cells that
cover the largest population to construct iPSC banks (Ref. 85). Cells
in these banks can be used as starting cell sources to develop
allogeneic cell products and are widely used in regenerative medi-
cine, disease modelling and drug discovery (Refs. 86–89).

Although iPSCs conquer the ethical problems faced by ES cells,
their clinical application still faces regulatory challenges. Based on
the process for the generation of iPSCs and differentiation into
target cells, the regulatory process should be divided into four
stages (Ref. 90]. The first stage is starting the cell source. Different
starting cells have different features and differentiation prefer-
ences; therefore, researchers should choose specific starting cells
based on their objectives. The second stage is the reprogramming
process. In this stage, researchers should focus on the reprogram-
ming objectives and techniques used for reprogramming. Different
reprogramming targets should choose different reprogramming
techniques. The third stage is expansion and banking. In this
stage, researchers should characterize the induced cells and ensure
their stability. The last stage is the final product characterization.
Researchers should guarantee the identity, stability, activity/
potency and safety of the final product. The most important safety
concern is tumorigenicity. Several reasons cause tumorigenicity;
one of them is the low differentiation efficiency of iPSCs, which
leads to the presence of undifferentiated or immature cells in the
final products, and uncontrolled proliferation of these cells can
lead to tumour formation. Reprogramming factors used in iPSC
production have also been found to improve tumorigenesis as they
activate oncogenes during the induction of pluripotency. The
unpredictable genetic changes in iPSCs during the reprogramming
or differentiation process further increased the risk of tumorigen-
icity. To alleviate this risk, researchers should consider the intro-
duction of a suicide switch system, such as Herpes simplex virus
thymidine/Ganciclovir and inducible caspase9 to iPSCs to prevent
tumorigenesis.

As discussed previously, lots of work still needs to be done before
iPSC-derived final cell products can be widely adopted for clinical
application. Fortunately, the establishment of iPSC banks has alle-
viated the regulatory challenge in the first three stages if researchers
choose cells from these banks.
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