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Abstract

We define, for each quasisyntomic ring R (in the sense of Bhatt et al., Publ. Math. IHES 129 (2019), 199-310), a
category DM®™ (R) of admissible prismatic Dieudonné crystals over R and a functor from p-divisible groups over
R to DM24™(R) We prove that this functor is an antiequivalence. Our main cohomological tool is the prismatic
formalism recently developed by Bhatt and Scholze.
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1. Introduction

Let p be a prime number. The goal of the present paper is to establish classification theorems for
p-divisible groups over quasisyntomic rings. This class of rings is a non-Noetherian generalisation of
the class of p-complete locally complete intersection rings and contains also big rings, such as perfectoid
rings. Our main theorem is as follows.

Theorem. Let R be a quasisyntomic ring. There is a natural functor from the category of p-divisible
groups over R to the category DM*™(R) of admissible prismatic Dieudonné crystals over R, which is
an antiequivalence.

A more precise version of this statement and a detailed explanation will be given later in this
Introduction. For now, let us just say that the category DM®I™(R) is formed by objects of semilinear
algebraic nature. The problem of classifying p-divisible groups and finite locally free group schemes
by semilinear algebraic structures has a long history, going back to the work of Dieudonné on formal
groups over characteristic p perfect fields. In characteristic p, as envisionned by Grothendieck, and
later developed by Messing ([44]), Mazur-Messing ([43]) and Berthelot-Breen-Messing ([6], [7]), the
formalism of crystalline cohomology provides a natural way to attach such invariants to p-divisible
groups. This theory goes by the name of crystalline Dieudonné theory and leads to classification
theorems for p-divisible groups over a characteristic p base in a wide variety of situations, which we
will not try to survey but for which we refer the reader, for instance, to [37]. In mixed characteristic, the
existing results have been more limited. Fontaine ([23]) obtained complete results when the base is the
ring of integers of a finite totally ramified extension K of the ring of Witt vectors W (k) of a perfect field
k of characteristic p, with ramification index e < p — 1. This ramification hypothesis was later removed
by Breuil ([16]) for p > 2, who also conjectured an alternative reformulation of his classification in [15],
simpler and likely to hold even for p = 2, which was proved by Kisin ([30]), for odd p, and extended
by Kim ([29]), Lau ([35]) and Liu ([38]) to all p. Zink, and then Lau, gave a classification of formal
p-divisible groups over very general bases using his theory of displays ([54]). More recently, p-divisible
groups have been classified over perfectoid rings ([36], [51, Appendix to Lecture XVII]). The main
interest of our approach is that it gives a uniform and geometric construction of the classifying functor on
quasisyntomic rings. This is made possible by the recent spectacular work of Bhatt-Scholze on prisms
and prismatic cohomology ([8], [13]). So far, such a cohomological construction of the functor had been
available only in characteristic p, using the crystalline theory. This led, in practice, to some restrictions,
when trying to study p-divisible groups in mixed characteristic by reduction to characteristic p, of which
Breuil-Kisin theory is a prototypical example: there, no direct definition of the functor was available
when p = 2! Replacing the crystalline formalism by the prismatic formalism, we give a definition of
the classifying functor very close in spirit to the one used by Berthelot-Breen-Messing ([6]) and which
now makes sense without the limitation to characteristic p. Over a quasisyntomic ring R, our functor
takes values in the category of admissible prismatic Dieudonné crystals over R. As the name suggests,
prismatic Dieudonné crystals are prismatic analogues of the classical notion of a Dieudonné crystal on
the crystalline site.

Before stating precisely the main results of this paper and explaining the techniques involved, let us
note that several natural questions are not addressed in this paper.
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1. It would be interesting to go beyond quasisyntomic rings. By analogy with the characteristic p story,
one would expect that the prismatic theory should also shed light on more general rings. In the
general case, admissible prismatic Dieudonné crystals will not be the right objects to work with. One
should instead define analogues of the divided Dieudonné crystals introduced recently by Lau [37]
in characteristic p.

2. Even for quasisyntomic rings, our classification is explicit for the so-called quasiregular semiperfec-
toid rings or for complete regular local rings with perfect residue field of characteristic p (cf. Section
5.2), as will be explained below, but quite abstract in general. Classical Dieudonné crystals can be
described as modules over the p-completion of the divided power envelope of a smooth presenta-
tion, together with a Frobenius and a connection satisfying various conditions. Is there an analogous
concrete description of (admissible) prismatic Dieudonné crystals?

3. Finally, it would also be interesting and useful to study deformation theory (in the spirit of
Grothendieck-Messing theory) for the prismatic Dieudonné functor.

We now discuss in more detail the content of this paper.

1.1. Quasisyntomic rings
Let us first define the class of rings over which we study p-divisible groups.

Definition 1.1 (cf. Definition 3.15). A ring R is quasisyntomic if R is p-complete with bounded p-
torsion and if the cotangent complex Lg,z,, has p-complete Tor-amplitude in [—1,0]". The category of
all quasisyntomic rings is denoted by QSyn.

Similarly, amap R — R’ of p-complete rings with bounded p*-torsion is a quasisyntomic morphism
if R’ is p-completely flat over R and Lg//g € D(R’) has p-complete Tor-amplitude in [-1,0].

Remark 1.2. This definition is due to Bhatt-Morrow-Scholze [12] and extends (in the p-complete world)
the usual notion of locally complete intersection (l.c.i.) rings and syntomic morphisms (flat and 1.c.i.) to
the non-Noetherian, non finite-type setting. The interest of this definition, apart from being more general,
is that it more clearly shows why this category of rings is relevant: the key property of (quasi)syntomic
rings is that they have a well-behaved (p-completed) cotangent complex. The work of Avramov shows
that the cotangent complex is very badly behaved for all other rings, at least in the Noetherian setting:
it is left unbounded (cf. [2]).

Example 1.3. Any p-complete l.c.i. Noetherian ring is in QSyn. But there are also big rings in QSyn:
for example, any (integral) perfectoid ring is in QSyn (cf. Example 3.17). As a consequence of this, the
p-completion of a smooth algebra over a perfectoid ring is also quasisyntomic, as well as any bounded
p~-torsion p-complete ring which can be presented as the quotient of an integral perfectoid ring by a
finite regular sequence. For example, the rings

Oc, (TY; Oc,/p; Fp[TP"1/(T -1)

are quasisyntomic.

The category of quasisyntomic rings is endowed with a natural topology: the Grothendieck topology
for which covers are given by quasisyntomic covers, that is, morphisms R — R’ of p-complete rings
which are quasisyntomic and p-completely faithfully flat.

An important property of the quasisyntomic topology is that quasiregular semiperfectoid rings form
a basis of the topology (cf. Proposition 3.21).

Definition 1.4 (cf. Definition 3.19). A ring R is quasiregular semiperfectoid if R € QSyn and there
exists a perfectoid ring S mapping surjectively to R.

'This means that the complex M = Lg/z, ®% R/p € D(R/p) is such that M ®H,3 N e DI-YOI(R/p) for any
R/p-module N.
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As an example, any perfectoid ring, or any p-complete bounded p*-torsion quotient of a perfectoid
ring by a finite regular sequence, is quasiregular semiperfectoid.

1.2. Prisms and prismatic cohomology (after Bhatt-Scholze)

Our main tool for studying p-divisible groups over quasisyntomic rings is the recent prismatic theory
of Bhatt-Scholze [8], [13]. This theory relies on the seemingly simple notions of §-rings and prisms. In
what follows, all the rings considered are assumed to be Z,,)-algebras.

A §-ring is a commutative ring A, together with a map of sets § : A — A, with §(0) =0, 6(1) =0
and satisfying the following identities:

B(13) =17 8(3) +375(1) + pEIS(Y):  Sx+3) =50 +0(y) + I

for all x, y € A. For any d-ring (A, §), denote by ¢ the map defined by

o(x) =xP + ps(x).

The identities satisfied by ¢ are made to make ¢ a ring endomorphism lifting Frobenius modulo p.
Conversely, a p-torsion free ring equipped with a lift of Frobenius gives rise to a §-ring. A pair (A, I)
formed by a §-ring A and an ideal I C A is a prism if I defines a Cartier divisor on Spec(A), if A is
(derived) (p, I)-complete and if  is pro-Zariski locally generated? by a distinguished element, that is,
an element d, such that §(d) is a unit.

Example 1.5.

1. For any p-complete p-torsion free §-ring A, the pair (A, (p)) is a prism.

2. Say that a prism is perfect if the Frobenius ¢ on the underlying §-ring is an isomorphism. Then the
category of perfect prisms is equivalent to the category of (integral) perfectoid rings: in one direction,
one maps a perfectoid ring R to the pair (Ajns(R) := W(R®),ker(0)) (here, 6 : Ajns(R) — R is
Fontaine’s theta map); in the other direction, one maps (A, I) to A/I. Therefore, one sees that, in the
words of the authors of [13], prisms are some kind of ‘deperfection’ of perfectoid rings.

The crucial definition for us is the following. We stick to the affine case for simplicity, but it admits
an immediate extension to p-adic formal schemes.

Definition 1.6. Let R be a p-complete ring. The (absolute) prismatic site (R)) of R is the opposite of
the category of bounded? prisms (A, ) together with a map R — A/I, endowed with the Grothendieck
topology for which covers are morphisms of prisms (A, I) — (B, J), such that the underlying ring map
A — B is (p, I)-completely faithfully flat.

Bhatt and Scholze prove that the functor O (respectively, o ) on the prismatic site valued in (p, I)-
complete ¢-rings (respectively, in p-complete R-algebras), sending (A, 1) € (R)p to A (respectively,
A/I), is a sheaf. The sheaf O (respectively, o ) is called the prismatic structure sheaf (respectively,
the reduced prismatic structure sheaf).

From this, one easily deduces that the presheaves I, (respectively, N’ ZlOA) sending (A, ) to [
(respectively, N'Z' A := ¢! (1)) are also sheaves on (R),.

Let R be a p-complete ring. One proves the existence of a morphism of topoi:

v : Shv((R)p) — Shv((R)gsyn)-

2]n practice, the ideal [ is always principal.
3A prism (A, I) is bounded if A/I has bounded p*-torsion.
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Set:
OPris .— V*OA : NZLopris . V*./\/'ZIOA : gpris . vilp.

The sheaf QP is endowed with a Frobenius lift ¢. Moreover, if R is quasisyntomic, the quotient sheaf
OPris | \f21OPris g naturally isomorphic to the structure sheaf O of (R)gsyn-

1.3. Admissible prismatic Dieudonné crystals and modules
We are now in position to define the category of objects classifying p-divisible groups.

Definition 1.7. Let R be a quasisyntomic ring. A prismatic Dieudonné crystal over R is a finite locally
free OP"S-module M together with ¢-linear morphism

(pMZM—>M,

whose linearisation ¢* M — M has its cokernel is killed by ZP", It is said to be admissible if the image
of the composition

M Z M — M/TPS M

is a finite locally free O-module F 4, such that the map (OP"S/TP1S) @ Fpq — M /IP"S M induced
by ¢ a4 is @ monomorphism.

Definition 1.8. Let R be a quasisyntomic ring. We denote by DM(R) the category of prismatic
Dieudonné crystals over R (with morphisms the OP"*-linear morphisms commuting with the Frobenius),
and by DM*™(R) its full subcategory of admissible prismatic Dieudonné crystals.

Remark 1.9. In a former version of the paper, we used the notion of filtered prismatic Dieudonné crystal.
A filtered prismatic Dieudonné crystal over a quasisyntomic ring R is a collection (M, FilM, ¢ A()
consisting of a finite locally free OP"-module M, a OPS-submodule FilM and a ¢-linear map
orm - M — M, satisfying the following conditions:

1. o (FilM) C ZP1S, M.
2. N=1OPis M ¢ FilM and M /FilM is a finite locally free O-module.
3. o (FilM) generates ZP"S. M as an OP"S-module.

However, as was pointed out to us by the referee, the category of filtered prismatic Dieudonné crystals
embeds fully faithfully in the category of prismatic Dieudonné crystals, with essential image given by
the admissible objects (this essentially follows from Proposition 4.29 below). Since admissible prismatic
Dieudonné crystals are easier to work with than filtered prismatic Dieudonné crystals, we decided to
work only with the first; hence, the results stayed the same, but their formulation changed slightly.

For quasiregular semiperfectoid rings, these abstract objects have a concrete incarnation. Let R be a
quasiregular semiperfectoid ring. The prismatic site (R), admits a final object (Ag, 1).

Example 1.10.

1. If R is a perfectoid ring, (Ag, I) = (Ains(R), ker(0)).
2. If R is quasiregular semiperfectoid and pR = 0, (Ag, 1) = (Acrys(R), (p)).

Definition 1.11. A prismatic Dieudonné module over R is a finite locally free Ag-module M together
with a ¢-linear morphism

emMm:M—->M,
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whose linearisation ¢* M — M has its cokernel is killed by I. It is said to be admissible if the composition
M2 M- MM

is a finite locally free R = Ag/NZ=!Ag-module Fy;, such that the map Ag/IAg ®g Fyy — M/IM
induced by ¢, is a monomorphism.

Proposition 1.12 (Proposition 4.13). Let R be a quasiregular semiperfectoid ring. The functor of global
sections induces an equivalence between the category of (admissible) prismatic Dieudonné crystals
over R and the category of (admissible) prismatic Dieudonné modules over R.

1.4. Statements of the main results
In all this paragraph, R is a quasisyntomic ring.

Theorem 1.13 (Theorem 4.71). Let G be a p-divisible group over R. The pair
(MA(G) = Ext' (G, OP™), ‘,DMA(G)) ,

where the Ext is an Ext-group of abelian sheaves on (R)qsyn and ¢ am, (G) is the Frobenius induced by
the Frobenius of OP™, is an admissible prismatic Dieudonné crystal over R, often denoted simply by
M) (G).
Remark 1.14. The rank of the finite locally free OP"S-module M A(G) is the height of G, and the
quotient M) (G)/ go;\l% ) (ZP"5. M (G)) is naturally isomorphic to Lie(G), where G is the Cartier
dual of G.

Remark 1.15. When pR = 0, the crystalline comparison theorem for prismatic cohomology allows us
to prove that this construction coincides with the functor usually considered in crystalline Dieudonné
theory, relying on Berthelot-Breen-Messing’s constructions ([6]).

Theorem 1.16 (Theorem 4.74). The prismatic Dieudonné functor

My G = (Mp(G), orty(6))

induces an antiequivalence between the category BT(R) of p-divisible groups over R and the category
DM™ (R) of admissible prismatic Dieudonné crystals over R.

Remark 1.17. Theorems 1.13 and 1.16 immediately extend to p-divisible groups over a quasisyntomic
formal scheme.

Remark 1.18. It is easy to write down a formula for a functor attaching to an admissible prismatic
Dieudonné crystal an abelian sheaf on (R)qsyn, Which will be a quasi-inverse of the prismatic Dieudonné
functor: see Remark 4.91. But such a formula does not look very useful.

Remark 1.19. As acorollary of the theorem and the comparison with the crystalline functor, one obtains
that the (contravariant) Dieudonné functor from crystalline Dieudonné theory is an antiequivalence for
quasisyntomic rings in characteristic p. For excellent l.c.i. rings, fully faithfulness was proved by de
Jong-Messing; the antiequivalence was proved by Lau for F-finite l.c.i. rings (which are, in particular,
excellent rings).

Remark 1.20. It is not difficult to prove that if R is perfectoid, admissible prismatic Dieudonné crystals
(or modules) over R are equivalent to minuscule Breuil-Kisin-Fargues modules for R, in the sense of
[11]. Therefore, Theorem 1.16 contains, as a special case, the results of Lau and Scholze-Weinstein. But
the proof of the theorem actually requires this special case* as an input.

4In fact, as observed in [51], only the case of perfectoid valuation rings with algebraically closed and spherically complete
fraction field is needed.
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Remark 1.21. In general, the prismatic Dieudonné functor (without the admissibility condition) is not
essentially surjective, but we prove it is an antiequivalence for complete regular (Noetherian) local rings
in Proposition 5.10, that is, in this case, the admissibility condition is automatic.

Moreover, we explain in Section 5.2 how to recover Breuil-Kisin’s classification (as extended by
Kim, Lau and Liu to all p) of p-divisible groups over Ok, where K is a discretely valued extension of
Q, with perfect residue field, from Theorem 1.16.

Remark 1.22. Section 5.3 shows how to extract from the admissible prismatic Dieudonné functor a
functor from BT(R) to the category of displays of Zink over R. Even though the actual argument is
slightly involved for technical reasons, the main result there ultimately comes from the following fact:
if R is a quasiregular semiperfectoid ring, the natural morphism 6 : Ag — R gives rise by adjunction to
a morphism of §-rings Ag — W(R), mapping N'=!Ag to the image of Verschiebung on Witt vectors.
Zink’s classification by displays works on very general bases but is restricted (by design) to formal p-
divisible groups or to odd p; by contrast, our classification is limited to quasisyntomic rings, but do not
make these restrictions.

Remark 1.23. As in Kisin’s article [30], it should be possible to deduce from Theorem 1.16 a classi-
fication result for finite locally free group schemes. We only write this down over a perfectoid ring, in
which case, it was already known for p > 2 by the work of Lau, [36]. This result is used in the recent
work of Cesnavigius and Scholze [18].

1.5. Overview of the proof and plan of the paper

Sections 2 and 3 contain some useful basic results concerning prisms and prismatic cohomology, with
special emphasis on the case of quasisyntomic rings. Most of them are extracted from [12] and [13],
but some are not contained in loc. cit. (for instance, the definition of the g-logarithm, Section 2.2, or the
Kiinneth formula, Section 3.5), or only briefly discussed there (for instance, the description of truncated
Hodge-Tate cohomology, Section 3.2).

Section 4 is the heart of this paper. We first introduce the category DM2™ (R) of admissible prismatic
Dieudonné crystals over a quasisyntomic ring R and discuss some of its abstract properties (Section
4.1). We then introduce a candidate functor from p-divisible groups over R to DM2™(R) (Section 4.2).
That it, indeed, takes values in the category DM?I™(R) is the content of Theorem 1.13, which we do
not prove immediately. We first relate this functor to other existing functors, for characteristic p rings or
perfectoid rings (Section 4.3). The next three sections are devoted to the proof of Theorem 1.13. This
proof follows a road similar to the one of [0, Chapters 2, 3]. The basic idea is to reduce many statements
to the case of p-divisible groups attached to abelian schemes, using a theorem of Raynaud ensuring that
a finite locally free group scheme on R can always be realised as the kernel of an isogeny between two
abelian schemes over R, Zariski-locally on R. For abelian schemes, via the general device, explained
in [6, Chapter 2] and recalled in Section 4.4, for computing Ext-groups in low degrees in a topos, one
needs a good understanding of the prismatic cohomology. It relies on the degeneration of the conjugate
spectral sequence abutting to reduced prismatic cohomology, in the same way as the description of
the crystalline cohomology of abelian schemes is based on the degeneration of the Hodge-de Rham
spectral sequence. We prove it in Section 4.5 by appealing to the group structure on the abelian scheme.
Alternatively, one could use an identification of some truncation of the reduced prismatic complex with
some cotangent complex, in the spirit of Deligne-Illusie (or, more recently, [11]), proved in Section 3.2.
To prove Theorem 1.16, stated as Theorem 4.74 below, one first observes that the functors

R — BT(R); R+~ DM*™(R)
on QSyn are both stacks for the quasisyntomic topology (for BT, this is done in the Appendix).

Therefore, to prove that the functor M ) is an antiequivalence, it is enough to prove it for R quasiregular
semiperfectoid, since these rings form a basis of the topology, in which case, one can simply consider
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the more concrete functor M taking values in admissible prismatic Dieudonné modules over R, defined
by taking global sections of M ). Therefore, one sees that, even if one is ultimately interested only by
Noetherian rings, the structure of the argument forces to consider large quasisyntomic rings’. Assume
from now on that R is quasiregular semiperfectoid. The proof of fully faithfulness is ultimately reduced
to the identification of the syntomic sheaf Z, (1) (as defined using prismatic cohomology) to the p-adic
Tate module of G,,, a result of Bhatt-Morrow-Scholze recently reproved without K-theory by Bhatt-
Lurie ([10, Theorem 7.5.6]). (A former version of this paper attempted to prove fully faithfulness using
the strategy of [50], following an idea of de Jong-Messing: one first proves it for morphisms from Q,, /Z,
to pp and then reduces to this special case. This reduction step works fine in many cases of interest —
such as characteristic p or p-torsion free quasiregular semiperfectoid rings — but we encountered several
technical difficulties while trying to push it to the general case.) Once fully faithfulness is acquired,
the proof of essential surjectivity is by reduction to the perfectoid case. One can actually even reduce
to the case of perfectoid valuation rings with algebraically closed fraction field. In this case, the result
is known, and due — depending whether one is in characteristic p or in mixed characteristic — to
Berthelot and Scholze-Weinstein.

Finally, Section 5 gathers several complements to the main theorems, already mentioned above: the
classification of finite locally free group schemes of p-power order over a perfectoid ring, Breuil-Kisin’s
classification of p-divisible groups over the ring of integers of a finite extension of Q,, the relation with
the theory of displays and the description of the Tate module of the generic fibre of a p-divisible group
from its prismatic Dieudonné crystal.

1.6. Notations and conventions
In all the text, we fix a prime number p.

o All finite locally free group schemes will be assumed to be commutative.

e If R is a ring, we denote by BT(R) the category of p-divisible groups over R.

e IfAisaring, I C A anideal and K € D(A) an object of the derived category of A-modules, K is
said to be derived I-complete if for every f € I, the derived limit of the inverse system

L kLkLk

vanishes. Equivalently, when I = (f1, ..., f;-) is finitely generated, K is derived /-complete if the
natural map

K — Rlim(K ®% K})

is an isomorphism in D (A), where for each n > 1, K, denotes the Koszul complex

Ko(A; f', ..., fi") (one has HY(K?) = A/(f]"s. .., f"), but beware that, in general, K} may also
have cohomology in negative degrees, unless ( f1,.. ., f,-) forms a regular sequence). An A-module
M is said to be derived I-complete if K = M[0] € D(A) is derived I-complete. The following
properties are useful in practice:

1. A complex K € D(A) is derived I-complete if and only if for each integer i, H' (K) is derived
I-complete (this implies, in particular, that the category of derived /-complete A-modules form a
weak Serre subcategory of the category of A-modules).

2. If I =(f,..., f) is finitely generated, the inclusion of the full subcategory of derived I-complete
complexes in D (A) admits a left adjoint, sending K € D (A) to its derived I-completion

K = Rlim(K &% K}).

SIn characteristic p, Lau has recently and independently implemented a similar strategy in [37].
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3. (Derived Nakayama) If ] is finitely generated, a derived /-complete complex K € D(A)
(respectively, a derived /-complete A-module M) is zero if and only if K ®% A/l=0
(respectively, M /IM = 0).

4. If I is finitely generated, an A-module M is (classically) I-adically complete if and only if it is
derived I-complete and /-adically separated.

5. I = (f) is principal and M is an A-module with bounded f*-torsion (i.e. such that
M[f*] = M[fN] for some N), the derived I-completion of M (as a complex) is discrete and
coincides with its (classical) /-adic completion.

A useful reference for derived completions is [52, Tag 091N].

e Let A be aring, I a finitely generated ideal. A complex K € D(A) is I-completely flat (respectively,
I-completely faithfully flat) if K ®Hf; A/I is concentrated in degree 0 and flat (respectively, faithfully
flat), cf. [12, Definition 4.1]. If an A-module M is flat, its derived completion M is I-completely flat.
Assume that [ is principal, generated by f € A (in the sequel, f will often be p). Let A — B be a
map of derived f-complete rings. If A has bounded f*-torsion and A — B is f-completely flat, then
B has bounded f-torsion. Conversely, if B has bounded f*-torsion and A — B is f-completely
faithfully flat, A has bounded f*-torsion. Moreover, if A and B both have bounded f-torsion, then
A — B is f-completely (faithfully) flat if and only if A/f" — B/ f" is (faithfully) flat for all n > 1
(see [12, Corollary 4.8]).

e A derived I-complete A-algebra R is I-completely étale (respectively, I-completely smooth) if
R ®% A/I is concentrated in degree 0 and étale (respectively, smooth).

2. Generalities on prisms

In this section, we review the theory of prisms and collect some additional results. In particular, we
present the definition of the g-logarithm (cf. Section 2.2).

2.1. Prisms and perfectoid rings

We list here some basic definitions and results from [13], of which we will make constant use in the
paper. Let us first recall the definition of a §-ring A. In the following, all rings will be assumed to be
Z(p)-algebras.

Definition 2.1. A §-ring is a pair (A, §) with A a commutative ring and 6: A — A a map (of sets), such
that for x, y € A, the following equalities hold:

§(0)=6(1)=0
6(xy) = xP6(y) +yP6(x) + p6(x)6(y)
S(x+y) = 8(x) +6(y) + LRICT

P
A morphism of -rings f: (A,d) — (A’,d”) isamorphism f: A — A’ of rings, such that fod = "o f.
By design, the morphism

p:A—> A, x> xP +pd(x)

for a 6-ring (A, ) is a ring homomorphism lifting the Frobenius on A/p. Using ¢, the second property
of ¢ can be rephrased as

5(xy) = @(x)6(y) +yPd(x) =xP6(y) + ¢(y)o(x),
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which looks close to that of a derivation. If A is p-torsion free, then any Frobenius lifty: A — A defines
a d-structure on A by setting

§(x) := M

Thus, in the p-torsion free case, a 6-ring is the same as a ring with a Frobenius lift.

Remark 2.2. The category of d-rings has all limits and colimits and these are calculated on the
underlying rings® (cf. [13, Section 1]). In particular, there exist free 6-rings (by the adjoint functor
theorem). Concretely, if A is a §-ring and X is a set, then the free 6-ring A{X} on X is a polynomial ring
over A with variables 6" (x) for n > 0 and x € X (cf. [13, Lemma 2.11]). Moreover, the Frobenius on
Z(py{X} is faithfully flat (cf. [13, Lemma 2.11]).

Definition 2.3. Let (A, §) be a §-ring.

1. Anelement x € A is called of rank 1 if 6(x) = 0.
2. Anelement d € A is called distinguished if §(d) € A* is a unit.

In particular, ¢(x) = x? if x € A is of rank 1.
Here is a useful lemma showing how to find rank 1 elements in a p-adically separated J-ring.

Lemma 2.4. Let A be a 6-ring, and let x € A. Then §(xP") € p"A for all n. In particular, if A is
p-adically separated and y € A admits a p"-th root for all n > 0, then §(y) = 0, that is, y has rank 1.

Proof. Cf.[13, Lemma 2.31]. ]

We can now state the definition of a prism (cf. [13, Definition 3.2]). Recall that a §-pair (A, I) is
simply a d-ring A together with an ideal / C A.

Definition 2.5. A §-pair (A, ) is a prism if I C A is an invertible ideal, such that A is derived (p, I)-
complete, and p € I + ¢(I)A. A prism (A, I) is called bounded if A/I has bounded p*-torsion.

Remark 2.6. Some comments about these definitions are in order:

1. By [13, Lemma 3.1], the condition p € I+ ¢(I)A is equivalent to the fact that / is pro-Zariski locally
on Spec(A) generated by a distinguished element. Thus, it is usually not much harm to assume that
I = (d) is actually principal” .

2. If (A,I) — (B, J) is a morphism of prisms, i.e., A — B is a morphism of §-rings carrying / to J,
then [13, Lemma 3.5] implies that J = IB.

3. An important example of a prism is provided by

(A1) = (Zpllg — 11, ([rlg)),
where

[P]q: g1

is the g-analog of p. Many other interesting examples will appear below.
4. The prism (A, I) being bounded implies that A is classically (p, I)-adically complete (cf. [8, Exercise
3.4]), and thus, in particular, p-adically separated.

6This does not hold for the category of rings with a Frobenius lift in the presence of p-torsion.
7For example, if A is perfect, that is, the Frobenius ¢: A — A is bijective, then this condition is automatic by [13, Lemma 3.7].
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Lemma 2.7. Let (A, I) be a prism, and let d € I be distinguished. If (p, d) is a regular sequence in A,
then forallr,s > 0, r # s, the sequences

(P ¢"(d)), (¢" (d), ¢*(d))
are regular.

Proof. Note that for the second case, one can always assume min(r,s) = 0, up to replacing d by
@™in(r3) (). Then the statement is proven in [1, Lemma 3.3] and [ 1, Lemma 3.6]. ]

Previous work in p-adic Hodge theory used, in one form or another, the theory of perfectoid spaces.
From the prismatic perspective, this is explained as follows. We recall that a §-ring A (or prism (A, I)) is
called perfect if the Frobenius ¢: A — A is an isomorphism. If A is perfect, then necessarily A = W(R)
for some perfect IF,-algebra R (cf. [13, Corollary 2.30]).

Proposition 2.8. The functor

{perfect prisms (A, I)} — {(integral) perfectoid rings R}, (A,I) — A/l
is an equivalence of categories with inverse R — (Ains(R), ker(9)), where Ains(R) := W(R®) and
6 =00 ¢!, 0 being Fontaine’s theta map.
Proof. Cf.[13, Theorem 3.9]. ]
Remark 2.9.

(1) Of course, one could use @ instead of §. We make this (slightly strange) choice for coherence with
later choices.
(2) The theorem implies, in particular, that for every perfect prism (A, I), the ideal I is principal.

As a corollary, we get the following easy case of almost purity.

Corollary 2.10. Let R be a perfectoid ring, and let R — R’ be p-completely étale. Then R’ is perfectoid.
Moreover, if J C R is an ideal, then the p-completion R’ of the henselisation of R at J is perfectoid.

Proof. We can lift R’ to a (p, ker(6))-completely étale Ai,r(R)-algebra B. By [13, Lemma 2.18], the
d-structure on Ap¢(R) extends uniquely to B. Reducing modulo p, we see that B is a perfect 6-ring
as it is (p, ker(@))-completely étale over Ajy¢(R). Using Proposition 2.8, R” = B/ker(0)B is therefore
perfectoid. The statement on henselisations follows from this as henselisations are colimits along étale
maps (cf. the proof of [52, Tag 0A02]). (Note that since R has bounded p-torsion, the p-completion of
an étale R-algebra is p-completely étale.) O

Moreover, perfectoid rings enjoy the following fundamental property.

Proposition 2.11. Let (A, I) be a perfect prism. Then for every prism (B, J), the map
Hom((A, 1), (B,J)) — Hom(A/I,B/J)

is a bijection.

Proof. Cf.[13, Lemma4.7]. m]

2.2. The g-logarithm
Each prism is endowed with its Nygaard filtration (cf. [8, Definition 11.2]).
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Definition 2.12. Let (A, ) be a prism. Then we set
NZA = (1Y)
for i > 0. The filtration N'>* A is called the Nygaard filtration of (A, I).

This filtration (or rather the first piece of this filtration) will play an important role in the rest of this
text. It already shows up when proving the existence of the g-logarithm

log,: Z,(1)(B/J) = B, x — log, ([x"/P15)
for a prism (A, I) over (Z,[[g — 1]1], ([p],)) from Remark 2.6, as we now explain. Here,
Zp(1) :==Tp(up=)

is the functor sending a ring R to T), (R*) = l(iLn/Jpn (R) and

n

[<lg: lim A/I— A

x—xP

is the Teichmiiller lift sending a p-power compatible system

x = (x0,X1,...) € lin A/l

X xP
to the limit

n
[x]g = lim %,

n—o0

where X, € A is alift of x,, € A/I. By definition,

Zp()(A/I) € lim A/l

X—xP

is the subset of the inverse limit consisting of sequences that start with a 1. Moreover, on lln A/, one
X xP
can take p-th roots

()72 tim A/L— lim A/L, (xo,x1,...) = (x1,32,..).
x—xP x—=xP

In [1, Lemma 4.10], there is the following lemma on the g-logarithm. For n € Z, we recall that the
g-number [n], is defined as

n

L= e z,llg- 111

[n]q =

Lemma 2.13. Let (B, J) be a prism over (Z,[[q — 111, ([plq)). Then for every element x € 1 +N=1B
of rank 1, that is, §(x) = 0, the series

Nyl —nenp G = D =g) (=g
logq(x)—; )" g i
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is well-defined and converges in B. Moreover, log, (x) e N*'B and, in
B[1/p][[x— 111",

one has the relation log, (x) = % log(x), where log(x) := 3, (=1)""! @

n=1

The defining properties of the g-logarithm are that log, (1) = 0 and that its g-derivative is d‘)’c—x (cf. [1,
Lemma 4.6]).
One derives easily the existence of the ‘divided g-logarithm’.

Lemma 2.14. Let (B, J) be a bounded prism over (Z,[[q—1]], ([plg)), and letx € Z,,(1)(B/J). Then
[)cl/p]g~ € Bis of rank 1 and lies in 1 + N='B. Thus

(7 = 1) (67— ")
[n]q

log, ([x/715) = D (=11 gnin-ra!
n=1

exists in B.

Proof. By Lemma 2.4 (which applies to B as B is bounded and, thus, classically (p, [ p],)-complete, by
[13,Lemma3.7 (1)]), the element [x'/7] g isof rank 1 as it admits arbitrary p"-roots. Moreover, [x'/7] g €
1+N='Bas ¢([x'/P];) = [x]; = | modulo J. By Lemma 2.13, we can therefore conclude. o

3. Generalities on prismatic cohomology
3.1. Prismatic site and prismatic cohomology

In this paragraph, we shortly recall, mostly for the convenience of the reader and to fix notations, some
fundamental definitions and results, without proofs, from [13]. Fix a bounded prism (A, I). Let R be a
p-complete A/I-algebra.

Definition 3.1. The prismatic site of R relative to A, denoted (R/A)), is the category whose objects
are given by bounded prisms (B, IB) over (A, I) together with an A/I-algebra map R — B/IB, with
the obvious morphisms, endowed with the Grothendieck topology for which covers are given by (p, I)-
completely faithfully flat morphisms of prisms over (A, I).

Remark 3.2. In this remark, we deal with the set-theoretic issues arising from Definition 3.1. For
example, as it stands, there does not exist a sheafification functor for presheaves on (R/A)). We will
implicitly fix a cut-off cardinal « like in [49, Lemma 4.1] and assume that all objects appearing in
Definition 3.1 (or Definition 3.4) have cardinality < «. The results of this paper will not change under
enlarging . For example, the category of prismatic Dieudonné crystals on (R), will be independent
of the choice of . Also, the prismatic cohomology does not change (because it can be calculated via
a Cech-Alexander complex), and, thus, the prismatic Dieudonné crystals will be independent of « (by
Section 4.4).

This affine definition admits an immediate extension to p-adic formal schemes over Spf(A/I), cf [13].

Proposition 3.3 ([13], Corollary 3.12). The functor O (respectively, 6A ) on the prismatic site valued
in (p,I)-complete § — A-algebras (respectively, in p-complete R-algebras), sending (B, IB) € (R/A)p
to B (respectively, B/IB), is a sheaf. The sheaf O (respectively, 6A ) is called the prismatic structure
sheaf (respectively, the reduced prismatic structure sheaf).

These constructions have absolute variants, where one does not fix a base prism. Let R be a p-
complete ring.
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Definition 3.4. The (absolute) prismatic site of R, denoted (R), is the category whose objects are given
by bounded prisms (B, J) together with a ring map R — B/J, with the obvious morphisms, endowed
with the Grothendieck topology for which covers are given by morphisms of prism (B,J) — (C,JC)
which are (p, I)-completely faithfully flat.

Exactly as before, one defines functors O and @) - Which are sheaves on (R).

We turn to the definition of (derived) prismatic cohomology. Fix a bounded prism (A, I). The
prismatic cohomology of R over A is defined in two steps. One starts with the case where R is p-completely
smooth over A/I.

Definition 3.5. Let R be a p-complete p-completely smooth A/I-algebra. The prismatic complex Ag;a
of R over A is defined to be the cohomology of the sheaf O on the prismatic site:

AR/A = RF((R/A)A,OA).

This is a (p, I)-complete commutative algebra object in D(A) endowed with a semilinear map ¢ :
ARja — ARya, induced by the Frobenius of O).
Similarly, one defines the reduced prismatic complex or Hodge-Tate complex:

Arja=RT((R/A)p, 0)).

This is a p-complete commutative algebra object in D(R).

A fundamental property of prismatic cohomology is the Hodge-Tate comparison theorem, which
relates the Hodge-Tate complex to differential forms. For this, first recall that for any A/I-module M
and integer n, the nth-Breuil-Kisin twist of M is defined as

M{n} = M ®a (I/1%)°®".
The Bockstein maps
Br: H' (Brya){iy = H™ (Brya){i+1}
for eachi > 0, make (H*(Ag /a){*}, Br) a graded commutative A//-differential graded algebra®, which
comes with amap 7: R — H(Ag)a).

Theorem 3.6 ([13], Theorem 4.10). The map n extends to a map

Ap

77; : (‘QR/(A/I)’d) - (H*(AR/A),BI)
which is an isomorphism.

While proving Theorem 3.6, Bhatt and Scholze also relate prismatic and crystalline cohomology
when the ring R is an [F,-algebra. The precise statement is the following. Assume that I = (p), that is
that (A, I) is a crystalline prism. Let J C A be a PD-ideal with p € J. Let R be a smooth A/J-algebra
and

RY =R®a/5 Alp,

where the map A/J — A/p is the map induced by Frobenius and the fact that J is a PD-ideal.

8For p = 2, this assertion is nontrivial and part of the proof of [13, Theorem 4.10].
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Theorem 3.7 ([13], Theorem 5.2). Under the previous assumptions, there is a canonical isomorphism
of E — A-algebras

AR(l)/A = chrys(R/A),

compatible with Frobenius.
Remark 3.8.

1. If J = (p), R is just the Frobenius twist of R.

2. The proof of Theorem 3.7 goes through for a syntomic A/J-algebra R. The important point is that
in the proof in [13, Theorem 5.2], in each simplicial degree, the kernel of the morphism B® — R is
the inductive limit of ideals of the form (p, x1, . .., x,), with (xy, ..., x,) being p-completely regular
relative to A, which allows to apply [13, Proposition 3.13]. The statement extends by descent from
the quasiregular semiperfect case to all quasisyntomic rings over I, (cf. Lemma 3.27).

Definition 3.5 of course makes sense without the hypothesis that R is p-completely smooth over A/1.
But it would not give well-behaved objects; for instance, the Hodge-Tate comparison would not hold in
general®. The formalism of nonabelian derived functors allows to extend the definition of the prismatic
and Hodge-Tate complexes to all p-complete A/I-algebras in a manner compatible with the Hodge-Tate
comparison theorem.

Definition 3.9. The derived prismatic cohomology functor LA_; 4 (respectively, the derived Hodge-Tate
cohomology functor LA /4) is the left Kan extension (cf. [12, Construction 2.1]) of the functor A_,4
(respectively, A /4) from p-completely smooth A/I-algebras to (p, I)-complete commutative algebra
objects in (the co-category) D(A) (respectively, p-complete commutative algebra objects in D(R)), to
the category of p-complete A/I-algebras.

For short, we will just write Ag/4 (respectively, Ag /4) for LAg;a (respectively, LAg /A) in the
following.

Left Kan extension of the Postnikov (or canonical filtration) filtration leads to an extension of Hodge-
Tate comparison to derived prismatic cohomology.

Proposition 3.10. For any p-complete A/I-algebra R, the derived Hodge-Tate complex Mg /A comes

equipped with a functorial increasing multiplicative exhaustive filtration Filionj in the category of p-
complete objects in D (R) and canonical identifications

grfonj(AR/A) = A'Lgjan{-it[-i]"".
Finally, let us indicate how these affine statements globalise.

Proposition 3.11. Let X be a p-adic formal scheme over Spf(A/I), which is locally the formal spectrum
of a p-complete ring with bounded p*-torsion. There exists a functorially defined (p, I)-complete
commutative algebra object hx 4 € D(X, A), equipped with a @ o-linear map ¢x : Axja — bxja, and
having the following properties:

e For any affine open U = Spf(R) in X, there is a natural isomorphism of (p, I)-complete
commutative algebra objects in D (A) between RI'(U, Ax a) and Ag, 4, compatible with Frobenius.
o Set ZX/A =MAxy/a ®HA A/l € D(X,A/I). Then ZX/A is naturally an object of D(X), which comes
with a functorial increasing multiplicative exhaustive filtration Fil:Onj
objects in D(X) and canonical identifications

in the category of p-complete

grlc-onj(AX/A) = N Ly {=i}[-i]"".

9Nevertheless, in Section 3.4, we will check that the site-theoretic defined prismatic cohomology is well-behaved for quasiregular
semiperfectoid rings (as it agrees with the derived prismatic cohomology), and also for quasisyntomic rings
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3.2. Truncated Hodge-Tate cohomology and the cotangent complex

Let (A, ) be a bounded prism, and let X be a p-adic A/I-formal scheme. The following result also
appears in [13, Proposition 4.14]'°. We give a similar argument (suggested to us by Bhatt), with more
details than in loc. cit. Since this result is not strictly necessary for the rest of the paper, the reader can
safely skip this subsection.

Proposition 3.12. There is a canonical isomorphism:
ax: Lxspray{-1}[-1]"" = Filionj(AX/A),
where the right-hand side is the first piece of the increasing filtration on Ay /A introduced in Proposition

3.11.

Proof. We can assume that X = Spf(R) is affine. Write A = A/I. We want to prove that there is a
canonical isomorphism

ar: Lrja{-1}[-11"7 = Fil*™ (Ag,a).

First, let us note that by the transitivity triangle for A — A — R, the cotangent complex
Lg/a{—1}[-1]"7 sits inside a triangle

R=R®z Lija{-1}[-1]1"? = Lrja{-1}[-1]"? — Lg,z{-1}[-1]"7,

and the outer terms are isomorphic to R = gr(c]oanR /4 and

g™ Agja = L 4 {-1}[-1]".

To construct the isomorphism a, it suffices to restrict to A — Rp-completely smooth first, and then
Kan extend. Thus, assume from now on that R is p-completely smooth over A.

Let (B,J) € (R/A), that is, (B,J) is a prism over (A, I) with a morphism ¢: R — B/J. Pulling
back the extension of A-algebras

0—J/J* = B/J* > B/J—0
along (: R — B/J defines an extension of R by J/J? = B/J{1}, and as such, is thus classified by a

morphism

Ap

= BII{I}1].

’ .
agr: L

Passing to the (homotopy) limit over all (B, J) € (R/A)) then defines (after shifting and twisting) the
morphism

aR: LR/A{—I}[—I]AI’ - TSIAR/A.

Concretely, if R = A(x), then

Ap

LR/A

= R®; I/I*[1] ® Rdx.

On the summand R®; 1 /1 2[1], the morphism @y, is simply the base extension of 7/1 2 — J/J? as follows
by considering the case A = R. On the summand Rdx, the morphism ay, is (canonically) represented

by the J/J2-torsor of preimages of «(x) in B/J? and factors as R 5B /J — B/J{1}[1] with the second

10Recently, Illusie has also obtained related results in characteristic p (private communication).
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morphism the connecting morphism for 0 — B/J{1} — B/J?> — B/J — 0. Thus, after passing to the
limit, we get a diagram

R

N

Arja — bra{l}[1]
and on HY, the horizontal morphism induces the Bockstein differential
B: H'(Agja) — H'(Agja{1}[1]) = H' (Arsa){1}.

Thus, the image of dx € HO(L;’/’ ) under ag is B(¢(x)). Therefore, we see that on HC, the morphism
ar induces the identity under the identifications

1 ~ 7oA
(QR/A)AP =H (LRI;A)

and

(Qp, )" = H' (Brya){1}

(the second is the Hodge-Tate comparison). Moreover, the morphism

Ap  H'(ar)

Rez 1/ = H (L] ,) — H™ (Bpsa{1}[1])

is the canonical one obtained by tensoring R — H° (Mg /) with I/ I%. By functoriality (and as Q;e /A is
generated by dr for r € R), we can conclude that for every p-completely smooth algebra R over A

ag: H'(Ly ) = H (br/a{1}[1])

induces the canonical morphism, and thus, that ag is an isomorphism in general. )

Recall the following proposition, which is a general consequence of the theory of the cotangent
complex.

Proposition 3.13. Let S be a ring, I C S an invertible ideal and X a flat S = S/I-scheme. Then the
class y € Extéx (LX/Spec(E)’ I/1? ®5 Ox) defined by Lx spec(s) is * the obstruction class for lifting X

to a flat S/ I*-scheme.
Proof. See [24, Chapter 111.2.1.2.3], respectively, [24, Chapter 111.2.1.3.3]. m
As before, let (A, I) be a bounded prism.

Corollary 3.14. Let X be a p-completely flat p-adic formal scheme over A/I. The complex Fil?onjzx /A
splits in D(X) (i.e. is isomorphic in D(X) to a complex with zero differentials) if and only if X admits
a lifting to a p-completely flat formal scheme over A/ I>.

Proof. Indeed, Filionjlx /A splits if and only if the class in

— — A
EXt}DX (gr(lzonJAX/A’ grf)onJAX/A) = EXt%DX (LXI/Spf(A/I) {1}, 0x)

defined by Filionj (hx /4) vanishes. Proposition 3.12 shows that this class is the same as the class defined
by the p-completed cotangent complex L;\(’;spf( A) {—1}. Lifting X to a p-completely flat formal scheme
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over A/I? is the same as lifting X ®a/1 A/(I, p™) to a flat scheme over A/(I%, p™) for all n > 1 (here,
we use that (A, I) is bounded in order to know that A/I is classically p-complete). One concludes by
applying Proposition 3.13, together with the fact that the p-completion of the cotangent complex does
not affect the (derived) reduction modulo p”. O

3.3. Quasisyntomic rings
We shortly recall some key definitions from [12, Chapter 4].

Definition 3.15. A ring R is quasisyntomic if R is p-complete with bounded p®-torsion and if the
cotangent complex Lz, has p-complete Tor-amplitude in [-1, 0] "' The category of all quasisyntomic
rings is denoted by QSyn.

Similarly, a map R — R’ of p-complete rings with bounded p*-torsion is a quasisyntomic morphism
(respectively, a quasisyntomic cover) if R’ is p-completely flat (respectively, p-completely faithfully flat)
over R and Lg//gr € D(R’) has p-complete Tor-amplitude in [-1, 0].

For a quasisyntomic ring R, the p-completed cotangent complex (Lg,z,, )S will thus be in D[~1-0]
(cf. [12, Lemma 4.6]).

Remark 3.16. This definition extends (in the p-complete world) the usual notion of locally complete
intersection ring and syntomic morphism (flat and local complete intersection) to the non-Noetherian,
non finite-type setting, as shown by the next example.

Example 3.17.

1. Any p-complete l.c.i. Noetherian ring is in QSyn (cf. [2, Theorem 1.2]).

2. There are also big rings in QSyn. For example, any (integral) perfectoid ring (i.e. a ring R which
is p-complete, such that 77 = pu for some 7 € R and u € R*, Frobenius is surjective on R/p and
ker(6) is principal) is in QSyn (cf. [12, Proposition 4.18]). We give a short explanation: if R is such
aring, the transitivity triangle for

Zp — Aini(R) = R

and the fact that Aj,¢(R) is relatively perfect over Z, modulo p imply that after applying — ®H13 R/p,
Lgyz, and Lgya,(r) identify. But

LR/, (r) = ker(6) /ker(6)*[1] = R[1],

as ker(0) is generated by a nonzero divisor'?.

3. As a consequence of (ii), the p-completion of a smooth algebra over a perfectoid ring is also
quasisyntomic, as well as any p-complete bounded p*-torsion ring which can be presented as the
quotient of an integral perfectoid ring by a finite regular sequence.

The (opposite of the) category QSyn is endowed with the structure of a site.

Definition 3.18. Let QSyngfyn be the site whose underlying category is the opposite category of the
category QSyn and endowed with the Grothendieck topology generated by quasisyntomic covers.

If R € QSyn, we will denote by (R)qsyn (respectively, (R)qsyn) the big (respectively, the small)
quasisyntomic site of R, given by all p-complete with bounded p®-torsion R-algebras (respectively, by
all quasisyntomic R-algebras, i.e. all p-complete with bounded p*-torsion R-algebras S, such that the
structure map R — S is quasisyntomic) endowed with the quasisyntomic topology.

The authors of [12] isolated an interesting class of quasisyntomic rings.

1This means that the complex M = LRz, ®HI§ R/p € D(R/p) is such that M ®HI§ N ¢ DIFLOI(R/p) for any

R/ p-module N.
12Qne also proves that R[p®] = R[p], which shows that R has bounded p®-torsion.
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Definition 3.19. A ring R is quasiregular semiperfectoid if R € QSyn and there exists a perfectoid ring
S mapping surjectively to R.

Example 3.20. Any perfectoid ring, or any p-complete bounded p®-torsion quotient of a perfectoid
ring by a finite regular sequence, is quasiregular semiperfectoid.

The interest in quasiregular semiperfectoid rings comes from the fact that they form a basis of the
O]

site QSyanyn.
Proposition 3.21. Let R be quasisyntomic ring. There exists a quasisyntomic cover R — R’, with R’
quasiregular semiperfectoid. Moreover, all terms of the Cech nerve R * are quasiregular semiperfectoid.

Proof. See [12, Lemma 4.27] and [12, Lemma 4.29]. ]
Finally, recall the following result, which is [13, Proposition 7.11].

Proposition 3.22. Let (A, I) be a bounded prism and R be a quasisyntomic A[I-algebra. There exists
a prism (B, 1B) € (R/A)), such that the map R — B/IB is p-completely faithfully flat. In particular,
if A/1 — R is a quasisyntomic cover, then (A, I) — (B, IB) is a faithfully flat map of prisms.

Proof. Since the proof is short, we recall it. Choose a surjection
All{x;,j €J) = R,
for some index set J. Set
S = AJKxYPY8Y 1, jenR.

Then R — S is a quasisyntomic cover, and by assumption, A/I — R is quasisyntomic: hence, the map
A/l — § is quasisyntomic. Moreover the p-completion of Q}? JA/D) is zero. We deduce that the map
A/I — S is such that (Lgs/a/r))"? has p-complete Tor-amplitude in degree [—1, —1]. Therefore, by the
Hodge-Tate comparison, the derived prismatic cohomology Ag;4 is concentrated in degree 0 and the

map S — Ag;4 is p-completely faithfully flat. One can thus just take B = Ag, 4. O
As observed in [13], a corollary of Proposition 3.22 is André’s lemma.

Theorem 3.23 (André’s lemma). Let R be perfectoid ring. Then there exists a p-completely faithfully
flat map R — S of perfectoid rings, such that S is absolutely integrally closed, that is, every monic
polynomial with coefficients in S has a solution.

Proof. This is [13, Theorem 7.12]. Since the proof is also short, we recall it. Write R = A/I, for a
perfect prism (A, I) (Proposition 2.8). The p-complete R-algebra R obtained by adding roots of all
possible monic polynomials over R is a quasisyntomic cover, so by Proposition 3.22, we can find a prism
(B, J) over (A, I) with a p-completely faithfully flat morphism R — R; := B/J. Moreover, we can (and
do) assume that (B, J) is a perfect prism. Indeed, as (A, I) is perfect, the underlying A-algebra of the
perfection’® of (B,J) is the (p, I)-completion of a filtered colimit of (p, I)-completely faithfully flat
A-algebras, hence is (p, I)-completely faithfully flat. Transfinitely iterating the construction R +— R
produces the desired ring S. O

Let us recall that a functor u: C — D between sites is cocontinuous (cf. [52, Tag 00XI]) if for every
object C € C and any covering {V; — u(C)} ey of u(C) in D there exists a covering {C; — C}iej of C
in C, such that the family {u(C;) — u(C)};¢; refines the covering {V; — u(C)} <, . For a cocontinuous
functor u: C — D, the functor

u~': Shv(D) — Shv(C), F — (Fo u)ﬂ
13The perfection of a prism is the (p, I')-derived completion (or classical) of its colimit along ¢ (see [13]).
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(here, ()ﬁ denotes sheafification) is left-exact (even exact) with right adjoint

GeShv(C) > (D> lim  G(O)).
{u(C)—-D}°op

Thus, a cocontinuous functor u: C — D induces a morphism of topoi
u: Shv(C) — Shv(D).

Note that in the definition of a cocontinuous functor, the morphisms #(C;) — u(C) are not required to
form a covering of C.

Corollary 3.24. Let R be a p-complete ring. The functor u: (R)) — (R)qsyn, sending (A, 1) to
R — A/I,

is cocontinuous. Consequently, it defines a morphism of topoi, still denoted by u:

u: Shv((R)p) — Shv((R)qsyn)-
Proof. Immediate from the definition (cf. [52, Tag 00XJ]) and the previous proposition. O
This yields the following important corollary.
Corollary 3.25. Let R be a p-complete ring. Let
0-G —>G,—>G3—0
be a short exact sequence of abelian sheaves on (R)qsyn. Then the sequence
0—u"'(G) > u"'(G2) > u™'(G3) = 0

is an exact sequence on (R)). This applies, for example, when G, G2, G3 are finite locally free group
schemes over R.

Proof. The first assertion is just saying that z~! is exact, as u is a cocontinuous functor ([52, Tag 00XL]).
The second assertion follows, as any finite locally free group scheme is syntomic (cf. [16, Proposition
2.2.2)). ]

3.4. Prismatic cohomology of quasiregular semiperfectoid rings

In this short subsection, we collect a few facts about prismatic cohomology of quasiregular semiperfec-
toid rings for later reference.

For the moment, fix a bounded base prism (A, I) and let R be p-complete A/[-algebra. There are
several cohomologies attached to R:

1. The derived prismatic cohomology

AR/A

of R over (A, I) defined in Definition 3.9 via left Kan extension of prismatic cohomology.
2. The cohomology

R4 = RD((R/A)p, Op)

of the prismatic site of (R/A)) (with its p-completely faithfully flat topology).
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3. Finally (and only for technical purposes),
init,unbdd
DRj"™ = RURIA)p s O

the prismatic cohomology of R with respect to the site (R/A) 5 1pqq ©f NOt necessarily bounded prisms
(B, J) over (A, I) together with a morphism R — B/J of A/I-algebras. We equip (R/A)p g4 With
the chaotic topology.

Assume from now on that (A,7) is a perfect prism and that A// — R is a surjection with R
quasiregular semiperfectoid. The prism A‘;'t:”bdd admits then a more concrete (but, in general, rather
untractable) description. Let K be the kernel of A — R. Then

- Np.1)
init,unbdd _ , | K
Dy = A {7}

is the prismatic envelope of the §-pair (A, K) from [8, Lemma V.5.1] as follows from the universal
property of the latter. In particular, the site (R/A)p .qq has a final object’.

Proposition 3.26. Let as above (A, I) be a perfect prism and R quasiregular semiperfectoid with a
surjection A/l - R. Then the canonical morphisms induce isomorphisms

init init,unbdd
Drja = R/A = AR/A
as o-rings.
Proof. This is [13, Proposition 7.10] (the second isomorphism, i.e. the fact that Ailgi/t:;‘“bb is bounded,
follows from the last assertion of loc. cit.). m]

If pR = 0, that is, R is quasiregular semiperfect, there is, moreover, the universal p-complete PD-
thickening

Acrys(R)

of R (cf. [50, Proposition 4.1.3]). The ring Acys(R) is p-torsion free by [12, Theorem 8.14].

Lemma 3.27. Let (A, I), R be as above, and assume that pR = 0. Then there is a canonical p-equivariant
isomorphism

AR/A = Acrys(R)~

Proof. As Ays(R) is p-torsion free (cf. [12, Theorem 8.14]) and carries a canonical Frobenius lift,
there we get a natural morphism

AR/A - Acrys (R).
Conversely, the kernel of the natural morphism (cf. Theorem 3.29, which does not depend on this lemma)
0: A R/A — R

has divided powers (as one checks similarly to [ 12, Proposition 8.12], using that the proof of Theorem 3.7
goes through in the syntomic case, cf. Remark 3.8). This provides a canonical morphism

Acrys (R) - AR
in the other direction. Similarly, to [12, Theorem 8.14], one checks that both are inverse to each other. O

14Up to now, this discussion did not use that R is quasiregular, it was sufficient that A/I — R is surjective.
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Remark 3.28. Both rings Ag/4 and Acrys(R) are naturally W (RP)-algebras, but the isomorphism of
Lemma 3.27 restricts to the Frobenius on W(R"). Concretely, if R = R”/x for some nonzero divisor
x € RY, then

Dgywrry = W(R") {%}

and (cf. [13, Corollary 2.37])

xP )"
Acrys(R) = W(Rb) {?} = AR/W(Rb) ®W(Rb),<p W(Rb)

The prismatic cohomology Agr of a quasiregular semiperfectoid ring R comes equipped with its
Nygaard filtration, [13, Section 12], an N-indexed decreasing multiplicative filtration defined for i > 0
by

NZi(AR) = {x <€ AR, go(x) S diAR},

d denoting a generator of the ideal 1. The graded pieces of the Nygaard filtration can be described as
follows.

Theorem 3.29. Let R be a quasiregular semiperfectoid ring. Then
>i >i+l T N .
NZ(AR) N (AR) = Rl (Ag){i}

fori > 0. In particular, Ag I/N='Ag = R.

Here, Fil:™" (Ag) denotes the conjugate filtration on Ag with graded pieces given by gri®” (Ag) =

A’L;’; S [—i], for any choice of perfectoid ring S mapping to R (cf. Proposition 3.10).
Proof. See [13, Theorem 12.2]. O

3.5. The Kiinneth formula in prismatic cohomology

The Hodge-Tate comparison implies a Kiinneth formula. Here is the precise statement. Note that for a
bounded prism (A, I), the functor R +— Ag/4 is naturally defined on all derived p-complete simplicial
A/I-algebras.

Proposition 3.30. Let (A, I) be a bounded prism. Then the functor
R AR /A

from derived p-complete simplicial rings over A/l to derived (p,I)-complete E-algebras over A
preserves tensor products, that is, for all morphism R < Rz — R, the canonical morphism

AL
Brija®h, , Lroja = Br g gya

is an equivalence.
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Proof. Using [12, Construction 2.1] (respectively, [40, Proposition 5.5.8.15]) the functor R + Ag/a,
which is the left Kan extension from p-completely smooth algebras to all derived p-complete simplicial
A/I-algebras, commutes with colimits if it preserves finite coproducts. Clearly, A(a/r);a = A, that
is A_ja preserves the final object. Moreover, for R, Sp-completely smooth over A/I, the canonical
morphism

AL
Aria®sbsia — Dsgria

is an isomorphisms because this /-completeness may be checked for A /A where it follows from the
Hodge-Tate comparison. O

Gluing the isomorphism in Proposition 3.30, we can derive, using as well the projection formula and
flat base change for quasicoherent cohomology, the following statement.

Corollary 3.31. If X and Y are quasicompact quasiseparated p-completely smooth p-adic formal
schemes over Spf(A/I)), then

AL
RTU(X Xspr(a/n) Ys Bxxsyoanvia) = RU(X, Dx/a)®4RU(Y, Dy 4).

4. Prismatic Dieudonné theory for p-divisible groups

This chapter is the heart of this paper. We construct the prismatic Dieudonné functor over any quasisyn-
tomic ring and prove that it gives an antiequivalence between p-divisible groups over R and admissible
prismatic Dieudonné crystals over R. The strategy to do this is to use quasisyntomic descent to reduce
to the case where R is quasiregular semiperfectoid, in which case, the (admissible) prismatic Dieudonné
crystals over R can be replaced by simpler objects, the (admissible) prismatic Dieudonné modules.

4.1. Abstract prismatic Dieudonné crystals and modules

Let R be a p-complete ring. We defined in Corollary 3.24 a morphism of topoi:
u: Shv((R)) — Shv((R)gsvn).
We let
& : Shv((R)qsyn) — Shv((R)gsyn)

be the functor defined by e.F(R’) = F(R’) for F € Shv((R)gsyn) and R’ € (R)gsyn. It has a left
adjoint €f : Shv((R)gsyn) — Shv((R)gsyn). We warn the reader that the restriction functor from the
big to the small quasisyntomic site does not induce a morphism of sites'>, that is this left adjoint need
not preserve finite limits (which explains why we denoted it € instead of e 1).

We let

Vi = € o Uty : Shv((R)p) — Shv((R)gsyn)
and
Vi =u"" o € Shv((R)gsyn) — Shv((R)p).

We still have the formula Rv, = Re, o Ru. as &, is exact.

15We thank Kazuhiro Ito for drawing our attention to this point.
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Definition 4.1. Let R be a p-complete ring. We define:
O :=y,0) 5 NZOPS =y NZ1O) ;I :=v,T7),
where Z) € O) denotes the canonical invertible ideal sheaf sending a prism (B, J) € (R)p to J. The
sheaf OP"s is endowed with a Frobenius lift ¢.
Although these sheaves are defined in general, we will only use them over quasisyntomic rings.

Proposition 4.2. Let R be a quasisyntomic ring. The quotient sheaf
Opris /Nzl Opris

is isomorphic to the structure sheaf O of (R)gsyn.

Proof. 1t is enough to produce such an isomorphism functorially on a basis of (R)qsyn. By Propo-
sition 3.21, we can thus assume that R is quasiregular semiperfectoid. In this case, we conclude by
Theorem 3.29. O

Definition 4.3. Let R be a p-complete ring. A prismatic crystal over R is an O)-module M on the
prismatic site (R) of R, such that for all morphisms (B, J) — (B’,J’) in (R) the canonical morphism
M(B,J)®p B> M(B’,J’)

is an isomorphism.

Note that a prismatic crystal in finitely generated projective O -modules (respectively, in finitely
generated projective o -modules) is the same thing as a finite locally free O )-module (respectively, a
finite locally free 5A-m0dule). In what follows, we will essentially consider only this kind of prismatic
crystal.

Proposition 4.4. Let R be a quasisyntomic ring. The functors v. and v* (=) := O ) ® 5 opris vi(=) induce
equivalences between the category of finite locally free O \-modules and the category of finite locally
Jfree OP™-modules.

Proof. Because v,.(O A) = OPs it js clear that for all finite locally free OPris_modules M, the canonical
morphism

M = v.(v'(M))

is an isomorphism as this can be checked locally on (R)qsyn. Conversely, let A" be a finite locally free
O -module. We have to show that the counit

VY. (N) - N
is an isomorphism. For any morphism R — R’ with R’ quasisyntomic, there are equivalences
(R)A/hR’ = (R/)A > (R)qsyn/R/ = (R,)qsyn

of slice topoi, where hg (B, J) := Homg(R’, B/J). By passing to a quasisyntomic cover R — R’, we
can therefore assume that R is quasiregular semiperfectoid, in particular, that the site (R)) has a final
object given by Ag. By (p, I)-completely faithfully flat descent of finitely generated projective modules
over (p, I)-complete rings of bounded (p, I)-torsion (cf. Proposition A.3), the category of finite locally
free O )-modules on (R) is equivalent to finitely generated projective Ag-modules’®. As the morphism
AR — R (the ‘¢’-map) is henselian along its kernel, cf. Lemma 4.28, finite locally free Ar-modules split

16The nontrivial point is that the global sections of a finite locally free O j-module are locally free over Ag.
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on the pullback of an open cover of Spf(R). Thus, after passing to a quasisyntomic cover of Spf(R), we
may assume that V is finite free. Then the isomorphism

VV.(N) =N

is clear. o

Definition 4.5. Let R be a quasisyntomic ring. A prismatic Dieudonné crystal over R is a finite locally
free OP"S-module M together with ¢-linear morphism

()DMZM—>M

whose linearisation ¢* M — M has its cokernel killed by ZP"'. We call a prismatic Dieudonné crystal
(M, o rm) admissible if the image of the composition

M EL M - MJTPS - M
is a finite locally free O-module F 4, such that the map (OP"S/TP"S) @ Fpq — M /IP"S M induced
by ¢ A is @ monomorphism.
Here, M/ZPS - M is an O = OP"S/ N Z1OPS_module, cf. Proposition 4.2, via the composition
Opris i> Opris N Opris/IpriSO.

Remark 4.6. For a prismatic Dieudonné crystal (M, ¢ o), the linearisation ¢* M — M of the mor-
phism ¢ o: M — M is an isomorphism after inverting a local generator & of ZP™ and, in particular,
is injective, since ¢* M is &-torsion free.

Remark 4.7. Let (M, ¢ o4) be a prismatic Dieudonné crystal. Write FilM = 4,0;\}1 (TP, M). Consider
the diagram (defining Q, K)

00— ¢*FilM 2 TS M — > 0 ——> 0

Ll

0 oM M K 0.

As TP"S K = 0 (by definition of a prismatic Dieudonné crystal), the map « is zero. The snake lemma
implies, therefore, that there exists a short exact sequence

0 0 — " M/E*FIM = O TP g Fro L My M = K -0
(where, as in Definition 4.5, we wrote Fxq = M/FilM). Hence, we see that the injectivity of S
(condition required in the definition of admissibility) is equivalent to the condition that Q = 0.

Definition 4.8. Let R be a quasisyntomic ring. We denote by DM(R) the category of prismatic
Dieudonné crystals over R (with OP™-linear morphisms commuting with Frobenius) and by DM*I™(R)
the full subcategory of admissible objects.

Proposition 4.9. The fibred category of (usual or admissible) prismatic Dieudonné crystals over the
category QSyn of quasisyntomic rings endowed with the quasisyntomic topology is a stack.

Proof. This follows from the definition, because by general properties of topoi, modules under OP'
and O form a stack for the quasisyntomic topology on (R)gsyn. m}

For quasiregular semiperfectoid rings, these abstract objects have a more concrete incarnation,
which we explain now. Let R be a quasiregular semiperfectoid ring, and let (Ag,I) be the prism
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associated with R. Note that [ is necessarily principal as there exists a perfectoid ring mapping to R.
Recall (Theorem 3.29) that

0: Ag/NZ'Ag =R

is an isomorphism.

Definition 4.10. A prismatic Dieudonné module over R is a finite locally free Ag-module M together
with a ¢-linear morphism

om:M— M,

whose linearisation ¢*M — M has its cokernel killed by 1. As in 4.5, we call a prismatic Dieudonné
module (M, ¢pr) over R admissible if the image of the composition

M2 MMM
is a finite locally free R = Ag/N=!Ag-module Fj;, such that the map Ag/IAg ®g Fyy — M/IM
induced by ¢, is a monomorphism.

Remark 4.11. For a prismatic Dieudonné module (M, ¢py), the linearisation ¢*M — M of the mor-
phism @3 : M — M is an isomorphism after inverting a generator & of I and, in particular, is injective,
since ¢*M is &-torsion free. In 4.25, we will prove that these properties imply that the cokernel of
@*M — M is a finite projective Ag/I-module.

If R is perfectoid, one has

(g, D) = (Aint(R), ().

A prismatic Dieudonné module is the same thing as a minuscule Breuil-Kisin-Fargues module ([11])
over Ajpr(R) with respect to £. In fact, the situation for perfectoid rings is simple, as shown by the
following proposition.

Proposition 4.12. Let R be a perfectoid ring. Any prismatic Dieudonné module over R is admissible.
We postpone the proof, it will be given below after Proposition 4.29.

Proposition 4.13. Let R be a quasiregular semiperfectoid ring. The functor
(M, op1) = (VM(LR, 1), v o (D, 1))

of evaluation on the initial prism (Ag, 1) induces an equivalence between the category of (usual or
admissible) prismatic Dieudonné crystals over R and the category of (usual or admissible) prismatic
Dieudonné modules over R, with quasi-inverse

(M’ ‘PM) = (M ®AR Opris’ oM ® (,D(f)pris).

Proof. Let us call Gg, respectively, Fg, the first, respectively, the second, functor displayed in the
statement of the proposition. Using Proposition 4.4 and the equivalence between finite locally free O -
modules and finite locally free Ag-modules, one immediately gets that Fr is an equivalence between
the category of prismatic Dieudonné crystals over R and the category of prismatic Dieudonné modules
over R, with quasi-inverse given by G gr. Hence, we only need to check that the admissibility conditions
on both sides agree.

Let (M, ¢pr) be an admissible Dieudonné module over R.
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Lemma 4.14. Let R — R’ be a quasisyntomic morphism, with R’ being also quasiregular semiperfec-
toid. Let (M’, opp0) = (M ®Op, LR oM ® QDAR/) be the base change of (M, ¢pr). Then

Oyt (IDgr . M) = N=' D M +Tm(gp; (I.M) @ Are — M),

The lemma follows from Proposition 4.29 (and Remark 4.21), which will be proved below; let us
take it for granted and finish the proof. For any quasiregular semiperfectoid ring R’ quasisyntomic over
R, note that, using the notations from the lemma,

I(R',FrR(M)) =M', T(R’ ’QOFR(M)(IpriS~FR(M))) = gy (IAg . M').
The lemma tells us that, in particular
M/t,D J(IAg .M') = R’ ®RM/tpM(IM)

This being true for any quasiregular semiperfectoid ring R’ quasisyntomic over R, we deduce that we
have a short exact sequence of sheaves on (R)gsyn

0= @t (ar) (TP Fr(M)) — Fr(M) — O ®r My (1.M) — 0.

By admissibility of (M, ¢pr), the rightmost term is a finite locally free O-module, and thus, Fr(M) is
admissible.
Conversely, let (M, ¢ o) be an admissible Dieudonné crystal. Consider the exact sequence of sheaves

0— go;\}l (ZP"S M) > M — ./\/l/cp;\/ll (ZP"S. M) — 0,
and apply to it the functor I'(R, —). We get an exact sequence
0 = (R, o34 (TP M) = ¢ gy I-GRIM)) = GR(M) = T(R, M/ @3 (T . M)).

Since M/ tp;\}[ (ZP. M) is a finite locally free ©-module by admissibility of (M, ¢ ), the rightmost
term is a finite projective R-module, and it, therefore, suffices to show that the above sequence is also
right exact. The map

GRr(M) = T(R, M/ @3 (T . M)
factors through
GrM)/NZ!Ar.Gr(M) — T(R, M/ @3y (TP M),

which is a map of R-modules, and it suffices to show that this map is surjective. Since the target is a
finitely generated R-module and R is p-complete, it suffices by Nakayama’s lemma to prove surjectivity
after base change along any surjection R — k, with k a perfect field of characteristic p. After base
change along such a morphism R — k, the above map factors through

Gr(M) ®),, D — T(R, M/} (T . M)) @ k.

Since Gg(M), respectively, M/ go;\}l (ZP"s. M), is a finite locally free OP">-module, respectively, a
finite locally free O-module, this identifies with the map

Gr(Mp) = T(k, My /@3y, (TP My)),

that is the same map as the one we originally wanted to prove is surjective, but now with R replaced
by k (we denoted with an index k the restrictions of the various objects involved to the quasisyntomic
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site of k). But since k is perfect, (Gr(Mx), G, (Mm,)) is automatically admissible, by definition of
admissibility using that every k-module is free. Hence, as proved above, we have an exact sequence
(using that Fy o G = 1d)

0 = @y, (TP M) = My = O 8r G (M) (am,) 1-Gr(Mr)) = 0,

that is

M/ @3k (T My) = O @ Gr(M) /6 () 1.Gr (M),
hence

T (k, M /@3, (TP My)) = Gr(Mi) [0, (a,) -G (M)
This shows that the map

G (M) = Tk, My /@3y (TP . My)

is surjective, as desired. ]

Definition 4.15. We denote by DM(R) the category of prismatic Dieudonné modules over R (with
morphisms commuting with the Frobenius) and by DM?I™ ( R) the full subcategory formed by admissible
objects.

Proposition 4.13 shows that the possible conflict of notation is not an issue: for R quasiregular
semiperfectoid, the two categories denoted by DM(R) are naturally equivalent, and similarly for DF(R).

In the rest of this subsection, we will shortly recall the general notions of frame and window, and
then discuss the connection with the definitions above.

Definition 4.16. A frame A = (A, Fil A, ¢, ¢1) consists of (classically) (p, d)-adically complete rings
A and R = A/Fil A, for some d € A and some ideal Fil A, a lift of Frobenius ¢, a ¢-linear map
@1 : Fil A — A (called the divided Frobenius on A), such that ¢ = w; on Fil A, with @ = ¢(d).

Let A, A’ be two frames, and let u € A’ be a unit. A u-morphism of frames @ : A — A’ is amorphism
of rings @ : A — A’ intertwinning ¢ and ¢’, carrying Fil A into Fil A" and satisfying ¢} o @ = ua o ¢,
and a(w) = uw’.

Remark 4.17. In many situations (such as those considered in this paper), the image of ¢; will always
generate the unit ideal of A.

Here is an important source of examples.

Example 4.18. Let (A, I = (d)) be an oriented prism. There are usually two natural ways of attaching
a frame to (A, (d)). One possibility is to consider the frame

A, = (A (d), ¢, 1),

where ¢ is defined by ¢ (dx) = ¢(x) (recall that A is d-torsion free). Here, ¢ = ¢(d)¢, on FilA = (d).
The other possibility works when d is of the form d = ¢(d”) for some d’ € A: one can then consider
the frame

>1
éNyg = (A9N As @, ‘701)9
where ¢; 1= ¢/d on N'2' A (using again that A is d-torsion free). Here, ¢ = d¢; on FilA. Note that in

the first case, the divided Frobenius is with respect to ¢(d), whereas in the second case, the divided
Frobenius is with respect to d.
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Definition 4.19. A window M = (M,Fil M, ¢ar, oar.1) over a frame A consists of a finite locally free
A-module M, an A-submodule Fil M c M and ¢-linear maps ¢ps : M — M and ¢pr1 : FilM — M,
such that:

e Fil A- M c Fil M and M /Fil M is a finite locally free R-module.
o IfacFilA,me M, pp.1(am) = ¢i(a)py (m).

o Ifm e Fil M, ppr(m) = wopr,1(m).

o ¢ur.1 (Fil M) + ppr (M) generates M as an A-module.

A morphism of windows is an A-linear map preserving the filtrations and commuting with ¢, and
¢m.1- The category of windows over A is denoted by Win(A).

Remark 4.20. If the surjectivity condition on the image of ¢ of Remark 4.17 is satisfied, then the third
point of the previous definition follows from the second and the last one simply says that ¢ 1 (Fil M)
generates M (indeed, by assumption one can write 1 = 3.'_, a;¢((b;) for some a; € A,b; € Fil A,
whence @ = 31, a;¢(b;)).

Remark 4.21. If o : A — A’ is a u-morphism of frames as Definition 4.16 (for some unit u € A”), and
M, respectively, M’, is a window over A, respectively, A’, an a-morphism of windows f : M — M’ is
a morphism f : M — M’ of A-modules, intertwinning ¢,; and ¢y,/, sending Fil M into Fil M’ and
satisfying @p 1 o f = uf o opr,1 (hence, if A = A’, @ = Ida, an @-morphism of windows is just a
morphism of windows over A). There is a base change functor

a1 Win(A) — Win(A”")

characterised by the universal property that if M € Win(A), M’ € Win(A’), homomorphisms in
Win(A’) from ¢*M to M’ identify with a-morphisms of windows from M to M’. Concretely, if
M € Win(A), then «*M = (M',Fil M’, opr, omr.1) is given by M’ = A’ ®4 M, Fil M’ is the
submodule generated by (Fil A”).M’ and the image of Fil M, and ¢/, ¢ar,1 are uniquely determined
by the requirement that M — M’, m — 1 ® m, is an a-morphism of windows.

Proposition 4.22. Let A = (A, FilA, ¢, ¢1) be a frame, such that any finite projective A/Fil A-module
lifts to a finite projective A-module. Let (M,Fil M, ¢pr, oar.1) be a window over A. Then there exist
finite projective A-modules L,T, such that M = L ® T and Fil M = L @ Fil A.T. Moreover, given
L, T, there exists a bijection between @-semilinear isomorphisms (i.e. p-semilinear maps which become
isomorphisms after linearisation) ¥: L&T — L& T and A-window structures on the pair (L&®T,L &
Fil A.T).

Proof. This is a combination of [33, Remark 2.4] and [33, Lemma 2.5]. Let us give some details, and
set S := A/Fil A. The module S ®4 M decomposes, as M /Fil M is finite projective, into a direct sum
S®a M = M/Fil M & Q for some finite projective S-module Q. Let L, T be finite projective A-modules,
such that L is a lift of Q and T a lift of M /Fil M. We can then lift the decomposition S ®4 M to a
decomposition M = L & T by projectivity. The property Fil M = L & Fil AT follows. Given ¢, we
define W(I +1) = opm.1(1) + o (¢) forl € L,t € Ton M = L & T, and conversely, given ¥, we set
e (I +1) =Y () +¥(t) and opr 1 (I +at) :=VY({) +¢1(a)¥(t) forl € L,t € T,a € Fil A. O

Lemma 4.23. Let A = (A, FilA, ¢, ¢1) as in Proposition 4.22, such that @ is a nonzero divisor and
FilA = ¢~ (@A). Then if (M,Fil M, opr, ¢ar.1) is a window over A, we have

Fil M = ¢y (M)
(note that one always has an inclusion Fil M C w;,} (wM)). Moreover, ¢pr: M — M induces an

injection M [FilM — M [wM, and the latter extends to an injection A/ ®/riia M [FilM — M /I of
a locally direct summand.
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Proof. Let
M=Le&T
be a normal decomposition of M as in 4.22, and
Y= (om, 1) + (OM)irs
sothat Fil M = L@ Fil A.T. Letx = [+t € M, such that s (x) € wM. We have
oM (x) =¥ () + ¥ (1)

so the condition is equivalent to requiring that W(t) € w.M. For simplicity, we assume that
L,T are free A-modules in the following. The general case follows by localisation. Fix a ba-
sis t1,...,t, of T and a basis [y,...,l; of L, as A-modules. Since ¥ is a ¢-linear isomorphism,
the family (¥(¢1),...,¥Y(t),¥(ly),...,¥P(ls)) is a basis of M, and so the reduction of the fam-
ily (¥(t1),...,¥(t,)) modulo @ is linearly independent. Write ¢ = };_, a;t;, with a; € A for all
i=1,...,r. By assumption, we have that

¥(1) = ) p(a)¥(1) € @M,
i=1

and therefore we must have ¢(a;) € wA foralli = 1,...,r, thatis q; € Fil A foralli = 1,...,r,
by the condition on Fil A. Hence, ¢ € Fil A.T and thus x € Fil M, as desired. For the last statements
note that the map ¢ps: M/FilM = T/FilA.T — M/w identifies with the map induced by ¥. As
om (t;) =¥(t;),i =1,...,r, are linearly independent (over A/w), this map extends to an inclusion

A/IU ®A/FilA M/FIIM — M/iD'

of a direct summand. This finishes the proof. O

Let us now see what the categories of windows look like for the frames attached to prisms discussed
in Example 4.18.

Definition 4.24. Let (A, I = (d)) be a prism. A Breuil-Kisin module (M, @pr) over (A, 1), or just A if I
is understood, is a finite free A-module M together with an isomorphism

1 1
Ce'M[=]=M[=].
ou: ¢ MI5] = M)
If oar (¢*M) € M with cokernel killed by 1, then (M, @) is called minuscule.
We denote by BK(A) the category of Breuil-Kisin modules over A and by BKin (A) € BK(A) its
full subcategory of minuscule ones.

Remark 4.25. If (M, ¢p) is a minuscule Breuil-Kisin module over (A,I), the cokernel N of
oy (*M) C M is a finite projective A/I-module. Indeed N is pseudocoherent as an A-module (hav-
ing a 2-term resolution by finite projective A-modules), hence, as an A/I-module. Moreover, if k is the
residue field of Spec(A/I) at any closed point, then the derived tensor

keh, N=W(k) ef N
is a perfect complex of W(lz)-modules, hence, bounded. It follows that the complex k ®1’; /1 N is also
bounded, so that N has a finite resolution by finite projective A/I-modules ([52, Tag 068W]). Since N

has projective dimension < 1 as an A-module, it is necessarily projective as an A/I-module. We thank
the referee for poiting out this argument to us.
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Proposition 4.26. Let (A, (d)) be an oriented prism. The functor
(M, FﬂM, bPM > SDM,]) [ d (FﬂM, d.(,DMJ)

induces an equivalence between the category of windows over the frame A ; of Example 4.18 and the
category BKpin(A).

Proof. See [17, Lemma 2.1.16] (taking Remark 4.25 into account). O

Before turning to the second example introduced in Example 4.18, let us recall some facts about
henselian pairs. Let A be aring, and let / C A be an ideal. We recall that the pair (A, I) is henselian if / is
contained in the Jacobson radical of A and if for any monic polynomial f € A[T] and each factorisation
f = goho with go, hog € A/I[T] monic and generating the unit ideal, there exists a factorisation f = gh
with g, h monic and gg = g, ho = h (cf. [52, Tag 09XE]).

If I is locally nilpotent'” or A is I-adically complete, then the pair (A, /) is henselian (cf. [52, Tag
0ALI], [52, Tag OALIJ]).

For us, the following well-known property of henselian pairs will be important (cf. [19, Lemma
4.20]).

Lemma 4.27. Let (A, I) be a henselian pair. The base change M +— M ®4 A/l induces a bijection on
isomorphism classes of finite projective modules over A, respectively, A/I.

Proof. If M, N are finite projective A-modules, then any isomorphism M /IM = N/IN can be lifted
to a morphism M — N by projectivity of M. As I C A lies in the Jacobson radical of A, this lifted
homomorphism is then automatically an isomorphism. Moreover, any finite projective A//-module can
be lifted to a finite projective A-module by [52, Tag 0D4A]. m}

Now, we provide the proof that Ag is henselian along N'='Ag = ker(6: Ag — R). We learned the
argument from [37, Remark 5.2].

Lemma 4.28. The pair (AR, ker(6)) is henselian.
Proof. Because Ag is (p, &)-adically complete, it suffices to prove that the pair

(Br/(p.€), (p.ker(8))/(p,€))

is henselian (cf. [52, Tag ODYD]). We know ker(6) = A= Ag. Hence, for every element x € ker(6),
xP € (p,£). As locally nilpotent ideals are henselian, the claim follows. O

Proposition 4.29. Let R be a quasiregular semiperfectoid ring. Fix a generator & = ¢(&) of the ideal I
of the prism (Mg, I), giving rise to a frame AR’Nyg of Example 4.18 (with d = £). The forgetful functor

Win(AR’Nyg) - DM(R)9 (Ma Fll M? gDM, QOM,I) = (M7 gDM)

is fully faithful, with essential image the subcategory DM*™(R).

Proof. Thanks to Lemma 4.28, we can apply Lemma 4.23 to the frame AR’Nyg. This yields fully
faithfulness, and that for a window (M, Fil M, ¢ar, ¢ar.1), the image of

MELS M MM

identifies with M /Fil M. By Lemma4.23, we can deduce admissibility. Assume conversely that (M, @)
is an admissible prismatic Dieudonné module. Then the datum (M, tp;/ll (I-M),oum, égoM) is a win-

dow over Ap \,- Indeed, the condition that @ 1 (FilM) generates M follows from the definition of
admissibility and Remark 4.7. This finishes the proof. m}

That is, every element in / is nilpotent.
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Remark 4.30. Assume that R is quasiregular semiperfect, that is R is quasiregular semiperfectoid and
pR = 0. Let (M, ¢p) be a prismatic Dieudonné module over R. Let N ¢ M/N='ArM be a locally
free R-module which is a direct summand, and define Fil M to be the inverse image of N in M. Then
the collection (M, Fil M, pp, 1/pepr) is a window over AR’Nyg = Acrys(R)Nyg if and only if N is an

‘admissible’ filtration in the sense of Grothendieck on the Dieudonné module (M, ¢ps, Vas), where
Vm = go;}. p (which makes sense by the assumption that (M, ¢)y) is a prismatic Dieudonné module).
For a proof of this, see [17, Lemma 2.5.1]).

We can now prove Proposition 4.12.

Proof of Proposition 4.12. 'We know by Proposition 4.29 that the functor
1,z 1
(M, om) MsQDM(§~M)vQDM:E‘PM

is an equivalence between DM®™(R) and Win(4g Nyg ). Since R is perfectoid, N='Ag = (¢£) and so

A

—R.Nyg

:AR’g

By Proposition 4.26, the functor
(N,FilN,pN) — (Fil N, z—;cpz\/)

induces an equivalence between Win(4p f) and BK i (Aine(R)) (the category of minuscule Breuil-
Kisin modules over Aj¢(R)). The latter category is, however, obviously equivalent to DM(R’), with
R’ = Ains(R) /€. As ¢ is bijective on Ag, base change along ¢ is also an equivalence between DM(R)
and DM(R). Composing these equivalences, we obtain an equivalence

DM*™(R) — DM(R).
But this composite functor is nothing but the identity functor. O

Finally, we record some statements which are later used to prove essential surjectivity for the prismatic
Dieudonné functor.

For a ring A with an endomorphism ¢: A — A, we denote by ¢ — Mo the category of ‘unit’
¢-modules over A, that is, the category of pairs (M, ¢ps) with M a finite projective A-module and
Ym: ¢*M = M an isomorphism.

unit
dA

Lemma 4.31. Let A — B be a surjection of bounded prisms with kernel J C A. Assume that the
Frobenius ¢ of A is topologically nilpotent (for the (p, I)-adic topology) on J and that (A, J) is henselian.
Then the functor

@ — Mod™ — ¢ — Mody™, (M, ¢p) — (M ®4 B, ¢p ®4 B)

is an equivalence.

Proof. To prove fully faithfulness, it suffices to show (by passing to internal homs) that for every
¢-module (M, ¢p) over A, the map

M= (M) TM) M
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n
is bijective. Let m € M¥M=1'n JM, and write m = 3, a;m; with a; € J and m; € M. Then
i=1

m =y, (m) = )" ¢/ (aey, (mo),
i=1

where the ¢/ (a;) converge to 0 if j — oo by our assumption on ¢. Thus, m = <p£4 (m) - 0if j -
and therefore m = 0, which proves injectivity. Conversely, let m € M and assume that ¢, (m) = m
modulo JM. Write

z:=ppy(m)—-meJM.

As above, the sequence 90'1’;,1 (z) converges to 0 if j — oco. Set
m = m+ngfw(z).
j=0

Then m = m modulo JM and ¢y, (1) = rir. Thus, we showed that
M= = (M) TM) M=

and the functor ¢ —Mod"™ — - Mod' is fully faithful, and we are left with essential surjectivity. For
this, let (N, ¢on) € ga—Mod‘gmt. By assumption, A is henselian along J and, thus, we can write N = M®, B
for some finite projective A-module M. Using projectiviy of ¢*M over A, we can lift oy : ¢*N — N
to some homomorphism ¢y : ¢*M — M. As J lies in the radical of A, the homomorphism ¢as will
automatically be an isomorphism as ¢ is. Thus, we have lifted (N, ¢n) to (M, ¢ps), which finishes
the proof. O

The following statement is similar to [30, Appendix A.4] or [33, Lemma 2.12].
It will use the ‘Nygaard frame’ associated to an oriented prisms, which was discussed in 4.18.

Lemma 4.32. Let (A, (§)) — (B, (£)) be a surjection of oriented bounded prisms with kernel J
contained in N=' A, and assume that & = (&) for some & € A and that (A, €) bounded. Assume that
@1 is (pointwise) topologically nilpotent on J and that (A, J) is henselian. Then the base change functor
induces an equivalence:

Win(Ay,,) = Win((B,N='A/J, AINZ'A, ¢, ¢1)).

We note that ¢;(J) C J as B is é-torsion free and ¢(j) = €¢i(j) in A. Thus, the con-
dition that ¢; is topologically nilpotent on J makes sense. Moreover, ¢;(J) C J implies that
(B,NZ'AJJ,AJNZ'A, ¢, @) is indeed a well defined frame.

Proof. In this proof, we will use the following convenient notation: if o : § — §is aring endomorphism
and f : M — N is a o-linear map between two S-modules, we will denote by 4 o*M — N its
linearisation. We will also abbreviate Ay, as A and (B, N='AJJ,AINZA, ¢, ¢1) as B.

By the existence of normal decompositions (cf. Proposition 4.22: we can apply it since the proof of
Lemma 4.28 shows that A is henselian along N'=! A, and this implies that finite projective B/im(N =! A)-
modules can be lifted to finite locally free B-modules — even to finite projective A-modules) and the
fact that A is henselian along J, the base change functor

Win(A) — Win(B)
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is essentially surjective. Let M, N be two windows over A. We want to prove that
Homy (M, N) = Homg (M /J,N/J),

where M /J, N /J denote the base change of M, N to B. The idea of the proof is similar to Lemma 4.31
(and [33, Theorem 3.2]). Let

B: M — JN
be an arbitrary homomorphism of A-modules. Then the A-module homomorphism
UB): M — IN, m ok (1d® B)(¢h, )7 (m)

is well defined. Indeed, 1,0?\41 ©*M — M is injective with cokernel killed by & (which follows from

the fact that ¢ps 1 (FilM) generates M and that M, ¢* (M) are £-torsion free), and thus, on €M, there
-1
exists a partial inverse (gaﬁ,l) 1 EM — ¢"M of 9"?\4' Moreover, as 8 has image in JN, the composition

ga?v (Id ® B) has image in £N. The module M is finitely generated: choose generators xp, .. .,x,. For
each n > 1, and each x € M, we can write

(") (b ) oot (hy )7 o (@h, )T = D bin(x) ® 3 € (9")° M,

i=1

with b; ,(x) € A. Hence, we get
.
U"(B)(x) = (((en,1)F 0 9" (pn,1)F 0 - 0 (¢" ) (o)) © (¢")"B) (Z bin(x) ®xi) :
i=1
whence
U"(B)(x) = " ¢" (bin ()¢l (B(xi)).
i=1
Write foreachi=1,...,r,
Sy
B(x;) = Zji,kyi,k,
k=1
with j; x € J, yi.xk € N. We have, foreachi =1,...,r,
Sy Sy
.1 (B(xi) = ¢y (Z ji,kyi,k) = Z o1 G ey Vik)-
k=1 k=1

By our assumption, ¢ on J is pointwise topologically nilpotent, and so, in particular, for each mg > 0,
we can find m > 0, such that QO'I"(J'i,k) e (p, &)™ foralli=1,...,r,j=1,...,s,. The above equalities
show that for all n > m and for all x € M,

U"(B)(x) € (p.E)™N.

Hence, we deduce from the above that for every 8: M — JN, the sequence

B.UB),UWUB)),-... U (B),...
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converges to 0 (because A is (p,&)-adically complete as (A, &) is bounded). Now let a: M — N
be a homomorphism of windows, such that @ = 0 modulo J. Then U"(a) = « for all n because
@ o gy = N o a, which implies @ = 0 as the sequence U"(a) converges to 0 as we saw above.
Conversely, assume that @: M — N is an A-module homomorphism, such that @ modulo J is an
homomorphism of windows over B. Then @ maps FilM to FilN because this can be checked modulo J.

Note that ((,of'w)‘1 (€.M) = ¢* (FilM) as follows from Lemma 4.23. Hence, U(a) sends M to N. Set
B=U(e)—a: M — N.

Then B(M) C JN by the assumption on a@. Therefore, the homomorphism

&: M — N, m— a(m) +ZU”(B)(m)

n=0
is well defined. Moreover, @ = @ modulo J and & is a homomorphism of windows over A. O

From the proof of the last lemma, one can also extract the following statement.

Lemma 4.33. Let R — R’ be a morphism of quasiregular semiperfectoid rings, such that J = ker(Agr —
Ag') is contained in N'Z' Ag, stable by ¢\ and such that @, is topologically nilpotent on J (for some, or
equivalently any, choice of a generator of the ideal I defining the prism structure of Ar). Then the base
change functors

DM(R) — DM(R’); DM%™(R) — DM*™(R’)

are faithful.

Proof. 1t is enough to prove that the first functor is faithful. For this, one uses the exact same argument
used in the proof of Lemma 4.32. O

Remark 4.34. More generally, if one has a 1-morphism of frames A — A’, whose kernel J is contained
in Fil A, stable by ¢; and such that ¢, is topologically nilpotent on J, the same proof shows that the
base change functor

Win(A) — Win(4")

is faithful.

4.2. Definition of the prismatic Dieudonné functor

In this subsection, we define the prismatic Dieudonné crystals of p-divisible groups over quasisyntomic
rings and prove some formal properties of them. More difficult properties, like the crystal property or
local freeness, will be proved later (cf. Section 4.6) after discussing the case of abelian schemes first
(cf. Section 4.5).

Let R € QSyn be a quasisyntomic ring, and let (R)) be its absolute prismatic site. We recall from
Proposition 4.4 that the category of finite locally free crystals on (R)) is equivalent to the category
of finite locally free OP"*-modules on the small quasisyntomic site (R)qsyn of R endowed with the
quasisyntomic topology.

Recall as well that there is an exact sequence

0_>N210pris_)opris_)0_>0’

where O is the structure sheaf S € (R)qsyn — S on (R)gsyn (cf. Proposition 4.2).
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Definition 4.35. Let G be a p-divisible group over R. We define'®

— 1 is
M) (G) = Ext(R)qsyn(G, OP™)
and g A, (G) as the endomorphism of M (G) induced from the endomorphism ¢ on OPris. We call
(Mp(G), ¢rm,(G)) the prismatic Dieudonné crystal of G.
We will check later that (M ) (G), ¢ A1, (G)) is indeed a (n admissible) prismatic Dieudonné crystal.
A PMp(G) P y
Remark 4.36. Let us note that

Hom(G, Q) =0

for any derived p-adically complete quasisyntomic sheaf Q. Indeed, the finite locally free group schemes
G|[p"] are syntomic over R for n > 0 (as follows, e.g. from [44, I1.(3.2.6)]) (hence, multiplication by p
on G is surjective in the syntomic topology). This implies that the derived p-completion of G on the big
quasisyntomic site over R is given by T,,G placed in degree —1. As there are no morphisms from D =1
to D=0, and Q is assumed to be derived p-adically complete, the statement follows.

In particular, we can apply this to Q@ = O and deduce that

Hom(G,OP™) =0
and thus also
Hom (G, NZ1OP) = 0.

Remark 4.37. Beware that the prismatic Dieudonné crystal of a p-divisible group is a sheaf on the
quasisyntomic site, not on the prismatic site. In particular, it is not a crystal on the prismatic site of R,
but rather the pushforward along v of a crystal on the prismatic site (as will be proved later). We hope
that this choice of terminology does not create too much confusion; from the mathematical point of
view, it is justified by Proposition 4.4.

Fix a p-divisible group G over R. We check some easy properties of M ) (G).
In [6], the crystalline Dieudonné crystal of a p-divisible group is defined via the sheaf of local
extensions on the crystalline site. There is a similar description of the prismatic Dieudonné crystal.

Lemma 4.38. There is a canonical isomorphism
Mp(G) = vu(Ext(g), (™ (G),0p)).
Proof. First, we claim that there is a canonical isomorphism

Ext!

(R)QSYN(G’ u.0)) = u*(gxtzR)A(u_l(G), Op)).

By adjunction, there is a canonical isomorphism
RHom (Ryysyy (G, Ru.(Op)) = Ru.(RHom g, (u”'G,0))).

It thus suffices to see that gxr%R)QSYN (G,u.0)), respectively, u. (E)ct(lR)A (w(G), Op)), are the first

cohomology sheaves on both sides. The sheaves

Hom(G, R'u.(0))), Hom(u ' (G),0))

8For an alternative perspective on this definition, using classifying stacks, see the work of Mondal [45].
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are 0: for the first, this follows as G is p-divisible and the target derived p-complete, cf. Remark 4.36,
and for the second, the same argument as in Remark 4.36 can be applied since the multiplication by p
map on u~'(G) is surjective and the prismatic topos is replete. This implies the claim.
To finish, the proof of the proposition, it, therefore, remains to show that we have
1 ~
E*gXI(R)QSYN (G,u.0)p) = M)(G).

We will, in fact, give an argument, inspired by [3], which works with Ext! replaced by Ext!, for any
i > 0. The Breen-Deligne resolution C(G) of G, seen either as a sheaf on the big or on the small
quasisyntomic site (cf. [48, Appendix to Lecture IV], see also Section 4.4 below for a partial explicit
resolution, sufficient for our purposes), gives, for each i > 0, spectral sequences

gxf(g)QSYN(cj(G), u,0)) = gszR)QSYN(G, u,Op),

and

Sxtz;{)qsyn (Ci(G),v.0)p) = é’xt‘m)qsyn (G,v.0p).
Since for each j, C;(G) is a finite direct sum of terms of the form Z[G"], n > 1, it suffices to show that
foreachk >0,j > 1,
k j N k i
E*gxt(R)QSYN (Z|G7],u.0)p) = é’xt(R)CISyn (Z[G7],v.0p).
Since f, : G" — Spf(R) is quasisyntomic, it induces a morphism of topoi fy qsyn : Ggeyn — (R)gsyns
identifying G, with the slice topos (R)qsyn/G". Hence,

Extlgy  (ZIG],v.0p) = R fugsyn.s f qsyn€1t:Op-

n

n

Analogously, if f,, gsyn : GQSYN

— (R)gsyn denotes the morphism of topoi induced by f;,, we have

Extk

(R)qsyN (Z[G7], u.0)) = kan,QSYN,*f;,QSYNM*OA.

The sheaf R* Sn,asyn,« fn,qsyn €O, is the sheaf attached to the presheaf sending X € (R)qgyn to

k * «
H (fn,qsynX’ fn,qsynf*u*OA),

while the sheaf e, R S, Q8YN, « f;’QSYNu*O ) is the sheaf attached to the presheaf sending X € (R)qsyn to

k * *
H (fn,QSYNX’ fn,QSYN“*OA)'
Both f ynX and [y X are represented by X Xsprr) G" € Gggys
H* (fr):,qsynX? f;,qsyne*u*oﬂ)’ reSPeCtiVely, H* (f;:,QSYNX’ f::,QSYNu*OA)’ agrees with H(]]csyn(x XSpf(R)
G", e.u.0) ), respectively, with H(SSYN (X xspi(r) G",u:O)). But these last two cohomology groups
agree, since on both sites, quasiregular semiperfectoid rings form a basis on which the cohomology in
positives degrees of u, 0 vanishes. Whence our claim, and the end of the proof. O

and, therefore,

Using the p-adic Tate module 7, G of G, that is, the inverse limit

: n
limG[p"]
n

of sheaves on (R)qsyn, ONE can give a more explicit description of the prismatic Dieudonné crystal

MA(G).
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Lemma 4.39. Define the universal cover G := l(in G of G. Then the sequences
p

0-7,65G—>G—0
O—>u‘1TpG—>u‘1@—>u_1G—>O

of sheaves on (R)qsyn, respectively, (R)) are exact for the quasisyntomic topology.

Proof. Exactness of the second follows from exactness of the first and exactness of u~! (cf. Corollary
3.25). Each G [p"] is syntomic over R. This implies that G — G is a quasisyntomic cover, which implies
exactness of the first sequence. O

The following lemma will be useful when describing the prismatic Dieudonné crystals of Q,/Z,
and up- and when proving fully faithfulness of the prismatic Dieudonné functor.

Lemma 4.40. There are canonical isomorphisms
Mp(G) = Hom(r),,,(TyG,O"™) = v.Hom(r), (u” (T,G),0p).
Proof. This follows from Lemma 4.39 and the fact that
RHomg), (u™' (G),0p) =0;  RHom(g,,(G,O"™) =0
as O, OP" are derived p-complete sheaves and GisaQ p-Vector space. ]

Remark 4.41. The universal vector extension E(G) of G can be seen as an extension of sheaves on
(R)qsyn:

0> wsz—E(G)—>G—0.

It is defined as in [44] (this makes sense since R is p-complete), or equivalently, as the pushout of the
universal cover exact sequence

07,6 — G—-G—-0
along the Hodge-Tate map
HT :T,G — Wes

which sends f € T,G = Homg(Q,/Z,, G), viewed by Cartier duality as an element of Homg (G, Hp),
to f*dT /T, dT /T being the canonical generator of wy .. Is there a way to use Lemma 4.40 to relate
the prismatic Dieudonné module to the dual of the Lie algebra of E(G)?

Assume now that R is quasiregular semiperfectoid. Then, by Proposition 4.4, the category of finite
locally free crystals on (R), is equivalent to the category of finite projective Ag-modules by evaluating
a crystal on the initial prism Ag. Similarly, finite locally free OP"S-modules on (R)qsyn are equivalent to
finite projective Ag by evaluating a finite locally free OP'8-module M on R. This allows the following
simplification of the definition of the prismatic Dieudonné crystal of a p-divisible group G over R.

Definition 4.42. Let R be quasiregular semiperfectoid, and let G be a p-divisible group over R. Define

M) (G) = ExtiR)qsyn(G’ OPris) = EXt}R)A W (G), o)
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and ¢y, (G) as the endomorphism induced by ¢ on OPTs 'We call

(Mp(G), om,(G))
the prismatic Dieudonné module of G.

We will see later that M), (G) is indeed a (n admissible) prismatic Dieudonné module in the sense
of Definition 4.10. Moreover, M (G) is the evaluation of the prismatic Dieudonné crystal M ) (G) as
follows from the local-global spectral sequence

ij _ i J pris i+j pris
EY = H(Spf(R). Extly,  (G.O™)) = Ext{y) (G.OP™)

by the vanishing of the sheaf Hom g, (G, QP Thus, under the equivalence from Proposition 4.13,
the prismatic Dieudonné crystal M, (G) corresponds to the prismatic Dieudonné module M) (G).

4.3. Comparison with former constructions

In this section, we prove a comparison of the prismatic Dieudonné functor M with former construc-
tions, in two special cases:

1. For quasisyntomic rings, such that pR = 0, we relate M ) to the crystalline Dieudonné functor of
Berthelot-Breen-Messing [6].

2. For perfectoid rings, we relate the prismatic Dieudonné functor to the functor introduced by Scholze-
Weinstein in [51, Appendix to Lecture X VII].

The intersection of these two cases is the case of perfect rings, which was historically the first to be
studied. The situation for perfect fields is briefly discussed at the end of this section.

We start with the case of quasisyntomic rings R with pR = 0. We want to compare the prismatic
Dieudonné functor to the crystalline Dieudonné functor

G 5xt%R/Z .irys(G), Ocrys)

l
P )crys,pr

of [6]. Here, (R/Zp)erys,pr is the (big) crystalline site of R over Z,, Ocys is the crystalline structure
sheaf, pr denotes the p-th root topology of [37, Definition 7.2] and

i Shv(R)pr — ShVv(R/Zp )erys,pr

defined as in [37, Lemma 8.1], where the left-hand side denotes the category of all schemes over R
endowed with the p-th root topology. As in [37, Section 8], we define

O = uirys(ocrys)
as the pushforward of the crystalline structure sheaf Oys along the morphism

u*: Shv(R/Zp )erys,pr = ShV(R)pr

of topoi. Note that by definition i;>° = (14°¥*)~!, so we can rewrite the crystalline Dieudonné functor as

G SXI%R/Z ((Mcrys)_l(G), Ocrys)-

P )Clys,pr

Let J¢¥ C O be the pushforward of the crystalline ideal sheaf Jerys € Ocrys.
The following lemma is the basic input in the comparison of the prismatic and crystalline Dieudonné
functor.
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Lemma 4.43. Let R’ be a quasisyntomic I ,-algebra. Then there is a canonical isomorphism
OpriS(Rl) — OcryS(R/)

identifying N'='OP"S(R’) with JYS(R").

Proof. Using the sheaf property for the pr-topology, we may assume that R’ is semiperfect. Then R’ is
even quasiregular semiperfect as it is quasisyntomic. Hence,

OP(R') = D = Acys (R') = O (R')

by Lemma 3.27. Moreover, the isomorphism in Lemma 3.27 identifies A"=! OP"S(R’) with Js, O

Let (R)gsyn,pr be the category of quasisyntomic R-algebras equipped with the pr-topology, and let
virys: ShV(R/Zp)crys,pr - ShV(R)qsyn,pr

obtained by composing ;" with restriction (the same caveat as in the beginning of Section 4.1 applies
here). Lemma 4.43 implies that the sheaves OP"S and O°Y* on (R)gsyn,pr are isomorphic. We note that
the categories of finite locally free O“¥*-modules on (R)p, and finite locally free OT(rl{;)qun pr-modules
on (R)gsyn,pr are equivalent because for R quasiregular semiperfect, both categories identif}; with finite
locally free Acrys(R)-modules. These remarks give a meaning to the comparison contained in the next

two results.
Theorem 4.44. Let R be a quasisyntomic ring with pR = 0 and G a p-divisible group over R. Then

there is a canonical Frobenius equivariant isomorphism

MA(G) = nyS(Sxt%R/Z ((ucrys)_l(G)’OCI‘yS))

P )crys,pr

from the prismatic Dieudonné crystal of G (cf. Definition 4.35) to the pushforward of the crystalline
Dieudonné crystal of G. In particular, if R is quasiregular semiperfect, M) (G) is isomorphic to the
evaluation M“Y*(G) on Acrys(R) of the crystalline Dieudonné crystal, compatibly with the Frobenius.

Of course, the isomorphism is linear over the isomorphism OPris = (1S from Lemma 4.43.

Proof. By definition

M) (G) = 5ngR)qun(G, OPis)

But

1 prisy ~ 1 pris
Ext(R)qsy“(G, OP™) = EXI(R)qsyn,pr(G’ ormy,
Indeed, by the spectral sequence constructed in Section 4.4 below, it suffices to see that the OP'S-
cohomology for the quasisyntomic and pr-topologies agree. But quasiregular semiperfectoid rings form
a basis for both topologies, and on such, the higher cohomology of (OP" vanishes in both topologies.
Thus, by Lemma 4.43, it suffices to see

crys

VP (Ext gz (UD)7HE), Ocry)) = Extgy, (G, O).

p)crys,pr
As u®™* is a morphism of topoi, we get
RHom (Rygsyn pr (G2 RUS™ (OY)) = Ru{™ (RHOoM (R)Z,) )y () TH(G), Ocrys)).-

Here, we use that we are dealing with the pr-topology: we don’t know if this statement is true for the
quasisyntomic topology, but it holds the syntomic topology as the arguments of [6, Proposition 1.1.5]
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apply because syntomic morphisms can be lifted locally along PD-thickenings, cf. [52, Tag 0070]. As
in 4.38, it suffices to see that

&.(Hom(G, R'uS™ (Oerys))),  Hom((u™)1(G), Oerys)

vanish (here, €, is the (exact) pushforward to the small quasisyntomic site). The sheaf Rluzrys(Ocrys)
for the pr-topology on (R)qsyn,pr Vanishes on every R-algebra S, which is quasisyntomic, because it
vanishes on quasiregular semiperfects (cf. [12, Section 8]), and each quasisyntomic IF,-algebra admits
a pr-cover by some quasiregular semiperfect ring. Write

Hom (G, R'u™ (Ourys)) = lim Hom (G [p"], R U™ (Ocrys)).-

n

The set Hom g)osy o (G[P"], R'u5™° (Oerys)) embeds into the sections of R'ui™*(Oerys) over G[p"],
but these sections vanish because G[p™] is syntomic over R. Applying the same reasoning to all
quasisyntomic R-algebras proves the desired vanishing of the first Hom. For the second Hom, note
that Ocrys, (u¥*)~1(G) are actually sheaves for the syntomic topology on the site (R/ Zp)erys and the
local Hom does not depend on the topology. Multiplication by p™ on (u°¥*)~!(G) is surjective for the
syntomic topology for every n > 0 ([6, Proposition 1.1.7]). This implies that

Hom ()™ (G), Ocrys) = limHom((u*™) ™ (G), Oerys/p") = 0

n

using that Ocys is p-adically complete (being p-adically separated would be sufficient for this argument).
Lemma 4.43 implies then moreover compatibility with Frobenius. O

In general, that is, when p is not necessarily zero in R, one can still relate the prismatic Dieudonné
crystal of a p-divisible group to the crystalline Dieudonné crystal, as follows. Let R be a p-complete
ring, and let D be a p-complete p-torsion free d-ring with a surjection D — R whose kernel has
divided powers.'® As the kernel of D — R has divided powers, the Frobenius on D induces a morphism
R — D/p. With this morphism, the prism (D, (p)) defines an object of the absolute prismatic site (R),
of R. Via Lemma 4.38, it thus makes sense to evaluate the prismatic Dieudonné module of a p-divisible
group over R, more precisely v* of it, on (D, (p)).

Lemma 4.45. For every p-divisible group G over R there is a natural Frobenius equivariant isomorphism
V(M) (G)(D, (p) = D(G)(D).

Here, D(G) (D) denotes the evaluation of the (contravariant, crystalline) Dieudonné crystal of G on the
PD-thickening D — R.

Proof. Let C be the category of schemes over R, which are p-completely syntomic over R. For each
scheme H € C, there is a canonical isomorphism in the co-category D(Z)

nr: RC((HY /D)y, Op) = RU((H/D)erys, Ocrys)

by the crystalline comparison for syntomic morphisms (cf. Remark 3.8), where HV := H Xgpec(r)
Spec(D/p)?°). We can write both sides as

H RU((H"V /D)), 0p) = RHom gy, (Z[u"" (H)],0)),

®We don’t require p"* R = 0 for some n > 0.
20Note that RT'((H /D)crys> Ocrys) = RU(((H /p)/D)erys»> Ocrys) - This follows from the computation of crystalline cohomol-

ogy by a Cech-Alexander complex and the following fact: if A is a Z/ p™-algebra (for some n > 0), P a free Zp,-algebra surjecting
onto A, the divided power envelopes of P/p™ — A and P/p™ — A/p agree for any m > n (see [5, Theorem 1.2.8.2].
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respectively,
H > RT((H/D)erys» Ocrys) = RHom gy, (Z[(u™*) ™ (H)], Ocrys),
making it clear that both functors are actually restrictions to C of RHom-functors
F(-) := RHomg), (=, Op), G(-) := RHom(g),, (= Ocrys)

on the category of sheaves of abelian groups Shvz((R), ), respectively, Shvz ((R)crys) on (R)), respec-
tively, (R)erys along the functors

H & tyis(H) = Z[u™' (H)] € Shvz((R)p),
respectively,
H > terys(H) = Z[u " (H)] € Shvz((R)erys).

Assume now that H is a finite locally free group scheme over R, in particular, H is syntomic over R.
Applying F (=), G(-) to the Breen-Deligne resolution, cf. Theorem 4.55, of u~' (H), u*¥s~' (H) (seen
via Dold-Kan as simplicial objects in Shv((R)p), respectively, Shv((R)cys)) yield two cosimplicial
objects K7, K3 : A — D(Z) (here, A is the simplex category) with limits

RHOII’I(R)A (u_l (H), Op)
and
RHom(g), (u*) "' (H), Ocys).-

We claim that the natural isomorphism 7, extends to a natural isomorphism K} = K. Intuitively,
this is clear as the morphisms in the Breen-Deligne resolution are sums of maps induced by morphisms
between schemes. We thank Yonatan Harpaz and Fabian Hebestreit for their help with the following
rigorous oo-categorical argument. It suffices to argue for the left Kan extensions of F o iy, G ©
terys: C — D(Z)°P from C to the category of all schemes over R (this ensures the existence of fibre
products in C commuting with coproducts). Hence, we abuse notation and denote by C the category
of all schemes over R. Let D be any category with action by the symmetric monodial (via tensor
product) category Freeyz of finite free Z-modules, such that the action commutes with finite coproducts
in each variable, for example, D = D(Z)P. In other words, D is required to be a module under
Freeyz in the symmetric monoidal co-category Cato,(Kgy) from [39, Corollary 4.8.1.4] with g, the
class of finite sets. Now each functor ¢: C — D preserving finite coproducts, respectively, each
natural transformation between such functors extends to a functor ¢™: C% := Freez ®x,, C — D,
respectively, a natural transformation between such functors with — ®,; — the tensor product in
Cate(Kgn) by Freez-linearity of D. The category C?® can now be calculated as follows: Consider
the category Fun(C°, Dso(Z)) of functors, and its full subcategory Fun*(C°, Dso(Z)) of product-
preserving functors. The inclusion Fun*(C°?, D»¢(Z)) — Fun(C°, D»¢(Z)) admits a left adjoint L,
given by sheafification on C with respect to the Grothendieck topology in which coverings are finite

collections {X; — X}ics, such that [[ X; — X is an isomorphism. Now, C% is the smallest full
iel

subcategory of Fun* (C°P, Ds((Z)) containing all objects L(Z[Hom¢ (-, X)]) with X € C. Note that C*°

is a 1-category because sheafification for this Grothendieck topology preserves set-valued presheaves.

In fact, we only need that functors ¢: C — D preserving coproducts extend to C** when the latter is
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defined by the above concrete description. To see this, note if S denotes the co-category of spaces, that
is, Kan complexes, that

Funx(]-"ree%p,S) = Dso(Z)
by [41, Example 1.2.9]. Each functor ¢: C — D yields a functor
Fun(C®, D5o(Z)) — Fun(D®, D»o(Z)).
Now Fun(D°P, Dsy(Z)) embeds into
Fun(D x ]—"reeOZp, S)

(with essential image those functors commuting with products in the second factor), and the Freey-
action Freez X D — D furnishes a functor from this to the category Fun(D°P, S), which contains D
by the Yoneda lemma. Restricting further along the inclusion C®* — Fun(C, D+ (Z)) then yields a
functor

C*® — Fun(D,S)

with image in D as ¢ preserves finite coproducts. This yields the desired extension, and similarly, we
see that natural transformations extend. Given these considerations, and, in particular, the description
of C?, it follows by unraveling the construction that, in our situation, the simplicial objects given by the
images under F, respectively, G of the Breen-Deligne resolutions of u~' (H), respectively, u°*~! (H)
are the images of a simplicial object in C? under the extensions of F o tpris» G © Lerys. This shows that
extends as desired.

Passing to the limits and taking cohomology in degree 1, we can deduce that

M) (H)(D, (p)) :=Ext' (u”' (H),0)),

respectively, D(H)(D) are canonically isomorphic. Hence, we obtain the desired natural isomorphism
for finite flat group schemes. The proof of Proposition 4.69 below?' shows that writing

— 13 n
G =limG[p"]
n

and passing to the limit yields a canonical isomorphism
Mp(G)(D, (p)) = D(G)(D)

for G a p-divisible group over R. O

Remark 4.46. The relation between the prismatic and the crystalline Dieudonné functors will mostly
be used over a characteristic p perfect field in the rest of this text, and it could be interesting to find a
more direct proof of it in this special case, as explained at the end of this section. But it will also be
used for comparison with the Scholze-Weinstein functor in the next paragraph and in Section 5.2.

We turn to perfectoid rings. The following statement is a special case of a theorem of Fargues ([22],
[51]). Let C be a complete algebraically closed extension of Q,. We abbreviate

Aint = Ainr(Oc) , Acrys = Acrys(OC/p)-

We also fix a compatible system & of p-th roots of unity, and let & = [plg, where ¢ = [e] — 1. We
identify the initial prism of (Oc)p with (Ajnr, (£)).

2'Which the reader can check to be independent of the present lemma.
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Proposition 4.47. A prismatic Dieudonné module (M, ppr) over O¢ (i.e. a minuscule Breuil-Kisin-
Fargues module) is uniquely determined up to isomorphism by the triple

(TM’ MCl‘yS’ CY]\l)?

where Ty is the finite free Z,-module

1 om=1
fu =MH ’

Mcrys =M A Acrys

is a p-module over Acrys and apr = Ty ®2z,, Berys = Merys ® Ay, Borys 1S the @-equivariant isomorphism
coming from the natural map M[%]‘/’M:l — M[é].

Let R be a perfectoid ring. In [51, Theorem 17.5.2], Scholze-Weinstein construct a covariant functor
MSW from p-divisible groups over R to prismatic Dieudonné modules over R inducing an equivalence
between the two categories. It has the following properties characterising it uniquely, which will be used
in the next proof.

e When R is perfect, M SWo— Mc1ys(—) is the (covariant) crystalline Dieudonné functor dual to M.
e If R = Oc, with C a complete algebraically closed extension of Q,,,

MSW(_) A Acrys = crys(_ ®0¢ Oc/p)

([51, Proposition 14.8.3]). In particular, if G = X[p*], for some formal abelian scheme X over O¢,
the functor MY sends G to the prismatic Dieudonné module over Oc dual to H} (X): this
follows from the definition of MSW (G) ([51, Section 12.1]), [51, Proposition 14.8.3] and the above
proposition.

e In general, for any perfectoid ring R, if G is a p-divisible group over R,

MSW (G) c Mcrys(G ®R R/p)

is the largest submodule mapping into M (G ®g V) C Mcys(G ®g V) for all maps R — V where V
is an integral perfectoid valuation ring with algebraically closed fraction field.

Proposition 4.48. Let R be a perfectoid ring. The functor G — M ) (G) from BT(R) to DM(R) coincides
with the (naive)?? dual of the functor MY of [51, Appendix to Lecture XVII].

Proof. If R is perfect and G a p-divisible group over R, then we get a natural isomorphism
ar,G: Mp(G) = M3V (G)*

because both sides identify with the (contravariant) crystalline Dieudonné module (cf. Theorem 4.44).
Moreover, ag, - is compatible with base change along morphisms of perfect rings. Now assume that
R = Oc, where C is a perfectoid algebraically closed field over Q,,. In this case, assume first that
G = X[p™], for some formal abelian scheme X over O¢, with rigid generic fibre X"8. As recalled
above, the functor M5W sends G to the prismatic Dieudonné module over O¢ dual to H}A,-,.f(X ). In

particular, in this case, MS%W (G) is isomorphic to the (naive) dual to M A (G), by Corollary 4.63 and the
comparison theorem [ 13, Theorem 17.2]?3. Moreover, this identification is functorial for morphisms of
p-divisible groups of abelian schemes (and not simply for morphisms of abelian schemes): indeed, let

#That s, (-)* = Homu, (r) (= Ainf (R)).
23Note that we chose & as a generator of the ideal of the prism, so the Frobenius twist in the statement of loc. cit. disappears.
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X, X’ be two abelian schemes over O¢, and G = X[p™], H = X’[p*], with a morphism f: G — H.
We want to see that the diagram

M3V (G) ——= M, (G)*

MSW(f)l J/M/A(f)*

MSW (H) —— M (H)*

commutes. This can be checked after base change to Acrys. Then, using Lemma 4.45, the terms on the
top line (respectively, on the bottom line) are identified with the covariant crystalline Dieudonné module
of G (respectively, H), and the horizontal isomorphisms induce the identity, by construction.

Let now G be a general p-divisible group over O¢. There exists a formal abelian scheme X over O,
such that X[p®] = G x G (cf. [51, Proposition 14.8.4]). Let e: X[p®] — X[p™] be the idempotent
with kernel G. Then

M)p(G)* =ker(Mp(e)*: Mp(X[p™])* = Mp(X[p=])*)
and
M3V(G) = ker(M3V (e): M3V (X[p™]) —» M3V (X[p™])).

By the functoriality explained above, we can conclude the proof when R = Oc, that is, we have
constructed an isomorphism ar.c = M)(G) = M SW(G)* in this case, which is natural in G and
compatible with base change along morphisms of such R’s. If k denotes the residue field of O¢, then
by construction, the base change of ag g along Ag — Ak is @k, Gegk-

Now assume that R is a general perfectoid ring. By [36, Remark 8.8], we can write

R = R X5, S1

with R p-torsion free perfectoid, Sy, S, perfect and Ry — S»,S5; — S» surjective. As in [36, Lemma
9.2], the category DM(R) of prismatic Dieudonné modules for R is naturally equivalent to the
2-limit

DM(R1) Xpm(s,) DM(S1).

Thus, it suffices to construct a natural isomorphism M) (G) = MSW (G)* for any p-divisible group
over a perfectoid ring R, which is either perfect or p-torsion free, and show that it is compatible with
base change in R. If R is perfect, then we are already done. Let us assume that R is p-torsion free. Then
the ring R/p is quasiregular semiperfect, and Ar;, = Acys(R/p) by 3.27. By 4.44, 4.692* and the
construction of MSW (G)*, we have a natural isomorphism

@Gerr/p: Mp(G) ®) Aays(R/p) = MW (G)* ®)  Acrys(R/p)

because both sides identify with the (contravariant) crystalline Dieudonné module of G ®& R/p. By
4.69, My (G) is a finite locally free Ag-module. Thus, M) (G) identifies with a Ag-submodule of
M) (G) g Acrys(R/ p) because the morphism Ag — Acrys(R/p) is injective. We claim that agggr/p
maps (injectively) M), (G) into M SW(G)*. By the very construction of MSW (G)*, we have to check
that for any perfectoid valuation ring V with algebraically closed fraction field and morphism R — V,
the module M) (G) maps to MSY (Gy)* C Merys(Gy) with Gy := G ®g V. If V is perfect, this follows

24The proof of 4.69 does not use the comparison with [51].
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by 4.44.If V is of mixed characteristic, we can write V as the fibre product V' X, S of a perfect valuation
ring S with a mixed-characteristic valuation ring V’ of rank 1 over the residue field « of V’, and write

MW (Gy) = MY (Gyr) Xpsw (G, MY (Gs).

We already checked the statement for V', «, S, and, thus, we have finished the construction of a natural
injective morphism

ar,G: Mp(G) = M5V (G)*

for a general perfectoid ring R. Assume R — R’ is a morphism of perfectoid rings, then we know that
QR,G ®p, Ap = ag G, if R, R are perfect. If R is p-torsion free and R’ perfect, we can draw the same
conclusion as then Ag — Ag: factors over Agys(R/p) and ag.g ® Ar Acrys(R/p) is the identification
coming from Dieudonné theory. As M3W (G)* is a finite free Ag-module (by [51, Theorem 17.5.2]),
we can check that it is an isomorphism after base change along all morphisms Ag — Ar for R — k, a
morphism from R to a perfect field k. But this case was already handled. This finishes the proof. O

We obtain the following corollary, which we will need in Section 4.9.

Corollary 4.49. Let R be a perfectoid ring. The prismatic Dieudonné functor M takes values in
DM™(R) = DM(R) and induces an antiequivalence between BT(R) and DM*™(R) = DM(R).

Proof. This follows immediately from the last proposition and [51, Theorem 17.5.2]. Note that the
argument of loc. cit. shows that one only needs to prove the equivalence when R is the ring of integers
of a perfectoid algebraically closed field, where it is due to Berthelot [4, Theorem 3.4.1] and Scholze-
Weinstein [50, Theorem 5.2.1] (in this case, one can even assume that the fraction field of R is spherically
complete, and the result is then an easy consequence of results of Fargues: see [50, Section 5.2]). O

Remark 4.50. Let R be a perfectoid ring. The functor M is exact (see below Proposition 4.72) and
has an exact quasi-inverse (we will provide an argument for this later in Section 5.1 in the case of finite
locally free group schemes, which applies verbatim for p-divisible groups).

Let us conclude this section by discussing the case of perfect fields. For a perfect field k, Fontaine [23]
was the first to give a uniform definition of a functor from p-divisible groups to (prismatic) Dieudonné
modules over k. Let us recall it first, as formulated in [7, Section 4.1]. If A is a commutative ring, the
set CW(A) of Witt covectors with values in A is the set of all family (a_;);en of elements of A, such
that there exist integers r, s > 0, such that the ideal J, generated by the a_;, i > r, satisfies J; = 0. One
still denotes by CW the sheaf on the big fpqc site?> of k associated to the presheaf of Witt covectors.
This is an abelian sheaf of W (k)-modules, endowed with a Frobenius operator which is semilinear with
respect to the Frobenius on W (k). Fontaines defines:

M (G) := Homy), . (G,CW).

As a corollary of Theorem 4.44 and results of Berthelot-Breen-Messing, one gets

Proposition 4.51. Let k be a perfect field, and let G be a p-divisible group over R. One has a canonical
W (k)-linear Frobenius-equivariant isomorphism

My(G) = M(G).

Proof. By construction, the isomorphism of Theorem 4.44 is linear over the isomorphism Ay = Acpys(k),
which is given by the Frobenius o- of W (k), that is, it can be seen as a Frobenius-equivariant W (k)-linear
isomorphism:

Mp(G) = (™) M*™(G).
25We could as well use any other topology finer than the Zariski topology.
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Composing it with o~ !-pullback of the inverse of the W (k)-linear Frobenius-equivariant isomorphism
of [7, Theorem 4.2.14], we get the desired isomorphism. O

It would be interesting to get a more direct proof of this corollary. In characteristic p, the prismatic
Dieudonné crystal of a p-divisible group admits a description which looks similar to Fontaine’s definition.

Definition 4.52. Let R be a a quasisyntomic ring with pR = 0. We define the sheaf Q on (R)) as the
quotient:

0— Op — Op[l/p] - Q—0.

The morphism O) — O)[1/p] is injective since any prism in (R) is p-torsion free.

Proposition 4.53. Let R be a quasisyntomic ring with pR = 0, and let G be a p-divisible group over R.
The connecting map of the canonical exact sequence

0> 0p > Op[1/p] 2 Q—0
induces an isomorphism:
HOM (R)gyy (G, Q) = v*’Hom(R)A(u_lG, Q) = M) (G).
Proof. First assume that G is a finite locally free group scheme. Then the statement is clear, as
RHom gy, (u™'(G),Op[1/p]) =0,

because u~!' (G) is killed by some power of p, whereas on O A [1/p] multiplication by p is invertible.
The result for p-divisible groups is deduced by a limit argument. O
This naturally leads to the following question.

Question 4.54. When R = k is a perfect field, what is the relation between the sheaf v..Q and the sheaf
CW of Witt covectors?

4.4. Calculating Ext-groups in topoi

In this section, we recall the method of calculating Ext-groups in a topos as presented by Berthelot et al.
(cf. [6, 2.1.5]?°. Let X be a topos, and let G, H € X be two abelian groups, that is, two abelian group
objects.

The following theorem is attributed to Deligne in [6]. A proof can be found in [48, Appendix to
Lecture IV, Theorem 4.10].

Theorem 4.55. Let G € X be an abelian group. Then there exists a natural functorial (in G) resolution
C(Gle:=(... 0 Z[X5] » Z[X1] — Z[Xo]) = G,

where each X; € X is a finite disjoint union of products of copies G.
Proof. See [6, 2.1.5] or [48, Appendix to Lecture IV, Theorem 4.10] O
Lemma 4.56. Let X € X be any object, and let F € Ab(X) be an abelian group. Then

RT'(X, F) = RHomap(x) (Z[X], F),

where Z| X] denotes the free abelian group on X.
26For simplicity, we omit the case of the local Ext-sheaves, which is entirely similar.
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rooj. 1S TOLIOWS eriving the iIsomorphism = OMmAap . . O
Proof. This follows by deriving the i phism F(X) = Homap(x) (Z[X], F)

These two results show that the Ext-groups
Exty, ¢ (G, H)
can, in principle, be calculated in terms of the cohomology groups
H (G x...xG,H)

for various products G X ... X G. Unfortunately, the construction of the resolution in Theorem 4.55 is
rather involved. However, the first terms, which are sufficient for our applications, can be made explicit?’.
For example, the first terms can be chosen to be

C(G)y = Z[G]
C(G) =Z[G?]
C(G) =7[G’] ® Z|G?]

with explicit differentials (cf. [6, (2.1.5.2.)]). The stupid filtration of the complex C(G), yields a spectral
sequence

J i+j i+j
E EXtAb(x)(C(G)i"F) = Extyyx) (C(G)s, F) = Exty 1 (G, F)

and the terms

Extgb(x)(C(G)j,f)

can be calculated using the cohomology. For later use, let us make the first terms of the first page of this
spectral sequence explicit:

HY G, F) =2~ H (G x G, F) —2~ H'(Gx G, F) @ H(Gx G x G, F) === ...

HYG,F) "~ H(G x G, F) — =~ HO(GxG ]-")EBHO(GxGxG F) ==,

For an element (x1,...,x,) € G", letus denote by [xy, ...,x,]| € Z[G"] the corresponding element in
the group ring Z[G"]. The morphisms d; and d; are then induced by

Z|G*] = Z[G], [x.y] — —[x] + [x +y] = [y]
for dy and

Z[GZ] - Z[Gz]’ [x,}’] = [x,)’] - [y7x]
Z[GS] - Z[Gz]’ [X,y,Z] i _[y,Z] + [)C+y,Z] - [X,y+Z] + [X’y]

for dy (cf. [6, (2.1.5.2.)]).

27By this, we mean that one can construct a functorial (in G) resolution having these terms in the beginning.
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4.5. Prismatic Dieudonné crystals of abelian schemes

In this section, we describe the prismatic cohomology of the p-adic completion of abelian schemes and
deduce from this the construction of the prismatic Dieudonné crystal

MpX[pT]) = (MpX[PTD), o my (x(p1))-

of the p-divisible group X [p*] of the p-adic completion of an abelian scheme X over a quassyntomic
ring R. Admissibility of this prismatic Dieudonné crystal will be proved in the next section, in fact for
any p-divisible group.

Let (A, ) be a bounded prism. Write A = A/I. Let X — Spf(A) be the p-adic completion of an
abelian scheme over Spec(A).

We first prove degeneracy of the conjugate spectral sequence (cf. Proposition 3.10) for X. The proof
is an adaptation of the argument in [6, Proposition 2.5.2], which proves degeneration of the Hodge-de
Rham spectral sequence.

Recall the following statement.

Proposition 4.57. Forall k > 0 (respectively, foralli, j > 0), the A-module H* (X, Q;( / A) (respectively,
H(X, Q;( / A) ) is finite locally free, and its formation commutes with base change.

Moreover, the algebra H* (X, Q;( / A) is alternating and the canonical algebra morphism
syl ° * °
AN'H (X’QX/A) — H (X’QX/A)
defined by the multiplicative structure of H* (X, Q;( / A)’ is an isomorphism.
Proof. This is [6, Proposition 2.5.2. (i)-(ii)]. m|

Proposition 4.58. The conjugate spectral sequence

Ey = H'(X.Q) )i~} = H™ (X, bx/a)

degenerates and each term as well as the abutment commutes with base change in the bounded prism
(A, I). Moreover,

H*(X,Dx/a) = AN"H' (X, Ay 0)

is an exterior A-algebra on H' (X, ZX/A).

Proof. If p # 2, we can use a simple argument using the multiplication by n € Z on X. If n € 7Z, then
the multiplication by n on X induces on H' (X, Q;( / A){_ 7} multiplication by n*/. As the differentials

of the spectral sequence are natural in X, this implies that they vanish on each E,-page, r > 0 (this uses
p # 2). This proves that H (X, Ax /4) is a finite locally free A-module for each i > 0. By the Hodge-Tate
comparison, the complex

hx /A

satisfies base change in (A, ), that is, for a morphism (A,I) — (A’,I’) of prisms with induced
morphism g: X’ := X Xg,¢4) SPf(A’/I’) — X, the canonical morphism

Lg*DAx/a — Dxrja

is an isomorphism. From this, we can deduce that each H'(X ,ZX /a),i = 0, satisfies base change in
(A, I). To show that H*(X, ZX/A) is an exterior algebra on H' (X, ZX/A), we need first to see that each
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element in H' (X, ZX /4) squares to zero. For this, we can argue as in the proof [6, Proposition 2.5.2.(ii)].
Then we obtain a canonical morphism

B: AT H' (X, DAy s) — H* (X, Dy ,a).

We can use Lemma 4.59 and compatibility with base change to reduce to the case that A is an algebraically
closed field of characteristic p. In particular, the Frobenius on A is bijective in this case, I = (p) and
the twists (—){,j} are isomorphic to the identity. We may check that 3 is an isomorphism after pullback
along ¢ 7. Then

O HN (X, Bxya) = HE XY, (0x)0)-(Q 7)) = HN (X, Q5 ),

where we used in the second isomorphism that the relative Frobenius
X o XD = xx i Spec(A)
Px/A- . Spec(A), ¢4 p

is finite. This reduces the assertion to de Rham cohomology, which is the content of Proposition 4.57.
This finishes the proof.

Alternatively (including the case p = 2), we could have argued like in [6, Theorem 2.5.2. (i)] to
reduce, by descending induction, to the claim that H' (X, Ax /4) is locally free of rank 2n, where n is
the relative dimension of X over Spf(A), and commutes with base change in (A, I). From Proposition
3.12 it follows that

H' (X, Axja) = H' (X, 1<1Ax 4) = HO(X, Ly a[-1]).

As Lyx/4 is a perfect complex with amplitude in [—1, 0], this implies compatibility of H'(X, Ax /A)
with base change in (A, 1) if all the higher cohomology groups H” (X, Lx,4[—1]) are locally free. As

X admits a lift to A (see e.g. [47, Theorem 2.2.1]), Corollary 3.14 shows that Lx,4 = Ox[1] & Q;(/A‘

Another application of Proposition 4.57 implies, therefore, that H' (X, Ax /4) is locally free of dimension

2n and commutes with base change in (A, I) as all the A-modules H/ (X, Ox) and H/ (X, Q;(/A) are

locally free for j > 0. O

Lemma 4.59. Let S be a ring, and let g: M — N be a morphism of S-modules with M finitely generated
and N finite projective. If

g®s k(x): M ®s k(x) > N Qs k(x)

is an isomorphism for all closed points x € Spec(S), then g is an isomorphism.

Proof. Let Q be the cokernel of g. Then Q is finitely generated and Q ®g k(x) = 0 for all closed points
x € Spec(S). By Nakayama’s lemma, this implies that Q = 0, that is, g is surjective. As N is projective,
this implies M = N @& K for K the kernel of g. As M is finitely generated, K is finitely generated.
Moreover, for all closed points x € Spec(S)

KQ®sk(x)=0
and thus another application of Nakayama’s lemma implies that K = 0. O

We recall that for a p-complete ring R, there is the natural morphism of topoi
u: ShV(R)A - ShV(R)QSYN.

Using the previous computations, we can first describe extension groups modulo /.
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Theorem 4.60. Let R be a p-complete ring, and let f: X — Spf(R) be the p-adic completion of an
abelian scheme over Spec(R). Then

1. 5xﬂ('R)A(u-l (X),0p) =0fori=0,2.

2. z‘,’xth)A (w '(X), EA) is a prismatic crystal over R. Moreover,

IR

Extig), (™' (X),0p) = R f) (Op)

for fp: Shv(X)) — Shv(R),, the morphism induced by f on topoi and Ext%R)A (u‘l(X),5A) is
locally free of rank 2dim(X) over O A

The proof is entirely similar to the one of [6, Theorem 2.5.6].

Proof. Let (B,J) € (R)). We use the spectral sequence from Section 4.4 to calculate for i € {0, 1,2}
the groups

Ext'(u™ (X)(8,7), Op)

on the localised site (R),/(B, J)?%. Set Y := X Xspf(A) Spf(B/J). As by Hodge-Tate comparison
HO((Y/B)p, Op) =H(Y, by ) = B/J,

for any n the first row E ;‘ 0 of the spectral sequence is seen to be independent of X and exact in the case
that X = 0 is trivial (the spectral sequence for X = 0 is concentrated in the first row and converges to 0),
hence, always exact. In general, we see that Hom(u‘l(X)KB,]),@A) = 0 and Ext! (M_I(X)l(B’J),aﬁ)
is isomorphic to the kernel of

_ 4 _
H'(Y, Dy p) — H' (Y XY, Dyyy/p)

and dy = prj +pr;, — u* for pr; the two projections and y the multiplication. From the Kiinneth formula
(cf. Corollary 3.31) and Proposition 4.58, it follows that

H' (Y XY, Dyxy ) = H'(Y, Dy p) © H' (Y, Dy p).
This implies u* = pr} + pr3, that is, d; = 0 and
Eth(“_l(X)I(B,J)96A) = H'(Y, Dy p).

In particular, this group is compatible with base change in (B, J) and locally free of rank 2dim(X) (by
Proposition 4.58). Moreover, the morphism d, is injective on H 1 Y xY ,Zy / B), as follows from the
Kiinneth theorem and the concrete formula for d,. Finally, from Corollary 4.64 and Lemma 4.61, one
can deduce that

. — d . —
H'(Y, Ay p) — H' (Y, Dy 5)
is injective for all i > 2. These statements (together with the mentioned exactness of the first row) imply
Eth(u_l (X)1(B,9)> 6&) =0.

This finishes the proof by passing to the local Ext-groups, that is, by letting (B, J) vary. m}

In the proof, we used the following lemma on primitive elements in exterior algebras.

28Which will be implicitly the subscript of all Ext-groups appearing in this proof.
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Lemma 4.61. Let S be a ring and let M be a projective S-module. Then
xeAM) | ' (x)=1@x+x01} =AM,

where u*: A(M) - A(M + M) = A(M) ®s A(M) is the natural comultiplication on A(M) coming
from the diagonal M — M & M.

Proof. This follows easily by decomposing A(M) ®s A(M) into its bigraded pieces A' (M) ®s A/ (M).
m|

Now we calculate the full extension groups, up to degree 2.

Theorem 4.62. Let R be a p-complete ring, and let f: X — Spf(R) be the p-adic completion of an
abelian scheme over Spec(R). Then

1. SxtéR)A(u_l (X),0)p) =0fori=0,2.
2. EXtéR)A (u ' (X), O)) is a prismatic crystal over R. Moreover,
Extip), (™' (X),0p) = R' fp (Op),

for fp: Shv(X)p — Shv(R)p, the induced morphism on topoi and the prismatic crystal
Exth)A (w '(X), Oy is locally free of rank 2dim(X) over O,

Proof. Let (B,J) € (R)). As the statements are local for the faithfully flat topology, we may assume
that J = (£) is principal. From the exact sequence

0 Op/8" 5 0418 - 0, /E=D ) —0

of sheaves on (R), /(B,J) and Theorem 4.60, we can inductively conclude that
Ext' (u™ (X))(8,1). Op/ (€M) =0

fori € {0,2} and any n > 0. This implies that

_ - £ _ -

0 — Ext' (™ (X)|(8,7): Op/ (€M) = Ext' (u™ (X)|(8,0), Op/ (E™1))
— Eth(u_l(X)‘(BJ),aﬁ) -0

is exact and that for 0 < i < 2,

Ext' (u™' (X)|(8.7)» Op) = yLnEXti(lfl (X)i(8,7), Op/(EM)),

n

and that it is zero for i € {0,2} or a locally free B-module of rank 2dim(X) if i = 1. Using the spectral
sequence from Section 4.4, we get as in the proof of Theorem 4.60 for each n > 1 a map

Ext' (u™" (X)j(8.1), Op/(€")) = H' (X Xspr(r) SPE(B/J), Dxja/ (€M)

By induction on n, we deduce from Theorem 4.60 that this map is an isomorphism for all n. Passing to
the inverse limit over all n > 1 and using the above identification, we deduce an isomorphism

Ext' (™ (X)y(8,7), Op) = H' (X Xspt(r) SPE(B/J), Dx/a).

This finishes the proof by passing to local Ext-groups. O
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Corollary 4.63. Let R be a p-complete ring. Let X be the p-completion of an abelian scheme over R.
The OP™-module

Mp(X[p]) = Extly,  (X[p™],0"™)
is a finite locally free OP"-module of rank 2 dim(X), given by leA,*OA-
Proof. By Lemma 4.38,
Mp(X[p™]) = v*(gxth)A(u—lG, Op).
Hence, the corollary results from Theorem 4.62 and Proposition 4.4. O

Although we will not use it, let us record the full description of the prismatic cohomology of X.

Corollary 4.64. With the notation from Corollary 4.63, the prismatic cohomology
R*fA’*O A
is a finite locally free crystal on (R)) and an exterior algebra on the locally free crystal
R'f)p (Op)

of dimension 2dim(X).

Proof. Let (B,J) € (R)p, and let Y := X Xspp(gr) Spf(B/J). It suffices to prove the analog statements
for H*(Y, Ay, g). From (the proof of) Theorem 4.62, we see that

H! (Y, Ay/B) - Hl(YsZY/B)

is surjective and that H*(Y, ZY/B) is an exterior algebra on H' (Y, ZY/B). Since H' (Y, Ay ) is projec-
tive, we can lift the identity H' (Y, Ay,;5) — H' (Y, Ay ,p) to a map

H' (Y, by p)[-1] = byys.

Using multiplication in H*(Y, Ay,g) and that H*(Y, Ay /B) is an exterior algebra, we see that for each
i > 0, the morphism

H'(Y, Ay p) — H"(Y,ZY/B)

is surjective. This implies that each B-module H(Y, Ay /B) is J-torsion free, and then that it is a
finite locally free B-module, as modulo J, it identifies with HY, Ay /). The same argument as in

[6, Proposition 2.5.2.(ii)]) implies then that each element in H! (Y, Ay /B) squares to zero. We obtain a
morphism

ANH' (Y, Ay )[-i] = RT(Y, Ay )
inducing an isomorphism on H' after passing to ®HéB /J. Altogether, we obtain a morphism

A*(H' (Y, Dy ) [—+] — RT(Y, Dy ,p)

of complexes which is an isomorphism after applying ®HI§B/J . By derived J-adic completeness, it is
therefore an isomorphism, which implies the statements. m}
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4.6. The prismatic Dieudonné crystal of a p-divisible group

In this section, we establish the basic properties of the prismatic Dieudonné functor for p-divisible
groups. The idea, due to Berthelot-Breen-Messing, is to make systematic use of the following theorem
of Raynaud, to reduce to statements about (p-divisible groups of) abelian schemes proved in the last
section.

Theorem 4.65. Let S be a scheme, and let G be a finite locally free group scheme over S. There exists
Zariski-locally on S, a (projective) abelian scheme A and a closed immersion G — A of group schemes
over S.

Proof. (See [6, Theorem 3.1.1]). O

Proposition 4.66. Let R be a p-complete ring, and let G be a finite locally free group scheme over R.
The sheaf Sxt% Ry w'G,0 ) is a prismatic crystal of locally finitely presented O ) -modules.

Proof. By Theorem 4.65, one can choose locally on R an exact sequence of group schemes
0-G—->X—>X =0,
where X and X’ are abelian schemes over R. Whence, by Theorem 4.62 (1), an exact sequence
Ext(gy, (X', Op) = Extigy (u™'X,0p) = Ext(g) (u'G,0p) — 0.
This proves the proposition, by Theorem 4.62 (2). O

Let n > 1. Recall ([25, Definition 1.1]) that a finite locally free group scheme G over a scheme S is
called a truncated Barsotti-Tate group of level n if it is killed by p" and flat over Z/p™, and, whenn = 1,
if it also satisfies that the sequence

F v
Go — ¢s,,:Go — Gy

is exact, where G denotes the base change of G to So = V(p) C S. The rank of G[p] is of the form
p", for an integer & locally constant on S called the height of G. In the sequel, we will make use of the
following basic facts on truncated Barsotti-Tate groups (cf. [25, Remarks 1.3 (e), 1.3 (), 1.6]):

1. If G is a p-divisible group over S (of height &), G[p™] is a truncated Barsotti-Tate group of level n
over S (of height &) for all n > 1.

2. If G is a truncated Barsotti-Tate group of level n and height £, then so is the Cartier dual G* of G.

3. If 0 » G; — G, — G3 — 0 is an exact sequence finite locally free group schemes of order p”
over S, and if two of them are truncated Barsotti-Tate groups of level n, then so is the third one.

Remark 4.67. Let G be a finite locally free group scheme killed by p™ over a scheme S, such that
p"Os =0, and let £; be its coLie complex. Set:

we = H((G) , ng = H ' ((g) , tc = H'({g) ; ve = H' ({5).

Grothendieck’s duality formula identifies fG with the truncation 75! RHom(G*, G,), and this gives rise
to a canonical morphism:

oG v — G-
Then G is a BT, if and only if 75, tg+ are locally free and the canonical morphisms ¢ and ¢g- are

isomorphisms (cf. [25, Corollary 2.2.5]). In this situation, w¢ is finite locally free of rank called the
dimension dim(G) of G, and vg- is finite locally free of rank & — dim(G), if & is the height of G.
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Proposition 4.68. Let R be a quasisyntomic ring, and let G be a truncated Barsotti-Tate group over R
of level n. The sheafé')ct%R)A (u'G, O)p) is a prismatic crystal of finite locally free O [ p"-modules.

Proof. Fix once and for all an embedding of G into an abelian scheme X’ of dimension g over R. By
Theorem 4.65, this can be done Zariski-locally on Spf(R), and the reader can check that the different
steps of the proof are all local statements on Spf(R). Let X be the cokernel of the embedding G — X;
this an abelian scheme, and one has an exact sequence

0-G—-X -X—>0

of group schemes over R.
We first prove that for any (B, J) € (R)), the B-module

Sxt(lR)A(u_lG, OpB.1)

is locally generated by / sections, where h is the height of G. By the crystal property of
Sxt%R)A(u‘lG, O,) (cf. Proposition 4.66), for any morphism of prisms (B,J) — (W(k), (p)), where
k is a characteristic p perfect field,

Ext(g), (WG, Op) (1) ® W(K) = Extig) (™' Gi Op)w (1), (p))-

By Nakayama’s lemma, (p, J)-completeness of B and the finite presentation proved in Proposition
4.66, it suffices to prove that for any morphism B — k vanishing on J, k characteristic p perfect field,

Ext%Rm(u_lG, OA)(B,J) ®p k

is generated by & elements. Such a morphism B — k extends to a morphism of prisms (B,J) —
(W(k), (p)), so it suffices by the above to prove our claim when R = k is a perfect field and (B, J) =
(W(k), (p)). First, observe that

1 -1 1 -1 V%)
Ext gy WG, Op)w (k).(p)) ® k = Ext gy (™G, Op)w (k). (p))-

This is easily seen, using that S)ct%k)/A (u'X, Oy ) and ci')ct%k)A (u'X, EA) both vanish (Theorems 4.60
and 4.62).

As a corollary of Proposition 4.58 (together with the standard relation between H'(X, ) and
Lie(X™), cf [6, Section 5.1.1]) and Theorem 4.60, one has a short exact sequence

0 — u'Lie(X") — S)ctb,e)A (u_lX,aﬁ) - uwyxy — 0,
and similarly for X’. Also, note that we have exact sequences®’:
u*Lie(X*) = u*Lie(X™) - uvg: — 0

(where vg+ = Ext' (G, G,)) and

wWox — oy — uwowg — 0.

The map c‘)xt%k)A (u'Xx’, 6A) - c‘)xt%k)A (u'X, 6A) is compatible with the natural maps u*Lie(X*) —

u*Lie(X ™) and u*wx: — u*wyx, through the identifications of Theorem 4.60. The long exact sequence

29Recall ([6, Section 5.1.1]) that if X is an abelian scheme, Lie(X*) = Ext! (X, G,).
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of Ext gives a surjection:
Sxt%k)A(u_lX’,aﬁ) — Sxt%k)A(u_lX,aﬁ) - SXZ%k)A(”_IG’aﬁ) -0,

since, as we have seen in Theorem 4.60), Z'fxt%k)A (u’] X', 5A) = 0. By the above remark, we even have
a commutative diagram:

0 0 0

u*Lie(X*) ——— u*Lie(X*) uvgs 0
Extzk)m(u‘lX, Op) — Sxtzk)m(u‘lX’, Op) — Sxtzk)A(u‘lG, Op) —=0

* * *

u*wx u*wx: u'wg 0

0 0 0,
where all rows and the first two columns are exact. This proves that the map
Sxt%k)/A (u_lG,aﬁ) - u'wg
is surjective and an easy diagram chase proves that in fact the sequence
uvg — Ext%km(u_lG,aﬂ) —u'wg —0
is exact. As G is a truncated Barsotti-Tate group, the sheaf w¢ is a locally free sheaf of rank d = dim G
and vg- is a locally free sheaf of rank & — d (cf. Remark 4.67, which applies whatever the level

of G is, since p = 0 on k). Hence, the sequence stays exact after evaluation on (W(k), (p)) and
5xték)A (u'G, O\)(W (k),(p)) is generated by h sections. This proves the claim.

Back to the proof of the proposition, we know, as a direct consequence of Theorem 4.62 that
Extlg), (W' X'[p"],0p) = Ext{p) (™' X', 0p)/p"
is crystal of locally free O /p™-modules of rank 2g. Consider the exact sequence
0-G—-X'[p"] —>H—-O,

where H is a Barsotti-Tate group of height 2g — &, induced by the embedding of G in X’. This gives an
exact sequence

Sxt(lR)A(u_lH, 0yp) — 5x;gR)A(u—1x'[p"], 0y) — Ext(lR)A(u_lG, 0)) — 0.
Indeed, right-exactness follows from 4.62, which implies that already

1 -1y 1 -1
Sxt(R)A(u X,(’)A)—>8xt<R)A(u G,0p)
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is surjective. Locally on (R),, the middle term is free of rank 2g over O /p", while the left (respec-
tively, right) term is generated by 2g — h (respectively, &) sections. Therefore, Exté Ry (u'H,O ) and

é‘xtzR)A(u"G, O,) are free over O /p" of rank 2g — h and h. o
Proposition 4.69. Let R be a p-complete ring, and let G be a p-divisible group over R. The sheaf
1 -1
Ext(R)/A(u G,0))

is a prismatic crystal of finite locally free O ) -modules of rank the height of G.
In particular, if R is a quasisyntomic ring and G is a p-divisible group over R, the OP"S-module
M) (G) is a finite locally free OP"S_module of rank the height of G.

Proof. Let G be a p-divisible group over R. Since G = colim G [p"], we have a short exact sequence:
0 — R'lim Hom(g), (™' G[p"].0p) = Ext(, (u™'G.Op)

— lim gxth)A(u-lG[p"], 0p) — R211'11n Hom(r), (u”'G[p"],0p).

The last term vanishes as the prismatic topos is replete. We have to show that the first term vanishes, or
even stronger, that for each (B, J) € (R)), the morphism

1 -1 . 1 —1 n
Ext(R)N(BJ)(u (G),0)p) — hrrln EXt(R)A/(B,J)(u (G[p"1),0p)
is bijective. Set
o Tt -1
M = EXt(R)A/(B,J)(u (G),0p)
and
M, = Ext;R)A .y @ (G[P"), 0p)

for n > 0. For n,m > 0, the sequence

My 25 My — M, >0

is right exact (this follows by locally embedding G [ p™*"] and using Theorem 4.62). Thus, the canonical
morphism

Myim ®B/pn+r B/Pn — My

is an isomorphism for n, m > 0. As all M,, are finite locally free over B/p™ (of rank the height of G) the
B-module N := lin M, is finite locally free over B (of rank the height of G) by [52, Tag 0D4B]. By the

n
same reference,
N/p" = M,.
The canonical morphism M — N is surjective (by a similar R' ££n sequence as above). In particular,

n
we can conclude that M — M, is surjective for each n > 0. The long exact sequence for 0 —
u'(G[p"]) = u'G = u™'G — 0 and the surjectivity of M — M,, imply that M/p"™ = M, and
Ext%R)/A J(B.T) w(G),0 A) have no p"-torsion. This p-torsion freeness of Ext? in turn implies that

M/p" = Extig 5 ;)W (G),Op/p").
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Our aim is to prove that M = N or equivalently that M is classically p-complete, that is, M = gn M/p".

n

As all prisms in (R), are by definition bounded, and thus classically p-complete,

~ 1: n o~ . n
Op =m0, /p" = Rm O, /p".

n n

— RBytl -1
We can therefore calculate M = Ext( R)p/(B.J) (=" G, O)) by an exact sequence

0— RlEiLnHom(Rm/(B,J)(u_lG,OA/p") - M — yLnM/p” — 0.

n n

In this sequence, the R' lim-term vanishes as each Homr), /(.7) (u™'G,0)/p") is zero because G is
n

p-divisible. The isomorphisms

M

1
13

. "o
lim M/p" = 1im M,
n n

imply that M ), (G) is a crystal, because they show that, even stronger,

1 -1
Ext(R)A/(B,J)(u G,0))

commutes with base change in (B, J). This finishes the proof of the first sentence of the proposition.
The second sentence is an immediate corollary of the first one, together with Proposition 4.4 and
Lemma 4.38. O

‘We can now summarise our discussion and prove the main result of this section. We need a last lemma.

Lemma 4.70. Let (C,J) be an henselian pair, and let G be a p-divisible group over C|J. Then there
exists a p-divisible group G over C, such that

GocCll=G.

Proof. Set h as the height of G. Let BTQ be the Artin stack (over Spec(Z)) of n-truncated Barsotti-Tate
groups of height 4. Then for any n > 1, the morphism

BT/ — BT/ _|

is a smooth morphism between smooth Artin stacks (cf. [32, Section 2] respectively, [25, Theorem 4.4]).
By [21, Theorem, page 568] (which extends to the non-Noetherian case by passing to the limit) any
section D — C/J of some smooth C-algebra D extends to a section D — C. These statements imply
that inductively, we can lift G[p"] to a truncated p-divisible group H,, over C. Then finally

G :=1limH,
JE—

n

yields the desired lift over G. O

Theorem 4.71. Let R be a quasisyntomic ring, and let G be a p-divisible group over R. The pair
(Mp(G), ¢m,(G)) of Definition 4.35 is an admissible prismatic Dieudonné crystal over R.

Proof. Let G be a p-divisible group over R. By Proposition 4.69, we already know that M) (G) is
a finite locally free OP"*-module, endowed with the semilinear endomorphism ¢ . We need to see
that it gives an admissible prismatic Dieudonné crystal over R. The construction being functorial in R,
it suffices by Proposition 4.9 to deal with the case where R is quasiregular semiperfectoid. Choose a
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perfectoid ring § mapping surjectively onto R; by Corollary 2.10, we can assume that S is henselian
along ker(S — R). Lemma 4.70 (applied to (C,J) = (S,ker(S — R)) and G = G) shows that G
is the base change of a p-divisible group H over S. Hence, (M) (G), ¢, (G)) is the base change of
(Mp(H), ¢ m, (1)), which we know to be an admissible Dieudonné crystal since S is perfectoid, cf.
Corollary 4.49. O

We now state two useful properties of the prismatic Dieudonné functor: its exactness and its com-
patibility with Cartier duality.

Proposition 4.72. Let R be a quasisyntomic ring. The functor
M) :BT(R) - DM(R), G+ M)(G)

is exact.

Proof. Let
0-G' -G—->G"—>0

be a short exact sequence of p-divisible groups over R, which we see as an exact sequence of abelian
sheaves on (R)qsyn. Applying RHom (g),,, (-, OP™) to it, we get a long exact sequence:

Hom Ry, (G', OPF) — Mp(G”) = Mp(G) = Mp(G) — Exty, (G”,OP™).

The first term vanishes as G’ is p-divisible and OP" derived p-complete. Let us prove surjectivity of
M)p(G) = M) (G’). For n > 1, consider the exact sequences

0— G'[p"] = G[p"] = H, — 0.
Then G” = h_H)lHn with injective transition maps H,, — H,4 (as G[p"] € G’ = G'[p"] foralln > 1).
As in the progf of Proposition 4.69, we can conclude that
Mp(G[p"]) = Mp(G'[p"]), Mp(Hns1) = Mp(Hy)
are surjective. Passing to the limit of the exact sequences
Mp(Hp) = Mp(G[p"]) = M) (G'[p"]) =0
implies, therefore, that
Mp(G) = M) (G)
is surjective, as desired. O

Let R be a quasisyntomic ring, and let G be a p-divisible group over R with Cartier dual G. Passing
to the limit for the Cartier duality on finite flat group schemes yields isomorphisms

Tp(é) = Homg(TpG,Tpup=) = Homg (G, pp=)

of sheaves on (R)qsyn. We first construct a canonical morphism

DG : My (G)Y ®ppis My (pp=) = My(G),
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where M, (G)" denotes the OP"s_linear dual of M A(G). Recall that
My (G) = Hom(T,G, OP™)
by Lemma 4.40. Thus, we can define @ by setting
®G(6®1)(@) = (60 My (a)) (1) € O™,

where

6 € M)(G)',1 € Mp(up~), @ € Hom(G, pip) = TG
Clearly, the morphism ®¢ is natural in G and commutes with base change in R.
Proposition 4.73. Let R be a quasisyntomic ring. For every p-divisible group G over R, the map

D1 Mp(G)Y ®omis Mp(pp=) = Mp(G)

constructed above is an isomorphism.

Proposition 4.77 implies, via quasisyntomic descent, that M (G)" ®cppis M ) (t1p=) is naturally a
prismatic Dieudonné crystal when equipped with the Frobenius

186®1€ 0P ®, oms (Mp(G)Y ®cpis My (ip=)) — @* 0 ga;\;A (G) ® Pupe (1©1)

(using the identification ¢*OPs = OPS and the inverse 9";\}1&(@: M) (G) — l/pris‘p*MA(G) of
the linearised Frobenius on M ) (G)). With this choice of Frobenius, one checks that ® is a morphism
of prismatic Dieudonné crystals, that is, compatible with the Frobenius.

Proof. Both sides are locally free OP-modules of the same rank (cf. Proposition 4.69). Hence, it
suffices to see that @ is surjective, which can be checked after base change R — k to perfect fields k
of characteristic p. Thus, assume that R = k. By Theorem 4.44, the prismatic Dieudonné functor over k
is isomorphic to the crystalline one. Let

D% Mp(G)Y ®ppis My (p=) = M)(G)

be the natural isomorphism coming from classical duality for the crystalline Dieudonné functor over
perfect fields (cf. for example [23, Proposition III 5.1.iii)]). Let

\P(_) : MA(—)V ®pris Mm(ﬂp"") d MA((_)*)

be any natural transformation (of functors on p-divisible groups over quasisyntomic rings over k). Then
for any morphism y: G — H of p-divisible groups, there is an equality

Yoo (aoy)=Yu(doMp(y) ®)(a), 4.1)
where 6 € M) (G),l € M) (up~),a € Hom(H, up~). We want to show that &g = u(DCCl; for all p-
divisible groups G and some unit u € OP" (independent of G). Thus, pick 6 € M) (G)Y,1 € M (up=)
and @ € Hom(G, up~). Applying (Equation (4.1)) to y = @: G — e~ implies

W6 (8 ® 1)(a) = ¥y, (6 0 Mp(a) @ 1)(Id,, )
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for any natural transformation ¥ (_) as above. In particular, ¥ (and, thus, ®_) and d)il_), as examples)
are determined by their behaviour on G = . For u =, both induce an isomorphism

Mﬁ(ﬂp"“)v ®pris Mﬁ(ﬂp"") = Hom(Tp (pp~), Opris) ~ (OPris

Namely, ®,, .. is given by the natural evaluation, which is an isomorphism as M ) (u pe) is free over

rank 1 (by the crystalline comparison, cf. Theorem 4.44). That be}pw is an isomorphism follows from

classical Dieudonné theory (cf. [23, Proposition 5.1.iii)]). Hence, dDﬂpw and <I>f}pm differ by some unit

u € OPIs30 This implies ®g = ucI)CGl for all G by naturality. By [23, Proposition 5.1.iii)], we can
conclude. O

The main result of this text is the following theorem, whose proof will spread out over the next
sections.

Theorem 4.74. Let R be a quasisyntomic ring. The prismatic Dieudonné functor:
M, : BT(R) — DM™™(R)

is an antiequivalence between the category of p-divisible groups over R and the category of admissible
prismatic Dieudonné crystals over R.

Proof. By Proposition 3.21 and the fact that both BT and DM*™ are stacks on QSyn for the qua-
sisyntomic topology (see Propositions A.2 and 4.9), we can assume that moreover R is quasiregular
semiperfectoid. Then the theorem is a consequence of Theorems 4.82 and 4.90, to be proved below. O

4.7. The prismatic Dieudonné modules of Qp /Z, and pip~

In this subsection, we calculate the prismatic Dieudonné crystals of Q,/Z, and y = to explicitly work
out some examples for prismatic Dieudonné crystals. We deduce as well a description for all étale and
multiplicative p-divisible groups. For the analogous results for the crystalline Dieudonné functor, see
[7, Section 2.2]. Let us fix a quasisyntomic ring R. Recall that for a p-divisible group G over R, the
prismatic Dieudonné crystal M ) (G) is defined (cf. Definition 4.35) as the sheaf

Mp(G) = Extip) (G, O"™) = v.Extly (7' (G),0p)
on the absolute prismatic site (R)) of R and that
Mp(G) = Hom(ry,, (TG, O"™) = v. Hom(g), (™' (T,G), Op).

by Lemma 4.40.

Lemma 4.75. The OP"-module M AQp/Zy) is freely generated by the isomorphism class of the
extension of OP" by Q p | Zp, obtained as the pushout of the short exact sequence

0-2Zp, > Qp > Qp/Zp —0
on (R)qsyn along the canonical morphism Z, — OP"S. More generally,
Mp(G) = Hom (g, (Tp(G), Zp) ®z, OP,

if G is an étale p-divisible group.

300f course, one expects u = +1, but as this finer statement is not necessary for us, we avoided the calculation verifying this.
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Proof. This follows directly from the isomorphism
Mp(G) = Hom (g, (TG, OP™)

and the fact that for an étale p-divisible group, T,,G is a local system of finite free Z,-modules on
(R)qsynsl‘ O

Let us now describe the prismatic Dieudonné crystal M p (up=) of pip= on (R)gsyn-

Definition 4.76. Let O {—1} be the sheaf

Op{-1} =Homz,), (u™ (Z,(1)),0p)
on the absolute prismatic site of Z,, with Z, (1) := Tpptpe.

Note that, if (@:n denotes the p-adic completion of the multiplicative group scheme G,,,, we also have
Op{=1} = Extpy ) (' pp=, Op) = Extiy )\ (G, Op),

as @;/ Up= is uniquely p-divisible and O p-complete. Also, as recalled above, we have a natural
isomorphism

MA(,upoo) = V*OA{—l}‘(R)A.

We can describe the sheaf O {~1} in restriction to prisms (B, J) which live over the ‘cyclotomic’
base prism

(A1) = (Zpllg - 111, ([ly))

from Section 2.2. We point out that Mondal [46] was able to recently get rid of this restriction, using
Bhatt-Lurie’s syntomic Chern classes [10].
The reason is that for such prisms, we can use the g-logarithm from Section 2.2

log,, : u_l(Z,,(l)) — Op

which defines a canonical element, which we call £, € O){-1}(A, I).

Proposition 4.77. The O ) -linear map
Op — Op{-1},

sending 1 to €,, of sheaves on the category of all prisms living over (A, 1) = (Z,[[q — 111, ([plg)), is
an isomorphism. Moreover, the Frobenius on O p{-1} sends €, to [pl,ty.

Proof. Let (B, J) be a prism over (A, I). It suffices to show that the morphism
B — Ext' (uN(G,) 8.0y, Op)

(where we mean Ext! in the category of abelian sheaves on the site of prisms over (B,J)) given by
the g-logarithm is an isomorphism. By Proposition 4.69, the formation of this map is compatible with
base change in (B, J). From the proof of loc. cit. we also know that Ext! (1! (@)I(BJ)’ O, ) is a finite
locally free B-module of rank 1. Therefore, it suffices to show surjectivity. To show surjectivity, one

3'Here, we did some abuse of notation and denoted by Z, the sheaf S +— Homes(79(S), Zp) on (R)qsyn, Which is usually
called Z,.
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may pass to the case that (B,J) = (W(k), (p)) for k an algebraically closed field of characteristic p.
Then the comparison with the crystalline Dieudonné crystal (cf. Theorem 4.44) reduces to an analogous
statement for the usual logarithm as for ¢ = 1, the g-logarithm becomes the logarithm. Let R be a general
ring of characteristic p, and let R” — R be a surjection of schemes with a PD-structure {7y, },>0 on
K :=ker(R’ — R) and assume p nilpotent in R’. Then there is the canonical morphism

log: Zp(l)(R) — R, x— log([x]),

where [—]: lim R — R’ is the Teichmiiller lift and log the crystalline logarithm

XoxP
log: 1+K >R, y > Z(—l)"‘l(n -Dly.(y-1
n=1

(which makes sense as [x] € 1+ K). But it is known that the logarithm generates the crystalline
Dieudonné crystal of pp,~ (cf. [7, Corollary 2.2.3]). Finally, the action of Frobenius on £, can be
calculated using Lemma 2.13:

CrHomu1 (2, (1)).0,) (lg) (x) = pg( ) og(x?) = a’ f (x) = [plgty(x)

for x € Z,(1). o

Remark 4.78. Note that, when pR = 0, the identification between the prismatic and crystalline
Dieudonné modules from Theorem 4.44 is linear over the isomorphism Ar = Agys(R) from Lemma
3.27. This explains why the map x — logq([xl/ P]g) is sent to x +— log([x]) (and not something like

x > log([x'/P]), which would not make sense as [x!/?] — 1 need not have divided powers), cf. the
remark after Lemma 3.27.

Assume now that Ris an A/l = Z[{,]-algebra.

Corollary 4.79. Let G be a multiplicative p-divisible group over R. Then there is a canonical isomor-
phism

u (Hom(G, pp~)) ®z, Op = Ext () (™' G, Op)(r/a),

induced by sending f: G — i, to the evaluation of the morphism induced by f:

5xl(1R)A(u71,upec,OA)KR/A)A - Ext(lR)A(lflG, OA)\(R/A)A

ont,.

Proof. The morphism (and the claim that it is an isomorphism) commutes with étale localisation on
R. In particular, we may assume that G = ,uf)m. Then the claim follows from Proposition 4.77 and
additivity of the right-hand side. m

As a corollary of these computations, we can concretely describe the action of the prismatic
Dieudonné functor on morphisms Q, /Z,, — pp=. Set

Z;yd = (h'_I)an [(p"])lly\

n

As usual, we get the elements & = (1,p,...), ¢ == [¢] € Ainf(Z;yCI) and & := qqp_ll,
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Lemma 4.80. Let R be a quasiregular semiperfectoid ring over Z;,y ! Then the morphism

2y (1)(R) = Homg (Qp/Zp, =) ~—— Hompucr) (M, (), Mp (Qp/Z,)) = B

is given the map which sends x € Z,,(1)(R) to logq([xl/p]é) € Agzé.

Proof. First, note that

Homo() (Mp (), My (Qp /Z,)) = B¢

by evaluating a homomorphism M, (up~) — Mp(Qp/Zp) = Ag on £,. The identification of M) (-)
on a homomorphism f: Q,/Z, — up~ follows easily from the natural isomorphism

M) (G) = Homg), (u™'(T(G)), Op)

for a p-divisible group G over R and Proposition 4.77 and Lemma 4.75. O

Remark 4.81. This description together with [10, Theorem 7.5.6] imply fully faithfulness of the pris-
matic Dieudonné functor in the special case of morphisms from Q,/Z, to u,~. We will give in the
next section a proof of fully faithfulness, still relying on the same input from [10].

4.8. Fully faithfulness
The main result of this subsection is the following.

Theorem 4.82. If R is a quasiregular semiperfectoid ring, the prismatic Dieudonné functor over R is
fully faithful for p-divisible groups.

The proof we offer was kindly suggested to us by Akhil Mathew. Recall that the prismatic Dieudonné
functor is given, according to Lemma 4.40, by the formula

Mp(G) = Hom(ry,,, (T,G, OP™) 4.2)
for any p-divisible group G over the quasiregular semiperfectoid ring R. We also set
NZ M) (G) = Hom(r),,,(TpG, NZ'OP™).

From now on, we fix a quasiregular semiperfectoid ring R and a generator £ of the prismatic ideal in
Ag. For simplicity, we assume that R lives over the cyclotomic prism and that & = [p],, (cf. Proposition
4.77). By descent this assumption is harmless.

Proposition 4.83. If G is a p-divisible group over R, there is a natural (in R and G) identification of
quasisyntomic sheaves

T,G = ker (W2 M, (G) 725" M, (6)).

Proof. We have, cf. [10, Theorem 7.5.6]32, an isomorphism of quasisyntomic sheaves

@lé&-1
—

T,Gp = ker(NZ'OP™ OPTs),

To conclude, it suffices to apply the functor Hom R)geyn (T»G, —) to both sides and to note that Tpé _
Hom(R)qsyn (TPG7 Tme). D

32See also [ 12, Proposition 7.17] for a proof using algebraic K-theory.
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Now we start the proof of Theorem 4.82. Let us denote by Shg the category of abelian sheaves on
(R)gsyn (so that Homsp,, (—, —) = Homg),,,, (=, —)) and by D the category of OP"is[ F]-modules, which
contains, as a full subcategory, the category of (admissible) prismatic Dieudonné crystals. The functor

R : Sh(;?p — Dgr, F Hom(R)qsyn(}', OpriS)
admits the left adjoint
L:Dg — ShY, M Homeps ) (M, OP™).
Indeed, if F € Shg is any abelian sheaf and M € Dg, then
Homopis () (M, Hom gy, (F, OP™)) = Hom g, (F, Homp, (M, OP™))

because both sides identify with bilinear maps w: M x F — OP'S, which are OP"[ F]-linear in the
first component.
Note that by the above displayed formula (4.2), if G is a p-divisible group over R,

M (G) = R(T,G).

Hence, to prove the theorem, we are reduced to proving the following proposition.

Proposition 4.84. The functor R is fully faithful on the subcategory of Sh;,)ep spanned by the Tate modules
of p-divisible groups over R.

Proof. Given a sheaf F € Shj?{,p which is the Tate module of a p-divisible group, we have a natural
counit map in ShORp

LRF — F,

and we will show that it is an isomorphism. Switching back from ShORp to Shg, this counit is the biduality
map

F(—) e Homopris[F] (Hom(R)qsyn (]—"(_)’ Opris)’ Opris)'

The formation of this map is compatible with base change in the quasiregular semiperfectoid ring R.
We claim that this map is an isomorphism whenever F is the Tate module of a p-divisible group G over
R. Applying Proposition 4.83 to G, we get a natural (in F and R) identification

F=T,G = (/\/ZIMA(G))QDM/A(GF"E = (MA((V;))‘”MM):‘f

(for the last equality, note that if f € Hom g, (TpG, OP1s) satisfies ¢(f) = £f, then for any section
sof TG, f(s) € NZ'OPS thatis f € Homg),, (TG, N ' OP™)). Proposition 4.73 and the remark
following it for the identification of Frobenius allow us to rewrite this as a natural (in F and R)
identification

F = Homeps () (Mp(G), OPF) = LM (G)) = LRF

as we can identify (Mp (1p=), @My (upe)) = (OP"iS, £ opris ) by Proposition 4.77. However, this natural
isomorphism may not a priori coincide with above counit map. But, composing the latter with the
inverse of this isomorphism, we obtain a natural endomorphism of F, that is, an endomorphism of
any p-divisible group G over any quasiregular semiperfectoid ring R, natural in G and R. Any such
endomorphism acts on the p-divisible group Q,/Z, by multiplication by some scalar (in Z,), at least
on each connected component of R. It also does act by multiplication by the same scalar (depending
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on a connected component of Spec(R)) on any p-divisible group G: indeed, this can be checked on the
Tate module, and since T}, (G) = Hom (r),,,,(Qp/Zp, G), this follows there by naturality.

Hence, to conclude the proof of fully faithfulness, it suffices to show that these scalars are units. This
can be checked for one specific p-divisible group G, and we can take G = Q,, /Z,, for which the claim
is immediate. Indeed, F = Z,, in this case and F — LR(F) = Homopis[p1(OP™S, OP™) sends 1 € Z),
to the identity of O™, which generates Hom ppris 1 (OP™, OP™) by [13, Remark 9.3]. O

Remark 4.85. In fact, as was also pointed out by Akhil Mathew and the referee, the results used in this
section can be strenghtened. Indeed, [10, Theorem 7.5.6] already quoted above even gives a short exact
sequence

0 — TGy — NZ10s “L5T omris
Applying RHom r),,, (TpG, —) to it, we get an exact sequence of sheaves

v v £_1 v
0 T,G — N2 Mp(6) 5" My (G) = Extly)  (1,G.T,Co).

1 _ 1 _ :
But ‘SM(R)WH (T, G, T,Gp) = 5M(R)qbyn(G’ Hp=) = 0 (cf. [53, Theorem 1] together with the fact that

the set of splittings of such an extension is a torsor under G which is syntomic). Hence, we get a short
exact sequence and, after taking cohomology, an isomorphism

> v £_1 v
RT((R)gsyn: TpG) = fib (NZ1M, (G) 725" My (6)).

4.9. Essential surjectivity

Let R be quasiregular semiperfectoid, and let as before
Mp(=): BT(R) — DM“™(R), G = (Mp(G). ¢, (6))

be the prismatic Dieudonné functor with values in the category of admissible prismatic Dieudonné
modules DM*™(R) (cf. Section 4.2 and Theorem 4.71).

Let us fix a perfect prism (A, I), a generator & € I and a surjection A =A/I - R. Let & := ¢~ (£).
In this section, we will make repeated use of Proposition 4.29, which tells us that admissible prismatic
Dieudonné modules over R (or any other quasiregular semiperfectoid ring living over A) are the same
as windows over the frame AR’Nyg (associated to £).

By Corollary 2.10, we may assume that A is henselian along ker(A — R).

Let us first assume that ker(A — R) is generated by some elements a j» J € J, that admit compatible

i/p 1/p?

jlealt .) of p™-roots. Define

systems (aj,a
- o A
§:= (AP 7 e n/xp)

and S — R, le./pn r—)ajl./pn,

Lemma 4.86. The base change functor DM*™(S) — DM®™(R) on admissible prismatic Dieudonné

modules is essentially surjective.

Proof. Using Proposition 4.22, it suffices to see that Ag — Ap is surjective and henselian along its
kernel (cf. Lemma 4.31). The surjectivity follows from the Hodge-Tate comparison as Lg/z — L,z
is surjective by our assumption that the a;, j € J, generate ker(A — R). First note that the pair
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(S,ker(S — R)) is henselian because the le./ P" are nilpotent in S and we assumed that A is henselian

along ker(A — R). By Lemma 4.28, to show that Ag is henselian along K := ker(Ag — Ag), it suffices
to see S = Ag/ker(6s) is henselian along K := (K +ker(6)) /ker(6) (cf. [52, Tag ODYD])). But K C S'is
contained in ker(S — R). Another application of [52, Tag 0DYD] therefore implies that S is henselian
along K because (S, ker(S — R)) is henselian. This finishes the proof. O

Note that the ring
Tvl/pT) . Ap
S= (A" 1jenix; 1))
admits a surjection from the perfectoid ring
Ap
. x 1/p® . L . < 1/p™y . ’
§:= A[[X)7"| j e ] .—( lim  A[[X)") eJJ])
n,J’ CJ finite
by sending le./”" - le./pn.
Lemma 4.87. The natural functor
DMadm(SN) — DMadm(S)

is essentially surjective.

Proof. The ring S is henselian along (X i | j €J). The prism Ag is the (p, I)-adic completion of

. 1/p™ . ’
lim  A[XYP) e S0,

n,J’cJ finite
Call a §-pair (B, K) over (A, I) a good pair if it satisfies the following conditions:

e Bis (p,I)-completely flat over A and K is (p, I)-complete.
e There exists a universal map (B, K) — (C, IC) of §-pairs to a prism (C, IC) over (A, I). Moreover,
(C,IC) is flat over (A, I), and its formation commutes with (p, I)-completely flat base change on B.

For each n > 1 and J’ C J finite, the §-pair
(A[[le_/p"| jE J’]]/\(D,I),(I’X_,j c ])/\(,,y,))

over (A, I) is a good pair, by [13, Proposition 3.13]. Since good pairs are stable under filtered colimits
in the category of all §-pairs (B, K) over (A, I) with B and K(p, I)-complete, we deduce that the pair

(As.(1,X;,j €))
is a good pair, too. Therefore, by definition of a good pair and Proposition 3.26, we have
X Np.&)
&
Define

B:=MAs/(X;|jeJ)wd,
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Then B is p-torsion free and £-torsion free and thus defines a prism. Moreover, canonically, S = B/&.
By the universal property of Ag, there exists therefore a canonical morphism

a: As — B.

Concretely, the morphism a sends X; +— 0. Using a variant of Lemma 4.28, we see that Ag is henselian
along ker(«). By Lemma 4.88, ¢(ker(a)) C £Ag and ¢/£ is topologically nilpotent on ker(a). Thus by
Lemma 4.32, the categories of windows over Ag and B are equivalent. Therefore, it suffices to see that
windows over B can be lifted to windows over Ag. After choosing a normal decomposition, this follows
as the functor

- Mod‘X’;t — ¢ — Mody™

and is essentially surjective, which is true as Ag is henselian along the kernel of Ag - B (cf. the end of
the proof of Lemma 4.31). This finishes the proof. O

To finish the proof of Lemma 4.86, we have to prove the following lemmas.

Lemma 4.88. With the notations from the proof of Lemma 4.87, we get (ker(a)) C EAs and ¢y = ¢/&
is topologically nilpotent on ker(a).

Proof. SetK := ker(a). Then K is the closure in the (p, £)-adic topology of the Ag-submodule generated
by 6" (X, /€) for j € J and n > 0. By Lemma 4.89 below, the module K equals the closure of the ideal
generated by

xr"
" J
IR 3 (I LR I
for j € J and n > 0. Let us show that ¢(K) C £Ag. Clearly,

Zj,n

~ on+l
QD(Zj,n) = fp Zj,n+l- (4.3)

As N2 g is closed in Ag (being the kernel of the continuous surjection Ag — S), we can conclude
K € N=!Ag. Next, let us check that ¢, is topologically nilpotent on K. Fix [ > 1. We claim that for
every m > 1, such that p > [ and any k € K, we have

¢l (k) € €'K.

This implies as desired that ¢ is topologically nilpotent on K. As £'K is closed and ¢} continuous (for
the (p, £)-adic topology on K), it is enough to assume that k = Zj,n for some j € J,n > 1, because the
Zj,n generate a dense submodule in K33, Using Equation (4.3), we can calculate

n+l -1 n+m_ |

1,5 ~ Zpntm_|
QDZ"(Zj,n):sﬂqn (é:p Zj,n+1):-'~=a§p Zj,n+m€‘fp K

for some a € Ag. But """ 1K C &K because p"*™ — 1 > I. This finishes the proof. O

Lemma 4.89. Let (A, I) be a bounded prism, and let d € A be distinguished. Let, furthermore, x € A
be an element of rank 1. Then for n > 0, there exist natural (in A, x) elements

X /\(p,d)
{d }
Z

s

33Dense for the (p, £)-adic topology.
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n

such that " (d)@" ' (d)P ---dP" - z,, = xP". Moreover, for all n > 0, 0"(%) lies in the subring
Alzo, ..., za] of A{Z} D generated by zo, . .., zn.

Note that the last part of the lemma implies that the resulting morphism

X NMp.a)
> Yn > Zn

Aly1.ya... 1/ (x = dyi ¥V = o(d)y2. ¥5 = @*(d)ys....) > A {5

is surjective after (p, d)-completion. We expect that this surjection is actually an isomorphism.

Proof. We can argue in the universal case A = Z,[x]{d, ﬁ}“ﬁ-fh, where 6(x) = 0, thus, we may
assume that A is transversal, that is, that (p, d) is a regular sequence in A, and that (x, d) is a regular
sequence. This implies that for all » > 1, the sequence (¢” (d), ¢"~'(d)) is regular as well (cf. Lemma
2.7). We first claim that for all n > 0, the element

xP"
T e

liesin A{%}. If n =0, then z,, = § € A{}. For n > 0, we can calculate

n+l

X
¢(zn) = o"1(d) - p(d)P"
because ¢(x) = x”. The numerator xP"" is divisible by dP™ in A{3}. We claim that
(d”"” ,@"(d) -+ @(d)P") is a regular sequence in A{%}'\»-@). Granting this, we can conclude that
n+ n+l n
dP ! divides (p’“‘l(dx)pW’ that is, that z,,41 € A{g}?p,d) Write s = ‘PnH (d) .. go(d)P . To prove

that (dl’n+1 ,§) is a regular sequence in A{%} <, it suffices to show the same for (d, 5). One proves
by induction on m that for all m > 1, ¢ (d) is congruent to pu,, modulo d for a unit u,,. In particular,
one concludes that s is congruent to up* modulo d, for k > 1 and u a unit. Hence, to prove that (d, s)
is a regular sequence in A{} -, it suffices to show that (d, p) is a regular sequence in A{J}"»-a).
But this follows from transversality of A and the fact that A — A{5}"»4 is (p, d)-completely flat.

Next, we show that for all n > 0, 6" (%) lies in the subring A[zo, ...,za] of A{5}"»-9) generated by
20, - - - » Zn- This claim follows from the assertion that §(z,,) € A[zo, . . -, Zn+1] using induction and how
¢ acts on sums and products. For n = 0, we can calculate

X 1 x xP 1 X
6z) =6 (%) =~ (¢(5) - 35| = = (@ - ez =6z e 4 {2}
@ =0(5) = (¢(3) - 3] = @ - ptanas =s(@a e a
Similarly, we see
1 pn+l n+l
0(zn) = ;(d =" (d))zns1,
where the term %(d”wl — ¢™*1(d)) lies in A. This finishes the proof. O

We can derive essential surjectivity.

Theorem 4.90. Let R be a quasiregular semiperfectoid ring. Then the prismatic Dieudonné functor
M) (-): BT(R) — DM*™(R)

from the category of p-divisible groups over R to the category of admissible prismatic Dieudonné
crystals over R is essentially surjective.
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Proof. To prove the theorem, we may pass to a quasisyntomic cover R’ of R: indeed, let M € DM*™(R),
such that its base change along the map R — R’ is of the form M, (G’), for some p-divisible group G’
over R. The descent datum for M, (G’) expressing that it comes from an admissible prismatic Dieudonné
module over R (namely, M) gives rise to a descent datum for G’, since fully faithfulness over R'®gR’
is already proved (cf. Theorem 4.82). This descent datum is effective, by p-completely faithfully flat
descent for p-divisible groups (cf. Proposition A.2), so there exists a p-divisible group G over R, with
M)y (G) =M.

Therefore, by Theorem 3.23, we may and do assume that R = A/(a; | j € J) for A = A/I a perfectoid
ring and a; € R admitting compatible systems of p"-roots of unity. Using Lemma 4.86, we may even
assume that

R=AXT7] e D/(X)).
In this case, we can invoke Lemma 4.87 and reduce to the case that R is perfectoid. Then we can cite
Corollary 4.49 to conclude that M (-) is essentially surjective. m]
This concludes the proof of the main Theorem 4.74.

Remark 4.91. Let R be quasisyntomic ring. The arguments used in Section 4.8 show that the functor G
from DM®™(R) to the category of abelian sheaves of (R)gsyn, sending M € DM*™(R) to

M) &z, Qp/Zy,

where MY denotes the OP"S-linear dual of M, defines a quasi-inverse of the prismatic Dieudonné
functor.

It seems difficult to prove directly that G takes values in the category of (quasisyntomic sheaves
attached to) p-divisible groups. In the case of étale p-divisible groups, Theorem 4.74 yields an equiva-
lence of Z,-local systems on R and finite locally free OP"S-modules (respectively, Ag-modules if R is
quasiregular semiperfectoid) M together with an isomorphism @ : ¢*(M) = M. This is a generali-
sation of Katz’ correspondence between Z,-local systems on the spectrum Spec(k) of a perfect field k
and ¢-modules over W (k) (cf. [27, Proposition 4.1.1]). We thank Benoit Stroh for pointing this out to us.

5. Complements
5.1. Prismatic Dieudonné theory for finite locally free group schemes
Let R be a perfectoid ring. We fix a generator & of ker(6) and let £ = ¢(&).

Definition 5.1. A torsion prismatic Dieudonné module over R is a triple

(M’(pM’wM)7

where M is a finitely presented Aj,¢(R)-module of projective dimension < 1 which is annihilated by a
power of p and where ¢y, : M — M and yp; : M — M are, respectively, ¢-linear and ¢! -linear, and
satisfy

omoym =& Ymopm =£.
The category of torsion prismatic Dieudonné modules over R is denoted by DM (R). It is an exact
category.
The base change of torsion prismatic Dieudonné modules behaves well.

Lemma 5.2. Let R — R’ be a morphism of perfectoid rings and M € DMors(R). Then M ®4,(r)
Ainf(R’) is concentrated in degree 0. In particular, the base change functor DMys(R) — DM (R”)
is exact.
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Proof. Let

O—>M1L>M2—>M—>O

be a resolution of M by finite locally free Ai,s(R)-modules. As M is killed by p™ for some n > 0, there
exists g: My — M, such that f o g = p™. Then p" = g o f (using that f is injective). The base change
M1 ®a,;(r) Aint(R’) is p-torsion free as Aj,r(R’) is. This implies that the base change of f to Aj,r(R’)
remains injective, which finishes the proof. O

Before stating the main result, let us introduce a notation, which will be in use only in this section.

Notation 5.3. If S is a p-complete ring, let Bs (respectively, Cs) denote the category whose objects
are O)-modules on (), (respectively, Op-modules on (S), endowed with a ¢-linear Frobenius),
and whose morphisms are O ) -linear morphisms (respectively, O -linear morphisms commuting with
Frobenius).

Theorem 5.4. There is a natural exact’# antiequivalence

H = (Mp(H), m, (1) Y My (1))

between the exact category of finite locally free group schemes of p-power order on R and the exact
category DMyos(R) of torsion prismatic Dieudonné modules over R, such that the Ays(R)-module
My (H) is given by the formula

My (H) = Ext}R)A(u—lH, Op)

and such that o, (1) is the map induced by the Frobenius of O .

Remark 5.5. A similar statement can be found in [36, Theorem 10.12]. Apart from the change of
terminology, the only difference with the result in loc. cit. is that we remove the assumption that p > 3
and provide a formula for the underlying Aj,r-module of the torsion minuscule Breuil-Kisin-Fargues
module attached to a finite locally free group scheme of p-power order.

The proof of Theorem 5.4 will make use of the following lemma.

Lemma 5.6. Let (A, I) be a bounded prism, such that A is p-torsion free, and let S be a p-completely
syntomic A[I-algebra?>. Then

H(S, Asya)

is p-torsion free.

Proof. As S is a p-completely syntomic A/I-algebra, the derived prismatic cohomology Ag,4 agrees
with the cohomology RI'((S/A), O)) of the prismatic site of S over A (this follows by descent from the
quasiregular semiperfectoid case and Proposition 3.26). By [13, Proposition 3.13] and the assumption
that S is a p-completely syntomic A //-algebra, one can calculate Ag/4 by some Cech-Alexander complex
whose first term is p-complete and p-completely flat over A. Therefore, it suffices to see that each p-
complete p-completely flat A-algebra B has no p-torsion. As A is p-torsion free, A, and thus B, are
p-completely flat over Z,. But any p-completely flat p-complete module over Z,, is topologically free
and thus p-torsion free. m

Proof of Theorem 5.4. The construction of the antiequivalence is exactly similar to the one of [36,
Theorem 10.12], replacing Theorem 9.8 in loc. cit. by Corollary 4.49, so we do not give it and refer

34This includes the nonformal assertion that the inverse equivalence is exact, too.
35A morphism R — R’ between p-complete rings of bounded p®-torsion is p-completely syntomic if R'/p = R’ ®HIQ R/p
and R/p — R’/ p is syntomic in the sense of [52, Tag 00SL].
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the reader to [36]. The simple principle is that Zariski-locally on Spec(R), any finite locally free group
scheme of p-power order is the kernel of an isogeny of p-divisible groups (and even an isogeny of p-
divisible groups associated to abelian schemes, cf. Theorem 4.65); similarly, Zariski-locally on Spec(R),
any torsion prismatic Dieudonné module is the cokernel of an isogeny of prismatic Dieudonné modules
([36, Lemma 10.10]).
Let us now prove that
My (H) = ExtER)/A(u"H, Op)
and that the functor M (—) preserves exactness for a short exact sequence

0—-H —H—-H'—-0

of finite locally free group schemes of p-power order over R. Note that this implies by Mittag-Leffler
exactness of

0— Mp(H"”) = M)(H) - M)(H') =0
if H', H, H" are finite locally free group schemes of p-power order or p-divisible groups.
By construction of the antiequivalence, it suffices to check that if H is the kernel of an isogeny
X — X', with X, X’ are abelian schemes over R, the natural map

Mp(X[p™]) = Ext;Rm(u—lx, 0)p) — Ext}R)A(u-IH, Op)

is surjective. But the cokernel of this map embeds in Ext%R)A(u_lX’,OA), which is zero by
Theorem 4.62.

For exactness, start with a short exact sequence of finite locally free group schemes of p-power order
on R
0—-H — H—H'"—0,
which we see as an exact sequence of abelian sheaves on (R)gsyn. The surjectivity of the map

M) (H) — M) (H’)

can be checked locally and so we can assume that H, and so also H’, embeds in an abelian scheme X.
But we know that the map

Mp(X[p™]) > Mp(H')
is already surjective, again, because Ext%R)A w'X/H',O ) = 0. Thus, the same holds for the map
M) (H) — M)y (H').
To prove injectivity of the map
Mp(H") — M) (H),
it suffices by the long exact sequence for RHom(g), (-, O)) to prove that

HOI‘Il(R)A (u_lH’, OA) =0.
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Let us prove that Homg), (u'H, O, ) is p-torsion free. This is enough: indeed, we know it is also
killed by a power of p, because u~'H’ is. As

Homg), (u'H',0)) c H'(u™'H',0)) = H*(H', Ay ja,y,)

it suffices to prove that the latter is p-torsion free. This is the content of Lemma 5.6 when applied to the
p-completely syntomic R-scheme H’.
Let

G: DMyos — {finite locally free group schemes of p-power order over R}
be an inverse functor to M) (—). We claim that G is exact. Let
0—>M1—>M2—>M3—>0

be an exact sequence in DM (R). For any morphism R — R’, the base change of it along Ajs(R) —
Ains(R") will stay exact by Lemma 5.2. By [20, Proposition 1.1] and compatibility of G with base change
in R, we can therefore assume that R is a perfect field of characteristic p. In this case, the category of
finite locally free group schemes of p-power order and the category DM are abelian, and thus any
equivalence between them is automatically exact. m}

Remark 5.7. Let R be quasisyntomic ring. Although the same trick allows in principle to deduce from
Theorem 4.74 a classification result for finite locally free group schemes of p-power order over R, it
seems more subtle to obtain a nice description of the target category, that is of the objects which can
locally on R be written as the cokernel of an isogeny of admissible prismatic Dieudonné crystals on R.
At least the arguments given above should go through whenever the forgetful functor

DF(R) — DM(R)

is an equivalence, like in the case of perfectoid rings or in the Breuil-Kisin case to be discussed in the
next section (where the classification of finite flat group schemes is already known and was proved by
Kisin following the same technique (cf. [30, Section 2.3])).

5.2. Comparison over Ok

In this section, we want to extract from Theorem 4.74 a concrete classification of p-divisible groups
over complete regular local rings with perfect residue field of characteristic p. This will, in particular,
recover Breuil-Kisin’s classification ([15], [30]), as extended to all p by Kim [29], Lau [35] and Liu
[38], over Ok, for a complete discretely valued extension of QQ,, with perfect residue field.

Proposition 5.8. Let R be a complete Noetherian local ring with perfect residue field of characteristic
p. If R is regular, there exists a quasisyntomic perfectoid cover R, of R.

Proof. The existence of a faithfully flat cover R — R, with R, perfectoid, is explained in [9, Theorem
4.7]. Assume first that pR = O or that R is unramified>°. R is either flat over Z, or pR = 0. In the first case,
set A := Z, and in the second A := F,. By [52, Tag 07GB], the morphism A — R is a filtered colimit
of smooth ring maps and thus Lg/A has p-complete Tor-amplitude in degree 0. The triangle attached to
the composite A — R — R, shows that Lg_ /g has p-complete Tor-amplitude in degree —1. Therefore,
the map R — R is indeed a quasisyntomic cover. Finally, when R is ramified of mixed characteristic,
one sees from the explicit construction of [9, Example 3.8 (5)] that R — R is the p-completion of a
colimit of syntomic morphisms (obtained by extracting pth-roots), hence, is quasisyntomic. O

36The case R unramified is explained in [9, Example 3.8 (4)], too.
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Remark 5.9. In the converse direction, the main result of [9] asserts that a Noetherian ring with p in
its Jacobson radical which admits a faithfully flat map to a perfectoid ring has to be regular (this is a
generalisation of a theorem of Kunz [31] in positive characteristic).

Proposition 5.10. Let R be a complete regular local ring with perfect residue field of characteristic p.
Any prismatic Dieudonné crystal over R is admissible.

Proof. Let (M, o) € DM(R). Let R be a perfectoid quasisyntomic cover of R, as in Proposition
5.8. Let M € DM(R) be the base change of M, which we see as a prismatic Dieudonné module M,
over R, via the equivalence of Proposition 4.13. We know (Proposition 4.12) that M, is admissible.
Since the natural functor DM®™ — DM is (tautologically) fully faithful, M., descends to an admissible
prismatic Dieudonné crystal over R, which must identify with (M, ¢ r4). m]

Recall the following definition, which already appeared in Proposition 4.26 before.

Definition 5.11. Let (A, I = (d)) be a prism. A Breuil-Kisin module (M, @pr) over (A, I), or just A if I
is understood, is a finite free A-module M together with an isomorphism

el ]

If opr (¢*M) € M with cokernel killed by I, then (M, ¢yy) is called minuscule.
We denote by BK(A) the category of Breuil-Kisin modules over A and by BKin (A) € BK(A) its
full subcategory of minuscule ones.

If R is a complete regular local ring with perfect residue field k of characteristic p, it can be written as
R=W(K)[[ur, ..., uaqll/(E),

where d = dim R and E is a power series with constant term of p-value one (cf. [42, Theorems 29.7,
29.8 (ii)]). Let (A, I) be the prism

(A1) = (W(K)[[ur, ..., uqll, (E)),

where the §-ring structure on A is the usual one on W (k) and is such that 6(u;) =0, fori = 1,...,d.
For simplicity, we assume d = 1 in the following. We hope that the general case works similarly.

Theorem 5.12. Let R be a complete regular local ring with perfect residue field of characteristic p. The
functor

BT(R) — BKmin(A); G = v' Mp(G)((A, D) = Ext (g (u™ G, Op)(an)

is an equivalence of categories.

The case where pR = 0 follows from Theorem 4.44, the classical fact that a Dieudonné crystal over
R is the same thing as a minuscule Breuil-Kisin module over A (with respect to p) together with an
integrable topologically quasinilpotent connection making Frobenius horizontal and [17, Proposition
2.7.3], which proves that for this particular ring A, the connection is necessarily unique. Hence, in the
following, we will always assume that R is p-torsion free. In this case, the pair (p, E) is transversal.

Remark 5.13. When R = Ok, with K a complete discretely valued extension of Q,, with perfect residue
field, A is usually denoted by & (a notation which seems to originate from [15]). We will see below that
the antiequivalence of the theorem coincides in this case with the one studied by Kisin for p odd and
Kim, Lau and Liu when p = 2.
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We will describe prismatic Dieudonné crystals over Ok via descent using the following lemma.

Lemma 5.14. The natural map from the sheaf represented by (A, I) to the final object of Shv((R)y) is
an epimorphism for the p-completely faithfully flat topology.

Proof. Indeed, let (B,J) € (R)). Let A be the perfection of A; the map R = A/I — Re = Ac/IAw
is a quasisyntomic cover. By base change, the map

B/J — B/J®RrR«

is therefore a quasisyntomic cover as well. By Proposition 3.22, there exists a prism (C, JC) which is p-
completely faithfully flat over (B, J), such that there exists a morphism of B/J-algebras B/J®gRo —
C/J. Since R, is perfectoid, it implies that (C, JC) lives over (A, IAc) (cf. Proposition 2.11), and a
fortiori over (A, I), as desired. O

Proof of Theorem 5.12. By Theorem 4.74 and Proposition 5.10, we know that the prismatic Dieudonné
functor

M, : BT(R) — DM(R)
is an antiequivalence. Therefore, it suffices to prove that the functor
M - v M((A, D))

from prismatic Dieudonné crystals DM(R) to minuscule Breuil-Kisin modules BK;, (A) is an equiva-
lence. Let B be the absolute product of A with itself in (R) ). One has (cf. [13, Proposition 3.13])

b}

u—v }/\(p.Ew»

B = (W) [Lul] ®w i WOT[V]]) { )

5
where we wrote E (u) for E ® 1¥7. By Lemma 5.14 below and Proposition 4.9, a prismatic Dieudonné

crystal M over R is the same thing as a minuscule Breuil-Kisin module N over A, together with a descent
datum, that is, an isomorphism

N®ap B=N®up, B

(where p1, po : A — B are the two natural maps), satisfying the usual cocycle condition.
We claim that any N € BKp,;, (A) is equipped with a unique descent datum. Indeed, let f: B — A
be the map extending the multiplication map

fg: B() = Aéw(k)A — A

and, fori = 1,2, set E; := p;(E) € By, with p;: A — By the two inclusions. Let M be a minuscule
Breuil-Kisin module over B with respect to the element E{ and Ny a minuscule Breuil-Kisin module
with respect to E>. Let M4 = My ®p,, ; A, Na = No ®p,, s, A be their base changes along fj.

Let ag: My — Ny be any By-linear map, such that @4 := fgao: M4 — Nj4 is a morphism of
Breuil-Kisin modules over A. Consider the composition

1 . _ 1
Un(@o) 1= z=eny © 9" @0 © @iy, (E1(2): Mo = 7=No

as in the proof of Lemma 4.32. Then the morphism Uy (ag) — &g maps M to E%K Ny, where K = ker( f)
as a4 is a morphism of minuscule Breuil-Kisin modules over A. By construction of B, we have K C EJ,

371f similarly, E(v) = 1 ® E, then E (u)/E (v) is a unit in B by [13, Lemma 2.24] because E (u) divides E (v) in B. Namely,

E(v) = E(u) (EYEY 1) in Band u - v divides E (1) — E(v).
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if J = ker(f). In particular, if @ denotes the base change of ag to B, then
Ula) — a

maps My ®p, B to J(Ny ®p, B), where U(a) is the base change of Up(ap). Thanks to Lemma 5.15
below, we can use the same arguments in the proof of 4.32 to see that there exists an isomorphism
a: My®p, B = Ny ®g, B of Breuil-Kisin modules over B with f*a = a4. Indeed, if By := Up(ao) — ao
with fiao = @a, then the series

i Uy (Bo)
n=0

converges after base change to B, since 8 sends My ®p, B to J(Ng ®p, B). In other words, the map
induced by f

Sy, N, : Hompk, . () (Mo ®p, B, No ®p, B) — Homgk,,,(a)(Ma, Na)

is a surjection. We claim that d,y,,n, is also injective. Indeed, assume that a: My ®p, B — Ny ®3p, B
is a morphism of minuscule Breuil-Kisin modules over B reducing to 0 after base change to A. Define

1 B _
U(a): Mo ®p, B — J.(No ®p, B), m — , $hossB 0 @@ o QDMI[@BOB(ELW)-

Then, since a is a morphism of minuscule Breuil-Kisin modules,
U'(a) =a

for all n > 1. But as ¢ := E% is topologically nilpotent on J, we see that U"(a) converges to 0 for
n — oo by the same exact argument as in the proof of Lemma 4.32.

Recall that we started with N € BKi(A) and want to produce a descent datum on N. To apply the
above discussion, we set My := N ®4,p, Bo, No := N ®4 p, Bo, and let ¢y, @, be the respective base
changes of ¢ . Since the compositions f o pj, f o p, are the identity map, M4, N4 are isomorphic to
N. Let

an: My — Ny

be the map corresponding via the bijection 6z, n, to the identity map from M4 = N to Ny = N. If
N’ € BKyin(A) is another minuscule Breuil-Kisin module over A, and g € Homgg,,, (4)(N,N’). We
claim that

N’ © g1 =8200aN,

where g1, respectively, g, is the base change of g along p, respectively, p,. Indeed, this can be rewritten
as an equality

an’ o g1 oay =g € Hompk,, (5 (No ®g, B, N}, ®g, B)

(using for N’ notations analogous to the ones we used for N), which, by the considerations above, can
be checked after base change along f : B — A, where it becomes obvious (since ay, respectively, ay,
reduces to the identity of N, respectively, N/, and since f o p| = f o p; is the identity). This shows that
the formation of @ is functorial in N. As each descent datum on N reduces to the identity on N after
base change along f, the descent datum on N is unique, if it exists, since 4, n, iS injective.
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To conclude, it, therefore, remains to prove that @y is a descent datum, that is that it satisfies the
cocycle condition. Let

C
be the prism representing the triple absolute product of (A, (E)) in (R)). We have to see that
P1,@N © P53aN = P 3aN, (5.1)

where the p; ;: B — C are induced by the respective projections. Let us note that fibre products in
(R), are calculated by (completed) tensor products and that

XXXXxX=(XxX)Xx (XxXX)
for any object X in a category C admitting fibre products. This implies that
C = B®,B.

Let Cp = B ®4 B be the uncompleted tensor product. Note that p:."ja/N, foreach1 <i < j <3, is
already defined over Cy. The kernel L of the natural morphism Cy — A is generated by

J®s B, BRaJ.

In particular, ¢; := ﬁ stabilises L, and ¢; is elementwise topologically nilpotent on it. Therefore,
arguing as above, we see that any morphism of minuscule Breuil-Kisin modules over Cy which vanishes
after base change along Cp — A, must vanish after base change to C. After reduction to A, (5.1) becomes

Idy oldy =1dy
by construction of @ . This finishes the proof. m}

The proof of Theorem 5.12 relied on the following technical lemma.

Lemma 5.15. With the notation from the proof of Theorem 5.12, the ideal J C B is contained in N'Z'B,
stable by ¢ = % and ¢, is topologically nilpotent on J, with respect to the (p, E)-adic topology.

Proof. Write E := E(u). The ideal J is generated (up to completion) by the d-translates of
z:=(u-v)/E,

so to check that J ¢ A/2!B, it is enough to prove that 6" (z) € N'=!B for all n. We prove by induction
on n that for all k£ > 1, ¢*(6"(z)) is divisible by E. For n = 0, one has, for any k > 1,

pk _ypk _(u- V)(@PR 4 uPk2y 4o yyPh=2 4Pk
o (E) ok (E) '

oh(z) =~

Since (E, *(E)) is regular (as (p, E) is transversal because B is (p, E)-completely faithfully flat over
W (k)[[u]] by [13, Proposition 3.13]) and u — v is divisible by E in B, we deduce that E divides ¢*(z).
Let now n > 0, and assume the result is known for 6" (z). We have, for & > 0,

P (6™1(2)) = ¢* (p5™ () = " (9(8" (2)) = 6™(2)7) = (8" (2)) = (8" (2))7,

so the statement for 6"*!(z) follows by induction hypothesis, and the fact that p and E are transversal.
This concludes the proof that J ¢ A'Z!B.
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Let x € J. We have

E.f(¢1(x) = f(e(x)) = ¢(f(x)) = 0.

Since E is a nonzero divisor in A, we must have f(¢;(x)) = 0 and, therefore, ¢;(x) € J, that is, ¢;
stabilises J.

It remains to prove that the divided Frobenius is topologically nilpotent on J, endowed with the
(p, E)-adic topology. Let

A,:A{M}AIJ

p

which by [13, Lemma 2.35] identifies with the (p-completed) divided power envelope D 4 ((E))"P of A
in (E).Lett: A — A’ be the natural inclusion. The composition

v A5 a5 A
defines a morphism of prisms (A, (E)) — (A’, (p)). Let
B = DA®W(k)A(J/)AP,

where J” is the kernel of the map A®y (x)A — R. The ideal J' is generated by E and u — v, which form
a regular sequence in A®w (x)A/p, and, therefore

{‘P(E),SD(M - V)}A"
p

S

’ S > (u - V) /\np(E)
B’ = (A®W(k)A) p(p—

= own ) (P05

=Dy, n((E).

9
‘/JA@;W

(In the second isomorphism, we used again [13, Lemma 2.24], and in the first and last [13, Lemma
2.37].) In particular, the map « induces a map:

agp:B— B’

because B = A®W<k)A{“E;V}A<P-E>. It sends J C B to the kernel K C B’ of the map B’ — A’ (which
extends the multiplication on u: A®W( A — A), and commutes with the divided Frobenius (because
B’ is p- and thus ¢(E)-torsion free). We, thus, have a diagram:

As the kernel J of B — A is stable by ¢, this implies that K = JB’ is stable by ¢, and, thus, in
particular, contained in A'Z!B’.
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Observe also that
pB’'NnB=(p,E).B.
To see this, one needs to show that the map induced by ap
B/(p,E) = B'/p

is injective, that is, by faithful flatness of ¢: A — A that the natural map

B/(p.¢(E)) = B/(p,E”) = B’/p = D((E))/p
is injective. But since B is p-torsion free,

B'/p = B/(p, EP)[Xo, X1, ... 1/(X{, X}, .. )"P,

and the above map is simply the natural inclusion map. Hence, it suffices to prove topological nilpotence
of p1 = “@/p(E)” on K with respect to the p-adic topology3¢. We do it in two steps.

Note first that ¢ is topologically nilpotent on K. More precisely, using that K is stable by ¢, one
easily sees by induction that ¢*(z) is divisible by p*, for all z € K and k > 1 (with ¢*(z)/p* € K,
because A’ is p-torsion free). The equality

e1(xy) = p(x)@1(y)

for x, y € K, implies by induction that for any n > 1:
o1 (xy) = " ()¢} ().

This shows that the second divided power ideal K %] is stable by ¢; (since K is stable by ¢,¢) and, by
what we just said, that the left-hand side is divisible by p” in K. In fact, one can do better. Let m > 1
and x € K. In the previous equality, take y = x~!. Seeing it in B’[1/p] (recall that B’ is p-torsion free),
one can divide both sides by m!. It reads:

¢"(x)
m!

O (Ym (%)) = o (x™h.

The left-hand side always makes sense in K since K has divided powers, and for n big enough, the
right-hand side as well since ¢"(x) tends p-adically to O and thus is divisible by m! for n big enough.
Letting n go to infinity, we see that the left-hand side goes to 0 in K. These considerations prove that ¢
is topologically nilpotent (with respect to the p-adic topology) on K21, as it is topologically nilpotent
on K? and all divided powers y,,(x), m > 2, for x € K.

Let ¢ be the degree of the polynomial E. Since K%l is stable by ¢, ¢; defines a semilinear
endomorphism of the quotient K /K 2. Let us now prove that gaf “(K/K"2l) c p.K/K?. We know that
the A’-module K /K %] is isomorphic to (Qi‘)’\l’ ®4 A’ (where the map A — A’ is the natural inclusion ¢).
It is a free A’-module of rank generated by du, and via this identification, one has ¢ (du) = uP~ldu.
But the image of u”¢ in A’ is divisible by p since p divides E? in A’ and E is an Eisenstein polynomial.
Therefore, p (even pP~!) divides <pf “(du®1) in K/K'?). Finally, let us check that these two steps imply
the desired topological nilpotence. Let x € K, % its class in K/K 2!, Fix an integer n > 1. By the second
step, we have

ol (%) € p"K /K,

38 et us clarify what we mean by the various ¢;’s, whenever they are defined. On A, we set ¢; = ¢/E which is the restriction
of 91 = ¢/¢(E) along a. In B’, the element ¢ (E)/p is a unit and thus ¢ = % %, that is, both possible definitions of the
divided Frobenius differ by a unit.
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that is, there exists y € K [2], such that

pne

¢ (x) ey+p"K.
By the first step, there exists m > 1, such that 7' (y) € p"K, and so
" (x) € p"K.
as desired. O

Remark 5.16. We have seen above that prismatic Dieudonné crystals over Ok are the same as minuscule
Breuil-Kisin modules. One cannot expect the same kind of result to hold for nonminuscule finite locally
free F-crystals on the absolute prismatic site of Ok : one really needs to remember the (unexplicit)
descent datum to reconstruct the F-crystal. In fact, Bhatt and Scholze [14] have recently proved the
remarkable result that finite locally free F-crystals on the absolute prismatic site of Ok are the same as
Galg -stable lattices in crystalline representations of Galg . In the minuscule case, that is for prismatic
Dieudonné crystals, combined with the result above and the considerations below, this recovers the known
equivalence between p-divisible groups of Ok and Galg -stable lattices in crystalline representations of
Galg with Hodge-Tate weights in {0, 1}.

Finally, let K be a complete, discretely valued extension of Q,, let Ox C K be its ring of integers
and assume the residue field k of Ok is perfect. We will show that the equivalence of Theorem 5.12
coincides with the equivalence established by Kisin (cf. [30, Theorem 0.4]). Set

S == W(k)[[ul]

with Frobenius lift ¢: W(k)[[u]] — W(k)[[u]] sending u + uP. Fix a uniformiser 7 € Ok, and
define the morphism

9: 6 > Ok, u— .

Then the kernel ker(d) = (E) is generated by an Eisenstein polynomial E € W(k)[u]. Let S be the
p-completed divided power envelope of the ideal (E) C &, that is,

soefe®)
p p

in the category of o-rings. Note that the composition

lﬁKZGi@%S

induces to a morphism (S, (E)) — (S, (p)) of prisms. Via the composition Ok = G/(FE) BLR S/(p),
we consider (S, (p)) as an object of the (absolute) prismatic site (Ok ), . The antiequivalence

M&S(=): BT(Ok) = BKnin(Ok)

of Kisin has the characteristic property (cf. [30, Theorem 2.2.7]) that for a p-divisible group G over Ok,
there is a canonical Frobenius equivariant isomorphism

M5 (G) ®gy S = D(G)(S),
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where the right-hand side denotes the evaluation of the crystalline Dieudonné crystal of G on the PD-
thickening § — Ok (which sends all divided powers of E to zero).

Let G be a p-divisible group over Ok with absolute prismatic Dieudonné crystal M (G). We use
Lemma 4.38 and Proposition 4.4 and consider M ), (G) as a crystal on the absolute prismatic site (Ok ) ).

Lemma 5.17. There is a natural Frobenius-equivariant isomorphism
ak : Mp(G)(S, (p)) = D(G)(S).

Here, D(G)(S) denotes the evaluation of the Dieudonné crystal of G at the PD-thickening S — Ok.

Proof. This follows from Lemma 4.45. m]

R

We want to show that the natural isomorphism ak restricts to an isomorphism M) (G)((S, (E))
MXis(G). In other words, we want to prove the existence of the dotted morphisms in the diagram

MyG)(©.(E)  M¥(G)

D(G)(S).

Mp(G) (S, (p))

Let C be the completion of an algebraic closure of K, and let O¢c C C be its ring of integers. Set
Aint = Aint(Oc), Acrys = Acrys(OC)'
We can extend the morphism Og — O¢ to a morphism of prisms>°

[ (8, (E)) = (Aint, (£))

by sending u +— [#°] = [(x, 7'/P, .. )] (after choosing a compatible system of p-power roots 7'/?" €
Oc of ). Let

@
Y At — At — Acrys~

Then analogous /¢ induces a morphism (Ajyf, (£)) — (Acrys, (p)) of prisms.
By faithful flatness of & — Ajyr (cf. [11, Lemma 4.30]4°), it suffices to prove the existence of the
dotted arrows after base change to Ajns:

Mu(G) (G, (E)) ®.s A MKS(G) ®c.f A (5.2)

Mp(G)(S, (p)) ®s,5 Aint == D(G)(S) ®g,f Aint

By flat base change of PD-envelopes (cf. [52, Tag 07HD]), we get
S®(5Ainf = Acrys,

and thus D(G)(S) ®s Aint = D(Go, ) (Acrys)-
Similar to Lemma 5.17, there is a canonical isomorphism

ac: MA(G)((AcrySa (p)) = D(GOC)(Acrys)

39Note that we take &, not £.
40But note that our map f differs from the one of [11], whichis ¢ o f.
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by Lemma 4.45, and thus the lower horizontal isomorphism in (Equation (5.2)) identifies with @¢c. By
the crystal property of M ), (G), the left vertical injection

M) (G)((S,(E))) ®s,f Aint = Mp(Goc) (S, (p)) ®s,r Aint
identifies with the inclusion
Mp(G)((Aint, (£))) = Mp(Goe)(Acrys, (P))

along the morphisms of prism ¢/¢ : (Ajnt, (€)) — (Acrys, (p)). By Proposition 4.48, there is a canonical
isomorphism

B: 05 Ma(G) (At ())) = M4 (G)(An, () = MV (Go)*

to the dual of the functor constructed by Scholze-Weinstein. By [51, Theorem 14.4.3], M3V (G)* ®4
Acrys = D(Go./p)(Acrys) and, moreover, the diagram

inf

¢ M (G)(Aug. (£)) — MV (Go)*

| |

MA(G)((AcrySv (P))) ;> D(G)(Acrys) = MSW(GOC)* ®Ainf Acrys

commutes by construction of 8 (cf. Proposition 4.48 and its proof). Hence, it suffices to prove that there
exists an isomorphism

y: MXY(G) ®s ¢ Aint — M*V (Go,)'",
where g = ¢ o f is a morphism of prisms
g1 (S, (E) = (A, (),
such that the diagram

MK5(G) ®g ¢ Ainf ———— MV (Go)"

| |

D(GOC)(Acrys, (r) — MSW(GOC)* ® A Acrys

inf
commutes.

Let T be the dual of the p-adic Tate module T,,G of G. Then T is a lattice in a crystalline representation
of Gal(K /K) (where K C C is the algebraic closure of K) and MXS(G) = M(T), where M (-) is Kisin’s
functor from lattices in crystalline representations to Breuil-Kisin modules. By [11, Proposition 4.34],
M(T) ®s,g Aint corresponds under Fargues’ equivalence (cf. [51, Theorem 14.1.1]) to the pair (T, E),
with & C T ®z,, Bar the B, -lattice generated by Dar (Tg,) = (T ®z, Bar)®/X). But this pair is
exactly the one associated to Go.. by Scholze-Weinstein.
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Thus, in the end, our discussion implies the following proposition.
Proposition 5.18. The two functors

G — MKis(G)
G = M)(G)(S, (E))

from p-divisible groups over Ok to minuscule Breuil-Kisin modules are naturally isomorphic.

5.3. Admissible prismatic Dieudonné crystals and displays

The work of Zink provides a classification of connected p-divisible groups over p-adically complete
rings (cf. [54]). In this section, we want to relate it to the classification obtained (for quasisyntomic
rings) in Theorem 4.90.

Definition 5.19. Let R be a p-complete ring. A display over R is a window (cf. Section 4.1 and [37,
Example 5.4]) over the frame

W(O) = (W(0O),1(0) :=ker(W(O) — O), F, Fy),

in the topos of sheaves on the p-completely faithfully flat site of R, where F is the Witt vector Frobenius
and Fy: I1(O) — W(O) the inverse of the bijective Verschiebung morphism V.
The category of displays over R is denoted by Disp(R).

Remark 5.20. We have phrased the definition of a display in a manner parallel to the definition of a
prismatic Dieudonné crystal. In this form, it is, however, unnecessarily abstract. The category of displays
satisfies faithfully flat descent (see [54, Theorem 37]). Since displays over a p-complete ring R (with
bounded p*-torsion) are equivalent to compatible systems of displays over R/p”" for all n > 1, we
see that displays even satisfy p-completely faithfully flat descent (cf. [12, Corollary 4.8]). Hence, the
category of displays over R in the sense of Definition 5.19 is the same as the usual category of displays
over R (i.e. windows over the frame (W(R),I(R), F, Fy)).

Proposition 5.21. Let R be a quasiregular semiperfectoid ring. Assume that pR = 0 or that R is p-
torsion free. The natural morphism from Theorem 3.29

AR — R
(given by moding out N'=' Ag) lifts to a u-morphism of frames (in the general sense of Definition 4.16)
f : AR’Nyg - E(R)’

where AR’Nyg is th~e frame associated to (Ag, 1) and &, as in Example 4.18, and u € W(R) is a unit,
such that p = uf(£).

Proof. By adjunction (cf. [26, Theorem 4]), the morphism Ag — R gives rise to a morphism of ¢-rings:
f:bhr - W(R),
lifting the morphism to R, that is, sending N'=! A to I(R). In particular, f(¢£) € I(R), and thus

(€)= e(f(&) = pei(f(£))

and so p divides f(£). By [13, Lemma 2.24], we deduce that (p) = (f(€)), and thus there exists a unit
u € W(R), such that p = uf(€). It is then easy to conclude when W(R) is p-torsion free since the
commutation (up to a unit) of f with the divided Frobenius can be proved after multiplying by p. In the
case where pR = 0, one argues as in [36, Lemma 7.4]. m}
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It would be nice to prove that for any R quasiregular semiperfectoid, the morphism of the proposition
always defines a morphism of frames. Although we did not succeed in doing so, the next proposition
shows that one can circumvent this difficulty.

Proposition 5.22. Let R be a quasisyntomic ring. If G is a p-divisible group over R, set
ZR(G) = M) (G) ®ppis W(O)
with Frobenius Fz,(G) = ¢m,(G) ® F, and let Fil Zr(G) be the submodule of Zr(G) generated by

1(0).Zr(G) and the image ofcp;\}%(c) (Ipris./\/lA(G)). There exists a unique way to extend the functor

G — (Zr(G),Fil Zr(G), Fz4(G))
to a functor
ZR . BT(R) i DiSp(R), G [ d ZR(G) = (ZR(G),Fﬂ ZR(G),FZR(G)’FZR(G),I)

natural in R which, moreover, coincides (through Proposition 4.29) with the composition of the prismatic
Dieudonné functor with the functor induced by the morphism of frames of Proposition 5.21 when R is
quasiregular semiperfectoid and pR = 0 or R is p-torsion free.

Proof. The requirement of the proposition already says what
(Zr(G),Fil Zr(G), Fzx(G))

must be. Therefore, the only issue is to define the divided Frobenius Fz, G),1-

Assume first that R is quasiregular semiperfectoid and p-torsion free. If it exists, Fz, (),1 is neces-
sarily unique, since W(R) is p-torsion free; thus, we only need to show its existence. For this, we define
Z  as the composition of the prismatic Dieudonné functor with the functor induced by the morphism
of frames of Proposition 5.21. By quasisyntomic descent (Remark 5.20), one gets a functor Z for any
p-torsion free quasisyntomic ring R. For such rings R, the functor Z is necessarily unique by p-torsion
freeness of W(R). In particular, it commutes with base change in R.

To obtain the functor Z  in general, we use smoothness of the stack of p-divisible groups, following an
idea of Lau [34, Proposition 2.1]. Let X = Spec(A) — BT xSpec(Z,,) be an ind-smooth presentation of
the stack of p-divisible groups as in loc. cit. Then Spec(B) = X Xg7 X is affine. The p-adic completions
A and B are both p-torsion free (cf. [34, Lemma 1.6]).

Let R be a quasisyntomic ring and G be a p-divisible group over R. It gives rise to a map « :
Spec(R) — BT x Spec(Z,). Let

SPCC(S) = SpeC(R) XBTxSpec(Z,,) SPGC(A),
and
Spec(T) = Spec(S) Xspec(a) Spec(B).

Let $ and T' be their p-adic completions. The rings A and B are quasisyntomic. By base change, the
rings $ and 7" are also quasisyntomic. The base change

(Z5(Gg), Fil Zg(Gg), Fz(Ge))
of the triple (Zr(G), Fil Zr(G), Fz,(G)) along R — $ is also the base change of the triple

(Zi(HZ),Fil Zi(Hy), Fz;(1y))
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along @ ® A of the universal p-divisible group H over A. The divided Frobenius F: Zi(Hy)1 onZ4(Hpy)
(coming from the first part of the proof) therefore induces an operator F: Zs(Gg),1 ON Zg (Gg). This
operator Fz,(G,),1 is compatible with the descent datum for the base change along the two natural maps

§ — T, since the functor Z 5 exists and is unique. By descent (Remark 5.20), this defines a display
structure Z, (G) on the triple (Zr (G), Fil Zr(G), Fzz(G))-

This display structure is uniquely determined by the requirement that it is compatible with the maps
R — 8,8 — A.Inparticular, it has to coincide with the composition of the prismatic Dieudonné functor
with the functor induced by the morphism of frames of Proposition 5.21 also when R is quasiregular
semiperfectoid and killed by p. O

The functor of Proposition 5.22 is not an antiequivalence when p = 2. Nevertheless, one has the
following positive result, reproving the main result of [32][54] in the special case of quasisyntomic rings.

Proposition 5.23. Let R be a quasisyntomic ring, flat over Z[p" (for some n > 0) or Z,,. The functor
Zy, restricts to an antiequivalence

BT/ (R) = Dispyy(R)

between the category of formal p-divisible groups over R and the category of F-nilpotent displays over R.

Recall that a display is said to be F-nilpotent if its Frobenius is nilpotent modulo p.

Proof. Assume first that R is quasiregular semiperfect. The functor Z , is the composite of the prismatic
Dieudonné functor, which is an antiequivalence by Theorem 4.74, and of the functor induced by the
morphism of frames

(AR = Aays(R),NZ'Dg, ¢, ¢1) = (W(R),I(R), F, F).

The morphism Ag — W(R) is surjective (indeed, the composition Agy = W(R") - W(R)is surjective,
since R” — R is, and factors through the map Ag — W(R)). We claim that the divided Frobenius is
topologically nilpotent on its kernel. It suffices to show the same for the surjection Acys(R) — W(R)
coming from the PD-thickening W(R) — R. We recall that Acys(R) is obtained from W(R") by
passing to the PD-envelope for the ideal ker(W(R”) — R). This kernel is (topologically) generated
by the elements V" ([x]) for m > 0 and x € I := ker(R® — R). If m > 1, then V" ([x]) € W(R®)
already has divided powers. As A¢ys(R) is p-torsion free (by quasiregularity of R), we can conclude
that Ay (R) is (topologically) generated (as a module over W (R")) by the divided powers [x] ™ of [x]
for x € I (i.e. the divided powers of V"™ ([x]) for m > 1 are not necessary). We note that for x € I, each
divided power [x]" € Acrys(R) lies in the kernel of Acrys(R) — W(R) because [x] € W (R") maps to
0 € W(R). Hence, we can conclude that the kernel of Acys(R) — W(R) is (topologically) generated
by V™([x]), [x]"™ for x € I and n,m > 1. Now V"*([x]) = p™[x'/P"] and thus eV ([x]) = [x].
Hence, it suffices to show that ¢ is topologically nilpotent on the elements [x]"™,n > 1,x € I. For
such an element, one has

(1] ™) = L2 o).

Iterating, one sees that ¢ is topologically nilpotent on the kernel (with respect to the p-adic topology).
By Remark 4.34, the functor

DM*™(R) = Win(Apg ny,) — Disp(R)

is an equivalence. It is easily seen that it restricts to an antiequivalence between formal p-divisible
groups and F-nilpotent displays.
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By quasisyntomic descent, this yields the statement of the proposition when R is quasisyntomic with
pR = 0. In general, R/p is quasisyntomic ([12, Lemma 4.16 (2)]) and one can consider the following
commutative diagram:

BT(R) _Z= Disp(R)

L

Z=R/p

BT(R/p) —— Disp(R/p).

Grothendieck-Messing theory for F-nilpotent displays (cf. [54, Theorem 48]) coupled with
Grothendieck-Messing theory for p-divisible groups (cf. [44, Chapter V (1.6)] and [54, Corollary 97])
show that this diagram is 2-cartesian. Since Z , , is an antiequivalence, Z also is one. O

5.4. Etale comparison for p-divisible groups
Let R be a quasisyntomic ring, and let G be a p-divisible group over R. In this section, we show how
the (dual of the) Tate module of the generic fibre of R, seen as a diamond ([49, Definition 11.1]), can be
recovered from the prismatic Dieudonné crystal M ) (G) of G.
Let
Opris

be the prismatic sheaf on (R)qsyn and

T = Ipris c Opris
the natural invertible OP"S-module (cf. Definition 4.1). Fix n > 0. Note that the Frobenius

Q: Opris — Opris
induces a morphism, again, called Frobenius,

@1 OP™[p"[1/T] — O™ [p"[1/I]

as ¢(Z) C (p,Z), although Z is not stable under ¢.
We let

(R)y

be the v-site of all maps Spf(S) — Spf(R) with S a perfectoid ring over R. By definition, the coverings
in (R), are v-covers Spf(S’) — Spf(S) (cf. [13, Section 8.1]). Let

(R)qsyn,qrsp

be the site of all maps Spf(S) — Spf(R) with S quasiregular semiperfectoid (covers given by quasisyn-
tomic covers). The perfectoidisation functor

S Sperfd
from [13, Definition 8.2] induces a morphism of sites

a: (R), — (R)qsyn,qrsp
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sending Spf(S) to Spf(Sperfa). Indeed, by [13, Proposition 8.10] and the fact that quasisyntomic covers
are v-covers, the conditions of [52, Tag 00WV] are satisfied. Moreover, we have the ‘inclusion of the
generic fiber’

J: Spa(R[1/p]. R); — (R)y

induced by sending Spf(S) to Spa(S[1/p], S)*. Here, Spa(R[1/p], R); is the v-site of the diamond
associated with Spa(R[1/p], R) (cf. [49, Section 15.1], [49, Definition 14.1.iii)]).

The sites (R),, (Spa(R[1/p], R)), carry tilted structure sheaves O*(’R) , O sending S € (R), to
SP, respectively, Spa(S, S*) € (Spa(R[1/p],R)), to S°. We let W(Ot(’R) ), respectively, W(OP) be the

associated Witt vector sheaves. It is easy to see that for every n > 1, there are natural morphisms

O/ p™ — a.(Wa(Ofp )), OP/p*[1/Z] — (@ © j)-(Wa(OP)).
Lemma 5.24. The above morphisms induce natural isomorphisms

@.(Z[p") = (0" [p™)#~!
and

(@0 j)(Z[p") = (O°/p"[1/T])*"!
of sheaves on (R)gsyn,qrsp after passing to ¢-fixed points.
Here, (—)#~! denotes the (nonderived) invariants of ¢ on the sheaf O /p"[1/Z], and we use that
Wn(O[(’R) ) = Z/p", W, (O") = Z/p", as will be explained in the proof.
Proof. We only prove the second statement. The first is similar (but easier). Let S be a quasiregular
semiperfectoid R-algebra. Then

1R

(0P /p" (/TN ($) = (tim O™ /p" [1/T])#7(S) = (lim OP(8)/p" [1/T])*".
(%] [

The first isomorphism follows from commuting Frobenius fixed points with the filtered colimit over N
along ¢ and the second as h_r)n OPTs i p-torsion free (cf. [ 13, Proof of Lemma 2.28]) and S is quasiregular

7]
semiperfectoid (which implies that the sheaf h_r)n OPS has no higher cohomology over S). Then [13,

1%
Lemma 9.2] implies that

(li_r)nC’)priS(S)/p"[l/I])‘pzl = (Ainf(Sperta) /P"[1/Z])*=".
[

By [13, Lemma 9.3], the equivalence of underlying topological spaces under tilting of perfectoid spaces,
[51, Theorem 7.1.1] and [28, Proposition 3.2.7], the right-hand side becomes

Wo((Sperta[1/p1)?)#™! = Homegs (710 (Spa(Spertal 1/p1, Sperta))» Z/p™),

which agrees with

(@0 j)(Z/p")(S).
This finishes the proof. O

We can derive the following description of the Tate module of the generic fibre.

“'We use the notation Spa(S[1/p], S) when S is not necessarily integrally closed in S[1/p].
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Proposition 5.25. Let G be a p-divisible group over R with prismatic Dieudonné crystal M ) (G), and
letn > 0. Then

Ja (Mp(G)/p"[1/T1#7)

is canonically isomorphic to Homgz,n(G[p"ly,,Z/p"), where G[p"], denotes the sheaf
Spa(S[1/p],S) = G[p"1(S[1/p]) on Spa(R[1/p], R);.
Proof. Set M := M (G). By Lemma 4.40

M = /HOI’H(R)qSyn’qup (Tp G, Opris) .
From the proof of Proposition 4.69, we can conclude that

Hom(R)‘lS)’"vquP (TpG’ OPFiS)/pn = Hom(R)qsyn,qrsp (TPG’ Opris/pn)
= HOM (R)yyn o (G[P"], OP [ p").

It follows that
M/p"[1/T] = Hom Ry, 4 (G [P"], OP [p"[1/1]),
as using Section 4.4, the functor Hom (Rr), 4, (G[P"], —) commutes with filtered colimits. Finally,
MUp"T1ZI" = Hom gy, oy (GIP"], OP /p"[1/2]%7Y).
By Lemma 5.24
O/ p" (1215 = (@ o j).(Z/p")
and thus

MIp" 1TV = Hom (), 4 (GIP"]. (@ 0 ) (Z/p")
= (a0 j)(Homzpn (a0 j) G[p"]. Z/p"))).

The definitions of & and j imply that for any sheaf  on (R)qsyn,qrsp> the nonsheafified pullback (a0 j yLF
is the presheaf Spa(S, S*) — F(Spf(S*)). In particular, we see that

(@oj) o(ao)).
is naturally isomorphic to the identity. We obtain thus
(@0 /) M/p"[1/T197" = Homzpn (@ © j)*G[p"], Z/p™),

and can now conclude by Lemma 5.26. O

Lemma 5.26. With the notations from Proposition 5.25,
(@o j)*Glp"] = Gp"]y.
Proof. By right exactness of (@ o j)*, it suffices to show
(o)) TpG =TpGy.

Moreover, we may assume that R is perfectoid by passing to slice topoi. Let S be the R-algebra
representing 7,,G on p-complete rings. Thus, S is the p-completion of h_n)lSm, where S,, represents

m
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G [p™]. Then S is quasiregular semiperfectoid. By definition, (o j)*T, G is represented by the perfectoid
space

Spa(Sperta[1/P], Spera)

over Spa(R[1/p], R), where S;erfd is the integral closure of Sperq in Sperta[1/p]. Let Spa(7, T*) be an

affinoid perfectoid space over Spa(R[1/p], R), in particular, we assume that 7™ is integrally closed in

T = T*[1/p]. Then any morphism Spefa[1/p] — T sends Sgerfd — T* because S is a p-completed

direct limit of finite R-algebras and 7™ is perfectoid and integrally closed in 7. Thus

Hom gr[1/p],R) ((Spersa [1/P]. Sperga)s (T, T7)) = Hompg (Spegy: T)
= Homg (S, T%)

o~ i +
= Homg(lim S,,,, T7)
m
= HomR(li_n} S, T) =T,G(T),

m
where S, represents G[p™] (thus, S is the p-adic completion of h_r)nSm)). In the last isomorphism,

m
we used, again, that all S, are finite over R and thus any morphism S,, — T of R-algebras factors
over T*. O

A. Descent for p-completely faithfully flat morphisms
In this appendix, we want to record some descent statements that are used in the main body of this text.

Lemma A.1. Let R be derived p-complete ring with bounded p* -torsion. Then the natural functor

{ finite projective R — modules} — 2 — 1&1’1{ finite projective R/p" — modules}

n

is an equivalence. In particular, the fibred category R +— { finite projective R — modules} is a stack
for the p-completely faithfully flat topology on the category of derived p-complete rings with bounded
p-torsion.

Proof. As R is classically p-complete, the first statement follows from [52, Tag OD4B]. If R — R’
is a p-completely faithfully flat morphism between p-complete rings of bounded p®-torsion, then
R/p™ — R’/p™ is faithfully flat for all n > O (flatness follows from [12, Lemma 4.7.(2)] and surjectivity
of Spec(R’/p™) — Spec(R/p™) is implied by the case n = 1). Thus, classical descent of finite projective
modules holds for this morphism. Passing to the ((2)-)inverse limit implies the last statement. m

Proposition A.2. The fibred categories of p-divisible groups and finite locally free group schemes over
p-complete rings with bounded p* -torsion are stacks for the p-completely faithfully flat topology.

Proof. Tt suffices to show the statement for finite locally free group schemes as p-divisible groups are
canonically a colimit of such. From A.1, we know that finite locally free modules form a stack for the
p-completely faithfully flat topology on p-complete rings with bounded p®-torsion. As base change
commutes with fibre products, this implies that finite locally free group schemes form a stack, too. O

Recall that a morphism
(A, I) > (B,J)

of prisms is called faithfully flat if it is (p, I)-completely flat.
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Proposition A.3. The fibred category
(A, I) v { finite projective A — modules}

on the category of bounded prisms is a stack for the faithfully flat topology.

Proof. 1f (A, ) is a prism, then A is classically /-complete, and, thus finite projective A-modules are
equivalent to compatible systems of finite projective A/I"-modules, that is,

{ finite projective A — modules} = 2 — lin{ finite projective A/I" — modules}

n

(cf. [52, Tag 0D4B]). As the 2-limit of stacks is, again, a stack, it suffices to show that for any n > 0, the
fibred category

(A, I) — { finite projective A/I" — modules}
is a stack on bounded prisms. If (A, I) — (B, J) is a faithfully flat morphim of prisms, then
A/I" — B/J"

is a p-completely faithfully flat morphism of rings with bounded p®-torsion. Thus the proposition
follows from A.1. |

Example A.4. We give an example of a ring R which is classically (p, f)-complete, where f € R is a
nonzero divisor, such that R/ f has bounded p*-torsion, but R has unbounded p®-torsion. Set

R:=7Z[f,xi;li>20,0<j < i e 1 J
with J generated by the elements
DPXij = fXi j+1
(where x; ;41 := 0). Then f is a nonzero divisor in R and all p*-torsion in

R/f = Z[xi ;)] (px: ;)

is killed by p. But

pxio=pfxii=...=fxi; %0

while p"”x,v,o = fipx;; = 0. This shows that R has unbounded p*-torsion. As f is a nonzero divisor in

R, the (p, f)>-torsion in R is zero.
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