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1. Introduction

Algebras of generalized functions, in particular Colombeau algebras, are a versatile tool
for studying singular problems in analysis, geometry and mathematical physics (see, for
example, [8, 9, 14, 24]). Over the past decade there has been increased interest in the
structural theory of such algebras, in particular concerning topological and functional
analytic aspects of the theory (see, for example, [10–12,27,28]). Furthermore, starting
with the fundamental paper [1], algebraic properties, both of the ring of Colombeau
generalized functions and of Colombeau algebras, have become a main line of research [1,
2,29,30].

From the very outset, certain questions of an algebraic nature have played an impor-
tant role in Colombeau theory. Among them is the solution of algebraic equations in
generalized functions. In the standard (special or full) version of the theory, polynomials
have additional roots when considered as generalized functions. These roots are obtained
by mixing classical roots. For example, apart from its classical solutions ±1, the equa-
tion x2 = 1 additionally has the generalized root given by the equivalence class of (xε)ε

with xε = 1 for ε ∈ Q and xε = −1 for ε �∈ Q. Usually, such additional roots are an
unwanted phenomenon (cf. the discussion in [4, Chapter 1.10]). They can be avoided by
demanding continuous dependence of representatives on the regularization parameter ε

(see [25, Proposition 12.2]). More generally, one can show that algebraic equations only
possess classical solutions in a setting with continuous parameter dependence [22].
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Apart from avoiding pathological solutions of algebraic equations, there are a number
of intrinsic reasons for studying Colombeau spaces with continuous or smooth parameter
dependence. To begin with, when considering full versions of the construction smooth
in the test function variable, as done, for example, in [8, 14], smooth dependence on
all variables is automatic. This is inherited by special Colombeau algebras when these
are considered as subspaces of such full algebras [25, p. 111]. Smooth dependence on
the regularization parameter is, in fact, built into the image of the space of distribu-
tions within the Colombeau algebra. Indeed, regularization via convolution yields as the
embedded image of a (say, compactly supported) distribution w the net (w ∗ ρε)ε, where
ρε = 1/εnρ(·/ε) and ρ is an S-mollifier with all higher moments vanishing, which is obvi-
ously smooth in ε. Thus, it is natural to require the same regularity for all elements of
the Colombeau algebra (or its ring of constants, respectively).

Moreover, certain geometrical constructions in special Colombeau algebras require
smooth parameter dependence. We mention, in particular, the notion of generalized
vector fields along a generalized curve (which is needed to model geodesics in singular
space-times in general relativity; [17, 18]) and sheaf properties in spaces of manifold-
valued generalized functions [19].

Finally, we point out the important characterization result on isomorphisms of
Colombeau algebras on differentiable manifolds due to Vernaeve. He proved that, up
to multiplication by an idempotent-generalized number, multiplicative linear functionals
on a Colombeau algebra are given precisely as evaluation maps in generalized points
(see [30, Theorem 4.5]) and algebra isomorphisms are realized as pullbacks under invert-
ible manifold-valued generalized functions [30, Theorem 5.1]. When transferring these
results to the case of smooth parameter dependence, due to the fact that there are no
non-trivial idempotents in this setting (see Proposition 3.3), both characterizations hold
without restriction [6,7].

The purpose of the present paper is to initiate a systematic study of special Colombeau
algebras with continuous or smooth parameter dependence. It is structured as follows:
after fixing some notation in § 2, the main result of the first part of the paper is given
in § 3, namely that Colombeau spaces with continuous or smooth parameter dependence
are in fact isomorphic. Based on this identity, in § 4 we study algebraic properties of the
space K̃sm of smoothly parametrized generalized numbers. In particular, we analyse the
ring structure of K̃sm (zero divisors, exchange ring, Gelfand ring, and partial order) and
conclude by establishing some fundamental properties of ideals in K̃sm.

2. Notation

Throughout this paper we will write I for the interval (0, 1]. The manifolds M and N

are assumed to be smooth, Hausdorff and second countable. For any two sets A and B

the relation A ⊂⊂ B denotes that A ⊆ Ā ⊆ B with Ā compact. Whenever we do not
have to distinguish between R and C we will denote either of the fields by K.

The prototypical special Colombeau algebra of generalized functions over some smooth
manifold M is given as the quotient G(M) := EM (M)/N (M), where the algebra EM (M)
and the ideal N (M) of EM (M) are defined by (with P(M) the space of linear differential
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operators on M)

EM (M) :=
{

(uε)ε ∈ C∞(M)I | ∀K ⊂⊂ X, ∀P ∈ P(M), ∃N ∈ N :

sup
x∈K

|Puε(x)| = O(ε−N )
}

,

N (M) :=
{

(uε)ε ∈ C∞(M)I | ∀K ⊂⊂ X, ∀P ∈ P(M), ∀m ∈ N :

sup
x∈K

|Puε(x)| = O(εm)
}

.

The corresponding ring of constants in G(M) is given as K̃ := EM/N , where

EM = {(rε)ε ∈ KI | ∃N ∈ N : |rε| = O(ε−N )},

N = {(rε)ε ∈ KI | ∀m ∈ N : |rε| = O(εm)}.

The equivalence class of some representative (uε)ε is denoted by [(uε)ε]. In the above
definitions, the representatives (uε)ε and (rε)ε are allowed to depend arbitrarily on the
regularization parameter ε. If instead we consider representatives that depend continu-
ously or smoothly on ε (i.e. (ε, x) �→ uε(x) is continuous in ε and smooth in x, or smooth in
both variables, respectively, and analogously for ε �→ rε), we denote this by the following
subscripts: none (any parametrization, which is the standard definition); ‘co’ (continu-
ous parametrization); ‘sm’ (smooth parametrization). Moderateness and negligibility are
denoted by EM , EM,co, EM,sm and N , Nco, Nsm, respectively. The rings of generalized
numbers are K̃, K̃co and K̃sm. Given two manifolds M and N , we write G(M), Gco(M)
and Gsm(M) for the special Colombeau algebras and G[M, N ], Gco[M, N ] and Gsm[M, N ]
for the spaces of manifold-valued generalized functions. We refer the reader to [14,16,18]
for details on these spaces.

By τco and τsm we denote the natural homomorphisms between spaces of generalized
numbers and functions with continuous, smooth or arbitrary dependence on ε. For sim-
plicity, we do not distinguish notationally between these homomorphisms on different
domains: τco will always denote maps from spaces with continuous parametrization to
those with general parametrization, and τsm maps from spaces with smooth parametriza-
tion to the corresponding spaces with continuous parametrization, e.g. τco : K̃co → K̃ and
τsm : K̃sm → K̃co, etc. We will sometimes use τ if a distinction is not necessary.

3. Smooth, continuous and arbitrary parametrization

In this section we examine the interrelation between the various versions of spaces of
generalized functions and generalized numbers introduced in § 2. In particular, we shall
prove that K̃sm ∼= K̃co � K̃ and Gsm(M) ∼= Gco(M) � G(M).

To begin with we note that K̃sm ⊆ K̃co ⊆ K̃ via the canonical embeddings τco and τsm,
defined by [(rε)ε] �→ [(rε)ε]:

K̃sm � �

τco◦τsm

��
� � τsm �� K̃co

� � τco �� K̃
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These maps are well defined as EM,sm ⊆ EM,co ⊆ EM and Nsm ⊆ Nco ⊆ N : if (sε)ε is
another representative of r, then τ([(sε)ε]) = τ([(rε)ε]). Moreover, τco, τsm and therefore
also τco ◦ τsm are ring homomorphisms. They are injective because EM,co ∩ N ⊆ Nco and
EM,sm ∩ Nco ⊆ Nsm. Thus, we obtain the following.

Lemma 3.1. The maps τco : K̃co → K̃, τsm : K̃sm → K̃co and τco ◦ τsm : K̃sm → K̃,
defined by [(rε)ε] �→ [(rε)ε], are injective and unital ring homomorphisms.

Let M be a smooth, Hausdorff and second-countable manifold. As for generalized
numbers, we consider the following maps between the different versions of algebras of
generalized functions:

Gsm(M)� �

τco◦τsm

��
� � τsm �� Gco(M) � � τco �� G(M)

As above, we obtain the following.

Lemma 3.2. Let M be a manifold. The maps τco : Gco(M) → G(M), τsm : Gsm(M) →
Gco(M) and τco ◦ τsm : Gsm(M) → G(M), defined by [(uε)ε] �→ [(uε)ε], are injective and
unital algebra homomorphisms.

Whenever convenient, we may therefore omit the natural embeddings and simply write
K̃sm ⊆ K̃co ⊆ K̃ and Gsm(M) ⊆ Gco(M) ⊆ G(M).

Remarkably, τco (and therefore also τco ◦ τsm) is not surjective, but τsm is. Both of
these results will be proved below. We start by examining the relation between arbitrary
and continuous dependence on ε. To this end, we first determine the idempotents in the
algebra of generalized functions and the ring of generalized numbers, respectively, in the
case of continuous and smooth parameter dependence. We first note that the situation for
arbitrary ε-dependence is completely characterized by the following two results. By [2,
Theorem 4.1] the non-trivial idempotents in K̃ are precisely the equivalence classes in
K̃ of characteristic functions eS of some S ⊆ I with 0 ∈ S̄ ∩ Sc. Furthermore, by [30,
Proposition 5.3] any idempotent of G(M) for M connected is a generalized constant.

Contrary to the case of G(M) and K̃, the following result shows that there are no
non-trivial idempotents in the case of smooth or continuous parameter dependence.

Proposition 3.3. Let M be a connected smooth manifold. Then there are no non-
trivial idempotents in Gco(M).

Proof. Let u = [(uε)ε] ∈ Gco(M) such that uε ·uε = uε +nε for some (nε)ε ∈ Nco(M).
We first consider an open, relatively compact and connected open set U . There are

two possible solutions for the quadratic equation uε(x) · uε(x) = uε(x) + nε(x) on U :

uε,1(x) = 1
2 +

√
1
4 + nε(x) and uε,2(x) = 1

2 −
√

1
4 + nε(x). (3.1)
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As (nε)ε is negligible, there exists ε0 > 0 such that |nε(x)| < 1
8 for all ε < ε0 and all

x ∈ U . By continuity of u in ε and x, both of the sets

U1 := {(ε, x) ∈ (0, ε0] × U | uε(x) = uε,1(x)},

U2 := {(ε, x) ∈ (0, ε0] × U | uε(x) = uε,2(x)}

are closed and, as they form a partition of (0, ε0] × U , also open in (0, ε0] × U . Since
the latter is connected, we have that either U1 = (0, ε0] × U or U2 = (0, ε0] × U . Let us
assume that it is U1. Thus, for any x ∈ U , any m ∈ N and sufficiently small ε we obtain
that

|uε(x) − 1| =
∣∣∣√ 1

4 + nε(x) − 1
2

∣∣∣ < εm.

Therefore, u|U = 1 in Gco(U). In the case U2 = (0, ε0] × U we have that u|U = 0.
Now consider

M1 := {x ∈ M | ∃ a neighbourhood V of x such that u|V = 1},

M2 := {x ∈ M | ∃ a neighbourhood V of x such that u|V = 0}.

Both sets are obviously open. Moreover, by the above, M is the disjoint union of M1 and
M2. Connectedness of M implies that u is either 1 or 0. �

Consequently, there are no non-trivial idempotents in Gsm(M), K̃co and K̃sm.
Next we demonstrate that τco is not an isomorphism. Hence, K̃ is strictly larger than

K̃co, and a fortiori G(M) is strictly larger than Gco(M).

Lemma 3.4. τco : K̃co → K̃ is not surjective, i.e. K̃co � K̃.

First proof. Let r = [(rε)ε] ∈ K̃ be defined by

rε :=

{
1 if ε = 1/n for some n ∈ N,

0 otherwise.

Suppose there exists a continuous representative (sε)ε of r. Then rε = sε + nε for some
(nε)ε ∈ N . For ε sufficiently small (say smaller than some ε0 > 0) we have that |nε| < 1

4
and therefore

either |sε| < 1
4 or |sε| > 3

4 . (3.2)

For N 
 n > 1/ε0 we have in particular that |s1/n| � |r1/n| − |n1/n| > 3
4 but (as

(2n + 1)/2n(n + 1) = 1
2 (1/n + 1/(n + 1)))

|s(2n+1)/2n(n+1)| � |r(2n+1)/2n(n+1)| + |n(2n+1)/2n(n+1)| < 0 + 1
4 = 1

4 .

By the Intermediate Value Theorem, there must be an ε ∈ ((2n+1)/2n(n+1), 1/n) such
that |sε| = 1

2 . This contradicts (3.2). �

Second proof. If τco were surjective, it would be an isomorphism. Since by [2, The-
orem 4.1] there exist non-trivial idempotents in K̃, the same would be true of K̃co,
contradicting Proposition 3.3. �
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This immediately implies the following.

Corollary 3.5. Gco(M) � G(M).

Our next aim is to establish the surjectivity of the natural embeddings τsm, both in the
case of the rings of generalized numbers K̃co and K̃sm and for the algebras of generalized
functions Gco and Gsm.

Theorem 3.6. K̃sm is isomorphic to K̃co (via τsm).

Proof. Let (rε)ε ∈ EM,co. By [21, Lemma A.9] (or its strengthening, Lemma 3.7,
below) there exists (sε)ε ∈ C∞(I, K) such that

|sε − rε| � e−1/ε ∀ε ∈ I,

so |sε − rε| < εm for all m ∈ N and ε sufficiently small. This implies (sε)ε ∈ EM,sm and
[(sε)ε] = [(rε)ε] in K̃co. �

Alternatively, one could also apply the Weierstrass Approximation Theorem on com-
pact intervals covering (0, 1] to prove Theorem 3.6.

The proof of surjectivity of τsm : Gsm(M) → Gco(M) will rely on the following extension
of [21, Lemma A.9].

Lemma 3.7. Let U ⊆ Rn, W ⊆ Rm be open, and suppose that h : I × U → W ,
(ε, x) �→ h(ε, x) is continuous with respect to ε and smooth with respect to x. Then for
any continuous map g : I × U → R+, any k ∈ N0 and any open subset U1 of U with
U1 ⊂⊂ U there exists a smooth map f : I × U → W such that, for all |α| � k and all
ε ∈ I,

sup
x∈U1

‖∂α
x h(ε, x) − ∂α

x f(ε, x)‖ � inf
x∈U1

g(ε, x).

Proof. Replacing, if necessary, g by (ε, x) �→ min(g(ε, x), 1
2d(h(ε, x), Rm \ W )), we

may without loss of generality suppose that W = Rm.
By continuity, for each η ∈ I there exists an open neighbourhood Iη of η in I such that

sup
x∈U1

‖∂α
x h(ε, x) − ∂α

x h(η, x)‖ � inf
x∈U1

g(ε, x), |α| � k, ε ∈ Iη.

Choose a smooth partition of unity (φη)η∈I on I with suppφη ⊆ Iη for each η and set
f(ε, x) :=

∑
η∈I φη(ε)h(η, x). Then f ∈ C∞(I × U) and for any ε ∈ I, any x, y ∈ U1 and

any |α| � k we obtain

‖∂α
x h(ε, x) − ∂α

x f(ε, x)‖ �
∑
η∈I

φη(ε)‖∂α
x h(ε, x) − ∂α

x h(η, x)‖

�
∑
η∈I

φη(ε)g(ε, y) = g(ε, y),

so the claim follows. �
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Lemma 3.8. Let U , U1 be open subsets of Rn with U1 ⊂⊂ U . Then, given any
(uε)ε ∈ EM,co(U), there exists (vε)ε ∈ EM,sm(U1) such that (uε|U1 − vε)ε ∈ Nco(U1).

Proof. By Lemma 3.7, for each n ∈ N0 there exists vn ∈ C∞(I × U) such that, for all
|α| � n and all ε ∈ I,

sup
x∈U1

‖∂αuε(x) − ∂αvn,ε(x)‖ � e−1/ε. (3.3)

Let I = (In)n∈N be the open cover of I defined by In := (1/(n + 2), 1/n) for n � 2 and
I1 := (1

3 , 1]. Choose a smooth partition of unity, (χn)n∈N, with suppχn ⊆ In for all n.
For x ∈ U1 and ε ∈ I let

vε(x) :=
∞∑

n=1

χn(ε)vn,ε(x). (3.4)

Obviously, v is smooth in x and ε. It remains to be shown that (vε −uε)ε is negligible on
U1. Fix K ⊂⊂ U1 and k ∈ N0. Then for ε � 1/(k + 2) and any α with |α| � k we have
that

sup
x∈K

‖∂αvε(x) − ∂αuε(x)‖
(3.4)
�

∞∑
n=k+1

χn(ε) sup
x∈U1

‖∂αvn,ε(x) − ∂αuε(x)‖
(3.3)
� e−1/ε.

Thus, (vε − uε)ε ∈ Nco(U1), and therefore also (vε)ε ∈ EM,sm(U1). �

From these preparations we conclude the following.

Theorem 3.9. The map τsm : Gsm(M) → Gco(M) is an isomorphism.

Proof. Since both Gco(·) and Gsm(·) are sheaves of differential algebras we may without
loss of generality suppose that M is an open subset of Rn. Furthermore, by Lemma 3.2
it remains to be shown that τsm is surjective. To this end let u = [(uε)ε] ∈ Gco(M).
Choose a locally finite open cover (Uα)α∈A of M such that Uα ⊂⊂ M for all α. Let
(χα)α∈A be a partition of unity on M with suppχα ⊆ Uα for all α. By Lemma 3.8, for
each α ∈ A there exists some (vα,ε)ε ∈ EM,sm(Uα) such that (uε|Uα − vα,ε) ∈ Nco(Uα).
Then vε :=

∑
α χαvα,ε defines an element (vε)ε of EM,sm(M) and, by construction,

τsm([(vε)ε]) = u. �

The set of generalized numbers K̃sm can be identified with the set of constant gener-
alized functions in Gsm(M) via [(rε)ε] �→ [(uε)ε], uε(x) := rε for all ε ∈ I, x ∈ M . The
same is true for K̃co and the set of constant functions in Gco(M). Thus, Theorem 3.6 can
also be viewed as an immediate corollary of Theorem 3.9.

A result analogous to Theorem 3.9 also holds for manifold-valued generalized functions
from M to N . Also in this case we define τco and τsm to be the natural embeddings,
i.e. [(uε)ε] → [(uε)ε]:

Gsm[M, N ]� �

τco◦τsm

��
� � τsm �� Gco[M, N ] �

� τco �� G[M, N ]
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Similarly to Lemma 3.2, we have that these maps are well defined and injective, using [16,
Definitions 2.2 and 2.4]. Building on Theorem 3.9 we can now show the following result.

Theorem 3.10. The map τsm : Gsm[M, N ] → Gco[M, N ] is bijective.

Proof. By [19, Proposition 2.2], given any Whitney embedding i : N ↪→ Rs, we may
identify Gsm[M, N ] with the subspace G̃sm[M, i(N)] of Gsm(M)s. The proof of that result
carries over verbatim to the Gco setting. Therefore, we may without loss of generality
suppose that N is a submanifold of some Rs. Let T be a tubular neighbourhood of N in
Rs with retraction map r : T → N (see, for example, [15,20]).

Let u ∈ Gco[M, N ]. By Theorem 3.9 there exists v′ ∈ Gsm(M)s such that (uε − v′
ε)ε ∈

Nco(M)s (hence, in particular, v′ is c-bounded, i.e. v′ ∈ Gsm[M, Rs]). We will now suitably
modify v′ such that the resulting element of Gsm[M, N ] equals u in Gco[M, N ]. To this end
we follow a similar path to that in the proof of [19, Theorem 2.3]. Let T ′ ⊆ T be a closed
tubular neighbourhood of N . Using a partition of unity subordinate to {T, Rs \ T ′}
we obtain a map r̃ : Rs → Rs which coincides with r on T ′. Let (Kl)l be a compact
exhaustion of M with Kl ⊆ K◦

l+1 for all l. Since each uε is c-bounded with values in N

and (uε − v′
ε)ε is negligible, for each l there exists a compact set K ′

l ⊆ T ′ and an εl > 0
(without loss of generality εl < εl−1) such that uε(Kl) ∪ v′

ε(Kl) ⊆ K ′
l for all ε � εl.

For ε ∈ I we set v′′
ε := r̃ ◦ v′

ε. Then v′′ ∈ Gsm[M, Rs], and for x ∈ Kl and ε < εl we
have (denoting by ch(K ′

l) the convex hull of K ′
l)

‖uε(x) − v′′
ε (x)‖ = ‖r̃ ◦ uε(x) − r̃ ◦ v′

ε(x)‖
� ‖Dr̃‖L∞(ch(K′

l)) · ‖uε(x) − v′
ε(x)‖

= O(εm)

for each m by construction of v′.
Now let η : M → R be smooth such that 0 < η(x) � εl for all x ∈ Kl \ K◦

l−1 (K0 := ∅)
[14, Lemma 2.7.3]. Moreover, let ν : R+

0 → [0, 1] be a smooth function satisfying ν(t) � t

for all t and

ν(t) =

{
t, 0 � t � 1

2 ,

1, t � 3
2 .

For (ε, x) ∈ I×M let µ(ε, x) := η(x)ν(ε/η(x)). Then we may define vε(x) := v′′
µ(ε,x)(x) for

(ε, x) ∈ I×M . It follows that v ∈ Gsm[M, N ]. Since vε|K◦
l

= v′′
ε |K◦

l
for ε � 1

2 minx∈Kl
η(x)

and any l ∈ N, (uε − vε)ε satisfies the negligibility estimate of order 0 on any compact
subset of M . Thus, by [18, Theorem 3.3], we conclude that u = v in Gco[M, N ]. �

Remark 3.11. Similar techniques can be used to show that the smooth and contin-
uous variants of the spaces of generalized vector bundle homomorphisms and of hybrid
generalized functions (see [16–18] for definitions and characterizations of these spaces)
can be identified.
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4. Algebraic properties of K̃sm = K̃co

Above we have seen that K̃co and K̃sm are algebraically isomorphic, and are proper
subrings of K̃. The aim of this section is to initiate the investigation of algebraic properties
of K̃sm along the lines of [1,2,29]. In particular, we point out similarities and differences
between the spaces K̃sm and K̃.

4.1. Non-invertible elements are zero divisors

By [29, § 2.1], K̃ is a reduced ring, i.e. a commutative ring without non-zero nilpotent
elements. As K̃sm is a subring of K̃, it inherits this property.

A fundamental property of K̃ is that the non-invertible elements and the zero divisors
in K̃ coincide (see [1, Theorem 2.18] and [14, Theorem 1.2.39]). The same holds true
for K̃sm.

Proposition 4.1. An element r ∈ K̃sm is non-invertible if and only if it is a zero
divisor.

Proof. Let r be non-invertible. By [14, Theorem 1.2.38] we have that r is not strictly
non-zero (the proof carries over unchanged to the K̃sm setting; see also [6, Proposi-
tion 6.2.5] for a generalization), i.e. for all representatives (rε)ε of r and all m ∈ N there
exists a strictly decreasing sequence εk ↘ 0 such that |rεk

| < εm
k . By varying m, we

obtain a sequence (εj)j , εj ↘ 0, such that

|rεj | < εj
j ∀j ∈ N.

Since {εj}j∈N is discrete in (0, 1] we may find disjoint neighbourhoods (aj , bj) 
 εj such
that

|rε| < εj ∀ε ∈ (aj , bj).

On each such interval (aj , bj) there exists a smooth bump function χj ∈ D(aj , bj) such
that χj(εj) = 1, 0 � χj � 1. Let (sε)ε be defined by

sε :=

{
χj(ε) if ε ∈ (aj , bj),

0 otherwise.

Obviously, (sε)ε ∈ EM,sm \ Nsm. Moreover, (rεsε)ε ∈ Nsm; hence, r is a zero divisor
of K̃sm. �

4.2. Exchange rings

There are various equivalent definitions for exchange rings (see, for example, [29, § 2.2]).
The most convenient one for our purposes is the following.

Definition 4.2. A commutative ring R with 1 is an exchange ring if, for each r ∈ R,
there exists an idempotent e ∈ R such that r + e is invertible.

By [29, Proposition 2.1], K̃ is an exchange ring. The situation is different for K̃sm.
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Lemma 4.3. K̃sm is not an exchange ring.

Proof. By Proposition 3.3, there are no non-trivial idempotents in K̃sm. Moreover,
r ∈ K̃sm, defined by rε := sin(1/ε), is both non-zero and non-invertible, and also r ± 1 is
non-invertible. �

4.3. Gelfand rings

Definition 4.4. A ring R is called a Gelfand ring if for a, b ∈ R with a + b = 1 there
exist r, s ∈ R such that (1 + ar)(1 + bs) = 0.

That K̃ is a Gelfand ring is a direct consequence of the fact that it is an exchange ring.
For K̃sm we need a different approach.

Lemma 4.5. K̃sm is a Gelfand ring.

Proof. Assume that (aε)ε and (bε)ε are representatives of a and b such that aε+bε = 1
for all ε. If a = 0, then b = 1, and r = 0 and s = −1 satisfy (1 + ar)(1 + bs) = 1 · 0 = 0
(similarly for b = 0).

Let a �= 0 and b �= 0. Let S := {ε ∈ I : |aε| � 1
2} and let χ ∈ C∞(R, I) such that

χ|(−∞,1/2] = 0 and χ|[1,∞) = 1. Then (rε)ε, defined by

rε :=

⎧⎪⎨
⎪⎩

−χ(2|aε|)
aε

if ε ∈ S,

0 otherwise,

is well defined and smooth. It is moderate, since for ε such that |aε| � 1
4 we have that

|rε| =
|χ(2|aε|)|

|aε|
� 1

|aε|
� 4,

and for ε such that |aε| < 1
4 we even have that |rε| = 0. Furthermore, aεrε = −1 on S.

Similarly, there exists (sε)ε ∈ EM,sm such that bεsε = −1 on {ε ∈ I : |bε| � 1
2}.

Altogether, (1 + aεrε)(1 + bεsε) = 0 for all ε ∈ (0, 1]. �

4.4. Partial order and absolute value

The order on R̃sm (and similarly on R̃co) is inherited by the order on R̃ [14, § 1.2.4].

Definition 4.6. Let r, s ∈ R̃sm. We write r � s if there are representatives (rε)ε, (sε)ε

with rε � sε for all ε.

Remark 4.7. Note that this is equivalent to the fact that for any representatives r̄,
s̄ of r and s there exists some (nε)ε ∈ Nsm with r̄ε � s̄ε + nε.

Moreover, by [26], r � s if and only if for all representatives (rε), (sε)ε and any a > 0
there exists some ε0 > 0 such that rε � sε + εa for all ε < ε0. Further properties of the
order structure in R̃ and G can be found in [23,26].

The same argument as in the case of R̃ yields the following.
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Proposition 4.8. (R̃sm,�) is a partially ordered ring.

By the identification of K̃sm with K̃co in Theorem 3.6 we can even define the absolute
value of generalized numbers in K̃sm (note that generally (|rε|)ε ∈ EM,co but (|rε|)ε �∈
EM,sm).

Definition 4.9. Let r = [(rε)ε] ∈ K̃sm. The absolute value of r, denoted by |r|, is
defined as the generalized number

|r| := τ−1
sm ([(|rε|)ε]),

where | · | denotes the absolute value in C and τsm : K̃sm → K̃co is the canonical isomor-
phism (see Theorem 3.6).

By the identification of R̃sm with R̃co we can show that it is a lattice.

Definition 4.10. A lattice is a partially ordered set R such that any two elements
r, s ∈ R have a join (or supremum) r ∨ s and a meet (or infimum) r ∧ s.

A partially ordered ring that is a lattice for this order is called an l-ring (or lattice-
ordered ring).

Definition 4.11. The minimum min(r, s) and the maximum max(r, s) for r =
[(rε)ε], s = [(sε)ε] ∈ R̃sm are defined as follows:

min(r, s) := τ−1
sm ([(min(rε, sε))ε]),

max(r, s) := τ−1
sm ([(max(rε, sε))ε]).

These notions are well defined for R̃sm since the min and max of real-valued continuous
functions are continuous themselves. Clearly,

min((rε)ε + Nco, (sε)ε + Nco) = (min(rε, sε))ε + Nco,

etc. Thus, by Remark 4.7 we have the following.

Lemma 4.12. The minimum and maximum as defined above are well defined and
compatible with the partial order structure of (R̃sm,�).

This result is remarkable since the underlying ring in the definition of R̃sm (namely,
C∞(I, R)) does not satisfy these properties. Setting r∨s = max(r, s) and r∧s = min(r, s)
we obtain [29, § 2.3] the following.

Proposition 4.13. R̃sm is an l-ring.

Clearly, the absolute value as introduced in Definition 4.9 is compatible with the order
structure on R̃sm, i.e. |r| = max(r, −r) for any r ∈ R̃sm.

Definition 4.14. A commutative ring R with 1 is called an f-ring if it is an l-ring
and, for all r, s, t ∈ R with t � 0, (r ∧ s)t = rt ∧ st.

By [29, Proposition 2.2], R̃ is an f-ring. The same holds true for R̃sm.
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Proposition 4.15. R̃sm is an f-ring.

Proof. Let r, s, t ∈ R̃co with representatives (rε)ε of r, (sε)ε of s and (tε)ε of t such
that tε � 0 for all ε. Then min(rε, sε)tε = min(rεtε, sεtε) for all ε ∈ I, and therefore
(r ∧ s)t = rt ∧ st. By Theorem 3.6 and Definition 4.11, the claim follows. �

For some properties of l- and f-rings see [3].
A main technical tool in the algebraic investigation of K̃ is the use of characteristic

functions eS of subsets S ⊆ I (see [1, 2, 29, 30]). Obviously, such functions on I are
not continuous unless in trivial cases and therefore cannot be used in the K̃sm setting.
This forecloses a direct adaptation of many proof techniques from K̃ to K̃sm. In certain
situations, however, a substitute for these techniques can be based on the notion of
characteristic set.

Definition 4.16. A subset S of I is called characteristic set if 0 ∈ S̄.

If r ∈ K̃sm and S is a characteristic set, then by r|S = 0 we mean that for any m ∈ N

there exists some ε0 such that |rε| < εm for all ε ∈ S with ε < ε0 (which clearly is
independent of the representative of r).

Lemma 4.17. Let r, s ∈ K̃sm, r, s �= 0 and rs = 0. Then there exists a characteristic
set S such that r|S = s|S = 0.

Proof. Since r and s are non-zero there exist characteristic sets Sr and Ss and K ∈ N

such that
|rε| > εK ∀ε ∈ Sr and |sε| > εK ∀ε ∈ Ss. (4.1)

Let m = 2K. Since rs = 0 there exists εm > 0 such that

|rεsε| < εm ∀ε < εm. (4.2)

Moreover, Sr and Ss are disjoint on (0, εm), i.e. Sr ∩ Ss ∩ (0, εm) = ∅: for ε ∈ Sr, ε < εm

we have that εK |sε| < |rεsε| < εm. Therefore, |sε| < εm−K = εK , i.e. ε /∈ Ss by (4.1).
For all ε ∈ Sr ∩ (0, εm) we have by (4.1) and (4.2) that |rε| − |sε| > εK − εK = 0. In

particular, since Sr ∩ (0, εm) �= ∅ (Sr being a characteristic set), there exists εr < εm

such that |rεr | − |sεr | > 0. Similarly, there exists εs < εm such that |rεs | − |sεs | < 0.
Hence, by continuity in ε there exists δm ∈ (0, εm) such that |rδm | = |sδm |. We even know
that δm /∈ Sr ∪ Ss. In fact, as δm < εm, (4.2) implies that |rδm

sδm
| < δm

m , and therefore
|rδm | = |sδm

| < δ
m/2
m .

To construct the characteristic set S we proceed by induction. Let ε̄1 := δm = δ2K .
Suppose we have already constructed ε̄i < min(ε̄i−1, 1/i) such that

|rε̄i
| = |sε̄i

| < ε̄
(m+2(i−1))/2
i . (4.3)

As above we find εm+2i < min(ε̄i, 1/(i + 1)) such that |rεsε| < εm+2i for all ε < εm+2i.
Since m + 2i > 2K all other arguments hold as well and we finally obtain ε̄i+1 <

min(ε̄i, 1/(i + 1)) such that (4.3) holds for i + 1 instead of i.
Since ε̄j ↘ 0 we have that S := {ε̄j |j ∈ N} is a characteristic set and by (4.3) it follows

that r|S = s|S = 0. �
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Let S ⊆ I be a characteristic set and let A denote the algebra K̃sm or Gsm(M). An
element u ∈ A is called invertible with respect to S if there exist v ∈ A and r ∈ K̃sm

such that

uv = r1 in A and (r − 1)|S = 0 in K̃sm.

By [7, Proposition 4.2], an element r of K̃sm is non-zero if and only if there exists a
characteristic set S such that r is invertible with respect to S. The proof of this result
also shows that r is invertible with respect to S if and only if it is strictly non-zero with
respect to S, which gives a generalization of [14, Proposition 1.2.38]. Analogous results
hold for generalized functions with smooth parameter dependence [6, § 6.2].

Definition 4.18. Let R be a ring and r ∈ R. The annihilator of r is defined as the
set Ann(r) := {s ∈ R : rs = 0}.

Theorem 4.19. Let r, s ∈ K̃sm. The following are equivalent:

(i) rs = 0;

(ii) there exists x ∈ K̃sm such that rx = 0 and s(1 − x) = 0;

(iii) Ann(r) + Ann(s) = K̃sm;

(iv) |r| ∧ |s| = 0.

We show this along the lines of the proof of [29, Lemma 2.3], where the result was
verified for K̃.

Proof. (i) =⇒ (ii). Let rs = 0. The cases r = 0 or s = 0 being obvious, we may
assume that both r and s are zero divisors. For all m ∈ N there exists εm > 0 such that
|rεsε| < εm for all ε < εm by (i). Without loss of generality we can assume that (εm)m is
a decreasing sequence. Moreover, by moderateness of (rε)ε and (sε)ε we have an N ∈ N

such that |rε| < ε−N and |sε| < ε−N for ε sufficiently small. Using a partition-of-unity
argument (see, for example, [14, Lemma 2.7.3]) we obtain a function η ∈ C∞(I, R) such
that

0 < η(ε) � εm+N for ε ∈ [εm+1, εm].

Let

U := {ε ∈ I : |rε| < |sε| + η(ε)},

V := {ε ∈ I : |rε| � |sε| − η(ε)}.

By continuous dependence of r, s and η on ε, U is open and V is closed in I. Using a
partition of unity subordinate to {I \V, U} we obtain a smooth bump function I → [0, 1],
ε �→ xε with x|V = 1, x|U � 1 and x|I\U = 0. In particular, (xε)ε ∈ EM,sm.
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Therefore, we have that (using K̃sm ∼= K̃co by Theorem 3.6 and calculating in EM,co)

0 � (|r|x)2

=

{
(|rε|xε)2 if ε ∈ U,

0 otherwise,

(x2
ε�1)
�

{
|rε|(|sε| + εm+N ) if ε ∈ U,

0 otherwise,

< 2εm for ε sufficiently small,

since |rεsε| < εm and |rε|εm+N < ε−Nεm+N = εm for such ε. Hence,

rx = 0.

Similarly,

0 � (|s|(1 − x))2

=

{
(|sε|(1 − xε))2 if ε /∈ V,

0 otherwise,

((1−xε)2�1)
�

{
|sε|(|rε| + εm+N ) if ε /∈ V,

0 otherwise,

< 2εm for ε sufficiently small.

Thus, also
s(1 − x) = 0.

(ii) =⇒ (iii). By (ii) there exists x ∈ K̃sm such that x ∈ Ann(r) and 1 − x ∈ Ann(s).
For any t ∈ K̃sm, t = xt + (1 − x)t. Since annihilators are ideals in the ring, xt ∈ Ann(r)
and (1 − x)t ∈ Ann(s).

(iii) =⇒ (i). By (iii) we may write 1 = x + y for x ∈ Ann(r) and y ∈ Ann(s).
Therefore,

rs = rs1 = rs(x + y) = (rx)s + r(sy) = 0.

(i) ⇐⇒ (iv). As rs = 0 is equivalent to |r| |s| = 0, we may assume that r, s ∈ R̃sm. By
§ 4.1, K̃sm is a reduced ring and by Proposition 4.15 it is an f-ring. Since the equivalence
holds in any reduced f-ring (see [5, Theorem 9.3.1]), the proof is complete. �

From the equivalence of (i) and (iii) we can deduce another property of rings of gener-
alized numbers, namely normality. Since we are dealing with reduced rings, we may use
the following definition (see [29, § 2.3] for different equivalent conditions).

Definition 4.20. A reduced commutative f-ring R with 1 is called normal if for all
r, s ∈ R with rs = 0 we can write R = Ann(r) + Ann(s).
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Corollary 4.21. R̃ and R̃sm are (reduced) normal f-rings.

Proof. The property of being a reduced ring was noted at the beginning of § 4.1; the
other claims follow from Proposition 4.15 and Theorem 4.19. �

4.5. Ideals

In recent years, various properties of ideals in the ring K̃ of generalized numbers have
been studied. Previous investigations have led to, among other things, a complete descrip-
tion of the maximal ideals (see [1, Theorem 4.20]), minimal prime ideals (see [2, Corol-
lary 4.7]) and prime ideals (see [29, Theorem 3.6]) in K̃. In this section we initiate a
similar study for the ring K̃sm of generalized numbers with smooth parameter depend-
ence and provide some basic properties of its ideals.

Let R be a commutative ring with 1. An ideal J in R is denoted by J � R; a proper
ideal is denoted by J � R. Moreover, we call J � R prime if, for all r, s ∈ R with rs ∈ J ,
we have that r ∈ J or s ∈ J . A proper ideal J is called maximal if the only ideal properly
containing it is R itself. J � R is called idempotent if J2 = J .

The radical of an ideal J � R is denoted by
√

J = {r ∈ R | ∃n ∈ N : xn ∈ J} =
⋂

J⊆P
P prime

P

(see, for example, [13, Corollary 0.18]). An ideal J � R is called radical if J =
√

J .
To begin with, we investigate convexity of ideals in K̃sm.

Definition 4.22. Let R be a partially ordered ring and J � R be an ideal. J is said
to be convex if 0 � y � x and x ∈ J imply that y ∈ J .

An ideal J in an l-ring R is called absolutely convex (or l-ideal) if |y| � |x| and x ∈ J

imply y ∈ J .

In [2, Proposition 3.7] it was shown that every ideal in K̃ is absolutely convex. For
R̃sm we firstly have the following.

Proposition 4.23. All ideals in R̃sm are convex.

Proof. Let J � R̃sm, x ∈ J and 0 � y � x. Without loss of generality we may
consider representatives (xε)ε, (yε)ε such that 0 < yε � xε for all ε ∈ I (otherwise add
(exp(−1/ε))ε ∈ Nsm to non-negative representatives). Thus, (aε)ε, defined by

aε :=
yε

xε
∀ε ∈ I,

is well defined, smooth and bounded by 1, and hence moderate. Since x ∈ J and y = ax,
we also have that y ∈ J . �

In order to prove that ideals are in fact absolutely convex, we show the following lemma
on R̃sm and C̃sm.

Lemma 4.24. Let J � K̃sm and x ∈ J . Then |x| ∈ J .
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Proof. According to Theorem 3.6 we can work in C̃co. The proof for R̃co proceeds
along the same lines. Let (xε)ε ∈ EM,co be a representative of x. We construct (aε)ε ∈
EM,co such that ax = |x|.

Fix m ∈ N. Let bm : (0, 1] → (0, 1] be defined by

bm(ε) :=

⎧⎨
⎩

εm

|xε|
if |xε| � εm,

1 otherwise.
(4.4)

Then bm is continuous. In order to obtain the necessary asymptotic behaviour, we patch
the bm together. Thus, we consider the open cover

I :=
{(

1
m + 1

,
1

m − 1

)}
m>1

∪ {( 1
3 , 1]}

of the interval (0, 1], and a corresponding (continuous) partition of unity (χm)m∈N. By
arg(z) we denote the argument of the complex number z. Let

aε :=

⎧⎪⎨
⎪⎩

e−i arg(xε)
(

1 −
∞∑

m=1

bm(ε)χm(ε)
)

if xε �= 0,

0 if xε = 0,

for all ε ∈ (0, 1]. Suppose that xε̄ = 0, xεk
�= 0 and εk → ε̄. Then

lim
k→∞

aεk
= lim

k→∞

(
e−i arg(xεk

)︸ ︷︷ ︸
|·|�1

(
1 −

∑
m∈N

bm(εk)χm(εk)
))

= 0

due to (4.4). Thus, (aε)ε ∈ C(I, C). Furthermore, (aε)ε is moderate:

|aε| � |e−i arg(xε)| ·
∣∣∣∣1 −

∞∑
m=0

bm(ε)χm(ε)
∣∣∣∣ � 2. (4.5)

It remains to show that (aεxε − |xε|)ε ∈ Nco. Since all terms are continuous in ε and
xε = ei arg(xε)|xε|, it is sufficient to consider

|aε − e−i arg(xε)| |xε| (4.6)

in the following cases (we assume that ε ∈ (1/(m + 1), 1/m] throughout).

(i) |xε| < εm+1: by (4.4) and (4.5), aε = 0, so (4.6) is equal to 1 · |xε| < εm+1.

(ii) εm+1 � |xε| < εm: in this case

aε = e−i arg(xε)
(

1 − εm+1

|xε|
χm+1(ε) − χm(ε)

)
,

so (4.6) is less than or equal to(
εm+1

|xε|
+ 1

)
|xε| < εm+1 + εm.
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(iii) |xε| � εm: here,

aε = e−i arg(xε)
(

1 − εm+1

|xε|
χm+1(ε) − εm

|xε|
χm(ε)

)
,

so as above (4.6) is less than or equal to εm+1 + εm.

Summing up, we obtain for all m ∈ N that

|aε − e−i arg(xε)| |xε| < 2εm for ε � 1
m

. (4.7)

Thus, (aεxε − |xε|)ε ∈ Nco, and hence |x| = [(|xε|)ε] ∈ J . �

Proposition 4.25. All ideals in R̃sm are absolutely convex.

Proof. By Proposition 4.23, all ideals in R̃sm are convex. According to [13, Theo-
rem 5.3], a convex ideal J � R̃sm is absolutely convex if and only if x ∈ J implies that
|x| ∈ J . This is Lemma 4.24. �

Moreover, we can deduce from Lemma 4.24 that all finitely generated ideals in R̃sm

and C̃sm are in fact principal ideals.

Proposition 4.26. Let r, s ∈ K̃sm. Then

(i) rK̃sm + sK̃sm = (|r| + |s|)K̃sm = (|r| ∨ |s|)K̃sm,

(ii) rK̃sm ∩ sK̃sm = (|r| ∧ |s|)K̃sm.

Proof. Both statements can be proved along the same lines as the corresponding
ones for K̃ in [29, Lemma 3.1]: R̃sm is an f-ring (by Proposition 4.15), and all ideals
are absolutely convex (by Proposition 4.25). Thus, (i) and (ii) follow from [5, Proposi-
tion 8.2.8] and [5, Proposition 9.1.8], respectively. The results can be transferred to ideals
in C̃sm by using the bijective correspondence between ideals in C̃sm and R̃sm (analogous
to [29, § 2.4]). �

Furthermore, we can characterize powers and radicals of ideals in K̃sm. In what follows,
〈A〉 denotes the ideal generated by A.

Lemma 4.27. Let J � K̃sm and m ∈ N. Then the following properties hold.

(i) Jm = {r ∈ K̃sm : m
√

|r| ∈ J}.

(ii) Let L � K̃sm and Lm ⊆ Jm. Then L ⊆ J . In particular, if r ∈ K̃sm and rm ∈ Jm,
then r ∈ J .

(iii)
√

J = 〈 n
√

|r| : n ∈ N, r ∈ J〉, and in particular, for s ∈ K̃sm,√
sK̃sm = 〈 n

√
|s| : n ∈ N〉.
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Proof. The extraction of roots is a continuous function, and hence is an inner oper-
ation in K̃co and therefore K̃sm. Thus, the proof is identical to the case of arbitrary
parametrization by making use of [5, Proposition 8.2.11]. See [29, Lemma 3.2] for
details. �

The idempotent ideals are exactly the radical ideals.

Proposition 4.28. Let J � K̃sm. The following are equivalent:

(i) J is idempotent;

(ii) J is radical;

(iii) for all r ∈ J ,
√

|r| ∈ J ;

(iv) J is an intersection of prime ideals.

Proof. This is identical to that of [29, Proposition 3.3]. �

The next result shows, in particular, that the sum and the intersection of a family of
radical ideals is again radical (see (i) and (iv)).

Proposition 4.29. Let Jλ � K̃sm for all λ ∈ Λ. Then we have the following.

(i)
√∑

λ∈Λ

Jλ =
∑
λ∈Λ

√
Jλ.

(ii) Let I, J � K̃sm. Then
√

I ∩
√

J =
√

I ∩ J .

(iii) Let J � K̃sm. Then

J
√

:=
⋂
n∈N

Jn = {r ∈ K̃sm | ∀n ∈ N : n
√

|r| ∈ J} = {r ∈ K̃sm |
√

rK̃sm ⊆ J}

is the largest radical ideal that is contained in J . J is radical if and only if J = J
√

.

(iv)
⋂
λ∈Λ

J
√

λ =
( ⋂

λ∈Λ

Jλ

)√

.

Proof. Based on the above results, this is analogous to [29, Proposition 3.4]. �

Remark 4.30. We have seen that many characterizations of ideals in K̃sm can be
carried over from K̃. The characterization of prime ideals, however, relies heavily on the
structure of K̃ and makes use of the idempotents therein [29, Theorems 3.5, 3.6]. Thus,
a characterization of prime ideals in K̃sm will have to proceed along different lines.
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