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ON A CLASSICAL THETA-FUNCTION
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To Professor Katuzi Ono on his 60th birthday

The purpose of this paper is to get a certain explicit expression of
automorphic factors, formulated rather differently than usual, of the classi-
cally well known theta function®

o) 95 = 9:0,2) = 31 e, (2= v+ iy, ¥ >0,

The special linear group G = SL(2, R) over the real field R has a 2-fold
topological covering group G, and the maximal compact subgroup 7=S0(2)
of G has also a naturally corresponding 2-fold covering group T in G.
While the upper half plane H is usually identified with the homogeneous
space G/T, the properties discussed in §1 of the automorphic factors of
9(z), (13) among others, show directly that for the purpose of investigating
9(z) it is legitimate to identify the upper half plane H with G/T. Moreover,
as we see in §2, the quadratic reciprocity law in the rational number field
Q can be formulated as a multiplicativity of a number-theoretical function
defined on a discrete subgroup of G. For a totally imaginalry number field
this kind of result was already stated in [4] in a simpler form, but in gene-
ral we need the covering group G.

It is famous in number theory that there is a close relationship between
the quadratic reciprocity law and the function 9(z)». The investigation
in this paper, inclusive of all explicit calculations, may be regarded as a
trial to catch as simply as possible the theoretical background of that interest-
ing phenomenon.

Received March 31, 1969

1) Called in many cases theta constant. It is an automorphic form with respect to the
discontinuous group I' defined in §1.

2) For example, see [2].
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The contents of the present paper have various connections with [6],
but can be read independently.

§1. Automorphic factors of the theta function.

Let I" be the subgroup of the elliptic modular group SL(2,Z) consisting
of all s&SL(2,Z) such that o‘E(l 1) or <1 1) (mod 2). On the other
hand, normalize the square root of a complex number z = 0 once for all by

1.
— z
Zzarg

2) Yz =e Yzl , —r=argz<n.

Then, for the theta function in (1), we have

_ 1 1
@ 6 = g (=)
and
(4) 9(z) = 9(z + 2).

The formula (3) is Poisson’s summation formula. Since I" is generated by
(1 ’_l) and <1 %), a consequence of (3), (4) is

5 9z) = —Ee 9(o2), ¢l =1,
®) (2) Jezrd (a7) lc,l
for an arbitrary ¢ = (‘cl g>el‘. Of course, ¢z = ‘;z—ig, ¢, is a constant

depending upon ¢, and is already studied in classical literatures®. But,
here we propose to look for a convenient expression of ¢, for our purpose.

ProrposiTION 1. Let o = (‘C’ db> be an element of I’ such that b+0 and
o=1 (mod. 4). Then the constant c, in the transformation formula (5) is given by
¢y =(—c,d) (~%b—) Jor ¢c+0, and ¢, =1 for ¢ =0. Here, (—%}—) is the Jacobi
symbol, and (c,d) ts the Hilbert symbol of degree 2 for R.

Progf.»> Denoting by € = %, (a,beZ), a rational number given by an

irreducible fraction, we define a Gauss sum of exponential type by

(6) Go§) = 3 ermitet,  (ceZ),

cmod @
3) [3], for example.

4 This proof is partly identical with the proof in [2] of the reciprocity law of the Gauss
sum.
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and put

(7 G(&) = Go(&)/1Go(&)]

whenever G,€) 0. Now, if >0, then

oo
2 enim2(2$ +it)

M= —00

]

9(26 + it)

o fee)
- 2 e,mecz E e—n(am+c)2t’
cmod @ m=—00

and Poisson’s summation formula yields

S . 1 1 & ot EE
So, we obtain
®) lim VE 926 + it) = Gy(9)/]al

If, especially, this is applied to the both sides of (3), the so-called rescipro-
city of Gauss sum

Go(s) — psgn ¢ v21b| 1 o omi
© Ja ST G ge), m=et
as stated in [2], Satz 161, is derived, where sgn ¢ = £/|&]. From (9) follows
also
— psgné 1
(10) G(®) = 75n¢ G(—

Next we put z = it in the formula (5), and use (2), (3), (8) to have
L= e dyrend1G(-Lr), (0.

Furthermore, from (10) and from elementary properties of Gauss sums® fol-
lows

o) =0 () = ()ey)
- () rmc(-).

5) See [1], [2].
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and d=1 (mod 4) implies G(— %) =7, Hence, ¢, =(—c, d) (—2‘5’— as
asserted. If ¢ =0, then d =1. So, the assertion is claer by (4).

Using fundamental properties of the Jacobi symbol, we can deduce
from Proposition 1 immediately the following :

CoroLLARY. Lét ¢ = (‘C’ 3) be an element of I' such that ¢ =1 (mod 4).
Then, ¢, = (c,d) —%,c“> Jfor ¢0, and ¢, =1 for ¢ =0.

As shown in [5], the factor system of the 2-fold non-trivial covering
group G of G = SL(2,R) is given by

(11) a(o, <) = (w(a), x(2)) (—x(0)7'w(c), #(o2)), (0,2€G),

where, for ¢ = (70,‘ ‘§>EG, z(o) =7 or & according to r#0 or =0. Now,
for the square root fixed by (2), the relation

(12) Velez) +d - 'z +d =alo,7) /"2 +d7
holds with o= (¢ 2), c=(% &), oc=(% L)1

x(0) <0 is equivalent with the fact that 0 <arg(cz + a) <=z, resp. —r=arg
(cz + d)<0 is the case for all z in the upper half plane H. Therefore, if
the elements of G are denoted by ¢ = (s,¢), (¢€G, & = 1), and the opera-
tion of ¢ on a function f(z) of a complex variable is defined by f%(z)= f(02),
then

i@z =¢evez+d
becomes an automorphic factor over G, that is, j satisfies
(13) (6%, 2) = j%(5,2) §(%, 2), (6,7€G).
Thus we get

ProposrtioN 2. Let I’ be the covering group of I' determined by the factor
set (11), denote by & = (0,6), (¢€EL, e =x1), an element of I, and put %(6) =
X(o,€) = c,&, ¢, being as in (5). Then X is a representation of degree 1 of T, i.e.,
we have 2(G%) = 1(6) x(#), (6, 7).

In this way, the automorphic factor in (5) of 9(z) is decomposed into
a representation of I' and an automorphic factor of G. Making use of this
result, the following therorem is proved:
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THEOREM. Let o = <? 3) be an element of T', and put 7= e'i-, Then,

¢, in (5), or in other words %(a,1) in Propositoin 2, is given by:

conditions on o value of c, = %(e,1)
2|c and
c+0, d=1(mod 4) (c,d) (%)
— . 2¢
¢ 0, d=—1 (mod 4) i(c, d) —d—>
c=0, =1 1
¢c=0, =—1 —i
2|ld and
d+0, c=1 (mod 4) v(%)
d+0, c=—1 (mod 4) 771 <—Zci>
d=0, c=1 i
d = 0, Cc = ——1 77—1

Proof. If d=1 (mod 4) and ¢=0 (mod 4), then a=1 (mod 4), and
the theorem follows at once from Proposition 1. So, we assume d=1,
c=2 (mod 4). Put ' = (1 _a, = (; 1>, o= (1 _1> ; then pr=<p,
and a a(p,7) =1, a(<’,p) =1 by (11). Therefore, x(z,1) = 1, where (r,1) stands
for an element of . Hence, under the additional assumption ¢+ 2d # 0,
Proposition 2 and the results for the case of ¢ =0 (mod 4) imply

¢, = X(o,1) = X(or,1)ala, 7)

= (c + 2d,d) (A2 ) (¢, 9) (—2c, ¢ + 24)
= (—2¢d, ¢ + 24 (-26-) = (¢, 2d) (%%)
= a)(2).

If c+2d =0, then 4 must be 1. So,

6) Apply here the formula (¢, b) (—a™b, a+b)=1 of Hilbert’s symbol.
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¢ = (0,2)(— 2,d) =1 = (¢, d) ().

Thus the theorem is verified for the case of d =1 (mod 4).
Next we put ¢ = <_1__1>, o= <1 _1> to have p2=<, a(p, 0)=—1.

Since (3) implies %(p,1) =7, A(r,1) must be —i. Therefore, if d =—1 (mod 4)
and ¢ 0, then

¢, = e, 1) = Aor, 1) 2(r, 1) a(a, 7)

= i(—c, =) (-=2) (—1,6) (e, —0)

—d
— (et — —2c \ _ : 2¢
= i1, =) (e, d) (-=2) = i(e, ) (2£).
The assertion for ¢ =0 is almost the same thing as %(r,1) = —i. Thus the

proof for the case of 2|¢ is finished.

If 2|d and 4+ 0, then a(s, p) = (—c,d) for p =<1 —1>'
So,

¢o =20, 1) X(0,1)7" (—¢,d) =97} (—¢, d) 1(00,1),

and our assertion reduces to former cases. If d =0, then ¢, =73 (—c¢,—c)-
%(ep,1), and the theorem is still valid.
This completes the proof.

§2. Remarks on the reciprocity law.

In a previous paper [4], the author has shown that the reciprocity law
of the power residue symbol of an arbitrary degree in a totally imaginary
number field is essentially equivalent with the multiplicativity of a function
defined by means of the power residue symbol on an arithmetically defined
discontinuous subgroup of SL(2,C). For the rational number field, a cor-
responding result is stated in Proposition 2 of this paper using the quadratic
residue symbol which is the only residue symbol of a number field with
real conjugates. Proposition 2 shows that, whenever a number field has
a real conjugate, SL(2,R) is not enough to get a corresponding result to
the theorem of [4] for the number field, but we must use the covering group
G which is not an algebraic group. Although Proposition 2 concerns only
the rational number field, the situation is not completely different for the
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general case; we merely need such a theta function of several variables as
is used in the integral representation of Dedeking’s zeta function instead of
the theata function in (1), to have a generalization of Proposition 2, i.e.,
a result like the theorem of [4].

As well as the theorem of [4] is proved by an elementary computation,
it is possible to see the equivalence of Proposition 2 and the quadratic
reciprocity law directly without any analytic function. For example, put

g= (‘216 5), (c#0), 7= (1 2;”> Since then a(s,z) =1, the relation x(5%)
= 7(6) x(#) together with Theorem 1 yields

0 () = e -+ sem) ()

which is a somewhat non-explicit formulation of the quadratic reciprocity.
Conversely, assuming the quadratic recipricity, we can prove Proposition 2
by the method in [4]. The procedure becomes, however, rather complicated.
In this manner one can any way understand the mechanism of the so-called
analytic proof of the reciprocity law.

Proposition 2 gives various different forms, or formal generalizations,
of the quadratic recipirocity law. Put for instance ¢ = (? g), 7= (‘cl: g:),
e=7=1 (mod 4), ¢#0, ¢’ +0, ca’ +dc’+0. Then, Proposition 2 entails

@0 (GF) ) ()

= (cd’ +dc’, b’ +dd’) —Z(ch‘f'_:_dddc,,) > (c,c¢’) (—cc!yca” + dc).
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