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Abstract
We define, for each quasisyntomic ring R (in the sense of Bhatt et al., Publ. Math. IHES 129 (2019), 199–310), a
category DMadm (𝑅) of admissible prismatic Dieudonné crystals over R and a functor from p-divisible groups over
R to DMadm (𝑅). We prove that this functor is an antiequivalence. Our main cohomological tool is the prismatic
formalism recently developed by Bhatt and Scholze.
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1. Introduction

Let p be a prime number. The goal of the present paper is to establish classification theorems for
p-divisible groups over quasisyntomic rings. This class of rings is a non-Noetherian generalisation of
the class of p-complete locally complete intersection rings and contains also big rings, such as perfectoid
rings. Our main theorem is as follows.

Theorem. Let R be a quasisyntomic ring. There is a natural functor from the category of p-divisible
groups over R to the category DMadm(𝑅) of admissible prismatic Dieudonné crystals over R, which is
an antiequivalence.

A more precise version of this statement and a detailed explanation will be given later in this
Introduction. For now, let us just say that the category DMadm(𝑅) is formed by objects of semilinear
algebraic nature. The problem of classifying p-divisible groups and finite locally free group schemes
by semilinear algebraic structures has a long history, going back to the work of Dieudonné on formal
groups over characteristic p perfect fields. In characteristic p, as envisionned by Grothendieck, and
later developed by Messing ([44]), Mazur-Messing ([43]) and Berthelot-Breen-Messing ([6], [7]), the
formalism of crystalline cohomology provides a natural way to attach such invariants to p-divisible
groups. This theory goes by the name of crystalline Dieudonné theory and leads to classification
theorems for p-divisible groups over a characteristic p base in a wide variety of situations, which we
will not try to survey but for which we refer the reader, for instance, to [37]. In mixed characteristic, the
existing results have been more limited. Fontaine ([23]) obtained complete results when the base is the
ring of integers of a finite totally ramified extension K of the ring of Witt vectors 𝑊 (𝑘) of a perfect field
k of characteristic p, with ramification index 𝑒 < 𝑝 − 1. This ramification hypothesis was later removed
by Breuil ([16]) for 𝑝 > 2, who also conjectured an alternative reformulation of his classification in [15],
simpler and likely to hold even for 𝑝 = 2, which was proved by Kisin ([30]), for odd p, and extended
by Kim ([29]), Lau ([35]) and Liu ([38]) to all p. Zink, and then Lau, gave a classification of formal
p-divisible groups over very general bases using his theory of displays ([54]). More recently, p-divisible
groups have been classified over perfectoid rings ([36], [51, Appendix to Lecture XVII]). The main
interest of our approach is that it gives a uniform and geometric construction of the classifying functor on
quasisyntomic rings. This is made possible by the recent spectacular work of Bhatt-Scholze on prisms
and prismatic cohomology ([8], [13]). So far, such a cohomological construction of the functor had been
available only in characteristic p, using the crystalline theory. This led, in practice, to some restrictions,
when trying to study p-divisible groups in mixed characteristic by reduction to characteristic p, of which
Breuil-Kisin theory is a prototypical example: there, no direct definition of the functor was available
when 𝑝 = 2! Replacing the crystalline formalism by the prismatic formalism, we give a definition of
the classifying functor very close in spirit to the one used by Berthelot-Breen-Messing ([6]) and which
now makes sense without the limitation to characteristic p. Over a quasisyntomic ring R, our functor
takes values in the category of admissible prismatic Dieudonné crystals over R. As the name suggests,
prismatic Dieudonné crystals are prismatic analogues of the classical notion of a Dieudonné crystal on
the crystalline site.

Before stating precisely the main results of this paper and explaining the techniques involved, let us
note that several natural questions are not addressed in this paper.
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1. It would be interesting to go beyond quasisyntomic rings. By analogy with the characteristic p story,
one would expect that the prismatic theory should also shed light on more general rings. In the
general case, admissible prismatic Dieudonné crystals will not be the right objects to work with. One
should instead define analogues of the divided Dieudonné crystals introduced recently by Lau [37]
in characteristic p.

2. Even for quasisyntomic rings, our classification is explicit for the so-called quasiregular semiperfec-
toid rings or for complete regular local rings with perfect residue field of characteristic p (cf. Section
5.2), as will be explained below, but quite abstract in general. Classical Dieudonné crystals can be
described as modules over the p-completion of the divided power envelope of a smooth presenta-
tion, together with a Frobenius and a connection satisfying various conditions. Is there an analogous
concrete description of (admissible) prismatic Dieudonné crystals?

3. Finally, it would also be interesting and useful to study deformation theory (in the spirit of
Grothendieck-Messing theory) for the prismatic Dieudonné functor.

We now discuss in more detail the content of this paper.

1.1. Quasisyntomic rings

Let us first define the class of rings over which we study p-divisible groups.

Definition 1.1 (cf. Definition 3.15). A ring R is quasisyntomic if R is p-complete with bounded 𝑝∞-
torsion and if the cotangent complex 𝐿𝑅/Z𝑝 has p-complete Tor-amplitude in [−1, 0]1. The category of
all quasisyntomic rings is denoted by QSyn.

Similarly, a map 𝑅 → 𝑅′ of p-complete rings with bounded 𝑝∞-torsion is a quasisyntomic morphism
if 𝑅′ is p-completely flat over R and 𝐿𝑅′/𝑅 ∈ 𝐷 (𝑅

′) has p-complete Tor-amplitude in [−1, 0].

Remark 1.2. This definition is due to Bhatt-Morrow-Scholze [12] and extends (in the p-complete world)
the usual notion of locally complete intersection (l.c.i.) rings and syntomic morphisms (flat and l.c.i.) to
the non-Noetherian, non finite-type setting. The interest of this definition, apart from being more general,
is that it more clearly shows why this category of rings is relevant: the key property of (quasi)syntomic
rings is that they have a well-behaved (p-completed) cotangent complex. The work of Avramov shows
that the cotangent complex is very badly behaved for all other rings, at least in the Noetherian setting:
it is left unbounded (cf. [2]).

Example 1.3. Any p-complete l.c.i. Noetherian ring is in QSyn. But there are also big rings in QSyn:
for example, any (integral) perfectoid ring is in QSyn (cf. Example 3.17). As a consequence of this, the
p-completion of a smooth algebra over a perfectoid ring is also quasisyntomic, as well as any bounded
𝑝∞-torsion p-complete ring which can be presented as the quotient of an integral perfectoid ring by a
finite regular sequence. For example, the rings

OC𝑝 〈𝑇〉; OC𝑝/𝑝; F𝑝 [𝑇
1/𝑝∞]/(𝑇 − 1)

are quasisyntomic.

The category of quasisyntomic rings is endowed with a natural topology: the Grothendieck topology
for which covers are given by quasisyntomic covers, that is, morphisms 𝑅 → 𝑅′ of p-complete rings
which are quasisyntomic and p-completely faithfully flat.

An important property of the quasisyntomic topology is that quasiregular semiperfectoid rings form
a basis of the topology (cf. Proposition 3.21).

Definition 1.4 (cf. Definition 3.19). A ring R is quasiregular semiperfectoid if 𝑅 ∈ QSyn and there
exists a perfectoid ring S mapping surjectively to R.

1This means that the complex 𝑀 = 𝐿𝑅/Z𝑝 ⊗
L
𝑅 𝑅/𝑝 ∈ 𝐷 (𝑅/𝑝) is such that 𝑀 ⊗L𝑅 𝑁 ∈ 𝐷 [−1,0] (𝑅/𝑝) for any

𝑅/𝑝-module N.
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As an example, any perfectoid ring, or any p-complete bounded 𝑝∞-torsion quotient of a perfectoid
ring by a finite regular sequence, is quasiregular semiperfectoid.

1.2. Prisms and prismatic cohomology (after Bhatt-Scholze)

Our main tool for studying p-divisible groups over quasisyntomic rings is the recent prismatic theory
of Bhatt-Scholze [8], [13]. This theory relies on the seemingly simple notions of 𝛿-rings and prisms. In
what follows, all the rings considered are assumed to be Z(𝑝) -algebras.

A 𝛿-ring is a commutative ring A, together with a map of sets 𝛿 : 𝐴 → 𝐴, with 𝛿(0) = 0, 𝛿(1) = 0
and satisfying the following identities:

𝛿(𝑥𝑦) = 𝑥𝑝𝛿(𝑦) + 𝑦𝑝𝛿(𝑥) + 𝑝𝛿(𝑥)𝛿(𝑦); 𝛿(𝑥 + 𝑦) = 𝛿(𝑥) + 𝛿(𝑦) +
𝑥𝑝 + 𝑦𝑝 − (𝑥 + 𝑦) 𝑝

𝑝
,

for all 𝑥, 𝑦 ∈ 𝐴. For any 𝛿-ring (𝐴, 𝛿), denote by 𝜑 the map defined by

𝜑(𝑥) = 𝑥𝑝 + 𝑝𝛿(𝑥).

The identities satisfied by 𝛿 are made to make 𝜑 a ring endomorphism lifting Frobenius modulo p.
Conversely, a p-torsion free ring equipped with a lift of Frobenius gives rise to a 𝛿-ring. A pair (𝐴, 𝐼)
formed by a 𝛿-ring A and an ideal 𝐼 ⊂ 𝐴 is a prism if I defines a Cartier divisor on Spec(𝐴), if A is
(derived) (𝑝, 𝐼)-complete and if I is pro-Zariski locally generated2 by a distinguished element, that is,
an element d, such that 𝛿(𝑑) is a unit.

Example 1.5.

1. For any p-complete p-torsion free 𝛿-ring A, the pair (𝐴, (𝑝)) is a prism.
2. Say that a prism is perfect if the Frobenius 𝜑 on the underlying 𝛿-ring is an isomorphism. Then the

category of perfect prisms is equivalent to the category of (integral) perfectoid rings: in one direction,
one maps a perfectoid ring R to the pair (𝐴inf (𝑅) := 𝑊 (𝑅♭), ker(𝜃)) (here, 𝜃 : 𝐴inf (𝑅) → 𝑅 is
Fontaine’s theta map); in the other direction, one maps (𝐴, 𝐼) to 𝐴/𝐼. Therefore, one sees that, in the
words of the authors of [13], prisms are some kind of ‘deperfection’ of perfectoid rings.

The crucial definition for us is the following. We stick to the affine case for simplicity, but it admits
an immediate extension to p-adic formal schemes.

Definition 1.6. Let R be a p-complete ring. The (absolute) prismatic site (𝑅)Δ of R is the opposite of
the category of bounded3 prisms (𝐴, 𝐼) together with a map 𝑅 → 𝐴/𝐼, endowed with the Grothendieck
topology for which covers are morphisms of prisms (𝐴, 𝐼) → (𝐵, 𝐽), such that the underlying ring map
𝐴→ 𝐵 is (𝑝, 𝐼)-completely faithfully flat.

Bhatt and Scholze prove that the functor OΔ (respectively, OΔ) on the prismatic site valued in (𝑝, 𝐼)-
complete 𝛿-rings (respectively, in p-complete R-algebras), sending (𝐴, 𝐼) ∈ (𝑅)Δ to A (respectively,
𝐴/𝐼), is a sheaf. The sheaf OΔ (respectively, OΔ) is called the prismatic structure sheaf (respectively,
the reduced prismatic structure sheaf ).

From this, one easily deduces that the presheaves 𝐼Δ (respectively, N ≥1OΔ) sending (𝐴, 𝐼) to I
(respectively, N ≥1𝐴 := 𝜑−1 (𝐼)) are also sheaves on (𝑅)Δ.

Let R be a p-complete ring. One proves the existence of a morphism of topoi:

𝑣 : Shv((𝑅)Δ) → Shv((𝑅)qsyn).

2In practice, the ideal I is always principal.
3A prism (𝐴, 𝐼 ) is bounded if 𝐴/𝐼 has bounded 𝑝∞-torsion.
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Set:

Opris := 𝑣∗OΔ ; N ≥1Opris := 𝑣∗N ≥1OΔ ; Ipris := 𝑣∗𝐼Δ.

The sheaf Opris is endowed with a Frobenius lift 𝜑. Moreover, if R is quasisyntomic, the quotient sheaf
Opris/N ≥1Opris is naturally isomorphic to the structure sheaf O of (𝑅)qsyn.

1.3. Admissible prismatic Dieudonné crystals and modules

We are now in position to define the category of objects classifying p-divisible groups.

Definition 1.7. Let R be a quasisyntomic ring. A prismatic Dieudonné crystal over R is a finite locally
free Opris-module M together with 𝜑-linear morphism

𝜑M : M→M,

whose linearisation 𝜑∗M→M has its cokernel is killed by Ipris. It is said to be admissible if the image
of the composition

M 𝜑M
−−−→M→M/IprisM

is a finite locally free O-module FM, such that the map (Opris/Ipris) ⊗O FM →M/IprisM induced
by 𝜑M is a monomorphism.

Definition 1.8. Let R be a quasisyntomic ring. We denote by DM(𝑅) the category of prismatic
Dieudonné crystals over R (with morphisms theOpris-linear morphisms commuting with the Frobenius),
and by DMadm(𝑅) its full subcategory of admissible prismatic Dieudonné crystals.

Remark 1.9. In a former version of the paper, we used the notion of filtered prismatic Dieudonné crystal.
A filtered prismatic Dieudonné crystal over a quasisyntomic ring R is a collection (M, FilM, 𝜑M)
consisting of a finite locally free Opris-module M, a Opris-submodule FilM and a 𝜑-linear map
𝜑M : M→M, satisfying the following conditions:

1. 𝜑M (FilM) ⊂ Ipris.M.
2. N ≥1Opris.M ⊂ FilM and M/FilM is a finite locally free O-module.
3. 𝜑M (FilM) generates Ipris.M as an Opris-module.

However, as was pointed out to us by the referee, the category of filtered prismatic Dieudonné crystals
embeds fully faithfully in the category of prismatic Dieudonné crystals, with essential image given by
the admissible objects (this essentially follows from Proposition 4.29 below). Since admissible prismatic
Dieudonné crystals are easier to work with than filtered prismatic Dieudonné crystals, we decided to
work only with the first; hence, the results stayed the same, but their formulation changed slightly.

For quasiregular semiperfectoid rings, these abstract objects have a concrete incarnation. Let R be a
quasiregular semiperfectoid ring. The prismatic site (𝑅)Δ admits a final object (Δ𝑅, 𝐼).

Example 1.10.

1. If R is a perfectoid ring, (Δ𝑅, 𝐼) = (𝐴inf (𝑅), ker(𝜃)).
2. If R is quasiregular semiperfectoid and 𝑝𝑅 = 0, (Δ𝑅, 𝐼) � (𝐴crys (𝑅), (𝑝)).

Definition 1.11. A prismatic Dieudonné module over R is a finite locally free Δ𝑅-module M together
with a 𝜑-linear morphism

𝜑𝑀 : 𝑀 → 𝑀,
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whose linearisation 𝜑∗𝑀 → 𝑀 has its cokernel is killed by I. It is said to be admissible if the composition

𝑀
𝜑𝑀
−−−→ 𝑀 → 𝑀/𝐼 · 𝑀

is a finite locally free 𝑅 � Δ𝑅/N ≥1Δ𝑅-module 𝐹𝑀 , such that the map Δ𝑅/𝐼Δ𝑅 ⊗𝑅 𝐹𝑀 → 𝑀/𝐼𝑀
induced by 𝜑𝑀 is a monomorphism.
Proposition 1.12 (Proposition 4.13). Let R be a quasiregular semiperfectoid ring. The functor of global
sections induces an equivalence between the category of (admissible) prismatic Dieudonné crystals
over R and the category of (admissible) prismatic Dieudonné modules over R.

1.4. Statements of the main results

In all this paragraph, R is a quasisyntomic ring.
Theorem 1.13 (Theorem 4.71). Let G be a p-divisible group over R. The pair(

MΔ (𝐺) = E𝑥𝑡1 (𝐺,Opris), 𝜑MΔ (𝐺)

)
,

where the E𝑥𝑡 is an Ext-group of abelian sheaves on (𝑅)qsyn and 𝜑MΔ (𝐺)
is the Frobenius induced by

the Frobenius of Opris, is an admissible prismatic Dieudonné crystal over R, often denoted simply by
MΔ (𝐺).
Remark 1.14. The rank of the finite locally free Opris-module MΔ (𝐺) is the height of G, and the
quotient MΔ (𝐺)/𝜑

−1
MΔ (𝐺)

(Ipris.MΔ (𝐺)) is naturally isomorphic to Lie(𝐺̌), where 𝐺̌ is the Cartier
dual of G.
Remark 1.15. When 𝑝𝑅 = 0, the crystalline comparison theorem for prismatic cohomology allows us
to prove that this construction coincides with the functor usually considered in crystalline Dieudonné
theory, relying on Berthelot-Breen-Messing’s constructions ([6]).
Theorem 1.16 (Theorem 4.74). The prismatic Dieudonné functor

MΔ : 𝐺 ↦→ (MΔ (𝐺), 𝜑MΔ (𝐺)
)

induces an antiequivalence between the category BT(𝑅) of p-divisible groups over R and the category
DMadm(𝑅) of admissible prismatic Dieudonné crystals over R.
Remark 1.17. Theorems 1.13 and 1.16 immediately extend to p-divisible groups over a quasisyntomic
formal scheme.
Remark 1.18. It is easy to write down a formula for a functor attaching to an admissible prismatic
Dieudonné crystal an abelian sheaf on (𝑅)qsyn, which will be a quasi-inverse of the prismatic Dieudonné
functor: see Remark 4.91. But such a formula does not look very useful.
Remark 1.19. As a corollary of the theorem and the comparison with the crystalline functor, one obtains
that the (contravariant) Dieudonné functor from crystalline Dieudonné theory is an antiequivalence for
quasisyntomic rings in characteristic p. For excellent l.c.i. rings, fully faithfulness was proved by de
Jong-Messing; the antiequivalence was proved by Lau for F-finite l.c.i. rings (which are, in particular,
excellent rings).
Remark 1.20. It is not difficult to prove that if R is perfectoid, admissible prismatic Dieudonné crystals
(or modules) over R are equivalent to minuscule Breuil-Kisin-Fargues modules for R, in the sense of
[11]. Therefore, Theorem 1.16 contains, as a special case, the results of Lau and Scholze-Weinstein. But
the proof of the theorem actually requires this special case4 as an input.

4In fact, as observed in [51], only the case of perfectoid valuation rings with algebraically closed and spherically complete
fraction field is needed.
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Remark 1.21. In general, the prismatic Dieudonné functor (without the admissibility condition) is not
essentially surjective, but we prove it is an antiequivalence for complete regular (Noetherian) local rings
in Proposition 5.10, that is, in this case, the admissibility condition is automatic.

Moreover, we explain in Section 5.2 how to recover Breuil-Kisin’s classification (as extended by
Kim, Lau and Liu to all p) of p-divisible groups over O𝐾 , where K is a discretely valued extension of
Q𝑝 with perfect residue field, from Theorem 1.16.

Remark 1.22. Section 5.3 shows how to extract from the admissible prismatic Dieudonné functor a
functor from BT(𝑅) to the category of displays of Zink over R. Even though the actual argument is
slightly involved for technical reasons, the main result there ultimately comes from the following fact:
if R is a quasiregular semiperfectoid ring, the natural morphism 𝜃 : Δ𝑅 → 𝑅 gives rise by adjunction to
a morphism of 𝛿-rings Δ𝑅 → 𝑊 (𝑅), mapping N ≥1Δ𝑅 to the image of Verschiebung on Witt vectors.
Zink’s classification by displays works on very general bases but is restricted (by design) to formal p-
divisible groups or to odd p; by contrast, our classification is limited to quasisyntomic rings, but do not
make these restrictions.

Remark 1.23. As in Kisin’s article [30], it should be possible to deduce from Theorem 1.16 a classi-
fication result for finite locally free group schemes. We only write this down over a perfectoid ring, in
which case, it was already known for 𝑝 > 2 by the work of Lau, [36]. This result is used in the recent
work of C̆esnavic̆ius and Scholze [18].

1.5. Overview of the proof and plan of the paper

Sections 2 and 3 contain some useful basic results concerning prisms and prismatic cohomology, with
special emphasis on the case of quasisyntomic rings. Most of them are extracted from [12] and [13],
but some are not contained in loc. cit. (for instance, the definition of the q-logarithm, Section 2.2, or the
Künneth formula, Section 3.5), or only briefly discussed there (for instance, the description of truncated
Hodge-Tate cohomology, Section 3.2).

Section 4 is the heart of this paper. We first introduce the category DMadm(𝑅) of admissible prismatic
Dieudonné crystals over a quasisyntomic ring R and discuss some of its abstract properties (Section
4.1). We then introduce a candidate functor from p-divisible groups over R to DMadm(𝑅) (Section 4.2).
That it, indeed, takes values in the category DMadm(𝑅) is the content of Theorem 1.13, which we do
not prove immediately. We first relate this functor to other existing functors, for characteristic p rings or
perfectoid rings (Section 4.3). The next three sections are devoted to the proof of Theorem 1.13. This
proof follows a road similar to the one of [6, Chapters 2, 3]. The basic idea is to reduce many statements
to the case of p-divisible groups attached to abelian schemes, using a theorem of Raynaud ensuring that
a finite locally free group scheme on R can always be realised as the kernel of an isogeny between two
abelian schemes over R, Zariski-locally on R. For abelian schemes, via the general device, explained
in [6, Chapter 2] and recalled in Section 4.4, for computing Ext-groups in low degrees in a topos, one
needs a good understanding of the prismatic cohomology. It relies on the degeneration of the conjugate
spectral sequence abutting to reduced prismatic cohomology, in the same way as the description of
the crystalline cohomology of abelian schemes is based on the degeneration of the Hodge-de Rham
spectral sequence. We prove it in Section 4.5 by appealing to the group structure on the abelian scheme.
Alternatively, one could use an identification of some truncation of the reduced prismatic complex with
some cotangent complex, in the spirit of Deligne-Illusie (or, more recently, [11]), proved in Section 3.2.
To prove Theorem 1.16, stated as Theorem 4.74 below, one first observes that the functors

𝑅 ↦→ BT(𝑅); 𝑅 ↦→ DMadm(𝑅)

on QSyn are both stacks for the quasisyntomic topology (for BT, this is done in the Appendix).
Therefore, to prove that the functor MΔ is an antiequivalence, it is enough to prove it for R quasiregular
semiperfectoid, since these rings form a basis of the topology, in which case, one can simply consider
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the more concrete functor 𝑀Δ taking values in admissible prismatic Dieudonné modules over R, defined
by taking global sections of MΔ. Therefore, one sees that, even if one is ultimately interested only by
Noetherian rings, the structure of the argument forces to consider large quasisyntomic rings5. Assume
from now on that R is quasiregular semiperfectoid. The proof of fully faithfulness is ultimately reduced
to the identification of the syntomic sheaf Z𝑝 (1) (as defined using prismatic cohomology) to the p-adic
Tate module of G𝑚, a result of Bhatt-Morrow-Scholze recently reproved without K-theory by Bhatt-
Lurie ([10, Theorem 7.5.6]). (A former version of this paper attempted to prove fully faithfulness using
the strategy of [50], following an idea of de Jong-Messing: one first proves it for morphisms fromQ𝑝/Z𝑝

to 𝜇𝑝∞ and then reduces to this special case. This reduction step works fine in many cases of interest —
such as characteristic p or p-torsion free quasiregular semiperfectoid rings — but we encountered several
technical difficulties while trying to push it to the general case.) Once fully faithfulness is acquired,
the proof of essential surjectivity is by reduction to the perfectoid case. One can actually even reduce
to the case of perfectoid valuation rings with algebraically closed fraction field. In this case, the result
is known, and due — depending whether one is in characteristic p or in mixed characteristic — to
Berthelot and Scholze-Weinstein.

Finally, Section 5 gathers several complements to the main theorems, already mentioned above: the
classification of finite locally free group schemes of p-power order over a perfectoid ring, Breuil-Kisin’s
classification of p-divisible groups over the ring of integers of a finite extension of Q𝑝 , the relation with
the theory of displays and the description of the Tate module of the generic fibre of a p-divisible group
from its prismatic Dieudonné crystal.

1.6. Notations and conventions

In all the text, we fix a prime number p.

• All finite locally free group schemes will be assumed to be commutative.
• If R is a ring, we denote by BT(𝑅) the category of p-divisible groups over R.
• If A is a ring, 𝐼 ⊂ 𝐴 an ideal and 𝐾 ∈ 𝐷 (𝐴) an object of the derived category of A-modules, K is

said to be derived I-complete if for every 𝑓 ∈ 𝐼, the derived limit of the inverse system

. . . 𝐾
𝑓
→ 𝐾

𝑓
→ 𝐾

vanishes. Equivalently, when 𝐼 = ( 𝑓1, . . . , 𝑓𝑟 ) is finitely generated, K is derived I-complete if the
natural map

𝐾 → 𝑅 lim(𝐾 ⊗L𝐴 𝐾•𝑛)

is an isomorphism in 𝐷 (𝐴), where for each 𝑛 ≥ 1, 𝐾•𝑛 denotes the Koszul complex
𝐾•(𝐴; 𝑓 𝑛1 , . . . , 𝑓

𝑛
𝑟 ) (one has 𝐻0(𝐾•𝑛) = 𝐴/( 𝑓 𝑛1 , . . . , 𝑓

𝑛
𝑟 ), but beware that, in general, 𝐾•𝑛 may also

have cohomology in negative degrees, unless ( 𝑓1, . . . , 𝑓𝑟 ) forms a regular sequence). An A-module
M is said to be derived I-complete if 𝐾 = 𝑀 [0] ∈ 𝐷 (𝐴) is derived I-complete. The following
properties are useful in practice:
1. A complex 𝐾 ∈ 𝐷 (𝐴) is derived I-complete if and only if for each integer i, 𝐻𝑖 (𝐾) is derived

I-complete (this implies, in particular, that the category of derived I-complete A-modules form a
weak Serre subcategory of the category of A-modules).

2. If 𝐼 = ( 𝑓1, . . . , 𝑓𝑟 ) is finitely generated, the inclusion of the full subcategory of derived I-complete
complexes in 𝐷 (𝐴) admits a left adjoint, sending 𝐾 ∈ 𝐷 (𝐴) to its derived I-completion

𝐾 = 𝑅 lim(𝐾 ⊗L𝐴 𝐾•𝑛).

5In characteristic p, Lau has recently and independently implemented a similar strategy in [37].
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3. (Derived Nakayama) If I is finitely generated, a derived I-complete complex 𝐾 ∈ 𝐷 (𝐴)
(respectively, a derived I-complete A-module M) is zero if and only if 𝐾 ⊗L𝐴 𝐴/𝐼 = 0
(respectively, 𝑀/𝐼𝑀 = 0).

4. If I is finitely generated, an A-module M is (classically) I-adically complete if and only if it is
derived I-complete and I-adically separated.

5. 𝐼 = ( 𝑓 ) is principal and M is an A-module with bounded 𝑓∞-torsion (i.e. such that
𝑀 [ 𝑓∞] = 𝑀 [ 𝑓 𝑁 ] for some N), the derived I-completion of M (as a complex) is discrete and
coincides with its (classical) I-adic completion.

A useful reference for derived completions is [52, Tag 091N].
• Let A be a ring, I a finitely generated ideal. A complex 𝐾 ∈ 𝐷 (𝐴) is I-completely flat (respectively,

I-completely faithfully flat) if 𝐾 ⊗L𝐴 𝐴/𝐼 is concentrated in degree 0 and flat (respectively, faithfully
flat), cf. [12, Definition 4.1]. If an A-module M is flat, its derived completion 𝑀 is I-completely flat.
Assume that I is principal, generated by 𝑓 ∈ 𝐴 (in the sequel, f will often be p). Let 𝐴→ 𝐵 be a
map of derived f -complete rings. If A has bounded 𝑓∞-torsion and 𝐴→ 𝐵 is f -completely flat, then
B has bounded 𝑓∞-torsion. Conversely, if B has bounded 𝑓∞-torsion and 𝐴→ 𝐵 is f -completely
faithfully flat, A has bounded 𝑓∞-torsion. Moreover, if A and B both have bounded 𝑓∞-torsion, then
𝐴→ 𝐵 is f -completely (faithfully) flat if and only if 𝐴/ 𝑓 𝑛 → 𝐵/ 𝑓 𝑛 is (faithfully) flat for all 𝑛 ≥ 1
(see [12, Corollary 4.8]).

• A derived I-complete A-algebra R is I-completely étale (respectively, I-completely smooth) if
𝑅 ⊗L𝐴 𝐴/𝐼 is concentrated in degree 0 and étale (respectively, smooth).

2. Generalities on prisms

In this section, we review the theory of prisms and collect some additional results. In particular, we
present the definition of the q-logarithm (cf. Section 2.2).

2.1. Prisms and perfectoid rings

We list here some basic definitions and results from [13], of which we will make constant use in the
paper. Let us first recall the definition of a 𝛿-ring A. In the following, all rings will be assumed to be
Z(𝑝) -algebras.

Definition 2.1. A 𝛿-ring is a pair (𝐴, 𝛿) with A a commutative ring and 𝛿 : 𝐴→ 𝐴 a map (of sets), such
that for 𝑥, 𝑦 ∈ 𝐴, the following equalities hold:

𝛿(0) = 𝛿(1) = 0
𝛿(𝑥𝑦) = 𝑥𝑝𝛿(𝑦) + 𝑦𝑝𝛿(𝑥) + 𝑝𝛿(𝑥)𝛿(𝑦)

𝛿(𝑥 + 𝑦) = 𝛿(𝑥) + 𝛿(𝑦) + 𝑥𝑝+𝑦𝑝−(𝑥+𝑦) 𝑝

𝑝 .

A morphism of 𝛿-rings 𝑓 : (𝐴, 𝛿) → (𝐴′, 𝛿′) is a morphism 𝑓 : 𝐴→ 𝐴′ of rings, such that 𝑓 ◦𝛿 = 𝛿′ ◦ 𝑓 .

By design, the morphism

𝜑 : 𝐴→ 𝐴, 𝑥 ↦→ 𝑥𝑝 + 𝑝𝛿(𝑥)

for a 𝛿-ring (𝐴, 𝛿) is a ring homomorphism lifting the Frobenius on 𝐴/𝑝. Using 𝜑, the second property
of 𝛿 can be rephrased as

𝛿(𝑥𝑦) = 𝜑(𝑥)𝛿(𝑦) + 𝑦𝑝𝛿(𝑥) = 𝑥𝑝𝛿(𝑦) + 𝜑(𝑦)𝛿(𝑥),
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which looks close to that of a derivation. If A is p-torsion free, then any Frobenius lift 𝜓 : 𝐴→ 𝐴 defines
a 𝛿-structure on A by setting

𝛿(𝑥) :=
𝜓(𝑥) − 𝑥𝑝

𝑝
.

Thus, in the p-torsion free case, a 𝛿-ring is the same as a ring with a Frobenius lift.

Remark 2.2. The category of 𝛿-rings has all limits and colimits and these are calculated on the
underlying rings6 (cf. [13, Section 1]). In particular, there exist free 𝛿-rings (by the adjoint functor
theorem). Concretely, if A is a 𝛿-ring and X is a set, then the free 𝛿-ring 𝐴{𝑋} on X is a polynomial ring
over A with variables 𝛿𝑛 (𝑥) for 𝑛 ≥ 0 and 𝑥 ∈ 𝑋 (cf. [13, Lemma 2.11]). Moreover, the Frobenius on
Z(𝑝) {𝑋} is faithfully flat (cf. [13, Lemma 2.11]).

Definition 2.3. Let (𝐴, 𝛿) be a 𝛿-ring.

1. An element 𝑥 ∈ 𝐴 is called of rank 1 if 𝛿(𝑥) = 0.
2. An element 𝑑 ∈ 𝐴 is called distinguished if 𝛿(𝑑) ∈ 𝐴× is a unit.

In particular, 𝜑(𝑥) = 𝑥𝑝 if 𝑥 ∈ 𝐴 is of rank 1.
Here is a useful lemma showing how to find rank 1 elements in a p-adically separated 𝛿-ring.

Lemma 2.4. Let A be a 𝛿-ring, and let 𝑥 ∈ 𝐴. Then 𝛿(𝑥𝑝𝑛
) ∈ 𝑝𝑛𝐴 for all n. In particular, if A is

p-adically separated and 𝑦 ∈ 𝐴 admits a 𝑝𝑛-th root for all 𝑛 ≥ 0, then 𝛿(𝑦) = 0, that is, y has rank 1.

Proof. Cf. [13, Lemma 2.31]. �

We can now state the definition of a prism (cf. [13, Definition 3.2]). Recall that a 𝛿-pair (𝐴, 𝐼) is
simply a 𝛿-ring A together with an ideal 𝐼 ⊆ 𝐴.

Definition 2.5. A 𝛿-pair (𝐴, 𝐼) is a prism if 𝐼 ⊆ 𝐴 is an invertible ideal, such that A is derived (𝑝, 𝐼)-
complete, and 𝑝 ∈ 𝐼 + 𝜑(𝐼)𝐴. A prism (𝐴, 𝐼) is called bounded if 𝐴/𝐼 has bounded 𝑝∞-torsion.

Remark 2.6. Some comments about these definitions are in order:

1. By [13, Lemma 3.1], the condition 𝑝 ∈ 𝐼 + 𝜑(𝐼)𝐴 is equivalent to the fact that I is pro-Zariski locally
on Spec(𝐴) generated by a distinguished element. Thus, it is usually not much harm to assume that
𝐼 = (𝑑) is actually principal7 .

2. If (𝐴, 𝐼) → (𝐵, 𝐽) is a morphism of prisms, i.e., 𝐴 → 𝐵 is a morphism of 𝛿-rings carrying I to J,
then [13, Lemma 3.5] implies that 𝐽 = 𝐼𝐵.

3. An important example of a prism is provided by

(𝐴, 𝐼) = (Z𝑝 [[𝑞 − 1]], ([𝑝]𝑞)),

where

[𝑝]𝑞 :=
𝑞𝑝 − 1
𝑞 − 1

is the q-analog of p. Many other interesting examples will appear below.
4. The prism (𝐴, 𝐼) being bounded implies that A is classically (𝑝, 𝐼)-adically complete (cf. [8, Exercise

3.4]), and thus, in particular, p-adically separated.

6This does not hold for the category of rings with a Frobenius lift in the presence of p-torsion.
7For example, if A is perfect, that is, the Frobenius 𝜑 : 𝐴→ 𝐴 is bijective, then this condition is automatic by [13, Lemma 3.7].
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Lemma 2.7. Let (𝐴, 𝐼) be a prism, and let 𝑑 ∈ 𝐼 be distinguished. If (𝑝, 𝑑) is a regular sequence in A,
then for all 𝑟, 𝑠 ≥ 0, 𝑟 ≠ 𝑠, the sequences

(𝑝, 𝜑𝑟 (𝑑)), (𝜑𝑟 (𝑑), 𝜑𝑠 (𝑑))

are regular.

Proof. Note that for the second case, one can always assume min(𝑟, 𝑠) = 0, up to replacing d by
𝜑min(𝑟 ,𝑠) (𝑑). Then the statement is proven in [1, Lemma 3.3] and [1, Lemma 3.6]. �

Previous work in p-adic Hodge theory used, in one form or another, the theory of perfectoid spaces.
From the prismatic perspective, this is explained as follows. We recall that a 𝛿-ring A (or prism (𝐴, 𝐼)) is
called perfect if the Frobenius 𝜑 : 𝐴→ 𝐴 is an isomorphism. If A is perfect, then necessarily 𝐴 � 𝑊 (𝑅)
for some perfect F𝑝-algebra R (cf. [13, Corollary 2.30]).

Proposition 2.8. The functor

{perfect prisms (𝐴, 𝐼)} → {(integral) perfectoid rings 𝑅}, (𝐴, 𝐼) ↦→ 𝐴/𝐼

is an equivalence of categories with inverse 𝑅 ↦→ (𝐴inf (𝑅), ker(𝜃)), where 𝐴inf (𝑅) := 𝑊 (𝑅♭) and
𝜃 = 𝜃 ◦ 𝜑−1, 𝜃 being Fontaine’s theta map.

Proof. Cf. [13, Theorem 3.9]. �

Remark 2.9.

(1) Of course, one could use 𝜃 instead of 𝜃. We make this (slightly strange) choice for coherence with
later choices.

(2) The theorem implies, in particular, that for every perfect prism (𝐴, 𝐼), the ideal I is principal.

As a corollary, we get the following easy case of almost purity.

Corollary 2.10. Let R be a perfectoid ring, and let 𝑅 → 𝑅′ be p-completely étale. Then 𝑅′ is perfectoid.
Moreover, if 𝐽 ⊆ 𝑅 is an ideal, then the p-completion 𝑅′ of the henselisation of R at J is perfectoid.

Proof. We can lift 𝑅′ to a (𝑝, ker(𝜃))-completely étale 𝐴inf (𝑅)-algebra B. By [13, Lemma 2.18], the
𝛿-structure on 𝐴inf (𝑅) extends uniquely to B. Reducing modulo p, we see that B is a perfect 𝛿-ring
as it is (𝑝, ker(𝜃))-completely étale over 𝐴inf (𝑅). Using Proposition 2.8, 𝑅′ � 𝐵/ker(𝜃)𝐵 is therefore
perfectoid. The statement on henselisations follows from this as henselisations are colimits along étale
maps (cf. the proof of [52, Tag 0A02]). (Note that since R has bounded 𝑝∞-torsion, the p-completion of
an étale R-algebra is p-completely étale.) �

Moreover, perfectoid rings enjoy the following fundamental property.

Proposition 2.11. Let (𝐴, 𝐼) be a perfect prism. Then for every prism (𝐵, 𝐽), the map

Hom((𝐴, 𝐼), (𝐵, 𝐽)) → Hom(𝐴/𝐼, 𝐵/𝐽)

is a bijection.

Proof. Cf. [13, Lemma 4.7]. �

2.2. The q-logarithm

Each prism is endowed with its Nygaard filtration (cf. [8, Definition 11.2]).

https://doi.org/10.1017/fmp.2022.22 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.22


12 J. Anschütz and A.-C. Le Bras

Definition 2.12. Let (𝐴, 𝐼) be a prism. Then we set

N ≥𝑖𝐴 := 𝜑−1(𝐼 𝑖)

for 𝑖 ≥ 0. The filtration N ≥•𝐴 is called the Nygaard filtration of (𝐴, 𝐼).

This filtration (or rather the first piece of this filtration) will play an important role in the rest of this
text. It already shows up when proving the existence of the q-logarithm

log𝑞 : Z𝑝 (1) (𝐵/𝐽) → 𝐵, 𝑥 ↦→ log𝑞 ([𝑥
1/𝑝]𝜃 )

for a prism (𝐴, 𝐼) over (Z𝑝 [[𝑞 − 1]], ([𝑝]𝑞)) from Remark 2.6, as we now explain. Here,

Z𝑝 (1) := 𝑇𝑝 (𝜇𝑝∞)

is the functor sending a ring R to 𝑇𝑝 (𝑅
×) = lim
←−−
𝑛

𝜇𝑝𝑛 (𝑅) and

[−]𝜃 : lim
←−−

𝑥 ↦→𝑥𝑝

𝐴/𝐼 → 𝐴

is the Teichmüller lift sending a p-power compatible system

𝑥 := (𝑥0, 𝑥1, . . .) ∈ lim
←−−

𝑥 ↦→𝑥𝑝

𝐴/𝐼

to the limit

[𝑥]𝜃 := lim
−−→
𝑛→∞

𝑥𝑝𝑛

𝑛 ,

where 𝑥𝑛 ∈ 𝐴 is a lift of 𝑥𝑛 ∈ 𝐴/𝐼. By definition,

Z𝑝 (1) (𝐴/𝐼) ⊆ lim
←−−

𝑥 ↦→𝑥𝑝

𝐴/𝐼

is the subset of the inverse limit consisting of sequences that start with a 1. Moreover, on lim
←−−

𝑥 ↦→𝑥𝑝

𝐴/𝐼, one

can take p-th roots

(−)1/𝑝 : lim
←−−

𝑥 ↦→𝑥𝑝

𝐴/𝐼 → lim
←−−

𝑥 ↦→𝑥𝑝

𝐴/𝐼, (𝑥0, 𝑥1, . . .) ↦→ (𝑥1, 𝑥2, . . .).

In [1, Lemma 4.10], there is the following lemma on the q-logarithm. For 𝑛 ∈ Z, we recall that the
q-number [𝑛]𝑞 is defined as

[𝑛]𝑞 :=
𝑞𝑛 − 1
𝑞 − 1

∈ Z𝑝 [[𝑞 − 1]] .

Lemma 2.13. Let (𝐵, 𝐽) be a prism over (Z𝑝 [[𝑞 − 1]], ([𝑝]𝑞)). Then for every element 𝑥 ∈ 1 +N ≥1𝐵
of rank 1, that is, 𝛿(𝑥) = 0, the series

log𝑞 (𝑥) =
∞∑
𝑛=1
(−1)𝑛−1𝑞−𝑛(𝑛−1)/2 (𝑥 − 1) (𝑥 − 𝑞) · · · (𝑥 − 𝑞𝑛−1)

[𝑛]𝑞
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is well-defined and converges in B. Moreover, log𝑞 (𝑥) ∈ N ≥1𝐵 and, in

𝐵[1/𝑝] [[𝑥 − 1]]∧(𝑞−1) ,

one has the relation log𝑞 (𝑥) =
𝑞−1

log(𝑞) log(𝑥), where log(𝑥) :=
∞∑
𝑛=1
(−1)𝑛−1 (𝑥−1)𝑛

𝑛 .

The defining properties of the q-logarithm are that log𝑞 (1) = 0 and that its q-derivative is 𝑑𝑞 𝑥
𝑥 (cf. [1,

Lemma 4.6]).
One derives easily the existence of the ‘divided q-logarithm’.

Lemma 2.14. Let (𝐵, 𝐽) be a bounded prism over (Z𝑝 [[𝑞−1]], ([𝑝]𝑞)), and let 𝑥 ∈ Z𝑝 (1) (𝐵/𝐽). Then
[𝑥1/𝑝]𝜃 ∈ 𝐵 is of rank 1 and lies in 1 +N ≥1𝐵. Thus

log𝑞 ([𝑥
1/𝑝]𝜃 ) =

∞∑
𝑛=1
(−1)𝑛−1𝑞−𝑛(𝑛−1)/2 ([𝑥

1/𝑝]𝜃 − 1) . . . ([𝑥1/𝑝]𝜃 − 𝑞
𝑛−1)

[𝑛]𝑞

exists in B.

Proof. By Lemma 2.4 (which applies to B as B is bounded and, thus, classically (𝑝, [𝑝]𝑞)-complete, by
[13, Lemma 3.7 (1)]), the element [𝑥1/𝑝]𝜃 is of rank 1 as it admits arbitrary 𝑝𝑛-roots. Moreover, [𝑥1/𝑝]𝜃 ∈
1 +N ≥1𝐵 as 𝜑([𝑥1/𝑝]𝜃 ) = [𝑥]𝜃 ≡ 1 modulo J. By Lemma 2.13, we can therefore conclude. �

3. Generalities on prismatic cohomology

3.1. Prismatic site and prismatic cohomology

In this paragraph, we shortly recall, mostly for the convenience of the reader and to fix notations, some
fundamental definitions and results, without proofs, from [13]. Fix a bounded prism (𝐴, 𝐼). Let R be a
p-complete 𝐴/𝐼-algebra.

Definition 3.1. The prismatic site of R relative to A, denoted (𝑅/𝐴)Δ, is the category whose objects
are given by bounded prisms (𝐵, 𝐼𝐵) over (𝐴, 𝐼) together with an 𝐴/𝐼-algebra map 𝑅 → 𝐵/𝐼𝐵, with
the obvious morphisms, endowed with the Grothendieck topology for which covers are given by (𝑝, 𝐼)-
completely faithfully flat morphisms of prisms over (𝐴, 𝐼).

Remark 3.2. In this remark, we deal with the set-theoretic issues arising from Definition 3.1. For
example, as it stands, there does not exist a sheafification functor for presheaves on (𝑅/𝐴)Δ. We will
implicitly fix a cut-off cardinal 𝜅 like in [49, Lemma 4.1] and assume that all objects appearing in
Definition 3.1 (or Definition 3.4) have cardinality < 𝜅. The results of this paper will not change under
enlarging 𝜅. For example, the category of prismatic Dieudonné crystals on (𝑅)Δ will be independent
of the choice of 𝜅. Also, the prismatic cohomology does not change (because it can be calculated via
a C̆ech-Alexander complex), and, thus, the prismatic Dieudonné crystals will be independent of 𝜅 (by
Section 4.4).

This affine definition admits an immediate extension to p-adic formal schemes over Spf (𝐴/𝐼), cf [13].

Proposition 3.3 ([13], Corollary 3.12). The functor OΔ (respectively, OΔ) on the prismatic site valued
in (𝑝, 𝐼)-complete 𝛿 − 𝐴-algebras (respectively, in p-complete R-algebras), sending (𝐵, 𝐼𝐵) ∈ (𝑅/𝐴)Δ
to B (respectively, 𝐵/𝐼𝐵), is a sheaf. The sheaf OΔ (respectively, OΔ) is called the prismatic structure
sheaf (respectively, the reduced prismatic structure sheaf).

These constructions have absolute variants, where one does not fix a base prism. Let R be a p-
complete ring.
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Definition 3.4. The (absolute) prismatic site of R, denoted (𝑅)Δ, is the category whose objects are given
by bounded prisms (𝐵, 𝐽) together with a ring map 𝑅 → 𝐵/𝐽, with the obvious morphisms, endowed
with the Grothendieck topology for which covers are given by morphisms of prism (𝐵, 𝐽) → (𝐶, 𝐽𝐶)
which are (𝑝, 𝐼)-completely faithfully flat.

Exactly as before, one defines functors OΔ and OΔ, which are sheaves on (𝑅)Δ.

We turn to the definition of (derived) prismatic cohomology. Fix a bounded prism (𝐴, 𝐼). The
prismatic cohomology of R over A is defined in two steps. One starts with the case where R is p-completely
smooth over 𝐴/𝐼.

Definition 3.5. Let R be a p-complete p-completely smooth 𝐴/𝐼-algebra. The prismatic complex Δ𝑅/𝐴

of R over A is defined to be the cohomology of the sheaf OΔ on the prismatic site:

Δ𝑅/𝐴 = 𝑅Γ((𝑅/𝐴)Δ,OΔ).

This is a (𝑝, 𝐼)-complete commutative algebra object in 𝐷 (𝐴) endowed with a semilinear map 𝜑 :
Δ𝑅/𝐴→ Δ𝑅/𝐴, induced by the Frobenius of OΔ.

Similarly, one defines the reduced prismatic complex or Hodge-Tate complex:

Δ𝑅/𝐴 = 𝑅Γ((𝑅/𝐴)Δ,OΔ).

This is a p-complete commutative algebra object in 𝐷 (𝑅).

A fundamental property of prismatic cohomology is the Hodge-Tate comparison theorem, which
relates the Hodge-Tate complex to differential forms. For this, first recall that for any 𝐴/𝐼-module M
and integer n, the nth-Breuil-Kisin twist of M is defined as

𝑀{𝑛} := 𝑀 ⊗𝐴/𝐼 (𝐼/𝐼
2)⊗𝑛.

The Bockstein maps

𝛽𝐼 : 𝐻𝑖 (Δ𝑅/𝐴){𝑖} → 𝐻𝑖+1(Δ𝑅/𝐴){𝑖 + 1}

for each 𝑖 ≥ 0, make (𝐻∗(Δ𝑅/𝐴){∗}, 𝛽𝐼 ) a graded commutative 𝐴/𝐼-differential graded algebra8, which
comes with a map 𝜂 : 𝑅 → 𝐻0 (Δ𝑅/𝐴).

Theorem 3.6 ([13], Theorem 4.10). The map 𝜂 extends to a map

𝜂∗𝑅 : (Ω∧𝑝

𝑅/(𝐴/𝐼 )
, 𝑑) → (𝐻∗(Δ𝑅/𝐴), 𝛽𝐼 )

which is an isomorphism.

While proving Theorem 3.6, Bhatt and Scholze also relate prismatic and crystalline cohomology
when the ring R is an F𝑝-algebra. The precise statement is the following. Assume that 𝐼 = (𝑝), that is
that (𝐴, 𝐼) is a crystalline prism. Let 𝐽 ⊂ 𝐴 be a PD-ideal with 𝑝 ∈ 𝐽. Let R be a smooth 𝐴/𝐽-algebra
and

𝑅 (1) = 𝑅 ⊗𝐴/𝐽 𝐴/𝑝,

where the map 𝐴/𝐽 → 𝐴/𝑝 is the map induced by Frobenius and the fact that J is a PD-ideal.

8For 𝑝 = 2, this assertion is nontrivial and part of the proof of [13, Theorem 4.10].

https://doi.org/10.1017/fmp.2022.22 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.22


Forum of Mathematics, Pi 15

Theorem 3.7 ([13], Theorem 5.2). Under the previous assumptions, there is a canonical isomorphism
of 𝐸∞ − 𝐴-algebras

Δ𝑅 (1) /𝐴 � 𝑅Γcrys(𝑅/𝐴),

compatible with Frobenius.

Remark 3.8.
1. If 𝐽 = (𝑝), 𝑅 (1) is just the Frobenius twist of R.
2. The proof of Theorem 3.7 goes through for a syntomic 𝐴/𝐽-algebra R. The important point is that

in the proof in [13, Theorem 5.2], in each simplicial degree, the kernel of the morphism 𝐵• → 𝑅̃ is
the inductive limit of ideals of the form (𝑝, 𝑥1, . . . , 𝑥𝑟 ), with (𝑥1, . . . , 𝑥𝑟 ) being p-completely regular
relative to A, which allows to apply [13, Proposition 3.13]. The statement extends by descent from
the quasiregular semiperfect case to all quasisyntomic rings over F𝑝 (cf. Lemma 3.27).
Definition 3.5 of course makes sense without the hypothesis that R is p-completely smooth over 𝐴/𝐼.

But it would not give well-behaved objects; for instance, the Hodge-Tate comparison would not hold in
general9. The formalism of nonabelian derived functors allows to extend the definition of the prismatic
and Hodge-Tate complexes to all p-complete 𝐴/𝐼-algebras in a manner compatible with the Hodge-Tate
comparison theorem.
Definition 3.9. The derived prismatic cohomology functor 𝐿Δ−/𝐴 (respectively, the derived Hodge-Tate
cohomology functor 𝐿Δ−/𝐴) is the left Kan extension (cf. [12, Construction 2.1]) of the functor Δ−/𝐴
(respectively, Δ−/𝐴) from p-completely smooth 𝐴/𝐼-algebras to (𝑝, 𝐼)-complete commutative algebra
objects in (the ∞-category) 𝐷 (𝐴) (respectively, p-complete commutative algebra objects in 𝐷 (𝑅)), to
the category of p-complete 𝐴/𝐼-algebras.

For short, we will just write Δ𝑅/𝐴 (respectively, Δ𝑅/𝐴) for 𝐿Δ𝑅/𝐴 (respectively, 𝐿Δ𝑅/𝐴) in the
following.

Left Kan extension of the Postnikov (or canonical filtration) filtration leads to an extension of Hodge-
Tate comparison to derived prismatic cohomology.
Proposition 3.10. For any p-complete 𝐴/𝐼-algebra R, the derived Hodge-Tate complex Δ𝑅/𝐴 comes
equipped with a functorial increasing multiplicative exhaustive filtration Filconj

∗ in the category of p-
complete objects in 𝐷 (𝑅) and canonical identifications

grconj
𝑖 (Δ𝑅/𝐴) � ∧

𝑖𝐿𝑅/(𝐴/𝐼 ) {−𝑖}[−𝑖]
∧𝑝 .

Finally, let us indicate how these affine statements globalise.
Proposition 3.11. Let X be a p-adic formal scheme over Spf (𝐴/𝐼), which is locally the formal spectrum
of a p-complete ring with bounded 𝑝∞-torsion. There exists a functorially defined (𝑝, 𝐼)-complete
commutative algebra object Δ𝑋/𝐴 ∈ 𝐷 (𝑋, 𝐴), equipped with a 𝜑𝐴-linear map 𝜑𝑋 : Δ𝑋/𝐴→ Δ𝑋/𝐴, and
having the following properties:

• For any affine open 𝑈 = Spf (𝑅) in X, there is a natural isomorphism of (𝑝, 𝐼)-complete
commutative algebra objects in 𝐷 (𝐴) between 𝑅Γ(𝑈,Δ𝑋/𝐴) and Δ𝑅/𝐴, compatible with Frobenius.

• Set Δ𝑋/𝐴 = Δ𝑋/𝐴 ⊗
L
𝐴 𝐴/𝐼 ∈ 𝐷 (𝑋, 𝐴/𝐼). Then Δ𝑋/𝐴 is naturally an object of 𝐷 (𝑋), which comes

with a functorial increasing multiplicative exhaustive filtration Filconj
∗ in the category of p-complete

objects in 𝐷 (𝑋) and canonical identifications

grconj
𝑖 (Δ𝑋/𝐴) � ∧

𝑖𝐿𝑋/(𝐴/𝐼 ) {−𝑖}[−𝑖]
∧𝑝 .

9Nevertheless, in Section 3.4, we will check that the site-theoretic defined prismatic cohomology is well-behaved for quasiregular
semiperfectoid rings (as it agrees with the derived prismatic cohomology), and also for quasisyntomic rings
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3.2. Truncated Hodge-Tate cohomology and the cotangent complex

Let (𝐴, 𝐼) be a bounded prism, and let X be a p-adic 𝐴/𝐼-formal scheme. The following result also
appears in [13, Proposition 4.14]10. We give a similar argument (suggested to us by Bhatt), with more
details than in loc. cit. Since this result is not strictly necessary for the rest of the paper, the reader can
safely skip this subsection.
Proposition 3.12. There is a canonical isomorphism:

𝛼𝑋 : 𝐿𝑋/Spf (𝐴) {−1}[−1]∧𝑝 � Filconj
1 (Δ𝑋/𝐴),

where the right-hand side is the first piece of the increasing filtration on Δ𝑋/𝐴 introduced in Proposition
3.11.
Proof. We can assume that 𝑋 = Spf (𝑅) is affine. Write 𝐴̄ = 𝐴/𝐼. We want to prove that there is a
canonical isomorphism

𝛼𝑅 : 𝐿𝑅/𝐴{−1}[−1]∧𝑝 � Filconj
1 (Δ𝑅/𝐴).

First, let us note that by the transitivity triangle for 𝐴 → 𝐴̄ → 𝑅, the cotangent complex
𝐿𝑅/𝐴{−1}[−1]∧𝑝 sits inside a triangle

𝑅 � 𝑅 ⊗𝐴̄ 𝐿 𝐴̄/𝐴{−1}[−1]∧𝑝 → 𝐿𝑅/𝐴{−1}[−1]∧𝑝 → 𝐿𝑅/𝐴̄{−1}[−1]∧𝑝 ,

and the outer terms are isomorphic to 𝑅 � grconj
0 Δ𝑅/𝐴 and

grconj
1 Δ𝑅/𝐴 � 𝐿𝑅/𝐴̄{−1}[−1]∧𝑝 .

To construct the isomorphism 𝛼𝑅, it suffices to restrict to 𝐴̄→ 𝑅𝑝-completely smooth first, and then
Kan extend. Thus, assume from now on that R is p-completely smooth over 𝐴̄.

Let (𝐵, 𝐽) ∈ (𝑅/𝐴)Δ, that is, (𝐵, 𝐽) is a prism over (𝐴, 𝐼) with a morphism 𝜄 : 𝑅 → 𝐵/𝐽. Pulling
back the extension of A-algebras

0→ 𝐽/𝐽2 → 𝐵/𝐽2 → 𝐵/𝐽 → 0

along 𝜄 : 𝑅 → 𝐵/𝐽 defines an extension of R by 𝐽/𝐽2 � 𝐵/𝐽{1}, and as such, is thus classified by a
morphism

𝛼′𝑅 : 𝐿∧𝑝

𝑅/𝐴
→ 𝐵/𝐽{1}[1] .

Passing to the (homotopy) limit over all (𝐵, 𝐽) ∈ (𝑅/𝐴)Δ then defines (after shifting and twisting) the
morphism

𝛼𝑅 : 𝐿𝑅/𝐴{−1}[−1]∧𝑝 → 𝜏≤1Δ𝑅/𝐴.

Concretely, if 𝑅 = 𝐴̄〈𝑥〉, then

𝐿
∧𝑝

𝑅/𝐴
� 𝑅 ⊗𝐴̄ 𝐼/𝐼2 [1] ⊕ 𝑅𝑑𝑥.

On the summand 𝑅⊗𝐴̄ 𝐼/𝐼
2 [1], the morphism 𝛼′𝑅 is simply the base extension of 𝐼/𝐼2 → 𝐽/𝐽2 as follows

by considering the case 𝐴̄ = 𝑅. On the summand 𝑅𝑑𝑥, the morphism 𝛼′𝑅 is (canonically) represented
by the 𝐽/𝐽2-torsor of preimages of 𝜄(𝑥) in 𝐵/𝐽2 and factors as 𝑅 𝜄

−→ 𝐵/𝐽 → 𝐵/𝐽{1}[1] with the second

10Recently, Illusie has also obtained related results in characteristic p (private communication).
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morphism the connecting morphism for 0→ 𝐵/𝐽{1} → 𝐵/𝐽2 → 𝐵/𝐽 → 0. Thus, after passing to the
limit, we get a diagram

𝑅

�� ����
���

���
��

Δ𝑅/𝐴
�� Δ𝑅/𝐴{1}[1]

and on 𝐻0, the horizontal morphism induces the Bockstein differential

𝛽 : 𝐻0 (Δ𝑅/𝐴) → 𝐻0(Δ𝑅/𝐴{1}[1]) = 𝐻1 (Δ𝑅/𝐴){1}.

Thus, the image of 𝑑𝑥 ∈ 𝐻0(𝐿
∧𝑝

𝑅/𝐴
) under 𝛼𝑅 is 𝛽(𝜄(𝑥)). Therefore, we see that on 𝐻0, the morphism

𝛼𝑅 induces the identity under the identifications

(Ω1
𝑅/𝐴̄
)∧𝑝 � 𝐻0 (𝐿

∧𝑝

𝑅/𝐴
)

and

(Ω1
𝑅/𝐴̄
)∧𝑝 � 𝐻1(Δ𝑅/𝐴){1}

(the second is the Hodge-Tate comparison). Moreover, the morphism

𝑅 ⊗𝐴̄ 𝐼/𝐼2 � 𝐻−1(𝐿
∧𝑝

𝑅/𝐴
)

𝐻−1 (𝛼𝑅)
−−−−−−−→ 𝐻−1 (Δ𝑅/𝐴{1}[1])

is the canonical one obtained by tensoring 𝑅 → 𝐻0 (Δ𝑅/𝐴) with 𝐼/𝐼2. By functoriality (and as Ω1
𝑅/𝐴

is
generated by 𝑑𝑟 for 𝑟 ∈ 𝑅), we can conclude that for every p-completely smooth algebra R over A

𝛼𝑅 : 𝐻𝑖 (𝐿
∧𝑝

𝑅/𝐴
) → 𝐻𝑖 (Δ𝑅/𝐴{1}[1])

induces the canonical morphism, and thus, that 𝛼𝑅 is an isomorphism in general. �

Recall the following proposition, which is a general consequence of the theory of the cotangent
complex.

Proposition 3.13. Let S be a ring, 𝐼 ⊆ 𝑆 an invertible ideal and X a flat 𝑆 := 𝑆/𝐼-scheme. Then the
class 𝛾 ∈ Ext2O𝑋

(𝐿𝑋/Spec(𝑆) , 𝐼/𝐼
2 ⊗𝑆 O𝑋 ) defined by 𝐿𝑋/Spec(𝑆) is ± the obstruction class for lifting X

to a flat 𝑆/𝐼2-scheme.

Proof. See [24, Chapter III.2.1.2.3], respectively, [24, Chapter III.2.1.3.3]. �

As before, let (𝐴, 𝐼) be a bounded prism.

Corollary 3.14. Let X be a p-completely flat p-adic formal scheme over 𝐴/𝐼. The complex Filconj
1 Δ𝑋/𝐴

splits in 𝐷 (𝑋) (i.e. is isomorphic in 𝐷 (𝑋) to a complex with zero differentials) if and only if X admits
a lifting to a p-completely flat formal scheme over 𝐴/𝐼2.

Proof. Indeed, Filconj
1 Δ𝑋/𝐴 splits if and only if the class in

Ext1O𝑋
(grconj

1 Δ𝑋/𝐴, grconj
0 Δ𝑋/𝐴) = Ext2O𝑋

(𝐿
∧𝑝

𝑋/Spf (𝐴/𝐼 ) {−1},O𝑋 )

defined by Filconj
1 (Δ𝑋/𝐴) vanishes. Proposition 3.12 shows that this class is the same as the class defined

by the p-completed cotangent complex 𝐿
∧𝑝

𝑋/Spf (𝐴) {−1}. Lifting X to a p-completely flat formal scheme
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over 𝐴/𝐼2 is the same as lifting 𝑋 ⊗𝐴/𝐼 𝐴/(𝐼, 𝑝𝑛) to a flat scheme over 𝐴/(𝐼2, 𝑝𝑛) for all 𝑛 ≥ 1 (here,
we use that (𝐴, 𝐼) is bounded in order to know that 𝐴/𝐼 is classically p-complete). One concludes by
applying Proposition 3.13, together with the fact that the p-completion of the cotangent complex does
not affect the (derived) reduction modulo 𝑝𝑛. �

3.3. Quasisyntomic rings

We shortly recall some key definitions from [12, Chapter 4].
Definition 3.15. A ring R is quasisyntomic if R is p-complete with bounded 𝑝∞-torsion and if the
cotangent complex 𝐿𝑅/Z𝑝 has p-complete Tor-amplitude in [−1, 0]11. The category of all quasisyntomic
rings is denoted by QSyn.

Similarly, a map 𝑅 → 𝑅′ of p-complete rings with bounded 𝑝∞-torsion is a quasisyntomic morphism
(respectively, a quasisyntomic cover) if 𝑅′ is p-completely flat (respectively, p-completely faithfully flat)
over R and 𝐿𝑅′/𝑅 ∈ 𝐷 (𝑅

′) has p-complete Tor-amplitude in [−1, 0].
For a quasisyntomic ring R, the p-completed cotangent complex (𝐿𝑅/Z𝑝 )

∧
𝑝 will thus be in 𝐷 [−1,0]

(cf. [12, Lemma 4.6]).
Remark 3.16. This definition extends (in the p-complete world) the usual notion of locally complete
intersection ring and syntomic morphism (flat and local complete intersection) to the non-Noetherian,
non finite-type setting, as shown by the next example.
Example 3.17.
1. Any p-complete l.c.i. Noetherian ring is in QSyn (cf. [2, Theorem 1.2]).
2. There are also big rings in QSyn. For example, any (integral) perfectoid ring (i.e. a ring R which

is p-complete, such that 𝜋𝑝 = 𝑝𝑢 for some 𝜋 ∈ 𝑅 and 𝑢 ∈ 𝑅×, Frobenius is surjective on 𝑅/𝑝 and
ker(𝜃) is principal) is in QSyn (cf. [12, Proposition 4.18]). We give a short explanation: if R is such
a ring, the transitivity triangle for

Z𝑝 → 𝐴inf (𝑅) → 𝑅

and the fact that 𝐴inf (𝑅) is relatively perfect over Z𝑝 modulo p imply that after applying − ⊗L𝑅 𝑅/𝑝,
𝐿𝑅/Z𝑝 and 𝐿𝑅/𝐴inf (𝑅) identify. But

𝐿𝑅/𝐴inf (𝑅) = ker(𝜃)/ker(𝜃)2 [1] = 𝑅[1],

as ker(𝜃) is generated by a nonzero divisor12.
3. As a consequence of (ii), the p-completion of a smooth algebra over a perfectoid ring is also

quasisyntomic, as well as any p-complete bounded 𝑝∞-torsion ring which can be presented as the
quotient of an integral perfectoid ring by a finite regular sequence.
The (opposite of the) category QSyn is endowed with the structure of a site.

Definition 3.18. Let QSynop
qsyn be the site whose underlying category is the opposite category of the

category QSyn and endowed with the Grothendieck topology generated by quasisyntomic covers.
If 𝑅 ∈ QSyn, we will denote by (𝑅)QSYN (respectively, (𝑅)qsyn) the big (respectively, the small)

quasisyntomic site of R, given by all p-complete with bounded 𝑝∞-torsion R-algebras (respectively, by
all quasisyntomic R-algebras, i.e. all p-complete with bounded 𝑝∞-torsion R-algebras S, such that the
structure map 𝑅 → 𝑆 is quasisyntomic) endowed with the quasisyntomic topology.

The authors of [12] isolated an interesting class of quasisyntomic rings.

11This means that the complex 𝑀 = 𝐿𝑅/Z𝑝 ⊗
L
𝑅 𝑅/𝑝 ∈ 𝐷 (𝑅/𝑝) is such that 𝑀 ⊗L𝑅 𝑁 ∈ 𝐷 [−1,0] (𝑅/𝑝) for any

𝑅/𝑝-module N.
12One also proves that 𝑅 [𝑝∞] = 𝑅 [𝑝], which shows that R has bounded 𝑝∞-torsion.

https://doi.org/10.1017/fmp.2022.22 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.22


Forum of Mathematics, Pi 19

Definition 3.19. A ring R is quasiregular semiperfectoid if 𝑅 ∈ QSyn and there exists a perfectoid ring
S mapping surjectively to R.

Example 3.20. Any perfectoid ring, or any p-complete bounded 𝑝∞-torsion quotient of a perfectoid
ring by a finite regular sequence, is quasiregular semiperfectoid.

The interest in quasiregular semiperfectoid rings comes from the fact that they form a basis of the
site QSynop

qsyn.

Proposition 3.21. Let R be quasisyntomic ring. There exists a quasisyntomic cover 𝑅 → 𝑅′, with 𝑅′

quasiregular semiperfectoid. Moreover, all terms of the 𝐶̆ech nerve 𝑅′• are quasiregular semiperfectoid.

Proof. See [12, Lemma 4.27] and [12, Lemma 4.29]. �

Finally, recall the following result, which is [13, Proposition 7.11].

Proposition 3.22. Let (𝐴, 𝐼) be a bounded prism and R be a quasisyntomic 𝐴/𝐼-algebra. There exists
a prism (𝐵, 𝐼𝐵) ∈ (𝑅/𝐴)Δ, such that the map 𝑅 → 𝐵/𝐼𝐵 is p-completely faithfully flat. In particular,
if 𝐴/𝐼 → 𝑅 is a quasisyntomic cover, then (𝐴, 𝐼) → (𝐵, 𝐼𝐵) is a faithfully flat map of prisms.

Proof. Since the proof is short, we recall it. Choose a surjection

𝐴/𝐼 〈𝑥 𝑗 , 𝑗 ∈ 𝐽〉 → 𝑅,

for some index set J. Set

𝑆 = 𝐴/𝐼 〈𝑥1/𝑝∞
𝑗 〉⊗̂

L
𝐴/𝐼 〈𝑥 𝑗 , 𝑗∈𝐽 〉𝑅.

Then 𝑅 → 𝑆 is a quasisyntomic cover, and by assumption, 𝐴/𝐼 → 𝑅 is quasisyntomic: hence, the map
𝐴/𝐼 → 𝑆 is quasisyntomic. Moreover the p-completion of Ω1

𝑆/(𝐴/𝐼 )
is zero. We deduce that the map

𝐴/𝐼 → 𝑆 is such that (𝐿𝑆/(𝐴/𝐼 ) )
∧𝑝 has p-complete Tor-amplitude in degree [−1,−1]. Therefore, by the

Hodge-Tate comparison, the derived prismatic cohomology Δ𝑆/𝐴 is concentrated in degree 0 and the
map 𝑆 → Δ𝑆/𝐴 is p-completely faithfully flat. One can thus just take 𝐵 = Δ𝑆/𝐴. �

As observed in [13], a corollary of Proposition 3.22 is André’s lemma.

Theorem 3.23 (André’s lemma). Let R be perfectoid ring. Then there exists a p-completely faithfully
flat map 𝑅 → 𝑆 of perfectoid rings, such that S is absolutely integrally closed, that is, every monic
polynomial with coefficients in S has a solution.

Proof. This is [13, Theorem 7.12]. Since the proof is also short, we recall it. Write 𝑅 = 𝐴/𝐼, for a
perfect prism (𝐴, 𝐼) (Proposition 2.8). The p-complete R-algebra 𝑅̃ obtained by adding roots of all
possible monic polynomials over R is a quasisyntomic cover, so by Proposition 3.22, we can find a prism
(𝐵, 𝐽) over (𝐴, 𝐼) with a p-completely faithfully flat morphism 𝑅̃ → 𝑅1 := 𝐵/𝐽. Moreover, we can (and
do) assume that (𝐵, 𝐽) is a perfect prism. Indeed, as (𝐴, 𝐼) is perfect, the underlying A-algebra of the
perfection13 of (𝐵, 𝐽) is the (𝑝, 𝐼)-completion of a filtered colimit of (𝑝, 𝐼)-completely faithfully flat
A-algebras, hence is (𝑝, 𝐼)-completely faithfully flat. Transfinitely iterating the construction 𝑅 ↦→ 𝑅1
produces the desired ring S. �

Let us recall that a functor 𝑢 : C → D between sites is cocontinuous (cf. [52, Tag 00XI]) if for every
object 𝐶 ∈ C and any covering {𝑉 𝑗 → 𝑢(𝐶)} 𝑗∈𝐽 of 𝑢(𝐶) in D there exists a covering {𝐶𝑖 → 𝐶}𝑖∈𝐼 of C
in C, such that the family {𝑢(𝐶𝑖) → 𝑢(𝐶)}𝑖∈𝐼 refines the covering {𝑉 𝑗 → 𝑢(𝐶)} 𝑗∈𝐽 . For a cocontinuous
functor 𝑢 : C → D, the functor

𝑢−1 : Shv(D) → Shv(C), F → (F ◦ 𝑢)♯

13The perfection of a prism is the (𝑝, 𝐼 )-derived completion (or classical) of its colimit along 𝜑 (see [13]).
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(here, ()♯ denotes sheafification) is left-exact (even exact) with right adjoint

G ∈ Shv(C) ↦→ (𝐷 ↦→ lim
←−−

{𝑢 (𝐶)→𝐷 }op

G (𝐶)).

Thus, a cocontinuous functor 𝑢 : C → D induces a morphism of topoi

𝑢 : Shv(C) → Shv(D).

Note that in the definition of a cocontinuous functor, the morphisms 𝑢(𝐶 𝑗 ) → 𝑢(𝐶) are not required to
form a covering of C.

Corollary 3.24. Let R be a p-complete ring. The functor 𝑢 : (𝑅)Δ → (𝑅)QSYN, sending (𝐴, 𝐼) to

𝑅 → 𝐴/𝐼,

is cocontinuous. Consequently, it defines a morphism of topoi, still denoted by u:

𝑢 : Shv((𝑅)Δ) → Shv((𝑅)QSYN).

Proof. Immediate from the definition (cf. [52, Tag 00XJ]) and the previous proposition. �

This yields the following important corollary.

Corollary 3.25. Let R be a p-complete ring. Let

0→ 𝐺1 → 𝐺2 → 𝐺3 → 0

be a short exact sequence of abelian sheaves on (𝑅)QSYN. Then the sequence

0→ 𝑢−1(𝐺1) → 𝑢−1(𝐺2) → 𝑢−1 (𝐺3) → 0

is an exact sequence on (𝑅)Δ. This applies, for example, when 𝐺1, 𝐺2, 𝐺3 are finite locally free group
schemes over R.

Proof. The first assertion is just saying that 𝑢−1 is exact, as u is a cocontinuous functor ([52, Tag 00XL]).
The second assertion follows, as any finite locally free group scheme is syntomic (cf. [16, Proposition
2.2.2]). �

3.4. Prismatic cohomology of quasiregular semiperfectoid rings

In this short subsection, we collect a few facts about prismatic cohomology of quasiregular semiperfec-
toid rings for later reference.

For the moment, fix a bounded base prism (𝐴, 𝐼) and let R be p-complete 𝐴/𝐼-algebra. There are
several cohomologies attached to R:

1. The derived prismatic cohomology

Δ𝑅/𝐴

of R over (𝐴, 𝐼) defined in Definition 3.9 via left Kan extension of prismatic cohomology.
2. The cohomology

Δinit
𝑅/𝐴 := 𝑅Γ((𝑅/𝐴)Δ,OΔ)

of the prismatic site of (𝑅/𝐴)Δ (with its p-completely faithfully flat topology).
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3. Finally (and only for technical purposes),

Δinit,unbdd
𝑅/𝐴 := 𝑅Γ((𝑅/𝐴)Δ,unbdd,OΔ),

the prismatic cohomology of R with respect to the site (𝑅/𝐴)Δ,unbdd of not necessarily bounded prisms
(𝐵, 𝐽) over (𝐴, 𝐼) together with a morphism 𝑅 → 𝐵/𝐽 of 𝐴/𝐼-algebras. We equip (𝑅/𝐴)Δ,unbdd with
the chaotic topology.
Assume from now on that (𝐴, 𝐼) is a perfect prism and that 𝐴/𝐼 → 𝑅 is a surjection with R

quasiregular semiperfectoid. The prism Δinit,unbdd
𝑅/𝐴

admits then a more concrete (but, in general, rather
untractable) description. Let K be the kernel of 𝐴→ 𝑅. Then

Δinit,unbdd
𝑅/𝐴 � 𝐴

{
𝐾

𝐼

}∧(𝑝,𝐼 )

is the prismatic envelope of the 𝛿-pair (𝐴, 𝐾) from [8, Lemma V.5.1] as follows from the universal
property of the latter. In particular, the site (𝑅/𝐴)Δ,unbdd has a final object14.
Proposition 3.26. Let as above (𝐴, 𝐼) be a perfect prism and R quasiregular semiperfectoid with a
surjection 𝐴/𝐼 � 𝑅. Then the canonical morphisms induce isomorphisms

Δ𝑅/𝐴 � Δinit
𝑅/𝐴 � Δinit,unbdd

𝑅/𝐴

as 𝛿-rings.
Proof. This is [13, Proposition 7.10] (the second isomorphism, i.e. the fact that Δinit,unbb

𝑅/𝐴
is bounded,

follows from the last assertion of loc. cit.). �

If 𝑝𝑅 = 0, that is, R is quasiregular semiperfect, there is, moreover, the universal p-complete PD-
thickening

𝐴crys (𝑅)

of R (cf. [50, Proposition 4.1.3]). The ring 𝐴crys(𝑅) is p-torsion free by [12, Theorem 8.14].
Lemma 3.27. Let (𝐴, 𝐼), R be as above, and assume that 𝑝𝑅 = 0. Then there is a canonical 𝜑-equivariant
isomorphism

Δ𝑅/𝐴 � 𝐴crys (𝑅).

Proof. As 𝐴crys (𝑅) is p-torsion free (cf. [12, Theorem 8.14]) and carries a canonical Frobenius lift,
there we get a natural morphism

Δ𝑅/𝐴→ 𝐴crys(𝑅).

Conversely, the kernel of the natural morphism (cf. Theorem 3.29, which does not depend on this lemma)

𝜃 : Δ𝑅/𝐴→ 𝑅

has divided powers (as one checks similarly to [12, Proposition 8.12], using that the proof of Theorem 3.7
goes through in the syntomic case, cf. Remark 3.8). This provides a canonical morphism

𝐴crys(𝑅) → Δ𝑅

in the other direction. Similarly, to [12, Theorem 8.14], one checks that both are inverse to each other. �

14Up to now, this discussion did not use that R is quasiregular, it was sufficient that 𝐴/𝐼 → 𝑅 is surjective.
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Remark 3.28. Both rings Δ𝑅/𝐴 and 𝐴crys (𝑅) are naturally 𝑊 (𝑅♭)-algebras, but the isomorphism of
Lemma 3.27 restricts to the Frobenius on 𝑊 (𝑅♭). Concretely, if 𝑅 = 𝑅♭/𝑥 for some nonzero divisor
𝑥 ∈ 𝑅♭, then

Δ𝑅/𝑊 (𝑅♭) � 𝑊 (𝑅♭)

{
𝑥

𝑝

}∧
and (cf. [13, Corollary 2.37])

𝐴crys(𝑅) � 𝑊 (𝑅♭)

{
𝑥𝑝

𝑝

}∧
� Δ𝑅/𝑊 (𝑅♭) ⊗𝑊 (𝑅♭) ,𝜑 𝑊 (𝑅♭).

The prismatic cohomology Δ𝑅 of a quasiregular semiperfectoid ring R comes equipped with its
Nygaard filtration, [13, Section 12], an N-indexed decreasing multiplicative filtration defined for 𝑖 ≥ 0
by

N ≥𝑖 (Δ𝑅) = {𝑥 ∈ Δ𝑅, 𝜑(𝑥) ∈ 𝑑
𝑖Δ𝑅},

d denoting a generator of the ideal I. The graded pieces of the Nygaard filtration can be described as
follows.

Theorem 3.29. Let R be a quasiregular semiperfectoid ring. Then

N ≥𝑖 (Δ𝑅)/N ≥𝑖+1(Δ𝑅) � Filconj
𝑖 (Δ𝑅){𝑖}

for 𝑖 ≥ 0. In particular, Δ𝑅/N ≥1Δ𝑅 � 𝑅.

Here, Filconj
• (Δ𝑅) denotes the conjugate filtration on Δ𝑅 with graded pieces given by grconj

𝑖 (Δ𝑅) �
Λ𝑖𝐿

∧𝑝

𝑅/𝑆
[−𝑖], for any choice of perfectoid ring S mapping to R (cf. Proposition 3.10).

Proof. See [13, Theorem 12.2]. �

3.5. The Künneth formula in prismatic cohomology

The Hodge-Tate comparison implies a Künneth formula. Here is the precise statement. Note that for a
bounded prism (𝐴, 𝐼), the functor 𝑅 ↦→ Δ𝑅/𝐴 is naturally defined on all derived p-complete simplicial
𝐴/𝐼-algebras.

Proposition 3.30. Let (𝐴, 𝐼) be a bounded prism. Then the functor

𝑅 ↦→ Δ𝑅/𝐴

from derived p-complete simplicial rings over 𝐴/𝐼 to derived (𝑝, 𝐼)-complete 𝐸∞-algebras over A
preserves tensor products, that is, for all morphism 𝑅1 ← 𝑅3 → 𝑅2 the canonical morphism

Δ𝑅1/𝐴⊗̂
L

Δ𝑅3/𝐴
Δ𝑅2/𝐴→ Δ

𝑅1 ⊗̂
L

𝑅3 𝑅2/𝐴

is an equivalence.
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Proof. Using [12, Construction 2.1] (respectively, [40, Proposition 5.5.8.15]) the functor 𝑅 ↦→ Δ𝑅/𝐴,
which is the left Kan extension from p-completely smooth algebras to all derived p-complete simplicial
𝐴/𝐼-algebras, commutes with colimits if it preserves finite coproducts. Clearly, Δ(𝐴/𝐼 )/𝐴 � 𝐴, that
is Δ−/𝐴 preserves the final object. Moreover, for 𝑅, 𝑆𝑝-completely smooth over 𝐴/𝐼, the canonical
morphism

Δ𝑅/𝐴⊗̂
L
𝐴Δ𝑆/𝐴→ Δ𝑆 ⊗̂𝑅/𝐴

is an isomorphisms because this I-completeness may be checked for Δ−/𝐴 where it follows from the
Hodge-Tate comparison. �

Gluing the isomorphism in Proposition 3.30, we can derive, using as well the projection formula and
flat base change for quasicoherent cohomology, the following statement.

Corollary 3.31. If X and Y are quasicompact quasiseparated p-completely smooth p-adic formal
schemes over Spf (𝐴/𝐼)), then

𝑅Γ(𝑋 ×Spf (𝐴/𝐼 ) 𝑌,Δ𝑋×Spf (𝐴/𝐼 )𝑌 /𝐴) � 𝑅Γ(𝑋,Δ𝑋/𝐴)⊗̂
L
𝐴𝑅Γ(𝑌,Δ𝑌 /𝐴).

4. Prismatic Dieudonné theory for p-divisible groups

This chapter is the heart of this paper. We construct the prismatic Dieudonné functor over any quasisyn-
tomic ring and prove that it gives an antiequivalence between p-divisible groups over R and admissible
prismatic Dieudonné crystals over R. The strategy to do this is to use quasisyntomic descent to reduce
to the case where R is quasiregular semiperfectoid, in which case, the (admissible) prismatic Dieudonné
crystals over R can be replaced by simpler objects, the (admissible) prismatic Dieudonné modules.

4.1. Abstract prismatic Dieudonné crystals and modules

Let R be a p-complete ring. We defined in Corollary 3.24 a morphism of topoi:

𝑢 : Shv((𝑅)Δ) → Shv((𝑅)QSYN).

We let

𝜖∗ : Shv((𝑅)QSYN) → Shv((𝑅)qsyn)

be the functor defined by 𝜖∗F (𝑅′) = F (𝑅′) for F ∈ Shv((𝑅)QSYN) and 𝑅′ ∈ (𝑅)qsyn. It has a left
adjoint 𝜖 ♮ : Shv((𝑅)qsyn) → Shv((𝑅)QSYN). We warn the reader that the restriction functor from the
big to the small quasisyntomic site does not induce a morphism of sites15, that is this left adjoint need
not preserve finite limits (which explains why we denoted it 𝜖 ♮ instead of 𝜖−1).

We let

𝑣∗ = 𝜖∗ ◦ 𝑢∗ : Shv((𝑅)Δ) → Shv((𝑅)qsyn)

and

𝑣♮ = 𝑢−1 ◦ 𝜖 ♮ : Shv((𝑅)qsyn) → Shv((𝑅)Δ).

We still have the formula 𝑅𝑣∗ � 𝑅𝜀∗ ◦ 𝑅𝑢∗ as 𝜀∗ is exact.

15We thank Kazuhiro Ito for drawing our attention to this point.
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Definition 4.1. Let R be a p-complete ring. We define:

Opris := 𝑣∗OΔ ; N ≥1Opris := 𝑣∗N ≥1OΔ ; Ipris := 𝑣∗IΔ,

where IΔ ⊆ OΔ denotes the canonical invertible ideal sheaf sending a prism (𝐵, 𝐽) ∈ (𝑅)Δ to J. The
sheaf Opris is endowed with a Frobenius lift 𝜑.

Although these sheaves are defined in general, we will only use them over quasisyntomic rings.

Proposition 4.2. Let R be a quasisyntomic ring. The quotient sheaf

Opris/N ≥1Opris

is isomorphic to the structure sheaf O of (𝑅)qsyn.

Proof. It is enough to produce such an isomorphism functorially on a basis of (𝑅)qsyn. By Propo-
sition 3.21, we can thus assume that R is quasiregular semiperfectoid. In this case, we conclude by
Theorem 3.29. �

Definition 4.3. Let R be a p-complete ring. A prismatic crystal over R is an OΔ-module M on the
prismatic site (𝑅)Δ of R, such that for all morphisms (𝐵, 𝐽) → (𝐵′, 𝐽 ′) in (𝑅)Δ the canonical morphism

M(𝐵, 𝐽) ⊗𝐵 𝐵′→M(𝐵′, 𝐽 ′)

is an isomorphism.

Note that a prismatic crystal in finitely generated projective OΔ-modules (respectively, in finitely
generated projective OΔ-modules) is the same thing as a finite locally free OΔ-module (respectively, a
finite locally free OΔ-module). In what follows, we will essentially consider only this kind of prismatic
crystal.

Proposition 4.4. Let R be a quasisyntomic ring. The functors 𝑣∗ and 𝑣∗(−) := OΔ ⊗𝑣♮Opris 𝑣♮ (−) induce
equivalences between the category of finite locally free OΔ-modules and the category of finite locally
free Opris-modules.

Proof. Because 𝑣∗(OΔ) = Opris, it is clear that for all finite locally free Opris-modules M, the canonical
morphism

M→ 𝑣∗(𝑣
∗(M))

is an isomorphism as this can be checked locally on (𝑅)qsyn. Conversely, let N be a finite locally free
OΔ-module. We have to show that the counit

𝑣∗𝑣∗(N ) → N

is an isomorphism. For any morphism 𝑅 → 𝑅′ with 𝑅′ quasisyntomic, there are equivalences

(𝑅)Δ/ℎ𝑅′ � (𝑅′)Δ , (𝑅)qsyn/𝑅
′ � (𝑅′)qsyn

of slice topoi, where ℎ𝑅′ (𝐵, 𝐽) := Hom𝑅 (𝑅
′, 𝐵/𝐽). By passing to a quasisyntomic cover 𝑅 → 𝑅′, we

can therefore assume that R is quasiregular semiperfectoid, in particular, that the site (𝑅)Δ has a final
object given by Δ𝑅. By (𝑝, 𝐼)-completely faithfully flat descent of finitely generated projective modules
over (𝑝, 𝐼)-complete rings of bounded (𝑝, 𝐼)-torsion (cf. Proposition A.3), the category of finite locally
free OΔ-modules on (𝑅)Δ is equivalent to finitely generated projective Δ𝑅-modules16. As the morphism
Δ𝑅 → 𝑅 (the ‘𝜃’-map) is henselian along its kernel, cf. Lemma 4.28, finite locally free Δ𝑅-modules split

16The nontrivial point is that the global sections of a finite locally free OΔ-module are locally free over Δ𝑅 .
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on the pullback of an open cover of Spf (𝑅). Thus, after passing to a quasisyntomic cover of Spf (𝑅), we
may assume that N is finite free. Then the isomorphism

𝑣∗𝑣∗(N ) � N

is clear. �

Definition 4.5. Let R be a quasisyntomic ring. A prismatic Dieudonné crystal over R is a finite locally
free Opris-module M together with 𝜑-linear morphism

𝜑M : M→M

whose linearisation 𝜑∗M→M has its cokernel killed by Ipris. We call a prismatic Dieudonné crystal
(M, 𝜑M) admissible if the image of the composition

M 𝜑M
−−−→M→M/Ipris ·M

is a finite locally free O-module FM, such that the map (Opris/Ipris) ⊗O FM →M/IprisM induced
by 𝜑M is a monomorphism.

Here, M/Ipris ·M is an O � Opris/N ≥1Opris-module, cf. Proposition 4.2, via the composition
Opris 𝜑

−→ Opris → Opris/IprisO.

Remark 4.6. For a prismatic Dieudonné crystal (M, 𝜑M), the linearisation 𝜑∗M →M of the mor-
phism 𝜑M : M →M is an isomorphism after inverting a local generator 𝜉 of Ipris and, in particular,
is injective, since 𝜑∗M is 𝜉-torsion free.

Remark 4.7. Let (M, 𝜑M) be a prismatic Dieudonné crystal. Write FilM = 𝜑−1
M (Ipris.M). Consider

the diagram (defining 𝑄, 𝐾)

0 �� 𝜑∗FilM 𝜑M ��

��

Ipris.M ��

��

𝑄 ��

𝛼

��

0

0 �� 𝜑∗M 𝜑M �� M �� 𝐾 �� 0.

As Ipris.𝐾 = 0 (by definition of a prismatic Dieudonné crystal), the map 𝛼 is zero. The snake lemma
implies, therefore, that there exists a short exact sequence

0→ 𝑄 → 𝜑∗M/𝜑∗FilM � Opris/Ipris ⊗O FM
𝛽
−→M/IprisM→ 𝐾 → 0

(where, as in Definition 4.5, we wrote FM = M/FilM). Hence, we see that the injectivity of 𝛽
(condition required in the definition of admissibility) is equivalent to the condition that 𝑄 = 0.

Definition 4.8. Let R be a quasisyntomic ring. We denote by DM(𝑅) the category of prismatic
Dieudonné crystals over R (with Opris-linear morphisms commuting with Frobenius) and by DMadm(𝑅)
the full subcategory of admissible objects.

Proposition 4.9. The fibred category of (usual or admissible) prismatic Dieudonné crystals over the
category QSyn of quasisyntomic rings endowed with the quasisyntomic topology is a stack.

Proof. This follows from the definition, because by general properties of topoi, modules under Opris

and O form a stack for the quasisyntomic topology on (𝑅)qsyn. �

For quasiregular semiperfectoid rings, these abstract objects have a more concrete incarnation,
which we explain now. Let R be a quasiregular semiperfectoid ring, and let (Δ𝑅, 𝐼) be the prism
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associated with R. Note that I is necessarily principal as there exists a perfectoid ring mapping to R.
Recall (Theorem 3.29) that

𝜃 : Δ𝑅/N ≥1Δ𝑅 � 𝑅

is an isomorphism.

Definition 4.10. A prismatic Dieudonné module over R is a finite locally free Δ𝑅-module M together
with a 𝜑-linear morphism

𝜑𝑀 : 𝑀 → 𝑀,

whose linearisation 𝜑∗𝑀 → 𝑀 has its cokernel killed by I. As in 4.5, we call a prismatic Dieudonné
module (𝑀, 𝜑𝑀 ) over R admissible if the image of the composition

𝑀
𝜑𝑀
−−−→ 𝑀 → 𝑀/𝐼 · 𝑀

is a finite locally free 𝑅 � Δ𝑅/N ≥1Δ𝑅-module 𝐹𝑀 , such that the map Δ𝑅/𝐼Δ𝑅 ⊗𝑅 𝐹𝑀 → 𝑀/𝐼𝑀
induced by 𝜑𝑀 is a monomorphism.

Remark 4.11. For a prismatic Dieudonné module (𝑀, 𝜑𝑀 ), the linearisation 𝜑∗𝑀 → 𝑀 of the mor-
phism 𝜑𝑀 : 𝑀 → 𝑀 is an isomorphism after inverting a generator 𝜉 of I and, in particular, is injective,
since 𝜑∗𝑀 is 𝜉-torsion free. In 4.25, we will prove that these properties imply that the cokernel of
𝜑∗𝑀 → 𝑀 is a finite projective Δ𝑅/𝐼-module.

If R is perfectoid, one has

(Δ𝑅, 𝐼) = (𝐴inf (𝑅), (𝜉)).

A prismatic Dieudonné module is the same thing as a minuscule Breuil-Kisin-Fargues module ([11])
over 𝐴inf (𝑅) with respect to 𝜉. In fact, the situation for perfectoid rings is simple, as shown by the
following proposition.

Proposition 4.12. Let R be a perfectoid ring. Any prismatic Dieudonné module over R is admissible.

We postpone the proof, it will be given below after Proposition 4.29.

Proposition 4.13. Let R be a quasiregular semiperfectoid ring. The functor

(M, 𝜑M) ↦→ (𝑣
∗M(Δ𝑅, 𝐼), 𝑣

∗𝜑M (Δ, 𝐼))

of evaluation on the initial prism (Δ𝑅, 𝐼) induces an equivalence between the category of (usual or
admissible) prismatic Dieudonné crystals over R and the category of (usual or admissible) prismatic
Dieudonné modules over R, with quasi-inverse

(𝑀, 𝜑𝑀 ) ↦→ (𝑀 ⊗Δ𝑅
Opris, 𝜑𝑀 ⊗ 𝜑Opris).

Proof. Let us call 𝐺𝑅, respectively, 𝐹𝑅, the first, respectively, the second, functor displayed in the
statement of the proposition. Using Proposition 4.4 and the equivalence between finite locally free OΔ-
modules and finite locally free Δ𝑅-modules, one immediately gets that 𝐹𝑅 is an equivalence between
the category of prismatic Dieudonné crystals over R and the category of prismatic Dieudonné modules
over R, with quasi-inverse given by 𝐺𝑅. Hence, we only need to check that the admissibility conditions
on both sides agree.

Let (𝑀, 𝜑𝑀 ) be an admissible Dieudonné module over R.
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Lemma 4.14. Let 𝑅 → 𝑅′ be a quasisyntomic morphism, with 𝑅′ being also quasiregular semiperfec-
toid. Let (𝑀 ′, 𝜑𝑀 ′ ) := (𝑀 ⊗Δ𝑅

Δ𝑅′ , 𝜑𝑀 ⊗ 𝜑Δ𝑅′
) be the base change of (𝑀, 𝜑𝑀 ). Then

𝜑−1
𝑀 ′ (𝐼Δ𝑅′ .𝑀

′) = N ≥1Δ𝑅′ .𝑀
′ + Im(𝜑−1

𝑀 (𝐼 .𝑀) ⊗Δ𝑅
Δ𝑅′ → 𝑀 ′).

The lemma follows from Proposition 4.29 (and Remark 4.21), which will be proved below; let us
take it for granted and finish the proof. For any quasiregular semiperfectoid ring 𝑅′ quasisyntomic over
R, note that, using the notations from the lemma,

Γ(𝑅′, 𝐹𝑅 (𝑀)) = 𝑀 ′, Γ(𝑅′, 𝜑−1
𝐹𝑅 (𝑀 )

(Ipris.𝐹𝑅 (𝑀))) = 𝜑−1
𝑀 ′ (𝐼Δ𝑅′ .𝑀

′).

The lemma tells us that, in particular

𝑀 ′/𝜑−1
𝑀 ′ (𝐼Δ𝑅′ .𝑀

′) � 𝑅′ ⊗𝑅 𝑀/𝜑−1
𝑀 (𝐼 .𝑀).

This being true for any quasiregular semiperfectoid ring 𝑅′ quasisyntomic over R, we deduce that we
have a short exact sequence of sheaves on (𝑅)qsyn

0→ 𝜑−1
𝐹𝑅 (𝑀 )

(Ipris.𝐹𝑅 (𝑀)) → 𝐹𝑅 (𝑀) → O ⊗𝑅 𝑀/𝜑−1
𝑀 (𝐼 .𝑀) → 0.

By admissibility of (𝑀, 𝜑𝑀 ), the rightmost term is a finite locally free O-module, and thus, 𝐹𝑅 (𝑀) is
admissible.

Conversely, let (M, 𝜑M) be an admissible Dieudonné crystal. Consider the exact sequence of sheaves

0→ 𝜑−1
M (Ipris.M) →M→M/𝜑−1

M (Ipris.M) → 0,

and apply to it the functor Γ(𝑅,−). We get an exact sequence

0→ Γ(𝑅, 𝜑−1
M (Ipris.M)) = 𝜑−1

𝐺𝑅 (M) (𝐼 .𝐺𝑅 (M)) → 𝐺𝑅 (M) → Γ(𝑅,M/𝜑−1
M (Ipris.M)).

Since M/𝜑−1
M (Ipris.M) is a finite locally free O-module by admissibility of (M, 𝜑M), the rightmost

term is a finite projective R-module, and it, therefore, suffices to show that the above sequence is also
right exact. The map

𝐺𝑅 (M) → Γ(𝑅,M/𝜑−1
M (Ipris.M))

factors through

𝐺𝑅 (M)/N ≥1Δ𝑅 .𝐺𝑅 (M) → Γ(𝑅,M/𝜑−1
M (Ipris.M)),

which is a map of R-modules, and it suffices to show that this map is surjective. Since the target is a
finitely generated R-module and R is p-complete, it suffices by Nakayama’s lemma to prove surjectivity
after base change along any surjection 𝑅 → 𝑘 , with k a perfect field of characteristic p. After base
change along such a morphism 𝑅 → 𝑘 , the above map factors through

𝐺𝑅 (M) ⊗Δ𝑅
Δ𝑘 → Γ(𝑅,M/𝜑−1

M (Ipris.M)) ⊗𝑅 𝑘.

Since 𝐺𝑅 (M), respectively, M/𝜑−1
M (Ipris.M), is a finite locally free Opris-module, respectively, a

finite locally free O-module, this identifies with the map

𝐺𝑘 (M𝑘 ) → Γ(𝑘,M𝑘/𝜑
−1
M𝑘
(Ipris.M𝑘 )),

that is the same map as the one we originally wanted to prove is surjective, but now with R replaced
by k (we denoted with an index k the restrictions of the various objects involved to the quasisyntomic
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site of k). But since k is perfect, (𝐺𝑘 (M𝑘 ), 𝜑𝐺𝑘 (M𝑘 ) ) is automatically admissible, by definition of
admissibility using that every k-module is free. Hence, as proved above, we have an exact sequence
(using that 𝐹𝑘 ◦ 𝐺𝑘 � Id)

0→ 𝜑−1
M𝑘
(Ipris.M𝑘 ) →M𝑘 → O ⊗𝑅 𝐺𝑘 (M𝑘 )/𝜑

−1
𝐺𝑘 (M𝑘 )

(𝐼 .𝐺𝑘 (M𝑘 )) → 0,

that is

M𝑘/𝜑
−1
M𝑘
(Ipris.M𝑘 ) � O ⊗𝑅 𝐺𝑘 (M𝑘 )/𝜑

−1
𝐺𝑘 (M𝑘 )

(𝐼 .𝐺𝑘 (M𝑘 )),

hence

Γ(𝑘,M𝑘/𝜑
−1
M𝑘
(Ipris.M𝑘 )) � 𝐺𝑘 (M𝑘 )/𝜑

−1
𝐺𝑘 (M𝑘 )

(𝐼 .𝐺𝑘 (M𝑘 )).

This shows that the map

𝐺𝑘 (M𝑘 ) → Γ(𝑘,M𝑘/𝜑
−1
M𝑘
(Ipris.M𝑘 ))

is surjective, as desired. �

Definition 4.15. We denote by DM(𝑅) the category of prismatic Dieudonné modules over R (with
morphisms commuting with the Frobenius) and by DMadm(𝑅) the full subcategory formed by admissible
objects.

Proposition 4.13 shows that the possible conflict of notation is not an issue: for R quasiregular
semiperfectoid, the two categories denoted by DM(𝑅) are naturally equivalent, and similarly for DF(𝑅).

In the rest of this subsection, we will shortly recall the general notions of frame and window, and
then discuss the connection with the definitions above.

Definition 4.16. A frame 𝐴 = (𝐴, Fil 𝐴, 𝜑, 𝜑1) consists of (classically) (𝑝, 𝑑)-adically complete rings
A and 𝑅 = 𝐴/Fil 𝐴, for some 𝑑 ∈ 𝐴 and some ideal Fil 𝐴, a lift of Frobenius 𝜑, a 𝜑-linear map
𝜑1 : Fil 𝐴→ 𝐴 (called the divided Frobenius on A), such that 𝜑 = 𝜛𝜑1 on Fil 𝐴, with 𝜛 = 𝜑(𝑑).

Let 𝐴, 𝐴′ be two frames, and let 𝑢 ∈ 𝐴′ be a unit. A u-morphism of frames 𝛼 : 𝐴→ 𝐴′ is a morphism
of rings 𝛼 : 𝐴→ 𝐴′ intertwinning 𝜑 and 𝜑′, carrying Fil 𝐴 into Fil 𝐴′ and satisfying 𝜑′1 ◦ 𝛼 = 𝑢𝛼 ◦ 𝜑1
and 𝛼(𝜛) = 𝑢𝜛′.

Remark 4.17. In many situations (such as those considered in this paper), the image of 𝜑1 will always
generate the unit ideal of A.

Here is an important source of examples.

Example 4.18. Let (𝐴, 𝐼 = (𝑑)) be an oriented prism. There are usually two natural ways of attaching
a frame to (𝐴, (𝑑)). One possibility is to consider the frame

𝐴𝑑 = (𝐴, (𝑑), 𝜑, 𝜑1),

where 𝜑1 is defined by 𝜑1(𝑑𝑥) = 𝜑(𝑥) (recall that A is d-torsion free). Here, 𝜑 = 𝜑(𝑑)𝜑1 on Fil𝐴 = (𝑑).
The other possibility works when d is of the form 𝑑 = 𝜑(𝑑 ′) for some 𝑑 ′ ∈ 𝐴: one can then consider
the frame

𝐴Nyg = (𝐴,N ≥1𝐴, 𝜑, 𝜑1),

where 𝜑1 := 𝜑/𝑑 on N ≥1𝐴 (using again that A is d-torsion free). Here, 𝜑 = 𝑑𝜑1 on Fil𝐴. Note that in
the first case, the divided Frobenius is with respect to 𝜑(𝑑), whereas in the second case, the divided
Frobenius is with respect to d.
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Definition 4.19. A window 𝑀 = (𝑀, Fil 𝑀, 𝜑𝑀 , 𝜑𝑀,1) over a frame 𝐴 consists of a finite locally free
A-module M, an A-submodule Fil 𝑀 ⊂ 𝑀 and 𝜑-linear maps 𝜑𝑀 : 𝑀 → 𝑀 and 𝜑𝑀,1 : Fil 𝑀 → 𝑀 ,
such that:

• Fil 𝐴 · 𝑀 ⊂ Fil 𝑀 and 𝑀/Fil 𝑀 is a finite locally free R-module.
• If 𝑎 ∈ Fil 𝐴, 𝑚 ∈ 𝑀 , 𝜑𝑀,1 (𝑎𝑚) = 𝜑1(𝑎)𝜑𝑀 (𝑚).
• If 𝑚 ∈ Fil 𝑀 , 𝜑𝑀 (𝑚) = 𝜛𝜑𝑀,1 (𝑚).
• 𝜑𝑀,1 (Fil 𝑀) + 𝜑𝑀 (𝑀) generates M as an A-module.

A morphism of windows is an A-linear map preserving the filtrations and commuting with 𝜑𝑀 and
𝜑𝑀,1. The category of windows over 𝐴 is denoted by Win(𝐴).

Remark 4.20. If the surjectivity condition on the image of 𝜑1 of Remark 4.17 is satisfied, then the third
point of the previous definition follows from the second and the last one simply says that 𝜑𝑀,1 (Fil 𝑀)
generates M (indeed, by assumption one can write 1 =

∑𝑟
𝑖=1 𝑎𝑖𝜑1(𝑏1) for some 𝑎𝑖 ∈ 𝐴, 𝑏𝑖 ∈ Fil 𝐴,

whence 𝜛 =
∑𝑟

𝑖=1 𝑎𝑖𝜑(𝑏𝑖)).

Remark 4.21. If 𝛼 : 𝐴→ 𝐴′ is a u-morphism of frames as Definition 4.16 (for some unit 𝑢 ∈ 𝐴′), and
𝑀 , respectively, 𝑀 ′, is a window over 𝐴, respectively, 𝐴′, an 𝛼-morphism of windows 𝑓 : 𝑀 → 𝑀 ′ is
a morphism 𝑓 : 𝑀 → 𝑀 ′ of A-modules, intertwinning 𝜑𝑀 and 𝜑𝑀 ′ , sending Fil 𝑀 into Fil 𝑀 ′ and
satisfying 𝜑𝑀 ′,1 ◦ 𝑓 = 𝑢 𝑓 ◦ 𝜑𝑀,1 (hence, if 𝐴 = 𝐴′, 𝛼 = Id𝐴, an 𝛼-morphism of windows is just a
morphism of windows over 𝐴). There is a base change functor

𝛼∗ : Win(𝐴) →Win(𝐴′)

characterised by the universal property that if 𝑀 ∈ Win(𝐴), 𝑀 ′ ∈ Win(𝐴′), homomorphisms in
Win(𝐴′) from 𝛼∗𝑀 to 𝑀 ′ identify with 𝛼-morphisms of windows from 𝑀 to 𝑀 ′. Concretely, if
𝑀 ∈ Win(𝐴), then 𝛼∗𝑀 = (𝑀 ′, Fil 𝑀 ′, 𝜑𝑀 ′ , 𝜑𝑀 ′,1) is given by 𝑀 ′ = 𝐴′ ⊗𝐴 𝑀 , Fil 𝑀 ′ is the
submodule generated by (Fil 𝐴′).𝑀 ′ and the image of Fil 𝑀 , and 𝜑𝑀 ′ , 𝜑𝑀 ′,1 are uniquely determined
by the requirement that 𝑀 → 𝑀 ′, 𝑚 ↦→ 1 ⊗ 𝑚, is an 𝛼-morphism of windows.

Proposition 4.22. Let 𝐴 = (𝐴, Fil𝐴, 𝜑, 𝜑1) be a frame, such that any finite projective 𝐴/Fil 𝐴-module
lifts to a finite projective A-module. Let (𝑀, Fil 𝑀, 𝜑𝑀 , 𝜑𝑀,1) be a window over 𝐴. Then there exist
finite projective A-modules 𝐿,𝑇 , such that 𝑀 = 𝐿 ⊕ 𝑇 and Fil 𝑀 = 𝐿 ⊕ Fil 𝐴.𝑇 . Moreover, given
𝐿, 𝑇 , there exists a bijection between 𝜑-semilinear isomorphisms (i.e. 𝜑-semilinear maps which become
isomorphisms after linearisation) Ψ : 𝐿 ⊕𝑇 → 𝐿 ⊕𝑇 and 𝐴-window structures on the pair (𝐿 ⊕𝑇, 𝐿 ⊕
Fil 𝐴.𝑇).

Proof. This is a combination of [33, Remark 2.4] and [33, Lemma 2.5]. Let us give some details, and
set 𝑆 := 𝐴/Fil 𝐴. The module 𝑆 ⊗𝐴 𝑀 decomposes, as 𝑀/Fil 𝑀 is finite projective, into a direct sum
𝑆 ⊗𝐴 𝑀 � 𝑀/Fil 𝑀 ⊕𝑄 for some finite projective S-module Q. Let 𝐿, 𝑇 be finite projective A-modules,
such that L is a lift of Q and T a lift of 𝑀/Fil 𝑀 . We can then lift the decomposition 𝑆 ⊗𝐴 𝑀 to a
decomposition 𝑀 = 𝐿 ⊕ 𝑇 by projectivity. The property Fil 𝑀 = 𝐿 ⊕ Fil 𝐴𝑇 follows. Given 𝜑𝑀 , we
define Ψ(𝑙 + 𝑡) := 𝜑𝑀,1 (𝑙) + 𝜑𝑀 (𝑡) for 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 on 𝑀 = 𝐿 ⊕ 𝑇 , and conversely, given Ψ, we set
𝜑𝑀 (𝑙 + 𝑡) := 𝜛Ψ(𝑙) + Ψ(𝑡) and 𝜑𝑀,1 (𝑙 + 𝑎𝑡) := Ψ(𝑙) + 𝜑1(𝑎)Ψ(𝑡) for 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, 𝑎 ∈ Fil 𝐴. �

Lemma 4.23. Let 𝐴 = (𝐴, Fil𝐴, 𝜑, 𝜑1) as in Proposition 4.22, such that 𝜛 is a nonzero divisor and
Fil𝐴 = 𝜑−1(𝜛𝐴). Then if (𝑀, Fil 𝑀, 𝜑𝑀 , 𝜑𝑀,1) is a window over 𝐴, we have

Fil 𝑀 = 𝜑−1
𝑀 (𝜛𝑀)

(note that one always has an inclusion Fil 𝑀 ⊂ 𝜑−1
𝑀 (𝜛𝑀)). Moreover, 𝜑𝑀 : 𝑀 → 𝑀 induces an

injection 𝑀/Fil𝑀 → 𝑀/𝜛𝑀 , and the latter extends to an injection 𝐴/𝜛 ⊗𝐴/Fil𝐴 𝑀/Fil𝑀 → 𝑀/𝐼 of
a locally direct summand.
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Proof. Let

𝑀 = 𝐿 ⊕ 𝑇

be a normal decomposition of M as in 4.22, and

Ψ = (𝜑𝑀,1)|𝐿 + (𝜑𝑀 )|𝑇 ,

so that Fil 𝑀 = 𝐿 ⊕ Fil 𝐴.𝑇 . Let 𝑥 = 𝑙 + 𝑡 ∈ 𝑀 , such that 𝜑𝑀 (𝑥) ∈ 𝜛𝑀 . We have

𝜑𝑀 (𝑥) = 𝜛Ψ(𝑙) + Ψ(𝑡)

so the condition is equivalent to requiring that Ψ(𝑡) ∈ 𝜛.𝑀 . For simplicity, we assume that
𝐿, 𝑇 are free A-modules in the following. The general case follows by localisation. Fix a ba-
sis 𝑡1, . . . , 𝑡𝑟 of T and a basis 𝑙1, . . . , 𝑙𝑠 of L, as A-modules. Since Ψ is a 𝜑-linear isomorphism,
the family (Ψ(𝑡1), . . . ,Ψ(𝑡𝑟 ),Ψ(𝑙1), . . . ,Ψ(𝑙𝑠)) is a basis of M, and so the reduction of the fam-
ily (Ψ(𝑡1), . . . ,Ψ(𝑡𝑟 )) modulo 𝜛 is linearly independent. Write 𝑡 =

∑𝑟
𝑖=1 𝑎𝑖𝑡𝑖 , with 𝑎𝑖 ∈ 𝐴 for all

𝑖 = 1, . . . , 𝑟 . By assumption, we have that

Ψ(𝑡) =
𝑟∑
𝑖=1

𝜑(𝑎𝑖)Ψ(𝑡𝑖) ∈ 𝜛.𝑀,

and therefore we must have 𝜑(𝑎𝑖) ∈ 𝜛𝐴 for all 𝑖 = 1, . . . , 𝑟 , that is 𝑎𝑖 ∈ Fil 𝐴 for all 𝑖 = 1, . . . , 𝑟 ,
by the condition on Fil 𝐴. Hence, 𝑡 ∈ Fil 𝐴.𝑇 and thus 𝑥 ∈ Fil 𝑀 , as desired. For the last statements
note that the map 𝜑𝑀 : 𝑀/Fil𝑀 � 𝑇/Fil𝐴.𝑇 → 𝑀/𝜛 identifies with the map induced by Ψ. As
𝜑𝑀 (𝑡𝑖) = Ψ(𝑡𝑖), 𝑖 = 1, . . . , 𝑟, are linearly independent (over 𝐴/𝜛), this map extends to an inclusion

𝐴/𝜛 ⊗𝐴/Fil𝐴 𝑀/Fil𝑀 → 𝑀/𝜛

of a direct summand. This finishes the proof. �

Let us now see what the categories of windows look like for the frames attached to prisms discussed
in Example 4.18.

Definition 4.24. Let (𝐴, 𝐼 = (𝑑)) be a prism. A Breuil-Kisin module (𝑀, 𝜑𝑀 ) over (𝐴, 𝐼), or just A if I
is understood, is a finite free A-module M together with an isomorphism

𝜑𝑀 : 𝜑∗𝑀 [
1
𝐼
] � 𝑀 [

1
𝐼
] .

If 𝜑𝑀 (𝜑
∗𝑀) ⊆ 𝑀 with cokernel killed by I, then (𝑀, 𝜑𝑀 ) is called minuscule.

We denote by BK(𝐴) the category of Breuil-Kisin modules over A and by BKmin(𝐴) ⊆ BK(𝐴) its
full subcategory of minuscule ones.

Remark 4.25. If (𝑀, 𝜑𝑀 ) is a minuscule Breuil-Kisin module over (𝐴, 𝐼), the cokernel N of
𝜑𝑀 (𝜑

∗𝑀) ⊆ 𝑀 is a finite projective 𝐴/𝐼-module. Indeed N is pseudocoherent as an A-module (hav-
ing a 2-term resolution by finite projective A-modules), hence, as an 𝐴/𝐼-module. Moreover, if k is the
residue field of Spec(𝐴/𝐼) at any closed point, then the derived tensor

𝑘̄ ⊗𝐿
𝐴/𝐼 𝑁 = 𝑊 ( 𝑘̄) ⊗𝐿

𝐴 𝑁

is a perfect complex of 𝑊 ( 𝑘̄)-modules, hence, bounded. It follows that the complex 𝑘 ⊗𝐿
𝐴/𝐼

𝑁 is also
bounded, so that N has a finite resolution by finite projective 𝐴/𝐼-modules ([52, Tag 068W]). Since N
has projective dimension ≤ 1 as an A-module, it is necessarily projective as an 𝐴/𝐼-module. We thank
the referee for poiting out this argument to us.
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Proposition 4.26. Let (𝐴, (𝑑)) be an oriented prism. The functor

(𝑀, Fil𝑀, 𝜑𝑀 , 𝜑𝑀,1) ↦→ (Fil𝑀, 𝑑.𝜑𝑀,1)

induces an equivalence between the category of windows over the frame 𝐴𝑑 of Example 4.18 and the
category BKmin(𝐴).
Proof. See [17, Lemma 2.1.16] (taking Remark 4.25 into account). �

Before turning to the second example introduced in Example 4.18, let us recall some facts about
henselian pairs. Let A be a ring, and let 𝐼 ⊆ 𝐴 be an ideal. We recall that the pair (𝐴, 𝐼) is henselian if I is
contained in the Jacobson radical of A and if for any monic polynomial 𝑓 ∈ 𝐴[𝑇] and each factorisation
𝑓 = 𝑔0ℎ0 with 𝑔0, ℎ0 ∈ 𝐴/𝐼 [𝑇] monic and generating the unit ideal, there exists a factorisation 𝑓 = 𝑔ℎ
with 𝑔, ℎ monic and 𝑔0 = 𝑔, ℎ0 = ℎ (cf. [52, Tag 09XE]).

If I is locally nilpotent17 or A is I-adically complete, then the pair (𝐴, 𝐼) is henselian (cf. [52, Tag
0ALI], [52, Tag 0ALJ]).

For us, the following well-known property of henselian pairs will be important (cf. [19, Lemma
4.20]).
Lemma 4.27. Let (𝐴, 𝐼) be a henselian pair. The base change 𝑀 ↦→ 𝑀 ⊗𝐴 𝐴/𝐼 induces a bijection on
isomorphism classes of finite projective modules over A, respectively, 𝐴/𝐼.
Proof. If 𝑀, 𝑁 are finite projective A-modules, then any isomorphism 𝑀/𝐼𝑀 � 𝑁/𝐼𝑁 can be lifted
to a morphism 𝑀 → 𝑁 by projectivity of M. As 𝐼 ⊆ 𝐴 lies in the Jacobson radical of A, this lifted
homomorphism is then automatically an isomorphism. Moreover, any finite projective 𝐴/𝐼-module can
be lifted to a finite projective A-module by [52, Tag 0D4A]. �

Now, we provide the proof that Δ𝑅 is henselian along N ≥1Δ𝑅 = ker(𝜃 : Δ𝑅 → 𝑅). We learned the
argument from [37, Remark 5.2].
Lemma 4.28. The pair (Δ𝑅, ker(𝜃)) is henselian.
Proof. Because Δ𝑅 is (𝑝, 𝜉)-adically complete, it suffices to prove that the pair

(Δ𝑅/(𝑝, 𝜉), (𝑝, ker(𝜃))/(𝑝, 𝜉))

is henselian (cf. [52, Tag 0DYD]). We know ker(𝜃) = N ≥1Δ𝑅. Hence, for every element 𝑥 ∈ ker(𝜃),
𝑥𝑝 ∈ (𝑝, 𝜉). As locally nilpotent ideals are henselian, the claim follows. �

Proposition 4.29. Let R be a quasiregular semiperfectoid ring. Fix a generator 𝜉 = 𝜑(𝜉) of the ideal I
of the prism (Δ𝑅, 𝐼), giving rise to a frame Δ𝑅,Nyg of Example 4.18 (with 𝑑 = 𝜉). The forgetful functor

Win(Δ𝑅,Nyg) → DM(𝑅), (𝑀, Fil 𝑀, 𝜑𝑀 , 𝜑𝑀,1) ↦→ (𝑀, 𝜑𝑀 )

is fully faithful, with essential image the subcategory DMadm(𝑅).
Proof. Thanks to Lemma 4.28, we can apply Lemma 4.23 to the frame Δ𝑅,Nyg. This yields fully
faithfulness, and that for a window (𝑀, Fil 𝑀, 𝜑𝑀 , 𝜑𝑀,1), the image of

𝑀
𝜑𝑀
−−−→ 𝑀 → 𝑀/𝐼 · 𝑀

identifies with 𝑀/Fil 𝑀 . By Lemma 4.23, we can deduce admissibility. Assume conversely that (𝑀, 𝜑𝑀 )

is an admissible prismatic Dieudonné module. Then the datum (𝑀, 𝜑−1
𝑀 (𝐼 · 𝑀), 𝜑𝑀 , 1

𝜉
𝜑𝑀 ) is a win-

dow over Δ𝑅,Nyg. Indeed, the condition that 𝜑𝑀,1 (Fil𝑀) generates M follows from the definition of
admissibility and Remark 4.7. This finishes the proof. �

17That is, every element in I is nilpotent.
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Remark 4.30. Assume that R is quasiregular semiperfect, that is R is quasiregular semiperfectoid and
𝑝𝑅 = 0. Let (𝑀, 𝜑𝑀 ) be a prismatic Dieudonné module over R. Let 𝑁 ⊂ 𝑀/N ≥1Δ𝑅𝑀 be a locally
free R-module which is a direct summand, and define Fil 𝑀 to be the inverse image of N in M. Then
the collection (𝑀, Fil 𝑀, 𝜑𝑀 , 1/𝑝𝜑𝑀 ) is a window over Δ𝑅,Nyg = 𝐴crys(𝑅)Nyg

if and only if N is an
‘admissible’ filtration in the sense of Grothendieck on the Dieudonné module (𝑀, 𝜑𝑀 , 𝑉𝑀 ), where
𝑉𝑀 = 𝜑−1

𝑀 .𝑝 (which makes sense by the assumption that (𝑀, 𝜑𝑀 ) is a prismatic Dieudonné module).
For a proof of this, see [17, Lemma 2.5.1]).

We can now prove Proposition 4.12.

Proof of Proposition 4.12. We know by Proposition 4.29 that the functor

(𝑀, 𝜑𝑀 ) ↦→

(
𝑀, 𝜑−1

𝑀 (𝜉.𝑀), 𝜑𝑀 ,
1
𝜉
𝜑𝑀

)
is an equivalence between DMadm(𝑅) and Win(Δ𝑅,Nyg). Since R is perfectoid, N ≥1Δ𝑅 = (𝜉) and so

Δ𝑅,Nyg = Δ𝑅, 𝜉

By Proposition 4.26, the functor

(𝑁, Fil 𝑁, 𝜑𝑁 ) ↦→

(
Fil 𝑁,

𝜉

𝜉
𝜑𝑁

)
induces an equivalence between Win(Δ𝑅, 𝜉 ) and BKmin(𝐴inf (𝑅)) (the category of minuscule Breuil-
Kisin modules over 𝐴inf (𝑅)). The latter category is, however, obviously equivalent to DM(𝑅′), with
𝑅′ = 𝐴inf (𝑅)/𝜉. As 𝜑 is bijective on Δ𝑅, base change along 𝜑 is also an equivalence between DM(𝑅′)
and DM(𝑅). Composing these equivalences, we obtain an equivalence

DMadm(𝑅) → DM(𝑅).

But this composite functor is nothing but the identity functor. �

Finally, we record some statements which are later used to prove essential surjectivity for the prismatic
Dieudonné functor.

For a ring A with an endomorphism 𝜑 : 𝐴 → 𝐴, we denote by 𝜑 −Modunit
𝐴 the category of ‘unit’

𝜑-modules over A, that is, the category of pairs (𝑀, 𝜑𝑀 ) with M a finite projective A-module and
𝜑𝑀 : 𝜑∗𝑀 � 𝑀 an isomorphism.

Lemma 4.31. Let 𝐴 → 𝐵 be a surjection of bounded prisms with kernel 𝐽 ⊆ 𝐴. Assume that the
Frobenius 𝜑 of A is topologically nilpotent (for the (𝑝, 𝐼)-adic topology) on J and that (𝐴, 𝐽) is henselian.
Then the functor

𝜑 −Modunit
𝐴 → 𝜑 −Modunit

𝐵 , (𝑀, 𝜑𝑀 ) ↦→ (𝑀 ⊗𝐴 𝐵, 𝜑𝑀 ⊗𝐴 𝐵)

is an equivalence.

Proof. To prove fully faithfulness, it suffices to show (by passing to internal homs) that for every
𝜑-module (𝑀, 𝜑𝑀 ) over A, the map

𝑀𝜑𝑀=1 → (𝑀/𝐽𝑀)𝜑𝑀=1
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is bijective. Let 𝑚 ∈ 𝑀𝜑𝑀=1 ∩ 𝐽𝑀 , and write 𝑚 =
𝑛∑
𝑖=1

𝑎𝑖𝑚𝑖 with 𝑎𝑖 ∈ 𝐽 and 𝑚𝑖 ∈ 𝑀 . Then

𝑚 = 𝜑
𝑗
𝑀 (𝑚) =

𝑛∑
𝑖=1

𝜑 𝑗 (𝑎𝑖)𝜑
𝑗
𝑀 (𝑚𝑖),

where the 𝜑 𝑗 (𝑎𝑖) converge to 0 if 𝑗 → ∞ by our assumption on 𝜑. Thus, 𝑚 = 𝜑
𝑗
𝑀 (𝑚) → 0 if 𝑗 → ∞

and therefore 𝑚 = 0, which proves injectivity. Conversely, let 𝑚 ∈ 𝑀 and assume that 𝜑𝑀 (𝑚) ≡ 𝑚
modulo 𝐽𝑀 . Write

𝑧 := 𝜑𝑀 (𝑚) − 𝑚 ∈ 𝐽𝑀.

As above, the sequence 𝜑
𝑗
𝑀 (𝑧) converges to 0 if 𝑗 →∞. Set

𝑚̃ := 𝑚 +
∞∑
𝑗=0

𝜑
𝑗
𝑀 (𝑧).

Then 𝑚̃ ≡ 𝑚 modulo 𝐽𝑀 and 𝜑𝑀 (𝑚̃) = 𝑚̃. Thus, we showed that

𝑀𝜑𝑀=1 � (𝑀/𝐽𝑀)𝜑𝑀=1

and the functor 𝜑−Modunit
𝐴 → 𝜑−Modunit

𝐵 is fully faithful, and we are left with essential surjectivity. For
this, let (𝑁, 𝜑𝑁 ) ∈ 𝜑−Modunit

𝐵 . By assumption, A is henselian along J and, thus, we can write 𝑁 � 𝑀⊗𝐴𝐵
for some finite projective A-module M. Using projectiviy of 𝜑∗𝑀 over A, we can lift 𝜑𝑁 : 𝜑∗𝑁 → 𝑁
to some homomorphism 𝜑𝑀 : 𝜑∗𝑀 → 𝑀 . As J lies in the radical of A, the homomorphism 𝜑𝑀 will
automatically be an isomorphism as 𝜑𝑁 is. Thus, we have lifted (𝑁, 𝜑𝑁 ) to (𝑀, 𝜑𝑀 ), which finishes
the proof. �

The following statement is similar to [30, Appendix A.4] or [33, Lemma 2.12].
It will use the ‘Nygaard frame’ associated to an oriented prisms, which was discussed in 4.18.

Lemma 4.32. Let (𝐴, (𝜉)) → (𝐵, (𝜉)) be a surjection of oriented bounded prisms with kernel J
contained in N ≥1𝐴, and assume that 𝜉 = 𝜑(𝜉) for some 𝜉 ∈ 𝐴 and that (𝐴, 𝜉) bounded. Assume that
𝜑1 is (pointwise) topologically nilpotent on J and that (𝐴, 𝐽) is henselian. Then the base change functor
induces an equivalence:

Win(𝐴Nyg) �Win((𝐵,N ≥1𝐴/𝐽, 𝐴/N ≥1𝐴, 𝜑, 𝜑1)).

We note that 𝜑1(𝐽) ⊆ 𝐽 as B is 𝜉-torsion free and 𝜑( 𝑗) = 𝜉𝜑1 ( 𝑗) in A. Thus, the con-
dition that 𝜑1 is topologically nilpotent on J makes sense. Moreover, 𝜑1(𝐽) ⊆ 𝐽 implies that
(𝐵,N ≥1𝐴/𝐽, 𝐴/N ≥1𝐴, 𝜑, 𝜑1) is indeed a well defined frame.

Proof. In this proof, we will use the following convenient notation: if 𝜎 : 𝑆 → 𝑆 is a ring endomorphism
and 𝑓 : 𝑀 → 𝑁 is a 𝜎-linear map between two S-modules, we will denote by 𝑓 ♯ : 𝜎∗𝑀 → 𝑁 its
linearisation. We will also abbreviate 𝐴Nyg as 𝐴 and (𝐵,N ≥1𝐴/𝐽, 𝐴/N ≥1𝐴, 𝜑, 𝜑1) as 𝐵.

By the existence of normal decompositions (cf. Proposition 4.22: we can apply it since the proof of
Lemma 4.28 shows that A is henselian alongN ≥1𝐴, and this implies that finite projective 𝐵/im(N ≥1𝐴)-
modules can be lifted to finite locally free B-modules — even to finite projective A-modules) and the
fact that A is henselian along J, the base change functor

Win(𝐴) →Win(𝐵)
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is essentially surjective. Let 𝑀, 𝑁 be two windows over 𝐴. We want to prove that

Hom𝐴(𝑀, 𝑁) � Hom𝐵 (𝑀/𝐽, 𝑁/𝐽),

where 𝑀/𝐽, 𝑁/𝐽 denote the base change of 𝑀, 𝑁 to 𝐵. The idea of the proof is similar to Lemma 4.31
(and [33, Theorem 3.2]). Let

𝛽 : 𝑀 → 𝐽𝑁

be an arbitrary homomorphism of A-modules. Then the A-module homomorphism

𝑈 (𝛽) : 𝑀 → 𝐽𝑁, 𝑚 ↦→ 𝜑♯
𝑁 ,1 (Id ⊗ 𝛽) (𝜑♯

𝑀,1)
−1(𝑚)

is well defined. Indeed, 𝜑♯
𝑀 : 𝜑∗𝑀 → 𝑀 is injective with cokernel killed by 𝜉 (which follows from

the fact that 𝜑𝑀,1 (Fil𝑀) generates M and that 𝑀, 𝜑∗(𝑀) are 𝜉-torsion free), and thus, on 𝜉𝑀 , there
exists a partial inverse (𝜑♯

𝑀 )
−1

: 𝜉𝑀 → 𝜑∗𝑀 of 𝜑♯
𝑀 . Moreover, as 𝛽 has image in 𝐽𝑁 , the composition

𝜑♯
𝑁 (Id ⊗ 𝛽) has image in 𝜉𝑁 . The module M is finitely generated: choose generators 𝑥1, . . . , 𝑥𝑟 . For

each 𝑛 ≥ 1, and each 𝑥 ∈ 𝑀 , we can write

((𝜑𝑛−1)∗(𝜑♯
𝑀,1)

−1 ◦ · · · ◦ 𝜑∗(𝜑♯
𝑀,1)

−1 ◦ (𝜑♯
𝑀,1)

−1(𝑥) =
𝑟∑
𝑖=1

𝑏𝑖,𝑛 (𝑥) ⊗ 𝑥𝑖 ∈ (𝜑
𝑛)∗𝑀,

with 𝑏𝑖,𝑛 (𝑥) ∈ 𝐴. Hence, we get

𝑈𝑛 (𝛽) (𝑥) = (((𝜑𝑁 ,1)
♯ ◦ 𝜑∗(𝜑𝑁 ,1)

♯ ◦ · · · ◦ (𝜑𝑛−1)∗(𝜑𝑁 ,1)
♯) ◦ (𝜑𝑛)∗𝛽)

(
𝑟∑
𝑖=1

𝑏𝑖,𝑛 (𝑥) ⊗ 𝑥𝑖

)
,

whence

𝑈𝑛 (𝛽) (𝑥) =
𝑟∑
𝑖=1

𝜑𝑛 (𝑏𝑖,𝑛 (𝑥))𝜑
𝑛
𝑁 ,1(𝛽(𝑥𝑖)).

Write for each 𝑖 = 1, . . . , 𝑟 ,

𝛽(𝑥𝑖) =
𝑠𝑟∑
𝑘=1

𝑗𝑖,𝑘 𝑦𝑖,𝑘 ,

with 𝑗𝑖,𝑘 ∈ 𝐽, 𝑦𝑖,𝑘 ∈ 𝑁 . We have, for each 𝑖 = 1, . . . , 𝑟 ,

𝜑𝑛
𝑁 ,1(𝛽(𝑥𝑖)) = 𝜑𝑛

𝑁 ,1

(
𝑠𝑟∑
𝑘=1

𝑗𝑖,𝑘 𝑦𝑖,𝑘

)
=

𝑠𝑟∑
𝑘=1

𝜑𝑛
1 ( 𝑗𝑖,𝑘 )𝜑

𝑛
𝑁 (𝑦𝑖,𝑘 ).

By our assumption, 𝜑1 on J is pointwise topologically nilpotent, and so, in particular, for each 𝑚0 ≥ 0,
we can find 𝑚 ≥ 0, such that 𝜑𝑚

1 ( 𝑗𝑖,𝑘 ) ∈ (𝑝, 𝜉)
𝑚0 , for all 𝑖 = 1, . . . , 𝑟 , 𝑗 = 1, . . . , 𝑠𝑟 . The above equalities

show that for all 𝑛 ≥ 𝑚 and for all 𝑥 ∈ 𝑀 ,

𝑈𝑛 (𝛽) (𝑥) ∈ (𝑝, 𝜉)𝑚0𝑁.

Hence, we deduce from the above that for every 𝛽 : 𝑀 → 𝐽𝑁 , the sequence

𝛽,𝑈 (𝛽),𝑈 (𝑈 (𝛽)), . . . ,𝑈𝑛 (𝛽), . . .
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converges to 0 (because A is (𝑝, 𝜉)-adically complete as (𝐴, 𝜉) is bounded). Now let 𝛼 : 𝑀 → 𝑁
be a homomorphism of windows, such that 𝛼 ≡ 0 modulo J. Then 𝑈𝑛 (𝛼) = 𝛼 for all n because
𝛼 ◦ 𝜑𝑀 = 𝜑𝑁 ◦ 𝛼, which implies 𝛼 = 0 as the sequence 𝑈𝑛 (𝛼) converges to 0 as we saw above.
Conversely, assume that 𝛼 : 𝑀 → 𝑁 is an A-module homomorphism, such that 𝛼 modulo J is an
homomorphism of windows over 𝐵. Then 𝛼 maps Fil𝑀 to Fil𝑁 because this can be checked modulo J.
Note that (𝜑♯

𝑀 )
−1(𝜉.𝑀) = 𝜑∗(Fil𝑀) as follows from Lemma 4.23. Hence, 𝑈 (𝛼) sends M to N. Set

𝛽 := 𝑈 (𝛼) − 𝛼 : 𝑀 → 𝑁.

Then 𝛽(𝑀) ⊆ 𝐽𝑁 by the assumption on 𝛼. Therefore, the homomorphism

𝛼̃ : 𝑀 → 𝑁, 𝑚 ↦→ 𝛼(𝑚) +
∞∑
𝑛=0

𝑈𝑛 (𝛽) (𝑚)

is well defined. Moreover, 𝛼 ≡ 𝛼̃ modulo J and 𝛼̃ is a homomorphism of windows over 𝐴. �

From the proof of the last lemma, one can also extract the following statement.

Lemma 4.33. Let 𝑅 → 𝑅′ be a morphism of quasiregular semiperfectoid rings, such that 𝐽 = ker(Δ𝑅 →

Δ𝑅′ ) is contained in N ≥1Δ𝑅, stable by 𝜑1 and such that 𝜑1 is topologically nilpotent on J (for some, or
equivalently any, choice of a generator of the ideal I defining the prism structure of Δ𝑅). Then the base
change functors

DM(𝑅) → DM(𝑅′); DMadm(𝑅) → DMadm(𝑅′)

are faithful.

Proof. It is enough to prove that the first functor is faithful. For this, one uses the exact same argument
used in the proof of Lemma 4.32. �

Remark 4.34. More generally, if one has a 1-morphism of frames 𝐴→ 𝐴′, whose kernel J is contained
in Fil 𝐴, stable by 𝜑1 and such that 𝜑1 is topologically nilpotent on J, the same proof shows that the
base change functor

Win(𝐴) →Win(𝐴′)

is faithful.

4.2. Definition of the prismatic Dieudonné functor

In this subsection, we define the prismatic Dieudonné crystals of p-divisible groups over quasisyntomic
rings and prove some formal properties of them. More difficult properties, like the crystal property or
local freeness, will be proved later (cf. Section 4.6) after discussing the case of abelian schemes first
(cf. Section 4.5).

Let 𝑅 ∈ QSyn be a quasisyntomic ring, and let (𝑅)Δ be its absolute prismatic site. We recall from
Proposition 4.4 that the category of finite locally free crystals on (𝑅)Δ is equivalent to the category
of finite locally free Opris-modules on the small quasisyntomic site (𝑅)qsyn of R endowed with the
quasisyntomic topology.

Recall as well that there is an exact sequence

0→ N ≥1Opris → Opris → O→ 0,

where O is the structure sheaf 𝑆 ∈ (𝑅)qsyn ↦→ 𝑆 on (𝑅)qsyn (cf. Proposition 4.2).
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Definition 4.35. Let G be a p-divisible group over R. We define18

MΔ (𝐺) := E𝑥𝑡1(𝑅)qsyn
(𝐺,Opris)

and 𝜑MΔ (𝐺)
as the endomorphism of MΔ (𝐺) induced from the endomorphism 𝜑 on Opris. We call

(MΔ (𝐺), 𝜑MΔ (𝐺)
) the prismatic Dieudonné crystal of G.

We will check later that (MΔ (𝐺), 𝜑MΔ (𝐺)
) is indeed a (n admissible) prismatic Dieudonné crystal.

Remark 4.36. Let us note that

H𝑜𝑚(𝐺,𝑄) = 0

for any derived p-adically complete quasisyntomic sheaf Q. Indeed, the finite locally free group schemes
𝐺 [𝑝𝑛] are syntomic over R for 𝑛 ≥ 0 (as follows, e.g. from [44, II.(3.2.6)]) (hence, multiplication by p
on G is surjective in the syntomic topology). This implies that the derived p-completion of G on the big
quasisyntomic site over R is given by 𝑇𝑝𝐺 placed in degree −1. As there are no morphisms from 𝐷≤−1

to 𝐷≥0, and Q is assumed to be derived p-adically complete, the statement follows.
In particular, we can apply this to 𝑄 = Opris and deduce that

H𝑜𝑚(𝐺,Opris) = 0

and thus also

H𝑜𝑚(𝐺,N ≥1Opris) = 0.

Remark 4.37. Beware that the prismatic Dieudonné crystal of a p-divisible group is a sheaf on the
quasisyntomic site, not on the prismatic site. In particular, it is not a crystal on the prismatic site of R,
but rather the pushforward along v of a crystal on the prismatic site (as will be proved later). We hope
that this choice of terminology does not create too much confusion; from the mathematical point of
view, it is justified by Proposition 4.4.

Fix a p-divisible group G over R. We check some easy properties of MΔ (𝐺).
In [6], the crystalline Dieudonné crystal of a p-divisible group is defined via the sheaf of local

extensions on the crystalline site. There is a similar description of the prismatic Dieudonné crystal.

Lemma 4.38. There is a canonical isomorphism

MΔ (𝐺) � 𝑣∗(E𝑥𝑡1(𝑅)Δ (𝑢
−1 (𝐺),OΔ)).

Proof. First, we claim that there is a canonical isomorphism

E𝑥𝑡1(𝑅)QSYN
(𝐺, 𝑢∗OΔ) � 𝑢∗(E𝑥𝑡1(𝑅)Δ (𝑢

−1(𝐺),OΔ)).

By adjunction, there is a canonical isomorphism

𝑅H𝑜𝑚 (𝑅)QSYN (𝐺, 𝑅𝑢∗(OΔ)) � 𝑅𝑢∗(𝑅H𝑜𝑚 (𝑅)Δ (𝑢
−1𝐺,OΔ)).

It thus suffices to see that E𝑥𝑡1
(𝑅)QSYN

(𝐺, 𝑢∗OΔ), respectively, 𝑢∗(E𝑥𝑡1(𝑅)Δ (𝑢
−1(𝐺),OΔ)), are the first

cohomology sheaves on both sides. The sheaves

H𝑜𝑚(𝐺, 𝑅1𝑢∗(OΔ)),H𝑜𝑚(𝑢−1 (𝐺),OΔ)

18For an alternative perspective on this definition, using classifying stacks, see the work of Mondal [45].
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are 0: for the first, this follows as G is p-divisible and the target derived p-complete, cf. Remark 4.36,
and for the second, the same argument as in Remark 4.36 can be applied since the multiplication by p
map on 𝑢−1(𝐺) is surjective and the prismatic topos is replete. This implies the claim.

To finish, the proof of the proposition, it, therefore, remains to show that we have

𝜖∗E𝑥𝑡1(𝑅)QSYN
(𝐺, 𝑢∗OΔ) �MΔ (𝐺).

We will, in fact, give an argument, inspired by [3], which works with E𝑥𝑡1 replaced by E𝑥𝑡𝑖 , for any
𝑖 ≥ 0. The Breen-Deligne resolution 𝐶 (𝐺) of G, seen either as a sheaf on the big or on the small
quasisyntomic site (cf. [48, Appendix to Lecture IV], see also Section 4.4 below for a partial explicit
resolution, sufficient for our purposes), gives, for each 𝑖 ≥ 0, spectral sequences

E𝑥𝑡𝑖− 𝑗
(𝑅)QSYN

(𝐶 𝑗 (𝐺), 𝑢∗OΔ) =⇒ E𝑥𝑡𝑖(𝑅)QSYN
(𝐺, 𝑢∗OΔ),

and

E𝑥𝑡𝑖− 𝑗
(𝑅)qsyn

(𝐶 𝑗 (𝐺), 𝑣∗OΔ) =⇒ E𝑥𝑡𝑖(𝑅)qsyn
(𝐺, 𝑣∗OΔ).

Since for each j, 𝐶 𝑗 (𝐺) is a finite direct sum of terms of the form Z[𝐺𝑛], 𝑛 ≥ 1, it suffices to show that
for each 𝑘 ≥ 0, 𝑗 ≥ 1,

𝜖∗E𝑥𝑡𝑘(𝑅)QSYN
(Z[𝐺 𝑗 ], 𝑢∗OΔ) � E𝑥𝑡𝑘(𝑅)qsyn

(Z[𝐺 𝑗 ], 𝑣∗OΔ).

Since 𝑓𝑛 : 𝐺𝑛 → Spf (𝑅) is quasisyntomic, it induces a morphism of topoi 𝑓𝑛,qsyn : 𝐺𝑛
qsyn → (𝑅)qsyn,

identifying 𝐺𝑛
qsyn with the slice topos (𝑅)qsyn/𝐺

𝑛. Hence,

E𝑥𝑡𝑘(𝑅)qsyn
(Z[𝐺 𝑗 ], 𝑣∗OΔ) � 𝑅𝑘 𝑓𝑛,qsyn,∗ 𝑓

∗
𝑛,qsyn𝜖∗𝑢∗OΔ.

Analogously, if 𝑓𝑛,QSYN : 𝐺𝑛
QSYN → (𝑅)QSYN denotes the morphism of topoi induced by 𝑓𝑛, we have

E𝑥𝑡𝑘(𝑅)QSYN
(Z[𝐺 𝑗 ], 𝑢∗OΔ) � 𝑅𝑘 𝑓𝑛,QSYN,∗ 𝑓

∗
𝑛,QSYN𝑢∗OΔ.

The sheaf 𝑅𝑘 𝑓𝑛,qsyn,∗ 𝑓
∗
𝑛,qsyn𝜖∗𝑢∗OΔ is the sheaf attached to the presheaf sending 𝑋 ∈ (𝑅)qsyn to

𝐻𝑘 ( 𝑓 ∗𝑛,qsyn𝑋, 𝑓
∗
𝑛,qsyn𝜖∗𝑢∗OΔ),

while the sheaf 𝜖∗𝑅𝑘 𝑓𝑛,QSYN,∗ 𝑓
∗
𝑛,QSYN𝑢∗OΔ is the sheaf attached to the presheaf sending 𝑋 ∈ (𝑅)qsyn to

𝐻𝑘 ( 𝑓 ∗𝑛,QSYN𝑋, 𝑓
∗
𝑛,QSYN𝑢∗OΔ).

Both 𝑓 ∗𝑛,qsyn𝑋 and 𝑓 ∗𝑛,QSYN𝑋 are represented by 𝑋 ×Spf (𝑅) 𝐺𝑛 ∈ 𝐺𝑛
qsyn, and, therefore,

𝐻𝑘 ( 𝑓 ∗𝑛,qsyn𝑋, 𝑓
∗
𝑛,qsyn𝜖∗𝑢∗OΔ), respectively, 𝐻𝑘 ( 𝑓 ∗𝑛,QSYN𝑋, 𝑓

∗
𝑛,QSYN𝑢∗OΔ), agrees with 𝐻𝑘

qsyn (𝑋 ×Spf (𝑅)

𝐺𝑛, 𝜖∗𝑢∗OΔ), respectively, with 𝐻𝑘
QSYN (𝑋 ×Spf (𝑅) 𝐺

𝑛, 𝑢∗OΔ). But these last two cohomology groups
agree, since on both sites, quasiregular semiperfectoid rings form a basis on which the cohomology in
positives degrees of 𝑢∗OΔ vanishes. Whence our claim, and the end of the proof. �

Using the p-adic Tate module 𝑇𝑝𝐺 of G, that is, the inverse limit

lim
←−−
𝑛

𝐺 [𝑝𝑛]

of sheaves on (𝑅)qsyn, one can give a more explicit description of the prismatic Dieudonné crystal
MΔ (𝐺).
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Lemma 4.39. Define the universal cover 𝐺̃ := lim
←−−
𝑝

𝐺 of G. Then the sequences

0→ 𝑇𝑝𝐺 → 𝐺̃ → 𝐺 → 0
0→ 𝑢−1𝑇𝑝𝐺 → 𝑢−1𝐺̃ → 𝑢−1𝐺 → 0

of sheaves on (𝑅)qsyn, respectively, (𝑅)Δ are exact for the quasisyntomic topology.

Proof. Exactness of the second follows from exactness of the first and exactness of 𝑢−1 (cf. Corollary
3.25). Each 𝐺 [𝑝𝑛] is syntomic over R. This implies that 𝐺̃ → 𝐺 is a quasisyntomic cover, which implies
exactness of the first sequence. �

The following lemma will be useful when describing the prismatic Dieudonné crystals of Q𝑝/Z𝑝

and 𝜇𝑝∞ and when proving fully faithfulness of the prismatic Dieudonné functor.

Lemma 4.40. There are canonical isomorphisms

MΔ (𝐺) � H𝑜𝑚 (𝑅)qsyn (𝑇𝑝𝐺,Opris) � 𝑣∗H𝑜𝑚 (𝑅)Δ (𝑢
−1 (𝑇𝑝𝐺),OΔ).

Proof. This follows from Lemma 4.39 and the fact that

𝑅H𝑜𝑚 (𝑅)Δ (𝑢
−1(𝐺̃),OΔ) = 0; 𝑅H𝑜𝑚 (𝑅)qsyn (𝐺̃,Opris) = 0

as OΔ,Opris are derived p-complete sheaves and 𝐺̃ is a Q𝑝-vector space. �

Remark 4.41. The universal vector extension 𝐸 (𝐺) of G can be seen as an extension of sheaves on
(𝑅)qsyn:

0→ 𝜔𝐺̌ → 𝐸 (𝐺) → 𝐺 → 0.

It is defined as in [44] (this makes sense since R is p-complete), or equivalently, as the pushout of the
universal cover exact sequence

0→ 𝑇𝑝𝐺 → 𝐺̃ → 𝐺 → 0

along the Hodge-Tate map

𝐻𝑇 : 𝑇𝑝𝐺 → 𝜔𝐺̌ ,

which sends 𝑓 ∈ 𝑇𝑝𝐺 = Hom𝑅 (Q𝑝/Z𝑝 , 𝐺), viewed by Cartier duality as an element of Hom𝑅 (𝐺̌, 𝜇𝑝∞),
to 𝑓 ∗𝑑𝑇/𝑇 , 𝑑𝑇/𝑇 being the canonical generator of 𝜔𝜇𝑝∞

. Is there a way to use Lemma 4.40 to relate
the prismatic Dieudonné module to the dual of the Lie algebra of 𝐸 (𝐺)?

Assume now that R is quasiregular semiperfectoid. Then, by Proposition 4.4, the category of finite
locally free crystals on (𝑅)Δ is equivalent to the category of finite projective Δ𝑅-modules by evaluating
a crystal on the initial prism Δ𝑅. Similarly, finite locally free Opris-modules on (𝑅)qsyn are equivalent to
finite projective Δ𝑅 by evaluating a finite locally free Opris-module M on R. This allows the following
simplification of the definition of the prismatic Dieudonné crystal of a p-divisible group G over R.

Definition 4.42. Let R be quasiregular semiperfectoid, and let G be a p-divisible group over R. Define

𝑀Δ (𝐺) := Ext1(𝑅)qsyn
(𝐺,Opris) � Ext1(𝑅)Δ (𝑢

−1 (𝐺),OΔ)
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and 𝜑𝑀Δ (𝐺)
as the endomorphism induced by 𝜑 on Opris. We call

(𝑀Δ (𝐺), 𝜑𝑀Δ (𝐺)
)

the prismatic Dieudonné module of G.

We will see later that 𝑀Δ (𝐺) is indeed a (n admissible) prismatic Dieudonné module in the sense
of Definition 4.10. Moreover, 𝑀Δ (𝐺) is the evaluation of the prismatic Dieudonné crystal MΔ (𝐺) as
follows from the local-global spectral sequence

𝐸
𝑖 𝑗
2 = 𝐻𝑖 (Spf (𝑅), E𝑥𝑡 𝑗

(𝑅)qsyn
(𝐺,Opris)) ⇒ Ext𝑖+ 𝑗

(𝑅)qsyn
(𝐺,Opris)

by the vanishing of the sheaf H𝑜𝑚 (𝑅)qsyn (𝐺,Opris). Thus, under the equivalence from Proposition 4.13,
the prismatic Dieudonné crystal MΔ (𝐺) corresponds to the prismatic Dieudonné module 𝑀Δ (𝐺).

4.3. Comparison with former constructions

In this section, we prove a comparison of the prismatic Dieudonné functor MΔ with former construc-
tions, in two special cases:

1. For quasisyntomic rings, such that 𝑝𝑅 = 0, we relate MΔ to the crystalline Dieudonné functor of
Berthelot-Breen-Messing [6].

2. For perfectoid rings, we relate the prismatic Dieudonné functor to the functor introduced by Scholze-
Weinstein in [51, Appendix to Lecture XVII].

The intersection of these two cases is the case of perfect rings, which was historically the first to be
studied. The situation for perfect fields is briefly discussed at the end of this section.

We start with the case of quasisyntomic rings R with 𝑝𝑅 = 0. We want to compare the prismatic
Dieudonné functor to the crystalline Dieudonné functor

𝐺 ↦→ E𝑥𝑡1(𝑅/Z𝑝)crys,pr
(𝑖

crys
∗ (𝐺),Ocrys)

of [6]. Here, (𝑅/Z𝑝)crys,pr is the (big) crystalline site of R over Z𝑝 , Ocrys is the crystalline structure
sheaf, pr denotes the p-th root topology of [37, Definition 7.2] and

𝑖crys : Shv(𝑅)pr → Shv(𝑅/Z𝑝)crys,pr

defined as in [37, Lemma 8.1], where the left-hand side denotes the category of all schemes over R
endowed with the 𝑝-th root topology. As in [37, Section 8], we define

Ocrys := 𝑢
crys
∗ (Ocrys)

as the pushforward of the crystalline structure sheaf Ocrys along the morphism

𝑢crys : Shv(𝑅/Z𝑝)crys,pr → Shv(𝑅)pr

of topoi. Note that by definition 𝑖
crys
∗ = (𝑢crys)−1, so we can rewrite the crystalline Dieudonné functor as

𝐺 ↦→ E𝑥𝑡1(𝑅/Z𝑝)crys,pr
((𝑢crys)−1(𝐺),Ocrys).

Let J crys ⊆ Ocrys be the pushforward of the crystalline ideal sheaf Jcrys ⊆ Ocrys.
The following lemma is the basic input in the comparison of the prismatic and crystalline Dieudonné

functor.
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Lemma 4.43. Let 𝑅′ be a quasisyntomic F𝑝-algebra. Then there is a canonical isomorphism

Opris (𝑅′) → Ocrys(𝑅′)

identifying N ≥1Opris (𝑅′) with J crys (𝑅′).

Proof. Using the sheaf property for the pr-topology, we may assume that 𝑅′ is semiperfect. Then 𝑅′ is
even quasiregular semiperfect as it is quasisyntomic. Hence,

Opris(𝑅′) = Δ𝑅′ � 𝐴crys(𝑅
′) = Ocrys (𝑅′)

by Lemma 3.27. Moreover, the isomorphism in Lemma 3.27 identifies N ≥1Opris (𝑅′) with J crys. �

Let (𝑅)qsyn,pr be the category of quasisyntomic R-algebras equipped with the pr-topology, and let

𝑣
crys
∗ : Shv(𝑅/Z𝑝)crys,pr → Shv(𝑅)qsyn,pr

obtained by composing 𝑢
crys
∗ with restriction (the same caveat as in the beginning of Section 4.1 applies

here). Lemma 4.43 implies that the sheaves Opris and Ocrys on (𝑅)qsyn,pr are isomorphic. We note that
the categories of finite locally free Ocrys-modules on (𝑅)pr and finite locally free Ocrys

| (𝑅)qsyn,pr
-modules

on (𝑅)qsyn,pr are equivalent because for R quasiregular semiperfect, both categories identify with finite
locally free 𝐴crys(𝑅)-modules. These remarks give a meaning to the comparison contained in the next
two results.

Theorem 4.44. Let R be a quasisyntomic ring with 𝑝𝑅 = 0 and G a p-divisible group over R. Then
there is a canonical Frobenius equivariant isomorphism

MΔ (𝐺) � 𝑣
crys
∗ (E𝑥𝑡1(𝑅/Z𝑝)crys,pr

((𝑢crys)−1(𝐺),Ocrys))

from the prismatic Dieudonné crystal of G (cf. Definition 4.35) to the pushforward of the crystalline
Dieudonné crystal of G. In particular, if R is quasiregular semiperfect, 𝑀Δ (𝐺) is isomorphic to the
evaluation 𝑀crys (𝐺) on 𝐴crys(𝑅) of the crystalline Dieudonné crystal, compatibly with the Frobenius.

Of course, the isomorphism is linear over the isomorphism Opris � Ocrys from Lemma 4.43.

Proof. By definition

MΔ (𝐺) = E𝑥𝑡1(𝑅)qsyn
(𝐺,Opris).

But

E𝑥𝑡1(𝑅)qsyn
(𝐺,Opris) � E𝑥𝑡1(𝑅)qsyn,pr

(𝐺,Opris).

Indeed, by the spectral sequence constructed in Section 4.4 below, it suffices to see that the Opris-
cohomology for the quasisyntomic and pr-topologies agree. But quasiregular semiperfectoid rings form
a basis for both topologies, and on such, the higher cohomology of Opris vanishes in both topologies.
Thus, by Lemma 4.43, it suffices to see

𝑣
crys
∗ (E𝑥𝑡1(𝑅/Z𝑝)crys,pr

((𝑢crys)−1(𝐺),Ocrys)) � E𝑥𝑡1(𝑅)qsyn,pr
(𝐺,Ocrys).

As 𝑢crys is a morphism of topoi, we get

𝑅H𝑜𝑚 (𝑅)QSYN,pr (𝐺, 𝑅𝑢
crys
∗ (Ocrys)) � 𝑅𝑢

crys
∗ (𝑅H𝑜𝑚 (𝑅/Z𝑝)crys,pr ((𝑢

crys)−1(𝐺),Ocrys)).

Here, we use that we are dealing with the pr-topology: we don’t know if this statement is true for the
quasisyntomic topology, but it holds the syntomic topology as the arguments of [6, Proposition 1.1.5]
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apply because syntomic morphisms can be lifted locally along PD-thickenings, cf. [52, Tag 0070]. As
in 4.38, it suffices to see that

𝜖∗(H𝑜𝑚(𝐺, 𝑅1𝑢
crys
∗ (Ocrys))), H𝑜𝑚((𝑢crys)−1(𝐺),Ocrys)

vanish (here, 𝜖∗ is the (exact) pushforward to the small quasisyntomic site). The sheaf 𝑅1𝑢
crys
∗ (Ocrys)

for the pr-topology on (𝑅)QSYN,pr vanishes on every R-algebra S, which is quasisyntomic, because it
vanishes on quasiregular semiperfects (cf. [12, Section 8]), and each quasisyntomic F𝑝-algebra admits
a pr-cover by some quasiregular semiperfect ring. Write

H𝑜𝑚(𝐺, 𝑅1𝑢
crys
∗ (Ocrys)) = lim

←−−
𝑛

H𝑜𝑚(𝐺 [𝑝𝑛], 𝑅1𝑢
crys
∗ (Ocrys)).

The set Hom(𝑅)QSYN,pr (𝐺 [𝑝
𝑛], 𝑅1𝑢

crys
∗ (Ocrys)) embeds into the sections of 𝑅1𝑢

crys
∗ (Ocrys) over 𝐺 [𝑝𝑛],

but these sections vanish because 𝐺 [𝑝𝑛] is syntomic over R. Applying the same reasoning to all
quasisyntomic R-algebras proves the desired vanishing of the first H𝑜𝑚. For the second H𝑜𝑚, note
that Ocrys, (𝑢

crys)−1(𝐺) are actually sheaves for the syntomic topology on the site (𝑅/Z𝑝)crys and the
local H𝑜𝑚 does not depend on the topology. Multiplication by 𝑝𝑛 on (𝑢crys)−1(𝐺) is surjective for the
syntomic topology for every 𝑛 ≥ 0 ([6, Proposition 1.1.7]). This implies that

H𝑜𝑚((𝑢crys)−1(𝐺),Ocrys) � lim
←−−
𝑛

H𝑜𝑚((𝑢crys)−1(𝐺),Ocrys/𝑝
𝑛) = 0

using that Ocrys is p-adically complete (being p-adically separated would be sufficient for this argument).
Lemma 4.43 implies then moreover compatibility with Frobenius. �

In general, that is, when p is not necessarily zero in R, one can still relate the prismatic Dieudonné
crystal of a p-divisible group to the crystalline Dieudonné crystal, as follows. Let R be a p-complete
ring, and let D be a p-complete p-torsion free 𝛿-ring with a surjection 𝐷 → 𝑅 whose kernel has
divided powers.19 As the kernel of 𝐷 → 𝑅 has divided powers, the Frobenius on D induces a morphism
𝑅 → 𝐷/𝑝. With this morphism, the prism (𝐷, (𝑝)) defines an object of the absolute prismatic site (𝑅)Δ
of R. Via Lemma 4.38, it thus makes sense to evaluate the prismatic Dieudonné module of a p-divisible
group over R, more precisely 𝑣∗ of it, on (𝐷, (𝑝)).

Lemma 4.45. For every p-divisible group G over R there is a natural Frobenius equivariant isomorphism

𝑣∗(MΔ (𝐺)) (𝐷, (𝑝)) � D(𝐺) (𝐷).

Here, D(𝐺) (𝐷) denotes the evaluation of the (contravariant, crystalline) Dieudonné crystal of G on the
PD-thickening 𝐷 → 𝑅.

Proof. Let C be the category of schemes over R, which are p-completely syntomic over R. For each
scheme 𝐻 ∈ C, there is a canonical isomorphism in the∞-category D(Z)

𝜂𝐻 : 𝑅Γ((𝐻 (1) /𝐷)Δ,OΔ) � 𝑅Γ((𝐻/𝐷)crys,Ocrys)

by the crystalline comparison for syntomic morphisms (cf. Remark 3.8), where 𝐻 (1) := 𝐻 ×Spec(𝑅)
Spec(𝐷/𝑝)20). We can write both sides as

𝐻 ↦→ 𝑅Γ((𝐻 (1) /𝐷)Δ,OΔ) � 𝑅Hom(𝑅)Δ (Z[𝑢
−1 (𝐻)],OΔ),

19We don’t require 𝑝𝑛𝑅 = 0 for some 𝑛 ≥ 0.
20Note that 𝑅Γ( (𝐻/𝐷)crys,Ocrys) = 𝑅Γ( ( (𝐻/𝑝)/𝐷)crys,Ocrys) . This follows from the computation of crystalline cohomol-

ogy by a C̆ech-Alexander complex and the following fact: if A is a Z/𝑝𝑛-algebra (for some 𝑛 > 0), P a free Z𝑝-algebra surjecting
onto A, the divided power envelopes of 𝑃/𝑝𝑚 → 𝐴 and 𝑃/𝑝𝑚 → 𝐴/𝑝 agree for any 𝑚 ≥ 𝑛 (see [5, Theorem I.2.8.2].
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respectively,

𝐻 ↦→ 𝑅Γ((𝐻/𝐷)crys,Ocrys) � 𝑅Hom(𝑅)crys (Z[(𝑢
crys)−1(𝐻)],Ocrys),

making it clear that both functors are actually restrictions to C of 𝑅Hom-functors

𝐹 (−) := 𝑅Hom(𝑅)Δ (−,OΔ), 𝐺 (−) := 𝑅Hom(𝑅)crys (−,Ocrys)

on the category of sheaves of abelian groups ShvZ ((𝑅)Δ), respectively, ShvZ ((𝑅)crys) on (𝑅)Δ, respec-
tively, (𝑅)crys along the functors

𝐻 ↦→ 𝜄pris (𝐻) := Z[𝑢−1(𝐻)] ∈ ShvZ ((𝑅)Δ),

respectively,

𝐻 ↦→ 𝜄crys (𝐻) := Z[𝑢crys−1
(𝐻)] ∈ ShvZ ((𝑅)crys).

Assume now that H is a finite locally free group scheme over R, in particular, H is syntomic over R.
Applying 𝐹 (−), 𝐺 (−) to the Breen-Deligne resolution, cf. Theorem 4.55, of 𝑢−1(𝐻), 𝑢crys−1 (𝐻) (seen
via Dold-Kan as simplicial objects in Shv((𝑅)Δ), respectively, Shv((𝑅)crys)) yield two cosimplicial
objects 𝐾•1 , 𝐾

•
2 : Δ → D(Z) (here, Δ is the simplex category) with limits

𝑅Hom(𝑅)Δ (𝑢
−1(𝐻),OΔ)

and

𝑅Hom(𝑅)Δ ((𝑢
crys)−1(𝐻),Ocrys).

We claim that the natural isomorphism 𝜂 extends to a natural isomorphism 𝐾•1 � 𝐾•2 . Intuitively,
this is clear as the morphisms in the Breen-Deligne resolution are sums of maps induced by morphisms
between schemes. We thank Yonatan Harpaz and Fabian Hebestreit for their help with the following
rigorous ∞-categorical argument. It suffices to argue for the left Kan extensions of 𝐹 ◦ 𝜄pris, 𝐺 ◦
𝜄crys : C → D(Z)op from C to the category of all schemes over R (this ensures the existence of fibre
products in C commuting with coproducts). Hence, we abuse notation and denote by C the category
of all schemes over R. Let D be any category with action by the symmetric monodial (via tensor
product) category F𝑟𝑒𝑒Z of finite free Z-modules, such that the action commutes with finite coproducts
in each variable, for example, D = D(Z)op. In other words, D is required to be a module under
F𝑟𝑒𝑒Z in the symmetric monoidal ∞-category C𝑎𝑡∞(Kfin) from [39, Corollary 4.8.1.4] with Kfin the
class of finite sets. Now each functor 𝜑 : C → D preserving finite coproducts, respectively, each
natural transformation between such functors extends to a functor 𝜑ab : Cab := F𝑟𝑒𝑒Z ⊗Kfin C → D,
respectively, a natural transformation between such functors with − ⊗Kfin − the tensor product in
C𝑎𝑡∞(Kfin) by F𝑟𝑒𝑒Z-linearity of D. The category Cab can now be calculated as follows: Consider
the category Fun(Cop,D≥0 (Z)) of functors, and its full subcategory Fun×(Cop,D≥0(Z)) of product-
preserving functors. The inclusion Fun×(Cop,D≥0 (Z)) → Fun(Cop,D≥0(Z)) admits a left adjoint L,
given by sheafification on C with respect to the Grothendieck topology in which coverings are finite
collections {𝑋𝑖 → 𝑋}𝑖∈𝐼 , such that

∐
𝑖∈𝐼

𝑋𝑖 → 𝑋 is an isomorphism. Now, Cab is the smallest full

subcategory of Fun×(Cop,D≥0(Z)) containing all objects 𝐿(Z[HomC (−, 𝑋)]) with 𝑋 ∈ C. Note that Cab

is a 1-category because sheafification for this Grothendieck topology preserves set-valued presheaves.
In fact, we only need that functors 𝜑 : C → D preserving coproducts extend to Cab when the latter is
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defined by the above concrete description. To see this, note if S denotes the∞-category of spaces, that
is, Kan complexes, that

Fun×(F𝑟𝑒𝑒
op
Z
,S) � D≥0(Z)

by [41, Example 1.2.9]. Each functor 𝜑 : C → D yields a functor

Fun(Cop,D≥0(Z)) → Fun(Dop,D≥0(Z)).

Now Fun(Dop,D≥0(Z)) embeds into

Fun(Dop × F𝑟𝑒𝑒
op
Z
,S)

(with essential image those functors commuting with products in the second factor), and the F𝑟𝑒𝑒Z-
action F𝑟𝑒𝑒Z × D → D furnishes a functor from this to the category Fun(Dop,S), which contains D
by the Yoneda lemma. Restricting further along the inclusion Cab → Fun(Cop,D≥0(Z)) then yields a
functor

Cab → Fun(Dop,S)

with image in D as 𝜑 preserves finite coproducts. This yields the desired extension, and similarly, we
see that natural transformations extend. Given these considerations, and, in particular, the description
of Cab, it follows by unraveling the construction that, in our situation, the simplicial objects given by the
images under F, respectively, G of the Breen-Deligne resolutions of 𝑢−1(𝐻), respectively, 𝑢crys−1 (𝐻)
are the images of a simplicial object in Cab under the extensions of 𝐹 ◦ 𝜄pris, 𝐺 ◦ 𝜄crys. This shows that 𝜂
extends as desired.

Passing to the limits and taking cohomology in degree 1, we can deduce that

MΔ (𝐻) (𝐷, (𝑝)) := Ext1(𝑢−1 (𝐻),OΔ),

respectively, D(𝐻) (𝐷) are canonically isomorphic. Hence, we obtain the desired natural isomorphism
for finite flat group schemes. The proof of Proposition 4.69 below21 shows that writing

𝐺 = lim
−−→
𝑛

𝐺 [𝑝𝑛]

and passing to the limit yields a canonical isomorphism

MΔ (𝐺) (𝐷, (𝑝)) � D(𝐺) (𝐷)

for G a p-divisible group over R. �

Remark 4.46. The relation between the prismatic and the crystalline Dieudonné functors will mostly
be used over a characteristic p perfect field in the rest of this text, and it could be interesting to find a
more direct proof of it in this special case, as explained at the end of this section. But it will also be
used for comparison with the Scholze-Weinstein functor in the next paragraph and in Section 5.2.

We turn to perfectoid rings. The following statement is a special case of a theorem of Fargues ([22],
[51]). Let C be a complete algebraically closed extension of Q𝑝 . We abbreviate

𝐴inf = 𝐴inf (O𝐶 ) , 𝐴crys := 𝐴crys (O𝐶/𝑝).

We also fix a compatible system 𝜀 of p-th roots of unity, and let 𝜉 = [𝑝]𝑞 , where 𝑞 = [𝜀] − 1. We
identify the initial prism of (O𝐶 )Δ with (𝐴inf , (𝜉)).

21Which the reader can check to be independent of the present lemma.
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Proposition 4.47. A prismatic Dieudonné module (𝑀, 𝜑𝑀 ) over O𝐶 (i.e. a minuscule Breuil-Kisin-
Fargues module) is uniquely determined up to isomorphism by the triple

(𝑇𝑀 , 𝑀crys, 𝛼𝑀 ),

where 𝑇𝑀 is the finite free Z𝑝-module

𝑇𝑀 = 𝑀

[
1
𝜉

] 𝜑𝑀=1
,

𝑀crys = 𝑀 ⊗𝐴inf 𝐴crys

is a 𝜑-module over 𝐴crys and 𝛼𝑀 : 𝑇𝑀 ⊗Z𝑝 𝐵crys � 𝑀crys ⊗𝐴crys 𝐵crys is the 𝜑-equivariant isomorphism
coming from the natural map 𝑀 [ 1

𝜉
]𝜑𝑀=1 → 𝑀 [ 1

𝜉
].

Let R be a perfectoid ring. In [51, Theorem 17.5.2], Scholze-Weinstein construct a covariant functor
𝑀𝑆𝑊 from p-divisible groups over R to prismatic Dieudonné modules over R inducing an equivalence
between the two categories. It has the following properties characterising it uniquely, which will be used
in the next proof.
• When R is perfect, 𝑀𝑆𝑊 = 𝑀crys (−) is the (covariant) crystalline Dieudonné functor dual to 𝑀crys.
• If 𝑅 = O𝐶 , with C a complete algebraically closed extension of Q𝑝 ,

𝑀𝑆𝑊 (−) ⊗𝐴inf 𝐴crys � 𝑀crys (− ⊗O𝐶 O𝐶/𝑝)

([51, Proposition 14.8.3]). In particular, if 𝐺 = 𝑋 [𝑝∞], for some formal abelian scheme X over O𝐶 ,
the functor 𝑀𝑆𝑊 sends G to the prismatic Dieudonné module over O𝐶 dual to 𝐻1

𝐴inf
(𝑋): this

follows from the definition of 𝑀𝑆𝑊 (𝐺) ([51, Section 12.1]), [51, Proposition 14.8.3] and the above
proposition.

• In general, for any perfectoid ring R, if G is a p-divisible group over R,

𝑀𝑆𝑊 (𝐺) ⊂ 𝑀crys (𝐺 ⊗𝑅 𝑅/𝑝)

is the largest submodule mapping into 𝑀 (𝐺 ⊗𝑅 𝑉) ⊂ 𝑀crys (𝐺 ⊗𝑅 𝑉) for all maps 𝑅 → 𝑉 where V
is an integral perfectoid valuation ring with algebraically closed fraction field.

Proposition 4.48. Let R be a perfectoid ring. The functor𝐺 ↦→ 𝑀Δ (𝐺) from BT(𝑅) to DM(𝑅) coincides
with the (naive)22 dual of the functor 𝑀𝑆𝑊 of [51, Appendix to Lecture XVII].
Proof. If R is perfect and G a p-divisible group over R, then we get a natural isomorphism

𝛼𝑅,𝐺 : 𝑀Δ (𝐺) � 𝑀𝑆𝑊 (𝐺)∗

because both sides identify with the (contravariant) crystalline Dieudonné module (cf. Theorem 4.44).
Moreover, 𝛼𝑅,− is compatible with base change along morphisms of perfect rings. Now assume that
𝑅 = O𝐶 , where C is a perfectoid algebraically closed field over Q𝑝 . In this case, assume first that
𝐺 = 𝑋 [𝑝∞], for some formal abelian scheme X over O𝐶 , with rigid generic fibre 𝑋 rig. As recalled
above, the functor 𝑀𝑆𝑊 sends G to the prismatic Dieudonné module over O𝐶 dual to 𝐻1

𝐴inf
(𝑋). In

particular, in this case, 𝑀𝑆𝑊 (𝐺) is isomorphic to the (naive) dual to 𝑀Δ (𝐺), by Corollary 4.63 and the
comparison theorem [13, Theorem 17.2]23. Moreover, this identification is functorial for morphisms of
p-divisible groups of abelian schemes (and not simply for morphisms of abelian schemes): indeed, let

22That is, (−)∗ = Hom𝐴inf (𝑅) (−, 𝐴inf (𝑅)) .
23Note that we chose 𝜉 as a generator of the ideal of the prism, so the Frobenius twist in the statement of loc. cit. disappears.
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𝑋, 𝑋 ′ be two abelian schemes over O𝐶 , and 𝐺 = 𝑋 [𝑝∞], 𝐻 = 𝑋 ′ [𝑝∞], with a morphism 𝑓 : 𝐺 → 𝐻.
We want to see that the diagram

𝑀𝑆𝑊 (𝐺)
� ��

𝑀𝑆𝑊 ( 𝑓 )

��

𝑀Δ (𝐺)
∗

𝑀Δ ( 𝑓 )
∗

��
𝑀𝑆𝑊 (𝐻)

� �� 𝑀Δ (𝐻)
∗

commutes. This can be checked after base change to 𝐴crys. Then, using Lemma 4.45, the terms on the
top line (respectively, on the bottom line) are identified with the covariant crystalline Dieudonné module
of G (respectively, H), and the horizontal isomorphisms induce the identity, by construction.

Let now G be a general p-divisible group over O𝐶 . There exists a formal abelian scheme X over O𝐶 ,
such that 𝑋 [𝑝∞] = 𝐺 × 𝐺̌ (cf. [51, Proposition 14.8.4]). Let 𝑒 : 𝑋 [𝑝∞] → 𝑋 [𝑝∞] be the idempotent
with kernel G. Then

𝑀Δ (𝐺)
∗ = ker(𝑀Δ (𝑒)

∗ : 𝑀Δ (𝑋 [𝑝
∞])∗ → 𝑀Δ (𝑋 [𝑝

∞])∗)

and

𝑀SW(𝐺) = ker(𝑀SW (𝑒) : 𝑀SW (𝑋 [𝑝∞]) → 𝑀SW (𝑋 [𝑝∞])).

By the functoriality explained above, we can conclude the proof when 𝑅 = O𝐶 , that is, we have
constructed an isomorphism 𝛼𝑅,𝐺 � 𝑀Δ (𝐺) � 𝑀𝑆𝑊 (𝐺)∗ in this case, which is natural in G and
compatible with base change along morphisms of such R’s. If k denotes the residue field of O𝐶 , then
by construction, the base change of 𝛼𝑅,𝐺 along Δ𝑅 → Δ𝑘 is 𝛼𝑘,𝐺⊗𝑅𝑘 .

Now assume that R is a general perfectoid ring. By [36, Remark 8.8], we can write

𝑅 � 𝑅1 ×𝑆2 𝑆1

with 𝑅1𝑝-torsion free perfectoid, 𝑆1, 𝑆2 perfect and 𝑅1 → 𝑆2, 𝑆1 → 𝑆2 surjective. As in [36, Lemma
9.2], the category DM(𝑅) of prismatic Dieudonné modules for R is naturally equivalent to the
2-limit

DM(𝑅1) ×DM(𝑆2) DM(𝑆1).

Thus, it suffices to construct a natural isomorphism 𝑀Δ (𝐺) � 𝑀𝑆𝑊 (𝐺)∗ for any p-divisible group
over a perfectoid ring R, which is either perfect or p-torsion free, and show that it is compatible with
base change in R. If R is perfect, then we are already done. Let us assume that R is p-torsion free. Then
the ring 𝑅/𝑝 is quasiregular semiperfect, and Δ𝑅/𝑝 � 𝐴crys (𝑅/𝑝) by 3.27. By 4.44, 4.6924 and the
construction of 𝑀𝑆𝑊 (𝐺)∗, we have a natural isomorphism

𝛼𝐺⊗𝑅𝑅/𝑝 : 𝑀Δ (𝐺) ⊗Δ𝑅
𝐴crys (𝑅/𝑝) � 𝑀𝑆𝑊 (𝐺)∗ ⊗Δ𝑅

𝐴crys(𝑅/𝑝)

because both sides identify with the (contravariant) crystalline Dieudonné module of 𝐺 ⊗𝑅 𝑅/𝑝. By
4.69, 𝑀Δ (𝐺) is a finite locally free Δ𝑅-module. Thus, 𝑀Δ (𝐺) identifies with a Δ𝑅-submodule of
𝑀Δ (𝐺) ⊗Δ𝑅

𝐴crys(𝑅/𝑝) because the morphism Δ𝑅 → 𝐴crys(𝑅/𝑝) is injective. We claim that 𝛼𝐺⊗𝑅𝑅/𝑝

maps (injectively) 𝑀Δ (𝐺) into 𝑀𝑆𝑊 (𝐺)∗. By the very construction of 𝑀𝑆𝑊 (𝐺)∗, we have to check
that for any perfectoid valuation ring V with algebraically closed fraction field and morphism 𝑅 → 𝑉 ,
the module 𝑀Δ (𝐺) maps to 𝑀𝑆𝑊 (𝐺𝑉 )

∗ ⊆ 𝑀crys (𝐺𝑉 ) with 𝐺𝑉 := 𝐺 ⊗𝑅𝑉 . If V is perfect, this follows

24The proof of 4.69 does not use the comparison with [51].
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by 4.44. If V is of mixed characteristic, we can write V as the fibre product𝑉 ′ ×𝜅 𝑆 of a perfect valuation
ring S with a mixed-characteristic valuation ring 𝑉 ′ of rank 1 over the residue field 𝜅 of 𝑉 ′, and write

𝑀𝑆𝑊 (𝐺𝑉 ) � 𝑀𝑆𝑊 (𝐺𝑉 ′ ) ×𝑀𝑆𝑊 (𝐺𝜅 )
𝑀𝑆𝑊 (𝐺𝑆).

We already checked the statement for 𝑉 ′, 𝜅, 𝑆, and, thus, we have finished the construction of a natural
injective morphism

𝛼𝑅,𝐺 : 𝑀Δ (𝐺) → 𝑀𝑆𝑊 (𝐺)∗

for a general perfectoid ring R. Assume 𝑅 → 𝑅′ is a morphism of perfectoid rings, then we know that
𝛼𝑅,𝐺 ⊗Δ𝑅

Δ𝑅′ = 𝛼𝑅′,𝐺𝑅′
if 𝑅, 𝑅′ are perfect. If R is p-torsion free and 𝑅′ perfect, we can draw the same

conclusion as then Δ𝑅 → Δ𝑅′ factors over 𝐴crys(𝑅/𝑝) and 𝛼𝑅,𝐺 ⊗Δ𝑅
𝐴crys (𝑅/𝑝) is the identification

coming from Dieudonné theory. As 𝑀𝑆𝑊 (𝐺)∗ is a finite free Δ𝑅-module (by [51, Theorem 17.5.2]),
we can check that it is an isomorphism after base change along all morphisms Δ𝑅 → Δ𝑘 for 𝑅 → 𝑘 , a
morphism from R to a perfect field k. But this case was already handled. This finishes the proof. �

We obtain the following corollary, which we will need in Section 4.9.
Corollary 4.49. Let R be a perfectoid ring. The prismatic Dieudonné functor 𝑀Δ takes values in
DMadm(𝑅) � DM(𝑅) and induces an antiequivalence between BT(𝑅) and DMadm(𝑅) � DM(𝑅).
Proof. This follows immediately from the last proposition and [51, Theorem 17.5.2]. Note that the
argument of loc. cit. shows that one only needs to prove the equivalence when R is the ring of integers
of a perfectoid algebraically closed field, where it is due to Berthelot [4, Theorem 3.4.1] and Scholze-
Weinstein [50, Theorem 5.2.1] (in this case, one can even assume that the fraction field of R is spherically
complete, and the result is then an easy consequence of results of Fargues: see [50, Section 5.2]). �

Remark 4.50. Let R be a perfectoid ring. The functor 𝑀Δ is exact (see below Proposition 4.72) and
has an exact quasi-inverse (we will provide an argument for this later in Section 5.1 in the case of finite
locally free group schemes, which applies verbatim for p-divisible groups).

Let us conclude this section by discussing the case of perfect fields. For a perfect field k, Fontaine [23]
was the first to give a uniform definition of a functor from p-divisible groups to (prismatic) Dieudonné
modules over k. Let us recall it first, as formulated in [7, Section 4.1]. If A is a commutative ring, the
set CW(𝐴) of Witt covectors with values in A is the set of all family (𝑎−𝑖)𝑖∈N of elements of A, such
that there exist integers 𝑟, 𝑠 ≥ 0, such that the ideal 𝐽𝑟 generated by the 𝑎−𝑖 , 𝑖 ≥ 𝑟 , satisfies 𝐽𝑠𝑟 = 0. One
still denotes by CW the sheaf on the big fpqc site25 of k associated to the presheaf of Witt covectors.
This is an abelian sheaf of 𝑊 (𝑘)-modules, endowed with a Frobenius operator which is semilinear with
respect to the Frobenius on 𝑊 (𝑘). Fontaines defines:

𝑀cl(𝐺) := Hom(𝑘)fpqc (𝐺,CW).

As a corollary of Theorem 4.44 and results of Berthelot-Breen-Messing, one gets
Proposition 4.51. Let k be a perfect field, and let G be a p-divisible group over R. One has a canonical
𝑊 (𝑘)-linear Frobenius-equivariant isomorphism

𝑀Δ (𝐺) � 𝑀cl (𝐺).

Proof. By construction, the isomorphism of Theorem 4.44 is linear over the isomorphism Δ𝑘 � 𝐴crys(𝑘),
which is given by the Frobenius 𝜎 of𝑊 (𝑘), that is, it can be seen as a Frobenius-equivariant𝑊 (𝑘)-linear
isomorphism:

𝑀Δ (𝐺) � (𝜎
−1)∗𝑀crys (𝐺).

25We could as well use any other topology finer than the Zariski topology.
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Composing it with 𝜎−1-pullback of the inverse of the 𝑊 (𝑘)-linear Frobenius-equivariant isomorphism
of [7, Theorem 4.2.14], we get the desired isomorphism. �

It would be interesting to get a more direct proof of this corollary. In characteristic p, the prismatic
Dieudonné crystal of a p-divisible group admits a description which looks similar to Fontaine’s definition.

Definition 4.52. Let R be a a quasisyntomic ring with 𝑝𝑅 = 0. We define the sheaf Q on (𝑅)Δ as the
quotient:

0→ OΔ → OΔ [1/𝑝] → Q→ 0.

The morphism OΔ → OΔ [1/𝑝] is injective since any prism in (𝑅)Δ is p-torsion free.

Proposition 4.53. Let R be a quasisyntomic ring with 𝑝𝑅 = 0, and let G be a p-divisible group over R.
The connecting map of the canonical exact sequence

0→ OΔ → OΔ [1/𝑝] → Q→ 0

induces an isomorphism:

H𝑜𝑚 (𝑅)qsyn (𝐺, 𝑣∗Q) = 𝑣∗H𝑜𝑚 (𝑅)Δ (𝑢
−1𝐺,Q) �MΔ (𝐺).

Proof. First assume that G is a finite locally free group scheme. Then the statement is clear, as

𝑅H𝑜𝑚 (𝑅)Δ (𝑢
−1(𝐺),OΔ [1/𝑝]) = 0,

because 𝑢−1(𝐺) is killed by some power of p, whereas on OΔ [1/𝑝] multiplication by p is invertible.
The result for p-divisible groups is deduced by a limit argument. �

This naturally leads to the following question.

Question 4.54. When 𝑅 = 𝑘 is a perfect field, what is the relation between the sheaf 𝑣∗Q and the sheaf
CW of Witt covectors?

4.4. Calculating Ext-groups in topoi

In this section, we recall the method of calculating Ext-groups in a topos as presented by Berthelot et al.
(cf. [6, 2.1.5]26. Let 𝔛 be a topos, and let 𝐺, 𝐻 ∈ 𝔛 be two abelian groups, that is, two abelian group
objects.

The following theorem is attributed to Deligne in [6]. A proof can be found in [48, Appendix to
Lecture IV, Theorem 4.10].

Theorem 4.55. Let 𝐺 ∈ 𝔛 be an abelian group. Then there exists a natural functorial (in G) resolution

𝐶 (𝐺)• := (. . .→ Z[𝑋2] → Z[𝑋1] → Z[𝑋0]) � 𝐺,

where each 𝑋𝑖 ∈ 𝔛 is a finite disjoint union of products of copies G.

Proof. See [6, 2.1.5] or [48, Appendix to Lecture IV, Theorem 4.10] �

Lemma 4.56. Let 𝑋 ∈ 𝔛 be any object, and let F ∈ Ab(𝔛) be an abelian group. Then

𝑅Γ(𝑋,F) � 𝑅HomAb(𝔛) (Z[𝑋],F),

where Z[𝑋] denotes the free abelian group on X.

26For simplicity, we omit the case of the local Ext-sheaves, which is entirely similar.
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Proof. This follows by deriving the isomorphism F (𝑋) � HomAb(𝔛) (Z[𝑋],F). �

These two results show that the Ext-groups

Ext𝑖Ab(𝔛) (𝐺, 𝐻)

can, in principle, be calculated in terms of the cohomology groups

𝐻𝑖 (𝐺 × . . . × 𝐺, 𝐻)

for various products 𝐺 × . . . × 𝐺. Unfortunately, the construction of the resolution in Theorem 4.55 is
rather involved. However, the first terms, which are sufficient for our applications, can be made explicit27.
For example, the first terms can be chosen to be

𝐶 (𝐺)0 := Z[𝐺]
𝐶 (𝐺)1 := Z[𝐺2]

𝐶 (𝐺)2 := Z[𝐺3] ⊕ Z[𝐺2]

with explicit differentials (cf. [6, (2.1.5.2.)]). The stupid filtration of the complex𝐶 (𝐺)• yields a spectral
sequence

𝐸
𝑖, 𝑗
1 = Ext 𝑗Ab(𝔛) (𝐶 (𝐺)𝑖 ,F) ⇒ Ext𝑖+ 𝑗Ab(𝔛) (𝐶 (𝐺)•,F) � Ext𝑖+ 𝑗Ab(𝔛) (𝐺,F)

and the terms

Ext𝑖Ab(𝔛) (𝐶 (𝐺) 𝑗 ,F)

can be calculated using the cohomology. For later use, let us make the first terms of the first page of this
spectral sequence explicit:

. . .

������������������ . . .

�������������������������� . . . . . .

𝐻2 (𝐺,F) 𝑑1 ��

����������������� 𝐻2(𝐺 × 𝐺,F) 𝑑2 ��

����������������������� 𝐻2 (𝐺 × 𝐺,F) ⊕ 𝐻2(𝐺 × 𝐺 × 𝐺,F) �� . . .

𝐻1 (𝐺,F) 𝑑1 ��

����������������� 𝐻1(𝐺 × 𝐺,F) 𝑑2 ��

����������������������� 𝐻1 (𝐺 × 𝐺,F) ⊕ 𝐻1(𝐺 × 𝐺 × 𝐺,F) �� . . .

𝐻0 (𝐺,F) 𝑑1 �� 𝐻0(𝐺 × 𝐺,F) 𝑑2 �� 𝐻0 (𝐺 × 𝐺,F) ⊕ 𝐻0(𝐺 × 𝐺 × 𝐺,F) �� . . . .

For an element (𝑥1, . . . , 𝑥𝑛) ∈ 𝐺
𝑛, let us denote by [𝑥1, . . . , 𝑥𝑛] ∈ Z[𝐺

𝑛] the corresponding element in
the group ring Z[𝐺𝑛]. The morphisms 𝑑1 and 𝑑2 are then induced by

Z[𝐺2] → Z[𝐺], [𝑥, 𝑦] ↦→ −[𝑥] + [𝑥 + 𝑦] − [𝑦]

for 𝑑1 and

Z[𝐺2] → Z[𝐺2], [𝑥, 𝑦] ↦→ [𝑥, 𝑦] − [𝑦, 𝑥]
Z[𝐺3] → Z[𝐺2], [𝑥, 𝑦, 𝑧] ↦→ −[𝑦, 𝑧] + [𝑥 + 𝑦, 𝑧] − [𝑥, 𝑦 + 𝑧] + [𝑥, 𝑦]

for 𝑑2 (cf. [6, (2.1.5.2.)]).

27By this, we mean that one can construct a functorial (in G) resolution having these terms in the beginning.
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4.5. Prismatic Dieudonné crystals of abelian schemes

In this section, we describe the prismatic cohomology of the p-adic completion of abelian schemes and
deduce from this the construction of the prismatic Dieudonné crystal

MΔ (𝑋 [𝑝
∞]) = (MΔ (𝑋 [𝑝

∞]), 𝜑MΔ (𝑋 [𝑝
∞]) ).

of the p-divisible group 𝑋 [𝑝∞] of the p-adic completion of an abelian scheme X over a quassyntomic
ring R. Admissibility of this prismatic Dieudonné crystal will be proved in the next section, in fact for
any p-divisible group.

Let (𝐴, 𝐼) be a bounded prism. Write 𝐴̄ = 𝐴/𝐼. Let 𝑋 → Spf ( 𝐴̄) be the p-adic completion of an
abelian scheme over Spec( 𝐴̄).

We first prove degeneracy of the conjugate spectral sequence (cf. Proposition 3.10) for X. The proof
is an adaptation of the argument in [6, Proposition 2.5.2], which proves degeneration of the Hodge-de
Rham spectral sequence.

Recall the following statement.

Proposition 4.57. For all 𝑘 ≥ 0 (respectively, for all 𝑖, 𝑗 ≥ 0), the 𝐴̄-module 𝐻𝑘 (𝑋,Ω•
𝑋/𝐴̄
) (respectively,

𝐻𝑖 (𝑋,Ω 𝑗

𝑋/𝐴̄
)) is finite locally free, and its formation commutes with base change.

Moreover, the algebra 𝐻∗(𝑋,Ω•
𝑋/𝐴̄
) is alternating and the canonical algebra morphism

∧∗𝐻1(𝑋,Ω•
𝑋/𝐴̄
) → 𝐻∗(𝑋,Ω•

𝑋/𝐴̄
)

defined by the multiplicative structure of 𝐻∗(𝑋,Ω•
𝑋/𝐴̄
), is an isomorphism.

Proof. This is [6, Proposition 2.5.2. (i)-(ii)]. �

Proposition 4.58. The conjugate spectral sequence

𝐸
𝑖 𝑗
2 = 𝐻𝑖 (𝑋,Ω 𝑗

𝑋/𝐴̄
){− 𝑗} ⇒ 𝐻𝑖+ 𝑗 (𝑋,Δ𝑋/𝐴)

degenerates and each term as well as the abutment commutes with base change in the bounded prism
(𝐴, 𝐼). Moreover,

𝐻∗(𝑋,Δ𝑋/𝐴) � Λ∗𝐻1(𝑋,Δ𝑋/𝐴)

is an exterior 𝐴̄-algebra on 𝐻1(𝑋,Δ𝑋/𝐴).

Proof. If 𝑝 ≠ 2, we can use a simple argument using the multiplication by 𝑛 ∈ Z on X. If 𝑛 ∈ Z, then
the multiplication by n on X induces on 𝐻𝑖 (𝑋,Ω 𝑗

𝑋/𝐴̄
){− 𝑗} multiplication by 𝑛𝑖+ 𝑗 . As the differentials

of the spectral sequence are natural in X, this implies that they vanish on each 𝐸𝑟 -page, 𝑟 ≥ 0 (this uses
𝑝 ≠ 2). This proves that 𝐻𝑖 (𝑋,Δ𝑋/𝐴) is a finite locally free 𝐴̄-module for each 𝑖 ≥ 0. By the Hodge-Tate
comparison, the complex

Δ𝑋/𝐴

satisfies base change in (𝐴, 𝐼), that is, for a morphism (𝐴, 𝐼) → (𝐴′, 𝐼 ′) of prisms with induced
morphism 𝑔 : 𝑋 ′ := 𝑋 ×Spf ( 𝐴̄) Spf (𝐴′/𝐼 ′) → 𝑋 , the canonical morphism

𝐿𝑔∗Δ𝑋/𝐴→ Δ𝑋 ′/𝐴′

is an isomorphism. From this, we can deduce that each 𝐻𝑖 (𝑋,Δ𝑋/𝐴), 𝑖 ≥ 0, satisfies base change in
(𝐴, 𝐼). To show that 𝐻∗(𝑋,Δ𝑋/𝐴) is an exterior algebra on 𝐻1 (𝑋,Δ𝑋/𝐴), we need first to see that each
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element in 𝐻1(𝑋,Δ𝑋/𝐴) squares to zero. For this, we can argue as in the proof [6, Proposition 2.5.2.(ii)].
Then we obtain a canonical morphism

𝛽 : ∧∗ 𝐻1(𝑋,Δ𝑋/𝐴) → 𝐻∗(𝑋,Δ𝑋/𝐴).

We can use Lemma 4.59 and compatibility with base change to reduce to the case that 𝐴̄ is an algebraically
closed field of characteristic p. In particular, the Frobenius on A is bijective in this case, 𝐼 = (𝑝) and
the twists (−){ 𝑗} are isomorphic to the identity. We may check that 𝛽 is an isomorphism after pullback
along 𝜑 𝐴̄. Then

𝜑∗
𝐴̄
𝐻𝑘 (𝑋,Δ𝑋/𝐴) � 𝐻𝑘 (𝑋 (1) , (𝜑𝑋/𝐴̄)∗(Ω

•
𝑋/𝐴̄
)) � 𝐻𝑘 (𝑋,Ω•

𝑋/𝐴̄
),

where we used in the second isomorphism that the relative Frobenius

𝜑𝑋/𝐴̄ : 𝑋 → 𝑋 (1) := 𝑋 ×Spec( 𝐴̄) ,𝜑𝐴̄
Spec( 𝐴̄)

is finite. This reduces the assertion to de Rham cohomology, which is the content of Proposition 4.57.
This finishes the proof.

Alternatively (including the case 𝑝 = 2), we could have argued like in [6, Theorem 2.5.2. (i)] to
reduce, by descending induction, to the claim that 𝐻1(𝑋,Δ𝑋/𝐴) is locally free of rank 2𝑛, where n is
the relative dimension of X over Spf ( 𝐴̄), and commutes with base change in (𝐴, 𝐼). From Proposition
3.12 it follows that

𝐻1(𝑋,Δ𝑋/𝐴) � 𝐻1(𝑋, 𝜏≤1Δ𝑋/𝐴) � 𝐻0 (𝑋, 𝐿𝑋/𝐴[−1]).

As 𝐿𝑋/𝐴 is a perfect complex with amplitude in [−1, 0], this implies compatibility of 𝐻1 (𝑋,Δ𝑋/𝐴)

with base change in (𝐴, 𝐼) if all the higher cohomology groups 𝐻 𝑗 (𝑋, 𝐿𝑋/𝐴[−1]) are locally free. As
X admits a lift to A (see e.g. [47, Theorem 2.2.1]), Corollary 3.14 shows that 𝐿𝑋/𝐴 � O𝑋 [1] ⊕ Ω1

𝑋/𝐴̄
.

Another application of Proposition 4.57 implies, therefore, that 𝐻1(𝑋,Δ𝑋/𝐴) is locally free of dimension
2𝑛 and commutes with base change in (𝐴, 𝐼) as all the 𝐴̄-modules 𝐻 𝑗 (𝑋,O𝑋 ) and 𝐻 𝑗 (𝑋,Ω1

𝑋/𝐴̄
) are

locally free for 𝑗 ≥ 0. �

Lemma 4.59. Let S be a ring, and let 𝑔 : 𝑀 → 𝑁 be a morphism of S-modules with M finitely generated
and N finite projective. If

𝑔 ⊗𝑆 𝑘 (𝑥) : 𝑀 ⊗𝑆 𝑘 (𝑥) → 𝑁 ⊗𝑆 𝑘 (𝑥)

is an isomorphism for all closed points 𝑥 ∈ Spec(𝑆), then g is an isomorphism.

Proof. Let Q be the cokernel of g. Then Q is finitely generated and 𝑄 ⊗𝑆 𝑘 (𝑥) = 0 for all closed points
𝑥 ∈ Spec(𝑆). By Nakayama’s lemma, this implies that 𝑄 = 0, that is, g is surjective. As N is projective,
this implies 𝑀 � 𝑁 ⊕ 𝐾 for K the kernel of g. As M is finitely generated, K is finitely generated.
Moreover, for all closed points 𝑥 ∈ Spec(𝑆)

𝐾 ⊗𝑆 𝑘 (𝑥) = 0

and thus another application of Nakayama’s lemma implies that 𝐾 = 0. �

We recall that for a p-complete ring R, there is the natural morphism of topoi

𝑢 : Shv(𝑅)Δ → Shv(𝑅)QSYN.

Using the previous computations, we can first describe extension groups modulo I.
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Theorem 4.60. Let R be a p-complete ring, and let 𝑓 : 𝑋 → Spf (𝑅) be the p-adic completion of an
abelian scheme over Spec(𝑅). Then
1. E𝑥𝑡𝑖

(𝑅)Δ
(𝑢−1(𝑋),OΔ) = 0 for 𝑖 = 0, 2.

2. E𝑥𝑡1
(𝑅)Δ
(𝑢−1(𝑋),OΔ) is a prismatic crystal over R. Moreover,

E𝑥𝑡1(𝑅)Δ (𝑢
−1 (𝑋),OΔ) � 𝑅1 𝑓Δ,∗(OΔ)

for 𝑓Δ : Shv(𝑋)Δ → Shv(𝑅)Δ, the morphism induced by f on topoi and E𝑥𝑡1
(𝑅)Δ
(𝑢−1(𝑋),OΔ) is

locally free of rank 2dim(𝑋) over OΔ.
The proof is entirely similar to the one of [6, Theorem 2.5.6].

Proof. Let (𝐵, 𝐽) ∈ (𝑅)Δ. We use the spectral sequence from Section 4.4 to calculate for 𝑖 ∈ {0, 1, 2}
the groups

Ext𝑖 (𝑢−1 (𝑋)| (𝐵,𝐽 ) ,OΔ)

on the localised site (𝑅)Δ/(𝐵, 𝐽)28. Set 𝑌 := 𝑋 ×Spf ( 𝐴̄) Spf (𝐵/𝐽). As by Hodge-Tate comparison

𝐻0 ((𝑌/𝐵)Δ,OΔ) �𝐻
0(𝑌,Δ𝑌 /𝐵) � 𝐵/𝐽,

for any n the first row 𝐸∗,01 of the spectral sequence is seen to be independent of X and exact in the case
that 𝑋 = 0 is trivial (the spectral sequence for 𝑋 = 0 is concentrated in the first row and converges to 0),
hence, always exact. In general, we see that Hom(𝑢−1 (𝑋)| (𝐵,𝐽 ) ,OΔ) = 0 and Ext1 (𝑢−1(𝑋)| (𝐵,𝐽 ) ,OΔ)
is isomorphic to the kernel of

𝐻1(𝑌,Δ𝑌 /𝐵)
𝑑1
−−→ 𝐻1(𝑌 × 𝑌,Δ𝑌×𝑌 /𝐵)

and 𝑑1 = pr∗1 + pr∗2 − 𝜇∗ for pr𝑖 the two projections and 𝜇 the multiplication. From the Künneth formula
(cf. Corollary 3.31) and Proposition 4.58, it follows that

𝐻1 (𝑌 × 𝑌,Δ𝑌×𝑌 /𝐵) � 𝐻1(𝑌,Δ𝑌 /𝐵) ⊕ 𝐻1(𝑌,Δ𝑌 /𝐵).

This implies 𝜇∗ = pr∗1 + pr∗2, that is, 𝑑1 = 0 and

Ext1 (𝑢−1(𝑋)| (𝐵,𝐽 ) ,OΔ) � 𝐻1(𝑌,Δ𝑌 /𝐵).

In particular, this group is compatible with base change in (𝐵, 𝐽) and locally free of rank 2dim(𝑋) (by
Proposition 4.58). Moreover, the morphism 𝑑2 is injective on 𝐻1(𝑌 × 𝑌,Δ𝑌 /𝐵), as follows from the
Künneth theorem and the concrete formula for 𝑑2. Finally, from Corollary 4.64 and Lemma 4.61, one
can deduce that

𝐻𝑖 (𝑌,Δ𝑌 /𝐵)
𝑑1
−−→ 𝐻𝑖 (𝑌,Δ𝑌 /𝐵)

is injective for all 𝑖 ≥ 2. These statements (together with the mentioned exactness of the first row) imply

Ext2(𝑢−1 (𝑋)| (𝐵,𝐽 ) ,OΔ) = 0.

This finishes the proof by passing to the local Ext-groups, that is, by letting (𝐵, 𝐽) vary. �

In the proof, we used the following lemma on primitive elements in exterior algebras.

28Which will be implicitly the subscript of all Ext-groups appearing in this proof.
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Lemma 4.61. Let S be a ring and let M be a projective S-module. Then

{𝑥 ∈ Λ(𝑀) | 𝜇∗(𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 1} = Λ1𝑀,

where 𝜇∗ : Λ(𝑀) → Λ(𝑀 + 𝑀) � Λ(𝑀) ⊗𝑆 Λ(𝑀) is the natural comultiplication on Λ(𝑀) coming
from the diagonal 𝑀 → 𝑀 ⊕ 𝑀 .

Proof. This follows easily by decomposing Λ(𝑀) ⊗𝑆 Λ(𝑀) into its bigraded pieces Λ𝑖 (𝑀) ⊗𝑆 Λ 𝑗 (𝑀).
�

Now we calculate the full extension groups, up to degree 2.

Theorem 4.62. Let R be a p-complete ring, and let 𝑓 : 𝑋 → Spf (𝑅) be the p-adic completion of an
abelian scheme over Spec(𝑅). Then

1. E𝑥𝑡𝑖
(𝑅)Δ
(𝑢−1(𝑋),OΔ) = 0 for 𝑖 = 0, 2.

2. E𝑥𝑡1
(𝑅)Δ
(𝑢−1(𝑋),OΔ) is a prismatic crystal over R. Moreover,

E𝑥𝑡1(𝑅)Δ (𝑢
−1 (𝑋),OΔ) � 𝑅1 𝑓Δ,∗(OΔ),

for 𝑓Δ : Shv(𝑋)Δ → Shv(𝑅)Δ, the induced morphism on topoi and the prismatic crystal
E𝑥𝑡1
(𝑅)Δ
(𝑢−1(𝑋),OΔ) is locally free of rank 2dim(𝑋) over OΔ.

Proof. Let (𝐵, 𝐽) ∈ (𝑅)Δ. As the statements are local for the faithfully flat topology, we may assume
that 𝐽 = (𝜉) is principal. From the exact sequence

0→ OΔ/𝜉
𝑛 𝜉
−→ OΔ/𝜉

𝑛+1 → OΔ/𝜉 = OΔ → 0

of sheaves on (𝑅)Δ/(𝐵, 𝐽) and Theorem 4.60, we can inductively conclude that

Ext𝑖 (𝑢−1 (𝑋)| (𝐵,𝐽 ) ,OΔ/(𝜉
𝑛)) = 0

for 𝑖 ∈ {0, 2} and any 𝑛 ≥ 0. This implies that

0→ Ext1 (𝑢−1(𝑋)| (𝐵,𝐽 ) ,OΔ/(𝜉
𝑛))

𝜉
−→ Ext1 (𝑢−1(𝑋)| (𝐵,𝐽 ) ,OΔ/(𝜉

𝑛+1))

→ Ext1(𝑢−1 (𝑋)| (𝐵,𝐽 ) ,OΔ) → 0

is exact and that for 0 ≤ 𝑖 ≤ 2,

Ext𝑖 (𝑢−1 (𝑋)| (𝐵,𝐽 ) ,OΔ) � lim
←−−
𝑛

Ext𝑖 (𝑢−1 (𝑋)| (𝐵,𝐽 ) ,OΔ/(𝜉
𝑛)),

and that it is zero for 𝑖 ∈ {0, 2} or a locally free B-module of rank 2dim(𝑋) if 𝑖 = 1. Using the spectral
sequence from Section 4.4, we get as in the proof of Theorem 4.60 for each 𝑛 ≥ 1 a map

Ext1(𝑢−1(𝑋)| (𝐵,𝐽 ) ,OΔ/(𝜉
𝑛)) → 𝐻1(𝑋 ×Spf (𝑅) Spf(𝐵/𝐽),Δ𝑋/𝐴/(𝜉

𝑛)).

By induction on n, we deduce from Theorem 4.60 that this map is an isomorphism for all n. Passing to
the inverse limit over all 𝑛 ≥ 1 and using the above identification, we deduce an isomorphism

Ext1 (𝑢−1(𝑋)| (𝐵,𝐽 ) ,OΔ) � 𝐻1(𝑋 ×Spf (𝑅) Spf (𝐵/𝐽),Δ𝑋/𝐴).

This finishes the proof by passing to local Ext-groups. �
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Corollary 4.63. Let R be a p-complete ring. Let X be the p-completion of an abelian scheme over R.
The Opris-module

MΔ (𝑋 [𝑝
∞]) = E𝑥𝑡1(𝑅)qsyn

(𝑋 [𝑝∞],Opris)

is a finite locally free Opris-module of rank 2 dim(𝑋), given by 𝑅1 𝑓Δ,∗OΔ.

Proof. By Lemma 4.38,

MΔ (𝑋 [𝑝
∞]) = 𝑣∗(E𝑥𝑡1(𝑅)Δ (𝑢

−1𝐺,OΔ)).

Hence, the corollary results from Theorem 4.62 and Proposition 4.4. �

Although we will not use it, let us record the full description of the prismatic cohomology of X.

Corollary 4.64. With the notation from Corollary 4.63, the prismatic cohomology

𝑅∗ 𝑓Δ,∗OΔ

is a finite locally free crystal on (𝑅)Δ and an exterior algebra on the locally free crystal

𝑅1 𝑓Δ,∗(OΔ)

of dimension 2dim(𝑋).

Proof. Let (𝐵, 𝐽) ∈ (𝑅)Δ, and let 𝑌 := 𝑋 ×Spf (𝑅) Spf (𝐵/𝐽). It suffices to prove the analog statements
for 𝐻∗(𝑌,Δ𝑌 /𝐵). From (the proof of) Theorem 4.62, we see that

𝐻1(𝑌,Δ𝑌 /𝐵) → 𝐻1(𝑌,Δ𝑌 /𝐵)

is surjective and that 𝐻∗(𝑌,Δ𝑌 /𝐵) is an exterior algebra on 𝐻1 (𝑌,Δ𝑌 /𝐵). Since 𝐻1(𝑌,Δ𝑌 /𝐵) is projec-
tive, we can lift the identity 𝐻1(𝑌,Δ𝑌 /𝐵) → 𝐻1 (𝑌,Δ𝑌 /𝐵) to a map

𝐻1(𝑌,Δ𝑌 /𝐵) [−1] → Δ𝑌 /𝐵 .

Using multiplication in 𝐻∗(𝑌,Δ𝑌 /𝐵) and that 𝐻∗(𝑌,Δ𝑌 /𝐵) is an exterior algebra, we see that for each
𝑖 ≥ 0, the morphism

𝐻𝑖 (𝑌,Δ𝑌 /𝐵) → 𝐻𝑖 (𝑌,Δ𝑌 /𝐵)

is surjective. This implies that each B-module 𝐻𝑖 (𝑌,Δ𝑌 /𝐵) is J-torsion free, and then that it is a
finite locally free B-module, as modulo J, it identifies with 𝐻𝑖 (𝑌,Δ𝑌 /𝐵). The same argument as in
[6, Proposition 2.5.2.(ii)]) implies then that each element in 𝐻1(𝑌,Δ𝑌 /𝐵) squares to zero. We obtain a
morphism

Λ𝑖𝐻1(𝑌,Δ𝑌 /𝐵) [−𝑖] → 𝑅Γ(𝑌,Δ𝑌 /𝐵)

inducing an isomorphism on 𝐻𝑖 after passing to ⊗L𝐵𝐵/𝐽. Altogether, we obtain a morphism

Λ∗(𝐻1(𝑌,Δ𝑌 /𝐵)) [−∗] → 𝑅Γ(𝑌,Δ𝑌 /𝐵)

of complexes which is an isomorphism after applying ⊗L𝐵𝐵/𝐽. By derived J-adic completeness, it is
therefore an isomorphism, which implies the statements. �
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4.6. The prismatic Dieudonné crystal of a p-divisible group

In this section, we establish the basic properties of the prismatic Dieudonné functor for p-divisible
groups. The idea, due to Berthelot-Breen-Messing, is to make systematic use of the following theorem
of Raynaud, to reduce to statements about (p-divisible groups of) abelian schemes proved in the last
section.

Theorem 4.65. Let S be a scheme, and let G be a finite locally free group scheme over S. There exists
Zariski-locally on S, a (projective) abelian scheme A and a closed immersion 𝐺 ↩→ 𝐴 of group schemes
over S.

Proof. (See [6, Theorem 3.1.1]). �

Proposition 4.66. Let R be a p-complete ring, and let G be a finite locally free group scheme over R.
The sheaf E𝑥𝑡1

(𝑅)Δ
(𝑢−1𝐺,OΔ) is a prismatic crystal of locally finitely presented OΔ-modules.

Proof. By Theorem 4.65, one can choose locally on R an exact sequence of group schemes

0→ 𝐺 → 𝑋 → 𝑋 ′ → 0,

where X and 𝑋 ′ are abelian schemes over R. Whence, by Theorem 4.62 (1), an exact sequence

E𝑥𝑡1(𝑅)Δ (𝑢
−1𝑋 ′,OΔ) → E𝑥𝑡1(𝑅)Δ (𝑢

−1𝑋,OΔ) → E𝑥𝑡1(𝑅)Δ (𝑢
−1𝐺,OΔ) → 0.

This proves the proposition, by Theorem 4.62 (2). �

Let 𝑛 ≥ 1. Recall ([25, Definition 1.1]) that a finite locally free group scheme G over a scheme S is
called a truncated Barsotti-Tate group of level n if it is killed by 𝑝𝑛 and flat over Z/𝑝𝑛, and, when 𝑛 = 1,
if it also satisfies that the sequence

𝐺0
𝐹
→ 𝜑𝑆0 ,∗𝐺0

𝑉
→ 𝐺0

is exact, where 𝐺0 denotes the base change of G to 𝑆0 = 𝑉 (𝑝) ⊂ 𝑆. The rank of 𝐺 [𝑝] is of the form
𝑝ℎ , for an integer h locally constant on S called the height of G. In the sequel, we will make use of the
following basic facts on truncated Barsotti-Tate groups (cf. [25, Remarks 1.3 (e), 1.3 (f), 1.6]):

1. If G is a p-divisible group over S (of height h), 𝐺 [𝑝𝑛] is a truncated Barsotti-Tate group of level n
over S (of height h) for all 𝑛 ≥ 1.

2. If G is a truncated Barsotti-Tate group of level n and height h, then so is the Cartier dual 𝐺∗ of G.
3. If 0 → 𝐺1 → 𝐺2 → 𝐺3 → 0 is an exact sequence finite locally free group schemes of order 𝑝𝑛

over S, and if two of them are truncated Barsotti-Tate groups of level n, then so is the third one.

Remark 4.67. Let G be a finite locally free group scheme killed by 𝑝𝑛 over a scheme S, such that
𝑝𝑛O𝑆 = 0, and let ℓ𝐺 be its coLie complex. Set:

𝜔𝐺 = 𝐻0 (ℓ𝐺) , 𝑛𝐺 = 𝐻−1 (ℓ𝐺) , 𝑡𝐺 = 𝐻0(ℓ̌𝐺) ; 𝜈𝐺 = 𝐻1 (ℓ̌𝐺).

Grothendieck’s duality formula identifies ℓ̌𝐺 with the truncation 𝜏≤1𝑅H𝑜𝑚(𝐺∗,G𝑎), and this gives rise
to a canonical morphism:

𝜙𝐺 : 𝜈𝐺 → 𝑡𝐺 .

Then G is a BT𝑛 if and only if 𝑡𝐺 , 𝑡𝐺∗ are locally free and the canonical morphisms 𝜙𝐺 and 𝜙𝐺∗ are
isomorphisms (cf. [25, Corollary 2.2.5]). In this situation, 𝜔𝐺 is finite locally free of rank called the
dimension dim(𝐺) of G, and 𝜈𝐺∗ is finite locally free of rank ℎ − dim(𝐺), if h is the height of G.
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Proposition 4.68. Let R be a quasisyntomic ring, and let G be a truncated Barsotti-Tate group over R
of level n. The sheaf E𝑥𝑡1

(𝑅)Δ
(𝑢−1𝐺,OΔ) is a prismatic crystal of finite locally free OΔ/𝑝

𝑛-modules.

Proof. Fix once and for all an embedding of G into an abelian scheme 𝑋 ′ of dimension g over R. By
Theorem 4.65, this can be done Zariski-locally on Spf (𝑅), and the reader can check that the different
steps of the proof are all local statements on Spf (𝑅). Let X be the cokernel of the embedding 𝐺 → 𝑋 ′;
this an abelian scheme, and one has an exact sequence

0→ 𝐺 → 𝑋 ′ → 𝑋 → 0

of group schemes over R.
We first prove that for any (𝐵, 𝐽) ∈ (𝑅)Δ, the B-module

E𝑥𝑡1(𝑅)Δ (𝑢
−1𝐺,OΔ)(𝐵,𝐽 )

is locally generated by h sections, where h is the height of G. By the crystal property of
E𝑥𝑡1
(𝑅)Δ
(𝑢−1𝐺,OΔ) (cf. Proposition 4.66), for any morphism of prisms (𝐵, 𝐽) → (𝑊 (𝑘), (𝑝)), where

k is a characteristic p perfect field,

E𝑥𝑡1(𝑅)Δ (𝑢
−1𝐺,OΔ)(𝐵,𝐽 ) ⊗𝐵 𝑊 (𝑘) = E𝑥𝑡1(𝑅)Δ (𝑢

−1𝐺𝑘 ,OΔ)(𝑊 (𝑘) , (𝑝)) .

By Nakayama’s lemma, (𝑝, 𝐽)-completeness of B and the finite presentation proved in Proposition
4.66, it suffices to prove that for any morphism 𝐵→ 𝑘 vanishing on J, k characteristic p perfect field,

E𝑥𝑡1(𝑅)Δ (𝑢
−1𝐺,OΔ)(𝐵,𝐽 ) ⊗𝐵 𝑘

is generated by h elements. Such a morphism 𝐵 → 𝑘 extends to a morphism of prisms (𝐵, 𝐽) →
(𝑊 (𝑘), (𝑝)), so it suffices by the above to prove our claim when 𝑅 = 𝑘 is a perfect field and (𝐵, 𝐽) =
(𝑊 (𝑘), (𝑝)). First, observe that

E𝑥𝑡1(𝑘)Δ (𝑢
−1𝐺,OΔ)(𝑊 (𝑘) , (𝑝)) ⊗ 𝑘 = E𝑥𝑡1(𝑘)Δ (𝑢

−1𝐺,OΔ)(𝑊 (𝑘) , (𝑝)) .

This is easily seen, using that E𝑥𝑡2
(𝑘)Δ
(𝑢−1𝑋,OΔ) and E𝑥𝑡2

(𝑘)Δ
(𝑢−1𝑋,OΔ) both vanish (Theorems 4.60

and 4.62).
As a corollary of Proposition 4.58 (together with the standard relation between 𝐻1(𝑋,O) and

Lie(𝑋∗), cf [6, Section 5.1.1]) and Theorem 4.60, one has a short exact sequence

0→ 𝑢∗Lie(𝑋∗) → E𝑥𝑡1(𝑅)Δ (𝑢
−1𝑋,OΔ) → 𝑢∗𝜔𝑋 → 0,

and similarly for 𝑋 ′. Also, note that we have exact sequences29:

𝑢∗Lie(𝑋∗) → 𝑢∗Lie(𝑋
′∗) → 𝑢∗𝜈𝐺∗ → 0

(where 𝜈𝐺∗ = E𝑥𝑡1 (𝐺,G𝑎)) and

𝑢∗𝜔𝑋 → 𝑢∗𝜔𝑋 ′ → 𝑢∗𝜔𝐺 → 0.

The map E𝑥𝑡1
(𝑘)Δ
(𝑢−1𝑋 ′,OΔ) → E𝑥𝑡1

(𝑘)Δ
(𝑢−1𝑋,OΔ) is compatible with the natural maps 𝑢∗Lie(𝑋∗) →

𝑢∗Lie(𝑋 ′∗) and 𝑢∗𝜔𝑋 ′ → 𝑢∗𝜔𝑋 , through the identifications of Theorem 4.60. The long exact sequence

29Recall ([6, Section 5.1.1]) that if X is an abelian scheme, Lie(𝑋∗) � Ext1 (𝑋,G𝑎) .
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of E𝑥𝑡 gives a surjection:

E𝑥𝑡1(𝑘)Δ (𝑢
−1𝑋 ′,OΔ) → E𝑥𝑡1(𝑘)Δ (𝑢

−1𝑋,OΔ) → E𝑥𝑡1(𝑘)Δ (𝑢
−1𝐺,OΔ) → 0,

since, as we have seen in Theorem 4.60, E𝑥𝑡2
(𝑘)Δ
(𝑢−1𝑋 ′,OΔ) = 0. By the above remark, we even have

a commutative diagram:

0 ��

��

0

��

�� 0

��
𝑢∗Lie(𝑋∗) ��

��

𝑢∗Lie(𝑋 ′∗)

��

�� 𝑢∗𝜈𝐺∗ ��

��

0

E𝑥𝑡1
(𝑘)Δ
(𝑢−1𝑋,OΔ)

��

��

E𝑥𝑡1
(𝑘)Δ
(𝑢−1𝑋 ′,OΔ)

��

�� E𝑥𝑡1
(𝑘)Δ
(𝑢−1𝐺,OΔ)

��

��

0

𝑢∗𝜔𝑋
��

��

𝑢∗𝜔𝑋 ′

��

�� 𝑢∗𝜔𝐺

��

�� 0

0 �� 0 �� 0,

where all rows and the first two columns are exact. This proves that the map

E𝑥𝑡1(𝑘)Δ (𝑢
−1𝐺,OΔ) → 𝑢∗𝜔𝐺

is surjective and an easy diagram chase proves that in fact the sequence

𝑢∗𝜈𝐺∗ → E𝑥𝑡1(𝑘)Δ (𝑢
−1𝐺,OΔ) → 𝑢∗𝜔𝐺 → 0

is exact. As G is a truncated Barsotti-Tate group, the sheaf 𝜔𝐺 is a locally free sheaf of rank 𝑑 = dim𝐺
and 𝜈𝐺∗ is a locally free sheaf of rank ℎ − 𝑑 (cf. Remark 4.67, which applies whatever the level
of G is, since 𝑝 = 0 on k). Hence, the sequence stays exact after evaluation on (𝑊 (𝑘), (𝑝)) and
E𝑥𝑡1
(𝑘)Δ
(𝑢−1𝐺,OΔ)(𝑊 (𝑘) , (𝑝)) is generated by h sections. This proves the claim.

Back to the proof of the proposition, we know, as a direct consequence of Theorem 4.62 that

E𝑥𝑡1(𝑅)Δ (𝑢
−1𝑋 ′ [𝑝𝑛],OΔ) = E𝑥𝑡1(𝑅)Δ (𝑢

−1𝑋 ′,OΔ)/𝑝
𝑛

is crystal of locally free OΔ/𝑝
𝑛-modules of rank 2𝑔. Consider the exact sequence

0→ 𝐺 → 𝑋 ′ [𝑝𝑛] → 𝐻 → 0,

where H is a Barsotti-Tate group of height 2𝑔 − ℎ, induced by the embedding of G in 𝑋 ′. This gives an
exact sequence

E𝑥𝑡1(𝑅)Δ (𝑢
−1𝐻,OΔ) → E𝑥𝑡1(𝑅)Δ (𝑢

−1𝑋 ′ [𝑝𝑛],OΔ) → E𝑥𝑡1(𝑅)Δ (𝑢
−1𝐺,OΔ) → 0.

Indeed, right-exactness follows from 4.62, which implies that already

E𝑥𝑡1(𝑅)Δ (𝑢
−1𝑋 ′,OΔ) → E𝑥𝑡1(𝑅)Δ (𝑢

−1𝐺,OΔ)
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is surjective. Locally on (𝑅)Δ, the middle term is free of rank 2𝑔 over OΔ/𝑝
𝑛, while the left (respec-

tively, right) term is generated by 2𝑔 − ℎ (respectively, h) sections. Therefore, E𝑥𝑡1
(𝑅)Δ
(𝑢−1𝐻,OΔ) and

E𝑥𝑡1
(𝑅)Δ
(𝑢−1𝐺,OΔ) are free over OΔ/𝑝

𝑛 of rank 2𝑔 − ℎ and h. �

Proposition 4.69. Let R be a p-complete ring, and let G be a p-divisible group over R. The sheaf

E𝑥𝑡1(𝑅)Δ (𝑢
−1𝐺,OΔ)

is a prismatic crystal of finite locally free OΔ-modules of rank the height of G.
In particular, if R is a quasisyntomic ring and G is a p-divisible group over R, the Opris-module

MΔ (𝐺) is a finite locally free Opris-module of rank the height of G.

Proof. Let G be a p-divisible group over R. Since 𝐺 = colim 𝐺 [𝑝𝑛], we have a short exact sequence:

0→ 𝑅1lim
𝑛

H𝑜𝑚 (𝑅)Δ (𝑢
−1𝐺 [𝑝𝑛],OΔ) → E𝑥𝑡1(𝑅)Δ (𝑢

−1𝐺,OΔ)

→ lim
𝑛

E𝑥𝑡1(𝑅)Δ (𝑢
−1𝐺 [𝑝𝑛],OΔ) → 𝑅2lim

𝑛
H𝑜𝑚 (𝑅)Δ (𝑢

−1𝐺 [𝑝𝑛],OΔ).

The last term vanishes as the prismatic topos is replete. We have to show that the first term vanishes, or
even stronger, that for each (𝐵, 𝐽) ∈ (𝑅)Δ, the morphism

Ext1(𝑅)Δ/(𝐵,𝐽 ) (𝑢
−1(𝐺),OΔ) → lim

𝑛
Ext1(𝑅)Δ/(𝐵,𝐽 ) (𝑢

−1(𝐺 [𝑝𝑛]),OΔ)

is bijective. Set

𝑀 := Ext1(𝑅)Δ/(𝐵,𝐽 ) (𝑢
−1 (𝐺),OΔ)

and

𝑀𝑛 := Ext1(𝑅)Δ/(𝐵,𝐽 ) (𝑢
−1(𝐺 [𝑝𝑛]),OΔ)

for 𝑛 ≥ 0. For 𝑛, 𝑚 ≥ 0, the sequence

𝑀𝑚
𝑝𝑛

−−→ 𝑀𝑛+𝑚 → 𝑀𝑛 → 0

is right exact (this follows by locally embedding 𝐺 [𝑝𝑚+𝑛] and using Theorem 4.62). Thus, the canonical
morphism

𝑀𝑛+𝑚 ⊗𝐵/𝑝𝑛+𝑝 𝐵/𝑝𝑛 → 𝑀𝑛

is an isomorphism for 𝑛, 𝑚 ≥ 0. As all 𝑀𝑛 are finite locally free over 𝐵/𝑝𝑛 (of rank the height of G) the
B-module 𝑁 := lim

←−−
𝑛

𝑀𝑛 is finite locally free over B (of rank the height of G) by [52, Tag 0D4B]. By the

same reference,

𝑁/𝑝𝑛 � 𝑀𝑛.

The canonical morphism 𝑀 → 𝑁 is surjective (by a similar 𝑅1 lim
←−−
𝑛

sequence as above). In particular,

we can conclude that 𝑀 → 𝑀𝑛 is surjective for each 𝑛 ≥ 0. The long exact sequence for 0 →
𝑢−1 (𝐺 [𝑝𝑛]) → 𝑢−1𝐺 → 𝑢−1𝐺 → 0 and the surjectivity of 𝑀 → 𝑀𝑛 imply that 𝑀/𝑝𝑛 � 𝑀𝑛 and
Ext2
(𝑅)Δ/(𝐵,𝐽 ) (𝑢

−1 (𝐺),OΔ) have no 𝑝𝑛-torsion. This p-torsion freeness of Ext2 in turn implies that

𝑀/𝑝𝑛 � Ext1(𝑅)Δ/(𝐵,𝐽 ) (𝑢
−1 (𝐺),OΔ/𝑝

𝑛).
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Our aim is to prove that 𝑀 � 𝑁 or equivalently that M is classically p-complete, that is, 𝑀 � lim
←−−
𝑛

𝑀/𝑝𝑛.

As all prisms in (𝑅)Δ are by definition bounded, and thus classically p-complete,

OΔ � lim
←−−
𝑛

OΔ/𝑝
𝑛 � 𝑅 lim

←−−
𝑛

OΔ/𝑝
𝑛.

We can therefore calculate 𝑀 = Ext1
(𝑅)Δ/(𝐵,𝐽 ) (𝑢

−1𝐺,OΔ) by an exact sequence

0→ 𝑅1 lim
←−−
𝑛

Hom(𝑅)Δ/(𝐵,𝐽 ) (𝑢
−1𝐺,OΔ/𝑝

𝑛) → 𝑀 → lim
←−−
𝑛

𝑀/𝑝𝑛 → 0.

In this sequence, the 𝑅1 lim
←−−
𝑛

-term vanishes as each Hom(𝑅)Δ/(𝐵,𝐽 ) (𝑢
−1𝐺,OΔ/𝑝

𝑛) is zero because G is

p-divisible. The isomorphisms

𝑀 � lim
←−−
𝑛

𝑀/𝑝𝑛 � lim
←−−
𝑛

𝑀𝑛

imply that MΔ (𝐺) is a crystal, because they show that, even stronger,

Ext1(𝑅)Δ/(𝐵,𝐽 ) (𝑢
−1𝐺,OΔ)

commutes with base change in (𝐵, 𝐽). This finishes the proof of the first sentence of the proposition.
The second sentence is an immediate corollary of the first one, together with Proposition 4.4 and

Lemma 4.38. �

We can now summarise our discussion and prove the main result of this section. We need a last lemma.

Lemma 4.70. Let (𝐶, 𝐽) be an henselian pair, and let 𝐺 be a p-divisible group over 𝐶/𝐽. Then there
exists a p-divisible group G over C, such that

𝐺 ⊗𝐶 𝐶/𝐽 � 𝐺.

Proof. Set h as the height of 𝐺. Let BTℎ
𝑛 be the Artin stack (over Spec(Z)) of n-truncated Barsotti-Tate

groups of height h. Then for any 𝑛 ≥ 1, the morphism

BTℎ
𝑛 → BTℎ

𝑛−1

is a smooth morphism between smooth Artin stacks (cf. [32, Section 2] respectively, [25, Theorem 4.4]).
By [21, Theorem, page 568] (which extends to the non-Noetherian case by passing to the limit) any
section 𝐷 → 𝐶/𝐽 of some smooth C-algebra D extends to a section 𝐷 → 𝐶. These statements imply
that inductively, we can lift 𝐺 [𝑝𝑛] to a truncated p-divisible group 𝐻𝑛 over C. Then finally

𝐺 := lim
−−→
𝑛

𝐻𝑛

yields the desired lift over 𝐺. �

Theorem 4.71. Let R be a quasisyntomic ring, and let G be a p-divisible group over R. The pair
(MΔ (𝐺), 𝜑MΔ (𝐺)

) of Definition 4.35 is an admissible prismatic Dieudonné crystal over R.

Proof. Let G be a p-divisible group over R. By Proposition 4.69, we already know that MΔ (𝐺) is
a finite locally free Opris-module, endowed with the semilinear endomorphism 𝜑M𝐺 . We need to see
that it gives an admissible prismatic Dieudonné crystal over R. The construction being functorial in R,
it suffices by Proposition 4.9 to deal with the case where R is quasiregular semiperfectoid. Choose a
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perfectoid ring S mapping surjectively onto R; by Corollary 2.10, we can assume that S is henselian
along ker(𝑆 → 𝑅). Lemma 4.70 (applied to (𝐶, 𝐽) = (𝑆, ker(𝑆 → 𝑅)) and 𝐺 = 𝐺) shows that G
is the base change of a p-divisible group H over S. Hence, (MΔ (𝐺), 𝜑MΔ (𝐺)

) is the base change of
(MΔ (𝐻), 𝜑MΔ (𝐻 )

), which we know to be an admissible Dieudonné crystal since S is perfectoid, cf.
Corollary 4.49. �

We now state two useful properties of the prismatic Dieudonné functor: its exactness and its com-
patibility with Cartier duality.

Proposition 4.72. Let R be a quasisyntomic ring. The functor

MΔ : BT(𝑅) → DM(𝑅), 𝐺 ↦→MΔ (𝐺)

is exact.

Proof. Let

0→ 𝐺 ′ → 𝐺 → 𝐺 ′′ → 0

be a short exact sequence of p-divisible groups over R, which we see as an exact sequence of abelian
sheaves on (𝑅)qsyn. Applying 𝑅H𝑜𝑚 (𝑅)qsyn (−,Opris) to it, we get a long exact sequence:

H𝑜𝑚 (𝑅)qsyn (𝐺
′,Opris) →MΔ (𝐺

′′) →MΔ (𝐺) →MΔ (𝐺
′) → E𝑥𝑡2(𝑅)qsyn

(𝐺 ′′,Opris).

The first term vanishes as 𝐺 ′ is p-divisible and Opris derived p-complete. Let us prove surjectivity of
MΔ (𝐺) →MΔ (𝐺

′). For 𝑛 ≥ 1, consider the exact sequences

0→ 𝐺 ′ [𝑝𝑛] → 𝐺 [𝑝𝑛] → 𝐻𝑛 → 0.

Then 𝐺 ′′ = lim
−−→
𝑛

𝐻𝑛 with injective transition maps 𝐻𝑛 → 𝐻𝑛+1 (as 𝐺 [𝑝𝑛] ⊆ 𝐺 ′ = 𝐺 ′ [𝑝𝑛] for all 𝑛 ≥ 1).

As in the proof of Proposition 4.69, we can conclude that

MΔ (𝐺 [𝑝
𝑛]) →MΔ (𝐺

′ [𝑝𝑛]), MΔ (𝐻𝑛+1) →MΔ (𝐻𝑛)

are surjective. Passing to the limit of the exact sequences

MΔ (𝐻𝑛) →MΔ (𝐺 [𝑝
𝑛]) →MΔ (𝐺

′ [𝑝𝑛]) → 0

implies, therefore, that

MΔ (𝐺) →MΔ (𝐺
′)

is surjective, as desired. �

Let R be a quasisyntomic ring, and let G be a p-divisible group over R with Cartier dual 𝐺̌. Passing
to the limit for the Cartier duality on finite flat group schemes yields isomorphisms

𝑇𝑝 (𝐺̌) � H𝑜𝑚𝑅 (𝑇𝑝𝐺,𝑇𝑝𝜇𝑝∞) � H𝑜𝑚𝑅 (𝐺, 𝜇𝑝∞)

of sheaves on (𝑅)qsyn. We first construct a canonical morphism

Φ𝐺 : MΔ (𝐺)
∨ ⊗Opris MΔ (𝜇𝑝∞) →MΔ (𝐺̌),
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where MΔ (𝐺)
∨ denotes the Opris-linear dual of MΔ (𝐺). Recall that

MΔ (𝐺̌) � H𝑜𝑚(𝑇𝑝𝐺̌,Opris)

by Lemma 4.40. Thus, we can define Φ𝐺 by setting

Φ𝐺 (𝛿 ⊗ 𝑙) (𝛼) := (𝛿 ◦MΔ (𝛼)) (𝑙) ∈ O
pris,

where

𝛿 ∈MΔ (𝐺)
∨, 𝑙 ∈MΔ (𝜇𝑝∞), 𝛼 ∈ H𝑜𝑚(𝐺, 𝜇𝑝∞) � 𝑇𝑝𝐺̌.

Clearly, the morphism Φ𝐺 is natural in G and commutes with base change in R.

Proposition 4.73. Let R be a quasisyntomic ring. For every p-divisible group G over R, the map

Φ𝐺 : MΔ (𝐺)
∨ ⊗Opris MΔ (𝜇𝑝∞) →MΔ (𝐺̌)

constructed above is an isomorphism.

Proposition 4.77 implies, via quasisyntomic descent, that MΔ (𝐺)
∨ ⊗Opris MΔ (𝜇𝑝∞) is naturally a

prismatic Dieudonné crystal when equipped with the Frobenius

1 ⊗ 𝛿 ⊗ 𝑙 ∈ Opris ⊗𝜑,Opris (MΔ (𝐺)
∨ ⊗Opris MΔ (𝜇𝑝∞)) ↦→ 𝜑∗𝛿 ◦ 𝜑−1

MΔ (𝐺)
⊗ 𝜑𝜇𝑝∞

(1 ⊗ 𝑙)

(using the identification 𝜑∗Opris � Opris and the inverse 𝜑−1
MΔ (𝐺)

: MΔ (𝐺) → 1/Ipris𝜑∗MΔ (𝐺) of
the linearised Frobenius on MΔ (𝐺)). With this choice of Frobenius, one checks that Φ𝐺 is a morphism
of prismatic Dieudonné crystals, that is, compatible with the Frobenius.

Proof. Both sides are locally free Opris-modules of the same rank (cf. Proposition 4.69). Hence, it
suffices to see that Φ𝐺 is surjective, which can be checked after base change 𝑅 → 𝑘 to perfect fields k
of characteristic p. Thus, assume that 𝑅 = 𝑘 . By Theorem 4.44, the prismatic Dieudonné functor over k
is isomorphic to the crystalline one. Let

Φcl
𝐺 : MΔ (𝐺)

∨ ⊗Opris MΔ (𝜇𝑝∞) →MΔ (𝐺̌)

be the natural isomorphism coming from classical duality for the crystalline Dieudonné functor over
perfect fields (cf. for example [23, Proposition III 5.1.iii)]). Let

Ψ(−) : MΔ (−)
∨ ⊗Opris MΔ (𝜇𝑝∞) →MΔ ((−)

∗)

be any natural transformation (of functors on p-divisible groups over quasisyntomic rings over k). Then
for any morphism 𝛾 : 𝐺 → 𝐻 of p-divisible groups, there is an equality

Ψ𝐺 (𝛿 ⊗ 𝑙) (𝛼 ◦ 𝛾) = Ψ𝐻 (𝛿 ◦MΔ (𝛾) ⊗ 𝑙) (𝛼), (4.1)

where 𝛿 ∈ MΔ (𝐺), 𝑙 ∈ MΔ (𝜇𝑝∞), 𝛼 ∈ H𝑜𝑚(𝐻, 𝜇𝑝∞). We want to show that Φ𝐺 = 𝑢Φcl
𝐺 for all p-

divisible groups G and some unit 𝑢 ∈ Opris (independent of G). Thus, pick 𝛿 ∈MΔ (𝐺)
∨, 𝑙 ∈MΔ (𝜇𝑝∞)

and 𝛼 ∈ H𝑜𝑚(𝐺, 𝜇𝑝∞). Applying (Equation (4.1)) to 𝛾 = 𝛼 : 𝐺 → 𝜇𝑝∞ implies

Ψ𝐺 (𝛿 ⊗ 𝑙) (𝛼) = Ψ𝜇𝑝∞
(𝛿 ◦MΔ (𝛼) ⊗ 𝑙) (Id𝜇𝑝∞

)
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for any natural transformation Ψ(−) as above. In particular, Ψ (and, thus, Φ(−) and Φcl
(−)

, as examples)
are determined by their behaviour on 𝐺 = 𝜇𝑝∞ . For 𝜇𝑝∞ , both induce an isomorphism

MΔ (𝜇𝑝∞)
∨ ⊗Opris MΔ (𝜇𝑝∞) � H𝑜𝑚(𝑇𝑝 (𝜇𝑝∞),Opris) � Opris.

Namely, Φ𝜇𝑝∞
is given by the natural evaluation, which is an isomorphism as MΔ (𝜇𝑝∞) is free over

rank 1 (by the crystalline comparison, cf. Theorem 4.44). That Φcl
𝜇𝑝∞

is an isomorphism follows from
classical Dieudonné theory (cf. [23, Proposition 5.1.iii)]). Hence, Φ𝜇𝑝∞

and Φcl
𝜇𝑝∞

differ by some unit
𝑢 ∈ Opris

30. This implies Φ𝐺 = 𝑢Φcl
𝐺 for all G by naturality. By [23, Proposition 5.1.iii)], we can

conclude. �

The main result of this text is the following theorem, whose proof will spread out over the next
sections.

Theorem 4.74. Let R be a quasisyntomic ring. The prismatic Dieudonné functor:

MΔ : BT(𝑅) → DMadm(𝑅)

is an antiequivalence between the category of p-divisible groups over R and the category of admissible
prismatic Dieudonné crystals over R.

Proof. By Proposition 3.21 and the fact that both BT and DMadm are stacks on QSyn for the qua-
sisyntomic topology (see Propositions A.2 and 4.9), we can assume that moreover R is quasiregular
semiperfectoid. Then the theorem is a consequence of Theorems 4.82 and 4.90, to be proved below. �

4.7. The prismatic Dieudonné modules of Q𝒑/Z𝒑 and 𝝁𝒑∞

In this subsection, we calculate the prismatic Dieudonné crystals of Q𝑝/Z𝑝 and 𝜇𝑝∞ to explicitly work
out some examples for prismatic Dieudonné crystals. We deduce as well a description for all étale and
multiplicative p-divisible groups. For the analogous results for the crystalline Dieudonné functor, see
[7, Section 2.2]. Let us fix a quasisyntomic ring R. Recall that for a p-divisible group G over R, the
prismatic Dieudonné crystal MΔ (𝐺) is defined (cf. Definition 4.35) as the sheaf

MΔ (𝐺) := E𝑥𝑡1(𝑅)qsyn
(𝐺,Opris) = 𝑣∗E𝑥𝑡1(𝑅)Δ (𝑢

−1(𝐺),OΔ)

on the absolute prismatic site (𝑅)Δ of R and that

MΔ (𝐺) � H𝑜𝑚 (𝑅)qsyn (𝑇𝑝𝐺,Opris) = 𝑣∗H𝑜𝑚 (𝑅)Δ (𝑢
−1(𝑇𝑝𝐺),OΔ),

by Lemma 4.40.

Lemma 4.75. The Opris-module MΔ (Q𝑝/Z𝑝) is freely generated by the isomorphism class of the
extension of Opris by Q𝑝/Z𝑝 obtained as the pushout of the short exact sequence

0→ Z𝑝 → Q𝑝 → Q𝑝/Z𝑝 → 0

on (𝑅)qsyn along the canonical morphism Z𝑝 → Opris. More generally,

MΔ (𝐺) � H𝑜𝑚 (𝑅)qsyn (𝑇𝑝 (𝐺),Z𝑝) ⊗Z𝑝 Opris,

if G is an étale p-divisible group.

30Of course, one expects 𝑢 = ±1, but as this finer statement is not necessary for us, we avoided the calculation verifying this.
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Proof. This follows directly from the isomorphism

MΔ (𝐺) � H𝑜𝑚 (𝑅)qsyn (𝑇𝑝𝐺,Opris)

and the fact that for an étale p-divisible group, 𝑇𝑝𝐺 is a local system of finite free Z𝑝-modules on
(𝑅)qsyn31. �

Let us now describe the prismatic Dieudonné crystal MΔ (𝜇𝑝∞) of 𝜇𝑝∞ on (𝑅)qsyn.

Definition 4.76. Let OΔ{−1} be the sheaf

OΔ{−1} = H𝑜𝑚 (Z𝑝)Δ
(𝑢−1(Z𝑝 (1)),OΔ)

on the absolute prismatic site of Z𝑝 , with Z𝑝 (1) := 𝑇𝑝𝜇𝑝∞ .

Note that, if Ĝ𝑚 denotes the p-adic completion of the multiplicative group scheme G𝑚, we also have

OΔ{−1} � E𝑥𝑡1(Z𝑝)Δ
(𝑢−1𝜇𝑝∞ ,OΔ) � E𝑥𝑡1(Z𝑝)Δ

(Ĝ𝑚,OΔ),

as Ĝ𝑚/𝜇𝑝∞ is uniquely p-divisible and OΔ𝑝-complete. Also, as recalled above, we have a natural
isomorphism

MΔ (𝜇𝑝∞) � 𝑣∗OΔ{−1}|(𝑅)Δ .

We can describe the sheaf OΔ{−1} in restriction to prisms (𝐵, 𝐽) which live over the ‘cyclotomic’
base prism

(𝐴, 𝐼) := (Z𝑝 [[𝑞 − 1]], ([𝑝]𝑞))

from Section 2.2. We point out that Mondal [46] was able to recently get rid of this restriction, using
Bhatt-Lurie’s syntomic Chern classes [10].

The reason is that for such prisms, we can use the q-logarithm from Section 2.2

log𝑞 : 𝑢−1(Z𝑝 (1)) → OΔ

which defines a canonical element, which we call ℓ𝑞 ∈ OΔ{−1}(𝐴, 𝐼).

Proposition 4.77. The OΔ-linear map

OΔ → OΔ{−1},

sending 1 to ℓ𝑞 , of sheaves on the category of all prisms living over (𝐴, 𝐼) = (Z𝑝 [[𝑞 − 1]], ([𝑝]𝑞)), is
an isomorphism. Moreover, the Frobenius on OΔ{−1} sends ℓ𝑞 to [𝑝]𝑞ℓ𝑞 .

Proof. Let (𝐵, 𝐽) be a prism over (𝐴, 𝐼). It suffices to show that the morphism

𝐵→ Ext1(𝑢−1(Ĝ𝑚)| (𝐵,𝐽 ) ,OΔ)

(where we mean Ext1 in the category of abelian sheaves on the site of prisms over (𝐵, 𝐽)) given by
the q-logarithm is an isomorphism. By Proposition 4.69, the formation of this map is compatible with
base change in (𝐵, 𝐽). From the proof of loc. cit. we also know that Ext1 (𝑢−1(Ĝ𝑚)| (𝐵,𝐽 ) ,OΔ) is a finite
locally free B-module of rank 1. Therefore, it suffices to show surjectivity. To show surjectivity, one

31Here, we did some abuse of notation and denoted by Z𝑝 the sheaf 𝑆 ↦→ Homcts (𝜋0 (𝑆) , Z𝑝) on (𝑅)qsyn, which is usually
called Z𝑝 .
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may pass to the case that (𝐵, 𝐽) = (𝑊 (𝑘), (𝑝)) for k an algebraically closed field of characteristic p.
Then the comparison with the crystalline Dieudonné crystal (cf. Theorem 4.44) reduces to an analogous
statement for the usual logarithm as for 𝑞 = 1, the q-logarithm becomes the logarithm. Let R be a general
ring of characteristic p, and let 𝑅′ → 𝑅 be a surjection of schemes with a PD-structure {𝛾𝑛}𝑛≥0 on
𝐾 := ker(𝑅′ → 𝑅) and assume p nilpotent in 𝑅′. Then there is the canonical morphism

log: Z𝑝 (1) (𝑅) → 𝑅′, 𝑥 ↦→ log([𝑥]),

where [−] : lim
𝑥 ↦→𝑥𝑝

𝑅 → 𝑅′ is the Teichmüller lift and log the crystalline logarithm

log: 1 + 𝐾 → 𝑅′, 𝑦 ↦→
∞∑
𝑛=1
(−1)𝑛−1 (𝑛 − 1)!𝛾𝑛 (𝑦 − 1)

(which makes sense as [𝑥] ∈ 1 + 𝐾). But it is known that the logarithm generates the crystalline
Dieudonné crystal of 𝜇𝑝∞ (cf. [7, Corollary 2.2.3]). Finally, the action of Frobenius on ℓ𝑞 can be
calculated using Lemma 2.13:

𝜑H𝑜𝑚(𝑢−1 (Z𝑝 (1)) ,OΔ)
(ℓ𝑞) (𝑥) =

𝑞𝑝 − 1
log(𝑞)

log(𝑥𝑝) =
𝑞𝑝 − 1
𝑞 − 1

ℓ𝑞 (𝑥) = [𝑝]𝑞ℓ𝑞 (𝑥)

for 𝑥 ∈ Z𝑝 (1). �

Remark 4.78. Note that, when 𝑝𝑅 = 0, the identification between the prismatic and crystalline
Dieudonné modules from Theorem 4.44 is linear over the isomorphism Δ𝑅 � 𝐴crys (𝑅) from Lemma
3.27. This explains why the map 𝑥 ↦→ log𝑞 ([𝑥

1/𝑝]𝜃 ) is sent to 𝑥 ↦→ log([𝑥]) (and not something like
𝑥 ↦→ log([𝑥1/𝑝]), which would not make sense as [𝑥1/𝑝] − 1 need not have divided powers), cf. the
remark after Lemma 3.27.

Assume now that R is an 𝐴/𝐼 = Z[𝜁𝑝]-algebra.

Corollary 4.79. Let G be a multiplicative p-divisible group over R. Then there is a canonical isomor-
phism

𝑢−1(H𝑜𝑚(𝐺, 𝜇𝑝∞)) ⊗Z𝑝 OΔ � E𝑥𝑡1(𝑅)Δ (𝑢
−1𝐺,OΔ)| (𝑅/𝐴)Δ

induced by sending 𝑓 : 𝐺 → 𝜇𝑝∞ to the evaluation of the morphism induced by f:

E𝑥𝑡1(𝑅)Δ (𝑢
−1𝜇𝑝∞ ,OΔ)| (𝑅/𝐴)Δ → E𝑥𝑡1(𝑅)Δ (𝑢

−1𝐺,OΔ)| (𝑅/𝐴)Δ

on ℓ𝑞 .

Proof. The morphism (and the claim that it is an isomorphism) commutes with étale localisation on
R. In particular, we may assume that 𝐺 � 𝜇𝑑

𝑝∞ . Then the claim follows from Proposition 4.77 and
additivity of the right-hand side. �

As a corollary of these computations, we can concretely describe the action of the prismatic
Dieudonné functor on morphisms Q𝑝/Z𝑝 → 𝜇𝑝∞ . Set

Z
cycl
𝑝 := (lim

−−→
𝑛

Z𝑝 [𝜁𝑝𝑛 ])∧𝑝 .

As usual, we get the elements 𝜀 = (1, 𝜁𝑝 , . . .), 𝑞 := [𝜀] ∈ 𝐴inf (Z
cycl
𝑝 ) and 𝜉 := 𝑞𝑝−1

𝑞−1 .
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Lemma 4.80. Let R be a quasiregular semiperfectoid ring over Zcycl
𝑝 . Then the morphism

Z𝑝 (1) (𝑅) � Hom𝑅 (Q𝑝/Z𝑝 , 𝜇𝑝∞)
𝑀Δ (−)
−−−−−→ HomDM(𝑅) (𝑀Δ (𝜇𝑝∞)), 𝑀Δ (Q𝑝/Z𝑝)) � Δ𝜑=𝜉

𝑅

is given the map which sends 𝑥 ∈ Z𝑝 (1) (𝑅) to log𝑞 ([𝑥
1/𝑝]𝜃 ) ∈ Δ𝜑=𝜉

𝑅 .

Proof. First, note that

HomDM(𝑅) (𝑀Δ (𝜇𝑝∞)), 𝑀Δ (Q𝑝/Z𝑝)) � Δ𝜑=𝜉
𝑅

by evaluating a homomorphism 𝑀Δ (𝜇𝑝∞) → 𝑀Δ (Q𝑝/Z𝑝) � Δ𝑅 on ℓ𝑞 . The identification of 𝑀Δ (−)
on a homomorphism 𝑓 : Q𝑝/Z𝑝 → 𝜇𝑝∞ follows easily from the natural isomorphism

𝑀Δ (𝐺) � Hom(𝑅)Δ (𝑢
−1 (𝑇𝑝 (𝐺)),OΔ)

for a p-divisible group G over R and Proposition 4.77 and Lemma 4.75. �

Remark 4.81. This description together with [10, Theorem 7.5.6] imply fully faithfulness of the pris-
matic Dieudonné functor in the special case of morphisms from Q𝑝/Z𝑝 to 𝜇𝑝∞ . We will give in the
next section a proof of fully faithfulness, still relying on the same input from [10].

4.8. Fully faithfulness

The main result of this subsection is the following.

Theorem 4.82. If R is a quasiregular semiperfectoid ring, the prismatic Dieudonné functor over R is
fully faithful for p-divisible groups.

The proof we offer was kindly suggested to us by Akhil Mathew. Recall that the prismatic Dieudonné
functor is given, according to Lemma 4.40, by the formula

MΔ (𝐺) = H𝑜𝑚 (𝑅)qsyn (𝑇𝑝𝐺,Opris) (4.2)

for any p-divisible group G over the quasiregular semiperfectoid ring R. We also set

N ≥1MΔ (𝐺) := H𝑜𝑚 (𝑅)qsyn (𝑇𝑝𝐺,N ≥1Opris).

From now on, we fix a quasiregular semiperfectoid ring R and a generator 𝜉 of the prismatic ideal in
Δ𝑅. For simplicity, we assume that R lives over the cyclotomic prism and that 𝜉 = [𝑝]𝑞 (cf. Proposition
4.77). By descent this assumption is harmless.

Proposition 4.83. If G is a p-divisible group over R, there is a natural (in R and G) identification of
quasisyntomic sheaves

𝑇𝑝𝐺̌ � ker(N ≥1MΔ (𝐺)
𝜑/𝜉−1
−→ MΔ (𝐺)).

Proof. We have, cf. [10, Theorem 7.5.6]32, an isomorphism of quasisyntomic sheaves

𝑇𝑝G𝑚 � ker(N ≥1Opris 𝜑/𝜉−1
−→ Opris).

To conclude, it suffices to apply the functor H𝑜𝑚 (𝑅)qsyn (𝑇𝑝𝐺,−) to both sides and to note that 𝑇𝑝𝐺̌ =
H𝑜𝑚 (𝑅)qsyn (𝑇𝑝𝐺,𝑇𝑝G𝑚). �

32See also [12, Proposition 7.17] for a proof using algebraic K-theory.

https://doi.org/10.1017/fmp.2022.22 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.22


Forum of Mathematics, Pi 65

Now we start the proof of Theorem 4.82. Let us denote by Sh𝑅 the category of abelian sheaves on
(𝑅)qsyn (so that HomSh𝑅 (−,−) = Hom(𝑅)qsyn (−,−)) and by D𝑅 the category of Opris [𝐹]-modules, which
contains, as a full subcategory, the category of (admissible) prismatic Dieudonné crystals. The functor

R : Shop
𝑅 → D𝑅, F ↦→ H𝑜𝑚 (𝑅)qsyn (F ,Opris)

admits the left adjoint

L : D𝑅 → Shop
𝑅 , M ↦→ H𝑜𝑚Opris [𝐹 ] (M,Opris).

Indeed, if F ∈ Sh𝑅 is any abelian sheaf and M ∈ D𝑅, then

HomOpris [𝐹 ] (M,H𝑜𝑚 (𝑅)qsyn (F ,Opris)) � Hom(𝑅)qsyn (F ,H𝑜𝑚D𝑅 (M,Opris))

because both sides identify with bilinear maps 𝜔 : M × F → Opris, which are Opris [𝐹]-linear in the
first component.

Note that by the above displayed formula (4.2), if G is a p-divisible group over R,

MΔ (𝐺) = R(𝑇𝑝𝐺).

Hence, to prove the theorem, we are reduced to proving the following proposition.

Proposition 4.84. The functorR is fully faithful on the subcategory of Shop
𝑅 spanned by the Tate modules

of p-divisible groups over R.

Proof. Given a sheaf F ∈ Shop
𝑅 which is the Tate module of a p-divisible group, we have a natural

counit map in Shop
𝑅

LRF → F ,

and we will show that it is an isomorphism. Switching back from Shop
𝑅 to Sh𝑅, this counit is the biduality

map

F (−) → H𝑜𝑚Opris [𝐹 ] (H𝑜𝑚 (𝑅)qsyn (F (−),Opris),Opris).

The formation of this map is compatible with base change in the quasiregular semiperfectoid ring R.
We claim that this map is an isomorphism whenever F is the Tate module of a p-divisible group G over
R. Applying Proposition 4.83 to 𝐺̌, we get a natural (in F and R) identification

F = 𝑇𝑝𝐺 �
(
N ≥1MΔ (𝐺̌)

)𝜑MΔ (𝐺̌)
=𝜉

=
(
MΔ (𝐺̌)

) 𝜑MΔ (𝐺̌)
=𝜉

(for the last equality, note that if 𝑓 ∈ H𝑜𝑚 (𝑅)qsyn (𝑇𝑝𝐺,Opris) satisfies 𝜑( 𝑓 ) = 𝜉 𝑓 , then for any section
s of 𝑇𝑝𝐺, 𝑓 (𝑠) ∈ N ≥1Opris, that is 𝑓 ∈ H𝑜𝑚 (𝑅)qsyn (𝑇𝑝𝐺,N ≥1Opris)). Proposition 4.73 and the remark
following it for the identification of Frobenius allow us to rewrite this as a natural (in F and R)
identification

F � H𝑜𝑚Opris [𝐹 ] (MΔ (𝐺),O
pris) = L(MΔ (𝐺)) = LRF

as we can identify (MΔ (𝜇𝑝∞), 𝜑MΔ (𝜇𝑝∞) ) = (Opris, 𝜉𝜑Opris ) by Proposition 4.77. However, this natural
isomorphism may not a priori coincide with above counit map. But, composing the latter with the
inverse of this isomorphism, we obtain a natural endomorphism of F , that is, an endomorphism of
any p-divisible group G over any quasiregular semiperfectoid ring R, natural in G and R. Any such
endomorphism acts on the p-divisible group Q𝑝/Z𝑝 by multiplication by some scalar (in Z𝑝), at least
on each connected component of R. It also does act by multiplication by the same scalar (depending

https://doi.org/10.1017/fmp.2022.22 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.22


66 J. Anschütz and A.-C. Le Bras

on a connected component of Spec(𝑅)) on any p-divisible group G: indeed, this can be checked on the
Tate module, and since 𝑇𝑝 (𝐺) = H𝑜𝑚 (𝑅)qsyn (Q𝑝/Z𝑝 , 𝐺), this follows there by naturality.

Hence, to conclude the proof of fully faithfulness, it suffices to show that these scalars are units. This
can be checked for one specific p-divisible group G, and we can take 𝐺 = Q𝑝/Z𝑝 , for which the claim
is immediate. Indeed, F = Z𝑝 in this case and F → LR(F) � H𝑜𝑚Opris [𝐹 ] (Opris,Opris) sends 1 ∈ Z𝑝

to the identity of Opris, which generates H𝑜𝑚Opris [𝐹 ] (Opris,Opris) by [13, Remark 9.3]. �

Remark 4.85. In fact, as was also pointed out by Akhil Mathew and the referee, the results used in this
section can be strenghtened. Indeed, [10, Theorem 7.5.6] already quoted above even gives a short exact
sequence

0→ 𝑇𝑝G𝑚 → N ≥1Opris 𝜑/𝜉−1
−→ Opris → 0.

Applying 𝑅H𝑜𝑚 (𝑅)qsyn (𝑇𝑝𝐺,−) to it, we get an exact sequence of sheaves

0→ 𝑇𝑝𝐺̌ → N ≥1MΔ (𝐺̌)
𝜑/𝜉−1
−→ MΔ (𝐺̌) → E𝑥𝑡1(𝑅)qsyn

(𝑇𝑝𝐺,𝑇𝑝G𝑚).

But E𝑥𝑡1
(𝑅)qsyn

(𝑇𝑝𝐺,𝑇𝑝G𝑚) = E𝑥𝑡1
(𝑅)qsyn

(𝐺, 𝜇𝑝∞) = 0 (cf. [53, Theorem 1] together with the fact that
the set of splittings of such an extension is a torsor under 𝐺̌ which is syntomic). Hence, we get a short
exact sequence and, after taking cohomology, an isomorphism

𝑅Γ((𝑅)qsyn, 𝑇𝑝𝐺̌) � fib
(
N ≥1𝑀Δ (𝐺̌)

𝜑/𝜉−1
−→ 𝑀Δ (𝐺̌)

)
.

4.9. Essential surjectivity

Let R be quasiregular semiperfectoid, and let as before

𝑀Δ (−) : BT(𝑅) → DMadm(𝑅), 𝐺 ↦→ (𝑀Δ (𝐺), 𝜑𝑀Δ (𝐺)
)

be the prismatic Dieudonné functor with values in the category of admissible prismatic Dieudonné
modules DMadm(𝑅) (cf. Section 4.2 and Theorem 4.71).

Let us fix a perfect prism (𝐴, 𝐼), a generator 𝜉 ∈ 𝐼 and a surjection 𝐴̄ =𝐴/𝐼 � 𝑅. Let 𝜉 := 𝜑−1(𝜉).
In this section, we will make repeated use of Proposition 4.29, which tells us that admissible prismatic
Dieudonné modules over R (or any other quasiregular semiperfectoid ring living over 𝐴̄) are the same
as windows over the frame Δ𝑅,Nyg (associated to 𝜉).

By Corollary 2.10, we may assume that 𝐴̄ is henselian along ker( 𝐴̄→ 𝑅).
Let us first assume that ker( 𝐴̄→ 𝑅) is generated by some elements 𝑎 𝑗 , 𝑗 ∈ 𝐽, that admit compatible

systems (𝑎 𝑗 , 𝑎
1/𝑝
𝑗 , 𝑎1/𝑝2

𝑗 , . . .) of 𝑝𝑛-roots. Define

𝑆 :=
(
𝐴̄〈𝑋1/𝑝∞

𝑗 | 𝑗 ∈ 𝐽〉/(𝑋 𝑗 )
)∧𝑝

and 𝑆 → 𝑅, 𝑋1/𝑝𝑛

𝑗 ↦→ 𝑎1/𝑝𝑛

𝑗 .

Lemma 4.86. The base change functor DMadm(𝑆) → DMadm(𝑅) on admissible prismatic Dieudonné
modules is essentially surjective.

Proof. Using Proposition 4.22, it suffices to see that Δ𝑆 → Δ𝑅 is surjective and henselian along its
kernel (cf. Lemma 4.31). The surjectivity follows from the Hodge-Tate comparison as 𝐿𝑆/𝐴̄ → 𝐿𝑅/𝐴̄

is surjective by our assumption that the 𝑎 𝑗 , 𝑗 ∈ 𝐽, generate ker( 𝐴̄ → 𝑅). First note that the pair
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(𝑆, ker(𝑆 → 𝑅)) is henselian because the 𝑋1/𝑝𝑛

𝑗 are nilpotent in S and we assumed that 𝐴̄ is henselian
along ker( 𝐴̄→ 𝑅). By Lemma 4.28, to show that Δ𝑆 is henselian along 𝐾 := ker(Δ𝑆 → Δ𝑅), it suffices
to see 𝑆 � Δ𝑆/ker(𝜃𝑆) is henselian along 𝐾 := (𝐾 +ker(𝜃))/ker(𝜃) (cf. [52, Tag 0DYD])). But 𝐾 ⊆ 𝑆 is
contained in ker(𝑆 → 𝑅). Another application of [52, Tag 0DYD] therefore implies that S is henselian
along 𝐾 because (𝑆, ker(𝑆 → 𝑅)) is henselian. This finishes the proof. �

Note that the ring

𝑆 =
(
𝐴̄〈𝑋1/𝑝∞

𝑗 | 𝑗 ∈ 𝐽〉/(𝑋 𝑗 | 𝑗 ∈ 𝐽)
)∧𝑝

admits a surjection from the perfectoid ring

𝑆 := 𝐴̄[[𝑋1/𝑝∞
𝑗 | 𝑗 ∈ 𝐽]] :=

(
lim
−−→

𝑛,𝐽 ′ ⊂𝐽 finite
𝐴̄[[𝑋1/𝑝𝑛

𝑗 | 𝑗 ∈ 𝐽 ′]]

)∧𝑝

by sending 𝑋1/𝑝𝑛

𝑗 ↦→ 𝑋1/𝑝𝑛

𝑗 .

Lemma 4.87. The natural functor

DMadm(𝑆) → DMadm(𝑆)

is essentially surjective.

Proof. The ring 𝑆 is henselian along (𝑋 𝑗 | 𝑗 ∈ 𝐽). The prism Δ𝑆̃ is the (𝑝, 𝐼)-adic completion of

lim
−−→

𝑛,𝐽 ′ ⊂𝐽 finite
𝐴[[𝑋1/𝑝𝑛

𝑗 | 𝑗 ∈ 𝐽 ′]] .

Call a 𝛿-pair (𝐵, 𝐾) over (𝐴, 𝐼) a good pair if it satisfies the following conditions:

• B is (𝑝, 𝐼)-completely flat over A and K is (𝑝, 𝐼)-complete.
• There exists a universal map (𝐵, 𝐾) → (𝐶, 𝐼𝐶) of 𝛿-pairs to a prism (𝐶, 𝐼𝐶) over (𝐴, 𝐼). Moreover,
(𝐶, 𝐼𝐶) is flat over (𝐴, 𝐼), and its formation commutes with (𝑝, 𝐼)-completely flat base change on B.

For each 𝑛 ≥ 1 and 𝐽 ′ ⊂ 𝐽 finite, the 𝛿-pair(
𝐴[[𝑋1/𝑝𝑛

𝑗 | 𝑗 ∈ 𝐽 ′]]∧(𝑝,𝐼 ) , (𝐼, 𝑋 𝑗 , 𝑗 ∈ 𝐽)
∧(𝑝,𝐼 )

)
over (𝐴, 𝐼) is a good pair, by [13, Proposition 3.13]. Since good pairs are stable under filtered colimits
in the category of all 𝛿-pairs (𝐵, 𝐾) over (𝐴, 𝐼) with 𝐵 and 𝐾 (𝑝, 𝐼)-complete, we deduce that the pair(

Δ𝑆̃ , (𝐼, 𝑋 𝑗 , 𝑗 ∈ 𝐽)
)

is a good pair, too. Therefore, by definition of a good pair and Proposition 3.26, we have

Δ𝑆 � Δ𝑆̃

{
𝑋 𝑗

𝜉
| 𝑗 ∈ 𝐽

}∧(𝑝,𝜉 )

.

Define

𝐵 := Δ𝑆̃/(𝑋 𝑗 | 𝑗 ∈ 𝐽)
∧(𝑝,𝜉 ) .

https://doi.org/10.1017/fmp.2022.22 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.22


68 J. Anschütz and A.-C. Le Bras

Then B is p-torsion free and 𝜉-torsion free and thus defines a prism. Moreover, canonically, 𝑆 � 𝐵/𝜉.
By the universal property of Δ𝑆 , there exists therefore a canonical morphism

𝛼 : Δ𝑆 → 𝐵.

Concretely, the morphism 𝛼 sends 𝑋 𝑗 ↦→ 0. Using a variant of Lemma 4.28, we see that Δ𝑆 is henselian
along ker(𝛼). By Lemma 4.88, 𝜑(ker(𝛼)) ⊆ 𝜉Δ𝑆 and 𝜑/𝜉 is topologically nilpotent on ker(𝛼). Thus by
Lemma 4.32, the categories of windows over Δ𝑆 and B are equivalent. Therefore, it suffices to see that
windows over B can be lifted to windows over Δ𝑆̃ . After choosing a normal decomposition, this follows
as the functor

𝜑 −Modunit
Δ𝑆̃

→ 𝜑 −Modunit
𝐵

and is essentially surjective, which is true as Δ𝑆̃ is henselian along the kernel of Δ𝑆̃ � 𝐵 (cf. the end of
the proof of Lemma 4.31). This finishes the proof. �

To finish the proof of Lemma 4.86, we have to prove the following lemmas.

Lemma 4.88. With the notations from the proof of Lemma 4.87, we get 𝜑(ker(𝛼)) ⊆ 𝜉Δ𝑆 and 𝜑1 := 𝜑/𝜉
is topologically nilpotent on ker(𝛼).

Proof. Set𝐾 := ker(𝛼). Then K is the closure in the (𝑝, 𝜉)-adic topology of the Δ𝑆-submodule generated
by 𝛿𝑛 (𝑋 𝑗/𝜉) for 𝑗 ∈ 𝐽 and 𝑛 ≥ 0. By Lemma 4.89 below, the module K equals the closure of the ideal
generated by

𝑧 𝑗 ,𝑛 :=
𝑋 𝑝𝑛

𝑗

𝜑𝑛 (𝜉)𝜑𝑛−1(𝜉) 𝑝 · · · 𝜉 𝑝𝑛

for 𝑗 ∈ 𝐽 and 𝑛 ≥ 0. Let us show that 𝜑(𝐾) ⊆ 𝜉Δ𝑆 . Clearly,

𝜑(𝑧 𝑗 ,𝑛) = 𝜉 𝑝𝑛+1
𝑧 𝑗 ,𝑛+1. (4.3)

As N ≥1Δ𝑆 is closed in Δ𝑆 (being the kernel of the continuous surjection Δ𝑆 → 𝑆), we can conclude
𝐾 ⊆ N ≥1Δ𝑆 . Next, let us check that 𝜑1 is topologically nilpotent on K. Fix 𝑙 ≥ 1. We claim that for
every 𝑚 ≥ 1, such that 𝑝𝑚 > 𝑙 and any 𝑘 ∈ 𝐾 , we have

𝜑𝑚
1 (𝑘) ∈ 𝜉

𝑙𝐾.

This implies as desired that 𝜑1 is topologically nilpotent on K. As 𝜉𝑙𝐾 is closed and 𝜑𝑚
1 continuous (for

the (𝑝, 𝜉)-adic topology on K), it is enough to assume that 𝑘 = 𝑧 𝑗 ,𝑛 for some 𝑗 ∈ 𝐽, 𝑛 ≥ 1, because the
𝑧 𝑗 ,𝑛 generate a dense submodule in K33. Using Equation (4.3), we can calculate

𝜑𝑚
1 (𝑧 𝑗 ,𝑛) = 𝜑𝑚−1

1 (𝜉 𝑝𝑛+1−1𝑧 𝑗 ,𝑛+1) = . . . = 𝑎𝜉 𝑝𝑛+𝑚−1𝑧 𝑗 ,𝑛+𝑚 ∈ 𝜉
𝑝𝑛+𝑚−1𝐾

for some 𝑎 ∈ Δ𝑆 . But 𝜉 𝑝𝑛+𝑚−1𝐾 ⊆ 𝜉𝑙𝐾 because 𝑝𝑛+𝑚 − 1 ≥ 𝑙. This finishes the proof. �

Lemma 4.89. Let (𝐴, 𝐼) be a bounded prism, and let 𝑑 ∈ 𝐴 be distinguished. Let, furthermore, 𝑥 ∈ 𝐴
be an element of rank 1. Then for 𝑛 ≥ 0, there exist natural (in 𝐴, 𝑥) elements

𝑧𝑛 ∈ 𝐴
{ 𝑥
𝑑

}∧(𝑝,𝑑)

,

33Dense for the (𝑝, 𝜉 )-adic topology.
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such that 𝜑𝑛 (𝑑)𝜑𝑛−1(𝑑) 𝑝 · · · 𝑑 𝑝𝑛
· 𝑧𝑛 = 𝑥𝑝𝑛 . Moreover, for all 𝑛 ≥ 0, 𝛿𝑛 ( 𝑥𝑑 ) lies in the subring

𝐴[𝑧0, . . . , 𝑧𝑛] of 𝐴{ 𝑥𝑑 }
∧(𝑝,𝑑) generated by 𝑧0, . . . , 𝑧𝑛.

Note that the last part of the lemma implies that the resulting morphism

𝐴[𝑦1, 𝑦2, . . .]/(𝑥 − 𝑑𝑦1, 𝑦
𝑝
1 − 𝜑(𝑑)𝑦2, 𝑦

𝑝
2 − 𝜑2(𝑑)𝑦3, . . .) → 𝐴

{ 𝑥
𝑑

}∧(𝑝,𝑑)

, 𝑦𝑛 ↦→ 𝑧𝑛

is surjective after (𝑝, 𝑑)-completion. We expect that this surjection is actually an isomorphism.

Proof. We can argue in the universal case 𝐴 = Z𝑝 [𝑥]{𝑑,
1

𝛿 (𝑑) }
∧(𝑝,𝑑) , where 𝛿(𝑥) = 0, thus, we may

assume that A is transversal, that is, that (𝑝, 𝑑) is a regular sequence in A, and that (𝑥, 𝑑) is a regular
sequence. This implies that for all 𝑟 ≥ 1, the sequence (𝜑𝑟 (𝑑), 𝜑𝑟−1(𝑑)) is regular as well (cf. Lemma
2.7). We first claim that for all 𝑛 ≥ 0, the element

𝑧𝑛 :=
𝑥𝑝𝑛

𝜑𝑛 (𝑑)𝜑𝑛−1(𝑑) 𝑝 · · · 𝑑 𝑝𝑛

lies in 𝐴{ 𝑥𝑑 }. If 𝑛 = 0, then 𝑧𝑛 = 𝑥
𝑑 ∈ 𝐴{ 𝑥𝑑 }. For 𝑛 ≥ 0, we can calculate

𝜑(𝑧𝑛) =
𝑥𝑝𝑛+1

𝜑𝑛+1(𝑑) · · · 𝜑(𝑑) 𝑝
𝑛

because 𝜑(𝑥) = 𝑥𝑝 . The numerator 𝑥𝑝𝑛+1 is divisible by 𝑑 𝑝𝑛+1 in 𝐴{ 𝑥𝑑 }. We claim that
(𝑑 𝑝𝑛+1

, 𝜑𝑛+1(𝑑) · · · 𝜑(𝑑) 𝑝
𝑛
) is a regular sequence in 𝐴{ 𝑥𝑑 }

∧(𝑝,𝑑) . Granting this, we can conclude that

𝑑 𝑝𝑛+1 divides 𝑥𝑝𝑛+1

𝜑𝑛+1 (𝑑) ·· ·𝜑 (𝑑) 𝑝
𝑛 , that is, that 𝑧𝑛+1 ∈ 𝐴{ 𝑥𝑑 }

∧
(𝑝,𝑑)

. Write 𝑠 = 𝜑𝑛+1 (𝑑) · · · 𝜑(𝑑) 𝑝
𝑛 . To prove

that (𝑑 𝑝𝑛+1
, 𝑠) is a regular sequence in 𝐴{ 𝑥𝑑 }

∧(𝑝,𝑑) , it suffices to show the same for (𝑑, 𝑠). One proves
by induction on m that for all 𝑚 ≥ 1, 𝜑𝑚(𝑑) is congruent to 𝑝𝑢𝑚 modulo d for a unit 𝑢𝑚. In particular,
one concludes that s is congruent to 𝑢𝑝𝑘 modulo d, for 𝑘 ≥ 1 and u a unit. Hence, to prove that (𝑑, 𝑠)
is a regular sequence in 𝐴{ 𝑥𝑑 }

∧(𝑝,𝑑) , it suffices to show that (𝑑, 𝑝) is a regular sequence in 𝐴{ 𝑥𝑑 }
∧(𝑝,𝑑).

But this follows from transversality of A and the fact that 𝐴→ 𝐴{ 𝑥𝑑 }
∧(𝑝,𝑑) is (𝑝, 𝑑)-completely flat.

Next, we show that for all 𝑛 ≥ 0, 𝛿𝑛 ( 𝑥𝑑 ) lies in the subring 𝐴[𝑧0, . . . , 𝑧𝑛] of 𝐴{ 𝑥𝑑 }
∧(𝑝,𝑑) generated by

𝑧0, . . . , 𝑧𝑛. This claim follows from the assertion that 𝛿(𝑧𝑛) ∈ 𝐴[𝑧0, . . . , 𝑧𝑛+1] using induction and how
𝛿 acts on sums and products. For 𝑛 = 0, we can calculate

𝛿(𝑧0) = 𝛿
( 𝑥
𝑑

)
=

1
𝑝

(
𝜑

( 𝑥
𝑑

)
−

𝑥𝑝

𝑑 𝑝

)
=

1
𝑝
(𝑑 𝑝 − 𝜑(𝑑))𝑧1 = 𝛿(𝑑)𝑧1 ∈ 𝐴

{ 𝑥
𝑑

}
.

Similarly, we see

𝛿(𝑧𝑛) =
1
𝑝
(𝑑 𝑝𝑛+1

− 𝜑𝑛+1 (𝑑))𝑧𝑛+1,

where the term 1
𝑝 (𝑑

𝑝𝑛+1
− 𝜑𝑛+1(𝑑)) lies in A. This finishes the proof. �

We can derive essential surjectivity.

Theorem 4.90. Let R be a quasiregular semiperfectoid ring. Then the prismatic Dieudonné functor

𝑀Δ (−) : BT(𝑅) → DMadm(𝑅)

from the category of p-divisible groups over R to the category of admissible prismatic Dieudonné
crystals over R is essentially surjective.
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Proof. To prove the theorem, we may pass to a quasisyntomic cover 𝑅′ of R: indeed, let 𝑀 ∈ DMadm(𝑅),
such that its base change along the map 𝑅 → 𝑅′ is of the form 𝑀Δ (𝐺

′), for some p-divisible group 𝐺 ′

over R. The descent datum for 𝑀Δ (𝐺
′) expressing that it comes from an admissible prismatic Dieudonné

module over R (namely, M) gives rise to a descent datum for 𝐺 ′, since fully faithfulness over 𝑅′⊗̂𝑅𝑅
′

is already proved (cf. Theorem 4.82). This descent datum is effective, by p-completely faithfully flat
descent for p-divisible groups (cf. Proposition A.2), so there exists a p-divisible group G over R, with
𝑀Δ (𝐺) = 𝑀 .

Therefore, by Theorem 3.23, we may and do assume that 𝑅 � 𝐴̄/(𝑎 𝑗 | 𝑗 ∈ 𝐽) for 𝐴̄ = 𝐴/𝐼 a perfectoid
ring and 𝑎 𝑗 ∈ 𝑅 admitting compatible systems of 𝑝𝑛-roots of unity. Using Lemma 4.86, we may even
assume that

𝑅 � 𝐴̄〈𝑋1/𝑝∞
𝑗 | 𝑗 ∈ 𝐽〉/(𝑋 𝑗 ).

In this case, we can invoke Lemma 4.87 and reduce to the case that R is perfectoid. Then we can cite
Corollary 4.49 to conclude that 𝑀Δ (−) is essentially surjective. �

This concludes the proof of the main Theorem 4.74.

Remark 4.91. Let R be quasisyntomic ring. The arguments used in Section 4.8 show that the functor G
from DMadm(𝑅) to the category of abelian sheaves of (𝑅)qsyn, sending M ∈ DMadm(𝑅) to

(M∨)𝜑=1 ⊗Z𝑝 Q𝑝/Z𝑝 ,

where M∨ denotes the Opris-linear dual of M, defines a quasi-inverse of the prismatic Dieudonné
functor.

It seems difficult to prove directly that G takes values in the category of (quasisyntomic sheaves
attached to) p-divisible groups. In the case of étale p-divisible groups, Theorem 4.74 yields an equiva-
lence of Z𝑝-local systems on R and finite locally free Opris-modules (respectively, Δ𝑅-modules if R is
quasiregular semiperfectoid) M together with an isomorphism 𝜑M : 𝜑∗(M) �M. This is a generali-
sation of Katz’ correspondence between Z𝑝-local systems on the spectrum Spec(𝑘) of a perfect field k
and 𝜑-modules over𝑊 (𝑘) (cf. [27, Proposition 4.1.1]). We thank Benoît Stroh for pointing this out to us.

5. Complements

5.1. Prismatic Dieudonné theory for finite locally free group schemes

Let R be a perfectoid ring. We fix a generator 𝜉 of ker(𝜃) and let 𝜉 = 𝜑(𝜉).

Definition 5.1. A torsion prismatic Dieudonné module over R is a triple

(𝑀, 𝜑𝑀 , 𝜓𝑀 ),

where M is a finitely presented 𝐴inf (𝑅)-module of projective dimension ≤ 1 which is annihilated by a
power of p and where 𝜑𝑀 : 𝑀 → 𝑀 and 𝜓𝑀 : 𝑀 → 𝑀 are, respectively, 𝜑-linear and 𝜑−1-linear, and
satisfy

𝜑𝑀 ◦ 𝜓𝑀 = 𝜉, 𝜓𝑀 ◦ 𝜑𝑀 = 𝜉.

The category of torsion prismatic Dieudonné modules over R is denoted by DMtors (𝑅). It is an exact
category.

The base change of torsion prismatic Dieudonné modules behaves well.

Lemma 5.2. Let 𝑅 → 𝑅′ be a morphism of perfectoid rings and 𝑀 ∈ DMtors (𝑅). Then 𝑀 ⊗𝐴inf (𝑅)

𝐴inf (𝑅
′) is concentrated in degree 0. In particular, the base change functor DMtors (𝑅) → DMtors(𝑅

′)

is exact.
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Proof. Let

0→ 𝑀1
𝑓
−→ 𝑀2 → 𝑀 → 0

be a resolution of M by finite locally free 𝐴inf (𝑅)-modules. As M is killed by 𝑝𝑛 for some 𝑛 ≥ 0, there
exists 𝑔 : 𝑀2 → 𝑀1, such that 𝑓 ◦ 𝑔 = 𝑝𝑛. Then 𝑝𝑛 = 𝑔 ◦ 𝑓 (using that f is injective). The base change
𝑀1 ⊗𝐴inf (𝑅) 𝐴inf (𝑅

′) is p-torsion free as 𝐴inf (𝑅
′) is. This implies that the base change of f to 𝐴inf (𝑅

′)

remains injective, which finishes the proof. �

Before stating the main result, let us introduce a notation, which will be in use only in this section.

Notation 5.3. If S is a p-complete ring, let B𝑆 (respectively, C𝑆) denote the category whose objects
are OΔ-modules on (𝑆)Δ (respectively, OΔ-modules on (𝑆)Δ endowed with a 𝜑-linear Frobenius),
and whose morphisms are OΔ-linear morphisms (respectively, OΔ-linear morphisms commuting with
Frobenius).

Theorem 5.4. There is a natural exact34 antiequivalence

𝐻 ↦→ (𝑀Δ (𝐻), 𝜑𝑀Δ (𝐻 )
, 𝜓𝑀Δ (𝐻 )

)

between the exact category of finite locally free group schemes of p-power order on R and the exact
category DMtors(𝑅) of torsion prismatic Dieudonné modules over R, such that the 𝐴inf (𝑅)-module
𝑀Δ (𝐻) is given by the formula

𝑀Δ (𝐻) = Ext1(𝑅)Δ (𝑢
−1𝐻,OΔ)

and such that 𝜑𝑀Δ (𝐻 )
is the map induced by the Frobenius of OΔ.

Remark 5.5. A similar statement can be found in [36, Theorem 10.12]. Apart from the change of
terminology, the only difference with the result in loc. cit. is that we remove the assumption that 𝑝 ≥ 3
and provide a formula for the underlying 𝐴inf-module of the torsion minuscule Breuil-Kisin-Fargues
module attached to a finite locally free group scheme of p-power order.

The proof of Theorem 5.4 will make use of the following lemma.

Lemma 5.6. Let (𝐴, 𝐼) be a bounded prism, such that A is p-torsion free, and let S be a p-completely
syntomic 𝐴/𝐼-algebra35. Then

𝐻0 (𝑆,Δ𝑆/𝐴)

is p-torsion free.

Proof. As S is a p-completely syntomic 𝐴/𝐼-algebra, the derived prismatic cohomology Δ𝑆/𝐴 agrees
with the cohomology 𝑅Γ((𝑆/𝐴)Δ,OΔ) of the prismatic site of S over A (this follows by descent from the
quasiregular semiperfectoid case and Proposition 3.26). By [13, Proposition 3.13] and the assumption
that S is a p-completely syntomic 𝐴/𝐼-algebra, one can calculate Δ𝑆/𝐴 by some C̆ech-Alexander complex
whose first term is p-complete and p-completely flat over A. Therefore, it suffices to see that each p-
complete p-completely flat A-algebra B has no p-torsion. As A is p-torsion free, A, and thus B, are
p-completely flat over Z𝑝 . But any p-completely flat p-complete module over Z𝑝 is topologically free
and thus p-torsion free. �

Proof of Theorem 5.4. The construction of the antiequivalence is exactly similar to the one of [36,
Theorem 10.12], replacing Theorem 9.8 in loc. cit. by Corollary 4.49, so we do not give it and refer

34This includes the nonformal assertion that the inverse equivalence is exact, too.
35A morphism 𝑅 → 𝑅′ between p-complete rings of bounded 𝑝∞-torsion is p-completely syntomic if 𝑅′/𝑝 � 𝑅′ ⊗L𝑅 𝑅/𝑝

and 𝑅/𝑝 → 𝑅′/𝑝 is syntomic in the sense of [52, Tag 00SL].

https://doi.org/10.1017/fmp.2022.22 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.22


72 J. Anschütz and A.-C. Le Bras

the reader to [36]. The simple principle is that Zariski-locally on Spec(𝑅), any finite locally free group
scheme of p-power order is the kernel of an isogeny of p-divisible groups (and even an isogeny of p-
divisible groups associated to abelian schemes, cf. Theorem 4.65); similarly, Zariski-locally on Spec(𝑅),
any torsion prismatic Dieudonné module is the cokernel of an isogeny of prismatic Dieudonné modules
([36, Lemma 10.10]).

Let us now prove that

𝑀Δ (𝐻) = Ext1(𝑅)Δ (𝑢
−1𝐻,OΔ)

and that the functor 𝑀Δ (−) preserves exactness for a short exact sequence

0→ 𝐻 ′ → 𝐻 → 𝐻 ′′ → 0

of finite locally free group schemes of p-power order over R. Note that this implies by Mittag-Leffler
exactness of

0→ 𝑀Δ (𝐻
′′) → 𝑀Δ (𝐻) → 𝑀Δ (𝐻

′) → 0

if 𝐻 ′, 𝐻, 𝐻 ′′ are finite locally free group schemes of p-power order or p-divisible groups.
By construction of the antiequivalence, it suffices to check that if H is the kernel of an isogeny

𝑋 → 𝑋 ′, with 𝑋, 𝑋 ′ are abelian schemes over R, the natural map

𝑀Δ (𝑋 [𝑝
∞]) = Ext1(𝑅)Δ (𝑢

−1𝑋,OΔ) → Ext1(𝑅)Δ (𝑢
−1𝐻,OΔ)

is surjective. But the cokernel of this map embeds in Ext2
(𝑅)Δ
(𝑢−1𝑋 ′,OΔ), which is zero by

Theorem 4.62.
For exactness, start with a short exact sequence of finite locally free group schemes of p-power order

on R

0→ 𝐻 ′ → 𝐻 → 𝐻 ′′ → 0,

which we see as an exact sequence of abelian sheaves on (𝑅)qsyn. The surjectivity of the map

𝑀Δ (𝐻) → 𝑀Δ (𝐻
′)

can be checked locally and so we can assume that H, and so also 𝐻 ′, embeds in an abelian scheme X.
But we know that the map

𝑀Δ (𝑋 [𝑝
∞]) → 𝑀Δ (𝐻

′)

is already surjective, again, because Ext2
(𝑅)Δ
(𝑢−1𝑋/𝐻 ′,OΔ) = 0. Thus, the same holds for the map

𝑀Δ (𝐻) → 𝑀Δ (𝐻
′).

To prove injectivity of the map

𝑀Δ (𝐻
′′) → 𝑀Δ (𝐻),

it suffices by the long exact sequence for 𝑅Hom(𝑅)Δ (−,OΔ) to prove that

Hom(𝑅)Δ (𝑢
−1𝐻 ′,OΔ) = 0.
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Let us prove that Hom(𝑅)Δ (𝑢
−1𝐻 ′,OΔ) is p-torsion free. This is enough: indeed, we know it is also

killed by a power of p, because 𝑢−1𝐻 ′ is. As

Hom(𝑅)Δ (𝑢
−1𝐻 ′,OΔ) ⊂ 𝐻0(𝑢−1𝐻 ′,OΔ) = 𝐻0 (𝐻 ′,Δ𝐻 ′/𝐴inf ),

it suffices to prove that the latter is p-torsion free. This is the content of Lemma 5.6 when applied to the
p-completely syntomic R-scheme 𝐻 ′.

Let

G : DMtors → {finite locally free group schemes of 𝑝-power order over 𝑅}

be an inverse functor to 𝑀Δ (−). We claim that G is exact. Let

0→ 𝑀1 → 𝑀2 → 𝑀3 → 0

be an exact sequence in DMtors (𝑅). For any morphism 𝑅 → 𝑅′, the base change of it along 𝐴inf (𝑅) →
𝐴inf (𝑅

′) will stay exact by Lemma 5.2. By [20, Proposition 1.1] and compatibility of G with base change
in R, we can therefore assume that R is a perfect field of characteristic p. In this case, the category of
finite locally free group schemes of p-power order and the category DMtors are abelian, and thus any
equivalence between them is automatically exact. �

Remark 5.7. Let R be quasisyntomic ring. Although the same trick allows in principle to deduce from
Theorem 4.74 a classification result for finite locally free group schemes of p-power order over R, it
seems more subtle to obtain a nice description of the target category, that is of the objects which can
locally on R be written as the cokernel of an isogeny of admissible prismatic Dieudonné crystals on R.
At least the arguments given above should go through whenever the forgetful functor

DF(𝑅) → DM(𝑅)

is an equivalence, like in the case of perfectoid rings or in the Breuil-Kisin case to be discussed in the
next section (where the classification of finite flat group schemes is already known and was proved by
Kisin following the same technique (cf. [30, Section 2.3])).

5.2. Comparison over O𝑲

In this section, we want to extract from Theorem 4.74 a concrete classification of p-divisible groups
over complete regular local rings with perfect residue field of characteristic p. This will, in particular,
recover Breuil-Kisin’s classification ([15], [30]), as extended to all p by Kim [29], Lau [35] and Liu
[38], over O𝐾 , for a complete discretely valued extension of Q𝑝 with perfect residue field.

Proposition 5.8. Let R be a complete Noetherian local ring with perfect residue field of characteristic
p. If R is regular, there exists a quasisyntomic perfectoid cover 𝑅∞ of R.

Proof. The existence of a faithfully flat cover 𝑅 → 𝑅∞, with 𝑅∞ perfectoid, is explained in [9, Theorem
4.7]. Assume first that 𝑝𝑅 = 0 or that R is unramified36. R is either flat overZ𝑝 or 𝑝𝑅 = 0. In the first case,
set Λ := Z𝑝 and in the second Λ := F𝑝 . By [52, Tag 07GB], the morphism Λ→ 𝑅 is a filtered colimit
of smooth ring maps and thus 𝐿𝑅/Λ has p-complete Tor-amplitude in degree 0. The triangle attached to
the composite Λ→ 𝑅 → 𝑅∞ shows that 𝐿𝑅∞/𝑅 has p-complete Tor-amplitude in degree −1. Therefore,
the map 𝑅 → 𝑅∞ is indeed a quasisyntomic cover. Finally, when R is ramified of mixed characteristic,
one sees from the explicit construction of [9, Example 3.8 (5)] that 𝑅 → 𝑅∞ is the p-completion of a
colimit of syntomic morphisms (obtained by extracting pth-roots), hence, is quasisyntomic. �

36The case R unramified is explained in [9, Example 3.8 (4)], too.

https://doi.org/10.1017/fmp.2022.22 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.22


74 J. Anschütz and A.-C. Le Bras

Remark 5.9. In the converse direction, the main result of [9] asserts that a Noetherian ring with p in
its Jacobson radical which admits a faithfully flat map to a perfectoid ring has to be regular (this is a
generalisation of a theorem of Kunz [31] in positive characteristic).

Proposition 5.10. Let R be a complete regular local ring with perfect residue field of characteristic p.
Any prismatic Dieudonné crystal over R is admissible.

Proof. Let (M, 𝜑M) ∈ DM(𝑅). Let 𝑅∞ be a perfectoid quasisyntomic cover of R, as in Proposition
5.8. Let M∞ ∈ DM(𝑅∞) be the base change of M, which we see as a prismatic Dieudonné module 𝑀∞
over 𝑅∞, via the equivalence of Proposition 4.13. We know (Proposition 4.12) that 𝑀∞ is admissible.
Since the natural functor DMadm → DM is (tautologically) fully faithful, 𝑀∞ descends to an admissible
prismatic Dieudonné crystal over R, which must identify with (M, 𝜑M). �

Recall the following definition, which already appeared in Proposition 4.26 before.

Definition 5.11. Let (𝐴, 𝐼 = (𝑑)) be a prism. A Breuil-Kisin module (𝑀, 𝜑𝑀 ) over (𝐴, 𝐼), or just A if I
is understood, is a finite free A-module M together with an isomorphism

𝜑𝑀 : 𝜑∗𝑀
[
1
𝐼

]
� 𝑀

[
1
𝐼

]
.

If 𝜑𝑀 (𝜑
∗𝑀) ⊆ 𝑀 with cokernel killed by I, then (𝑀, 𝜑𝑀 ) is called minuscule.

We denote by BK(𝐴) the category of Breuil-Kisin modules over A and by BKmin(𝐴) ⊆ BK(𝐴) its
full subcategory of minuscule ones.

If R is a complete regular local ring with perfect residue field k of characteristic p, it can be written as

𝑅 = 𝑊 (𝑘) [[𝑢1, . . . , 𝑢𝑑]]/(𝐸),

where 𝑑 = dim 𝑅 and E is a power series with constant term of p-value one (cf. [42, Theorems 29.7,
29.8 (ii)]). Let (𝐴, 𝐼) be the prism

(𝐴, 𝐼) = (𝑊 (𝑘) [[𝑢1, . . . , 𝑢𝑑]], (𝐸)),

where the 𝛿-ring structure on A is the usual one on 𝑊 (𝑘) and is such that 𝛿(𝑢𝑖) = 0, for 𝑖 = 1, . . . , 𝑑.
For simplicity, we assume 𝑑 = 1 in the following. We hope that the general case works similarly.

Theorem 5.12. Let R be a complete regular local ring with perfect residue field of characteristic p. The
functor

BT(𝑅) → BKmin(𝐴); 𝐺 ↦→ 𝑣∗MΔ (𝐺) ((𝐴, 𝐼)) = E𝑥𝑡1(𝑅)Δ (𝑢
−1𝐺,OΔ)(𝐴,𝐼 )

is an equivalence of categories.

The case where 𝑝𝑅 = 0 follows from Theorem 4.44, the classical fact that a Dieudonné crystal over
R is the same thing as a minuscule Breuil-Kisin module over A (with respect to p) together with an
integrable topologically quasinilpotent connection making Frobenius horizontal and [17, Proposition
2.7.3], which proves that for this particular ring A, the connection is necessarily unique. Hence, in the
following, we will always assume that R is p-torsion free. In this case, the pair (𝑝, 𝐸) is transversal.

Remark 5.13. When 𝑅 = O𝐾 , with K a complete discretely valued extension of Q𝑝 with perfect residue
field, A is usually denoted by𝔖 (a notation which seems to originate from [15]). We will see below that
the antiequivalence of the theorem coincides in this case with the one studied by Kisin for p odd and
Kim, Lau and Liu when 𝑝 = 2.
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We will describe prismatic Dieudonné crystals over O𝐾 via descent using the following lemma.
Lemma 5.14. The natural map from the sheaf represented by (𝐴, 𝐼) to the final object of Shv((𝑅)Δ) is
an epimorphism for the p-completely faithfully flat topology.
Proof. Indeed, let (𝐵, 𝐽) ∈ (𝑅)Δ. Let 𝐴∞ be the perfection of A; the map 𝑅 = 𝐴/𝐼 → 𝑅∞ = 𝐴∞/𝐼 𝐴∞
is a quasisyntomic cover. By base change, the map

𝐵/𝐽 → 𝐵/𝐽⊗̂𝑅𝑅∞

is therefore a quasisyntomic cover as well. By Proposition 3.22, there exists a prism (𝐶, 𝐽𝐶) which is p-
completely faithfully flat over (𝐵, 𝐽), such that there exists a morphism of 𝐵/𝐽-algebras 𝐵/𝐽⊗̂𝑅𝑅∞ →
𝐶/𝐽. Since 𝑅∞ is perfectoid, it implies that (𝐶, 𝐽𝐶) lives over (𝐴∞, 𝐼 𝐴∞) (cf. Proposition 2.11), and a
fortiori over (𝐴, 𝐼), as desired. �

Proof of Theorem 5.12. By Theorem 4.74 and Proposition 5.10, we know that the prismatic Dieudonné
functor

MΔ : BT(𝑅) → DM(𝑅)

is an antiequivalence. Therefore, it suffices to prove that the functor

M→ 𝑣∗M((𝐴, 𝐼))

from prismatic Dieudonné crystals DM(𝑅) to minuscule Breuil-Kisin modules BKmin(𝐴) is an equiva-
lence. Let B be the absolute product of A with itself in (𝑅)Δ. One has (cf. [13, Proposition 3.13])

𝐵 =
(
𝑊 (𝑘) [[𝑢]] ⊗𝑊 (𝑘) 𝑊 (𝑘) [[𝑣]]

) {
𝑢 − 𝑣

𝐸 (𝑢)

}∧(𝑝,𝐸 (𝑢) )

𝛿

,

where we wrote 𝐸 (𝑢) for 𝐸 ⊗ 137. By Lemma 5.14 below and Proposition 4.9, a prismatic Dieudonné
crystal M over R is the same thing as a minuscule Breuil-Kisin module N over A, together with a descent
datum, that is, an isomorphism

𝑁 ⊗𝐴,𝑝1 𝐵 � 𝑁 ⊗𝐴,𝑝2 𝐵

(where 𝑝1, 𝑝2 : 𝐴→ 𝐵 are the two natural maps), satisfying the usual cocycle condition.
We claim that any 𝑁 ∈ BKmin(𝐴) is equipped with a unique descent datum. Indeed, let 𝑓 : 𝐵 → 𝐴

be the map extending the multiplication map

𝑓0 : 𝐵0 := 𝐴⊗̂𝑊 (𝑘)𝐴→ 𝐴

and, for 𝑖 = 1, 2, set 𝐸𝑖 := 𝑝𝑖 (𝐸) ∈ 𝐵0, with 𝑝𝑖 : 𝐴 → 𝐵0 the two inclusions. Let 𝑀0 be a minuscule
Breuil-Kisin module over 𝐵0 with respect to the element 𝐸1 and 𝑁0 a minuscule Breuil-Kisin module
with respect to 𝐸2. Let 𝑀𝐴 = 𝑀0 ⊗𝐵0 , 𝑓0 𝐴, 𝑁𝐴 = 𝑁0 ⊗𝐵0 , 𝑓0 𝐴 be their base changes along 𝑓0.

Let 𝛼0 : 𝑀0 → 𝑁0 be any 𝐵0-linear map, such that 𝛼𝐴 := 𝑓 ∗0 𝛼0 : 𝑀𝐴 → 𝑁𝐴 is a morphism of
Breuil-Kisin modules over A. Consider the composition

𝑈0 (𝛼0) :=
1
𝐸1

𝜑𝑁0 ◦ 𝜑
∗𝛼0 ◦ 𝜑

−1
𝑀0
(𝐸1 (−)) : 𝑀0 →

1
𝐸1

𝑁0

as in the proof of Lemma 4.32. Then the morphism𝑈0(𝛼0) −𝛼0 maps 𝑀0 to 1
𝐸1
𝐾𝑁0, where 𝐾 = ker( 𝑓0)

as 𝛼𝐴 is a morphism of minuscule Breuil-Kisin modules over A. By construction of B, we have 𝐾 ⊆ 𝐸1𝐽,

37If similarly, 𝐸 (𝑣) = 1 ⊗ 𝐸 , then 𝐸 (𝑢)/𝐸 (𝑣) is a unit in B by [13, Lemma 2.24] because 𝐸 (𝑢) divides 𝐸 (𝑣) in B. Namely,
𝐸 (𝑣) = 𝐸 (𝑢) ( 𝐸 (𝑣 )−𝐸 (𝑢)𝐸 (𝑢) + 1) in B and 𝑢 − 𝑣 divides 𝐸 (𝑢) − 𝐸 (𝑣) .
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if 𝐽 = ker( 𝑓 ). In particular, if 𝛼 denotes the base change of 𝛼0 to B, then

𝑈 (𝛼) − 𝛼

maps 𝑀0 ⊗𝐵0 𝐵 to 𝐽 (𝑁0 ⊗𝐵0 𝐵), where 𝑈 (𝛼) is the base change of 𝑈0 (𝛼0). Thanks to Lemma 5.15
below, we can use the same arguments in the proof of 4.32 to see that there exists an isomorphism
𝛼 : 𝑀0 ⊗𝐵0 𝐵 � 𝑁0 ⊗𝐵0 𝐵 of Breuil-Kisin modules over B with 𝑓 ∗𝛼 = 𝛼𝐴. Indeed, if 𝛽0 := 𝑈0(𝛼0) − 𝛼0
with 𝑓 ∗0 𝛼0 = 𝛼𝐴, then the series

∞∑
𝑛=0

𝑈𝑛
0 (𝛽0)

converges after base change to B, since 𝛽 sends 𝑀0 ⊗𝐵0 𝐵 to 𝐽 (𝑁0 ⊗𝐵0 𝐵). In other words, the map
induced by f

𝛿𝑀0 ,𝑁0 : HomBKmin (𝐵) (𝑀0 ⊗𝐵0 𝐵, 𝑁0 ⊗𝐵0 𝐵) → HomBKmin (𝐴) (𝑀𝐴, 𝑁𝐴)

is a surjection. We claim that 𝛿𝑀0 ,𝑁0 is also injective. Indeed, assume that 𝛼 : 𝑀0 ⊗𝐵0 𝐵 → 𝑁0 ⊗𝐵0 𝐵
is a morphism of minuscule Breuil-Kisin modules over B reducing to 0 after base change to A. Define

𝑈 (𝛼) : 𝑀0 ⊗𝐵0 𝐵→ 𝐽.(𝑁0 ⊗𝐵0 𝐵), 𝑚 ↦→
1
𝐸1

𝜑𝑁0⊗𝐵0 𝐵
◦ 𝜑∗𝛼 ◦ 𝜑−1

𝑀0⊗𝐵0 𝐵
(𝐸1.𝑚).

Then, since 𝛼 is a morphism of minuscule Breuil-Kisin modules,

𝑈𝑛 (𝛼) = 𝛼

for all 𝑛 ≥ 1. But as 𝜑1 := 𝜑
𝐸1

is topologically nilpotent on J, we see that 𝑈𝑛 (𝛼) converges to 0 for
𝑛→∞ by the same exact argument as in the proof of Lemma 4.32.

Recall that we started with 𝑁 ∈ BKmin(𝐴) and want to produce a descent datum on N. To apply the
above discussion, we set 𝑀0 := 𝑁 ⊗𝐴,𝑝1 𝐵0, 𝑁0 := 𝑁 ⊗𝐴,𝑝2 𝐵0, and let 𝜑𝑀0 , 𝜑𝑁0 be the respective base
changes of 𝜑𝑁 . Since the compositions 𝑓 ◦ 𝑝1, 𝑓 ◦ 𝑝2 are the identity map, 𝑀𝐴, 𝑁𝐴 are isomorphic to
N. Let

𝛼𝑁 : 𝑀0 → 𝑁0

be the map corresponding via the bijection 𝛿𝑀0 ,𝑁0 to the identity map from 𝑀𝐴 = 𝑁 to 𝑁𝐴 = 𝑁 . If
𝑁 ′ ∈ BKmin(𝐴) is another minuscule Breuil-Kisin module over A, and 𝑔 ∈ HomBKmin (𝐴) (𝑁, 𝑁

′). We
claim that

𝛼𝑁 ′ ◦ 𝑔1 = 𝑔2 ◦ 𝛼𝑁 ,

where 𝑔1, respectively, 𝑔2, is the base change of g along 𝑝1, respectively, 𝑝2. Indeed, this can be rewritten
as an equality

𝛼𝑁 ′ ◦ 𝑔1 ◦ 𝛼
−1
𝑁 = 𝑔2 ∈ HomBKmin (𝐵) (𝑁0 ⊗𝐵0 𝐵, 𝑁

′
0 ⊗𝐵0 𝐵)

(using for 𝑁 ′ notations analogous to the ones we used for N), which, by the considerations above, can
be checked after base change along 𝑓 : 𝐵→ 𝐴, where it becomes obvious (since 𝛼𝑁 , respectively, 𝛼𝑁 ′ ,
reduces to the identity of N, respectively, 𝑁 ′, and since 𝑓 ◦ 𝑝1 = 𝑓 ◦ 𝑝2 is the identity). This shows that
the formation of 𝛼𝑁 is functorial in N. As each descent datum on N reduces to the identity on N after
base change along f, the descent datum on N is unique, if it exists, since 𝛿𝑀0 ,𝑁0 is injective.
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To conclude, it, therefore, remains to prove that 𝛼𝑁 is a descent datum, that is that it satisfies the
cocycle condition. Let

𝐶

be the prism representing the triple absolute product of (𝐴, (𝐸)) in (𝑅)Δ. We have to see that

𝑝∗1,2𝛼𝑁 ◦ 𝑝
∗
2,3𝛼𝑁 = 𝑝∗1,3𝛼𝑁 , (5.1)

where the 𝑝𝑖, 𝑗 : 𝐵 → 𝐶 are induced by the respective projections. Let us note that fibre products in
(𝑅)Δ are calculated by (completed) tensor products and that

𝑋 × 𝑋 × 𝑋 � (𝑋 × 𝑋) ×𝑋 (𝑋 × 𝑋)

for any object X in a category C admitting fibre products. This implies that

𝐶 � 𝐵⊗̂𝐴𝐵.

Let 𝐶0 = 𝐵 ⊗𝐴 𝐵 be the uncompleted tensor product. Note that 𝑝∗𝑖, 𝑗𝛼𝑁 , for each 1 ≤ 𝑖 < 𝑗 ≤ 3, is
already defined over 𝐶0. The kernel L of the natural morphism 𝐶0 → 𝐴 is generated by

𝐽 ⊗𝐴 𝐵, 𝐵 ⊗𝐴 𝐽.

In particular, 𝜑1 := 𝜑
𝐸1⊗1 stabilises L, and 𝜑1 is elementwise topologically nilpotent on it. Therefore,

arguing as above, we see that any morphism of minuscule Breuil-Kisin modules over 𝐶0 which vanishes
after base change along𝐶0 → 𝐴, must vanish after base change to C. After reduction to A, (5.1) becomes

Id𝑁 ◦ Id𝑁 = Id𝑁

by construction of 𝛼𝑁 . This finishes the proof. �

The proof of Theorem 5.12 relied on the following technical lemma.

Lemma 5.15. With the notation from the proof of Theorem 5.12, the ideal 𝐽 ⊆ 𝐵 is contained in N ≥1𝐵,
stable by 𝜑1 := 𝜑

𝐸 (𝑢) and 𝜑1 is topologically nilpotent on J, with respect to the (𝑝, 𝐸)-adic topology.

Proof. Write 𝐸 := 𝐸 (𝑢). The ideal J is generated (up to completion) by the 𝛿-translates of

𝑧 := (𝑢 − 𝑣)/𝐸,

so to check that 𝐽 ⊂ N ≥1𝐵, it is enough to prove that 𝛿𝑛 (𝑧) ∈ N ≥1𝐵 for all n. We prove by induction
on n that for all 𝑘 ≥ 1, 𝜑𝑘 (𝛿𝑛 (𝑧)) is divisible by E. For 𝑛 = 0, one has, for any 𝑘 ≥ 1,

𝜑𝑘 (𝑧) =
𝑢𝑝𝑘 − 𝑣𝑝𝑘

𝜑𝑘 (𝐸)
=
(𝑢 − 𝑣) (𝑢𝑝𝑘−1 + 𝑢𝑝𝑘−2𝑣 + · · · + 𝑢𝑣𝑝𝑘−2 + 𝑣𝑝𝑘 )

𝜑𝑘 (𝐸)
.

Since (𝐸, 𝜑𝑘 (𝐸)) is regular (as (𝑝, 𝐸) is transversal because B is (𝑝, 𝐸)-completely faithfully flat over
𝑊 (𝑘) [[𝑢]] by [13, Proposition 3.13]) and 𝑢 − 𝑣 is divisible by E in B, we deduce that E divides 𝜑𝑘 (𝑧).
Let now 𝑛 ≥ 0, and assume the result is known for 𝛿𝑛 (𝑧). We have, for 𝑘 ≥ 0,

𝑝𝜑𝑘 (𝛿𝑛+1 (𝑧)) = 𝜑𝑘 (𝑝𝛿𝑛+1 (𝑧)) = 𝜑𝑘 (𝜑(𝛿𝑛 (𝑧)) − 𝛿𝑛 (𝑧) 𝑝) = 𝜑𝑘+1(𝛿𝑛 (𝑧)) − 𝜑𝑘 (𝛿𝑛 (𝑧)) 𝑝,

so the statement for 𝛿𝑛+1 (𝑧) follows by induction hypothesis, and the fact that p and E are transversal.
This concludes the proof that 𝐽 ⊂ N ≥1𝐵.
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Let 𝑥 ∈ 𝐽. We have

𝐸. 𝑓 (𝜑1(𝑥)) = 𝑓 (𝜑(𝑥)) = 𝜑( 𝑓 (𝑥)) = 0.

Since E is a nonzero divisor in A, we must have 𝑓 (𝜑1(𝑥)) = 0 and, therefore, 𝜑1 (𝑥) ∈ 𝐽, that is, 𝜑1
stabilises J.

It remains to prove that the divided Frobenius is topologically nilpotent on J, endowed with the
(𝑝, 𝐸)-adic topology. Let

𝐴′ = 𝐴

{
𝜑(𝐸)

𝑝

}∧𝑝

,

which by [13, Lemma 2.35] identifies with the (p-completed) divided power envelope 𝐷𝐴((𝐸))
∧𝑝 of A

in (𝐸). Let 𝜄 : 𝐴→ 𝐴′ be the natural inclusion. The composition

𝛼 : 𝐴
𝜑
−→ 𝐴

𝜄
→ 𝐴′

defines a morphism of prisms (𝐴, (𝐸)) → (𝐴′, (𝑝)). Let

𝐵′ := 𝐷𝐴⊗̂𝑊 (𝑘) 𝐴(𝐽
′)∧𝑝 ,

where 𝐽 ′ is the kernel of the map 𝐴⊗̂𝑊 (𝑘)𝐴→ 𝑅. The ideal 𝐽 ′ is generated by E and 𝑢 − 𝑣, which form
a regular sequence in 𝐴⊗̂𝑊 (𝑘)𝐴/𝑝, and, therefore

𝐵′ � (𝐴⊗̂𝑊 (𝑘)𝐴)
{
𝜑(𝐸), 𝜑(𝑢 − 𝑣)

𝑝

}∧𝑝

𝛿

� (𝐴⊗̂𝑊 (𝑘)𝐴)
{
𝑝, 𝜑(𝑢 − 𝑣)

𝜑(𝐸)

}∧𝜑 (𝐸 )

𝛿

� 𝐷𝜑∗
𝐴⊗̂𝑊 (𝑘) 𝐴

𝐵 ((𝐸))
∧𝑝 .

(In the second isomorphism, we used again [13, Lemma 2.24], and in the first and last [13, Lemma
2.37].) In particular, the map 𝛼 induces a map:

𝛼𝐵 : 𝐵→ 𝐵′

because 𝐵 � 𝐴⊗̂𝑊 (𝑘)𝐴{
𝑢−𝑣
𝐸 }

∧(𝑝,𝐸 ) . It sends 𝐽 ⊆ 𝐵 to the kernel 𝐾 ⊂ 𝐵′ of the map 𝐵′ → 𝐴′ (which
extends the multiplication on 𝜇 : 𝐴⊗̂𝑊 (𝑘) 𝐴→ 𝐴), and commutes with the divided Frobenius (because
𝐵′ is p- and thus 𝜑(𝐸)-torsion free). We, thus, have a diagram:

𝐽

��

𝐾

��
𝐴⊗̂𝑊 (𝑘)𝐴 ��

𝜇
���

��
��

��
��

𝜑

��� � � 	 �
𝐵

𝛼𝐵

��
 � � 
 � � � � � � �

��

𝐴⊗̂𝑊 (𝑘)𝐴 ��

𝜄◦𝜇

		�
��

��
��

��
𝐵′

��
𝐴

𝛼



� � � � � 	 � � �
𝐴′ .

The ideal 𝐾 ⊆ 𝐵′ is generated (up to completion) by (𝑢 − 𝑣) and the 𝛿-translates of

𝜑(𝑢 − 𝑣)

𝑝
= unit ·

𝜑(𝑢 − 𝑣)

𝜑(𝐸)
.

As the kernel J of 𝐵 → 𝐴 is stable by 𝜑1, this implies that 𝐾 = 𝐽𝐵′ is stable by 𝜑1, and, thus, in
particular, contained in N ≥1𝐵′.
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Observe also that

𝑝𝐵′ ∩ 𝐵 = (𝑝, 𝐸).𝐵.

To see this, one needs to show that the map induced by 𝛼𝐵

𝐵/(𝑝, 𝐸) → 𝐵′/𝑝

is injective, that is, by faithful flatness of 𝜑 : 𝐴→ 𝐴 that the natural map

𝐵/(𝑝, 𝜑(𝐸)) = 𝐵/(𝑝, 𝐸 𝑝) → 𝐵′/𝑝 = 𝐷𝐵 ((𝐸))/𝑝

is injective. But since B is p-torsion free,

𝐵′/𝑝 = 𝐵/(𝑝, 𝐸 𝑝) [𝑋0, 𝑋1, . . . ]/(𝑋
𝑝
0 , 𝑋

𝑝
1 , . . . )

∧𝑝 ,

and the above map is simply the natural inclusion map. Hence, it suffices to prove topological nilpotence
of 𝜑1 = “𝜑/𝜑(𝐸)” on K with respect to the p-adic topology38. We do it in two steps.

Note first that 𝜑 is topologically nilpotent on K. More precisely, using that K is stable by 𝜑1, one
easily sees by induction that 𝜑𝑘 (𝑧) is divisible by 𝑝𝑘 , for all 𝑧 ∈ 𝐾 and 𝑘 ≥ 1 (with 𝜑𝑘 (𝑧)/𝑝𝑘 ∈ 𝐾 ,
because 𝐴′ is p-torsion free). The equality

𝜑1 (𝑥𝑦) = 𝜑(𝑥)𝜑1 (𝑦)

for 𝑥, 𝑦 ∈ 𝐾 , implies by induction that for any 𝑛 ≥ 1:

𝜑𝑛
1 (𝑥𝑦) = 𝜑𝑛 (𝑥)𝜑𝑛

1 (𝑦).

This shows that the second divided power ideal 𝐾 [2] is stable by 𝜑1 (since K is stable by 𝜑,𝜑1) and, by
what we just said, that the left-hand side is divisible by 𝑝𝑛 in K. In fact, one can do better. Let 𝑚 ≥ 1
and 𝑥 ∈ 𝐾 . In the previous equality, take 𝑦 = 𝑥𝑚−1. Seeing it in 𝐵′[1/𝑝] (recall that 𝐵′ is p-torsion free),
one can divide both sides by 𝑚!. It reads:

𝜑𝑛
1 (𝛾𝑚 (𝑥)) =

𝜑𝑛 (𝑥)

𝑚!
𝜑𝑛

1 (𝑥
𝑚−1).

The left-hand side always makes sense in K since K has divided powers, and for n big enough, the
right-hand side as well since 𝜑𝑛 (𝑥) tends p-adically to 0 and thus is divisible by 𝑚! for n big enough.
Letting n go to infinity, we see that the left-hand side goes to 0 in K. These considerations prove that 𝜑1
is topologically nilpotent (with respect to the p-adic topology) on 𝐾 [2] , as it is topologically nilpotent
on 𝐾2 and all divided powers 𝛾𝑚 (𝑥), 𝑚 ≥ 2, for 𝑥 ∈ 𝐾 .

Let e be the degree of the polynomial E. Since 𝐾 [2] is stable by 𝜑1, 𝜑1 defines a semilinear
endomorphism of the quotient 𝐾/𝐾 [2] . Let us now prove that 𝜑𝑝𝑒

1 (𝐾/𝐾
[2] ) ⊂ 𝑝.𝐾/𝐾 [2] . We know that

the 𝐴′-module 𝐾/𝐾 [2] is isomorphic to (Ω1
𝐴)
∧𝑝 ⊗𝐴𝐴

′ (where the map 𝐴→ 𝐴′ is the natural inclusion 𝜄).
It is a free 𝐴′-module of rank generated by 𝑑𝑢, and via this identification, one has 𝜑1 (𝑑𝑢) = 𝑢𝑝−1𝑑𝑢.
But the image of 𝑢𝑝𝑒 in 𝐴′ is divisible by p since p divides 𝐸 𝑝 in 𝐴′ and E is an Eisenstein polynomial.
Therefore, p (even 𝑝𝑝−1) divides 𝜑𝑝𝑒

1 (𝑑𝑢 ⊗ 1) in 𝐾/𝐾 [2] . Finally, let us check that these two steps imply
the desired topological nilpotence. Let 𝑥 ∈ 𝐾 , 𝑥 its class in 𝐾/𝐾 [2] . Fix an integer 𝑛 ≥ 1. By the second
step, we have

𝜑𝑝𝑛𝑒
1 (𝑥) ∈ 𝑝𝑛𝐾/𝐾 [2] ,

38Let us clarify what we mean by the various 𝜑1’s, whenever they are defined. On A, we set 𝜑1 = 𝜑/𝐸 which is the restriction
of 𝜑1 = 𝜑/𝜑 (𝐸) along 𝛼. In 𝐵′, the element 𝜑 (𝐸)/𝑝 is a unit and thus 𝜑1 = 𝑝

𝜑 (𝐸 )
𝜑
𝑝 , that is, both possible definitions of the

divided Frobenius differ by a unit.
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that is, there exists 𝑦 ∈ 𝐾 [2] , such that

𝜑𝑝𝑛𝑒
1 (𝑥) ∈ 𝑦 + 𝑝𝑛𝐾.

By the first step, there exists 𝑚 ≥ 1, such that 𝜑𝑚
1 (𝑦) ∈ 𝑝𝑛𝐾 , and so

𝜑𝑝𝑛𝑒+𝑚
1 (𝑥) ∈ 𝑝𝑛𝐾,

as desired. �

Remark 5.16. We have seen above that prismatic Dieudonné crystals overO𝐾 are the same as minuscule
Breuil-Kisin modules. One cannot expect the same kind of result to hold for nonminuscule finite locally
free F-crystals on the absolute prismatic site of O𝐾 : one really needs to remember the (unexplicit)
descent datum to reconstruct the F-crystal. In fact, Bhatt and Scholze [14] have recently proved the
remarkable result that finite locally free F-crystals on the absolute prismatic site of O𝐾 are the same as
Gal𝐾 -stable lattices in crystalline representations of Gal𝐾 . In the minuscule case, that is for prismatic
Dieudonné crystals, combined with the result above and the considerations below, this recovers the known
equivalence between p-divisible groups of O𝐾 and Gal𝐾 -stable lattices in crystalline representations of
Gal𝐾 with Hodge-Tate weights in {0, 1}.

Finally, let K be a complete, discretely valued extension of Q𝑝 , let O𝐾 ⊆ 𝐾 be its ring of integers
and assume the residue field k of O𝐾 is perfect. We will show that the equivalence of Theorem 5.12
coincides with the equivalence established by Kisin (cf. [30, Theorem 0.4]). Set

𝔖 := 𝑊 (𝑘) [[𝑢]]

with Frobenius lift 𝜑 : 𝑊 (𝑘) [[𝑢]] → 𝑊 (𝑘) [[𝑢]] sending 𝑢 ↦→ 𝑢𝑝 . Fix a uniformiser 𝜋 ∈ O𝐾 , and
define the morphism

𝜃 : 𝔖→ O𝐾 , 𝑢 ↦→ 𝜋.

Then the kernel ker(𝜃) = (𝐸) is generated by an Eisenstein polynomial 𝐸 ∈ 𝑊 (𝑘) [𝑢]. Let S be the
p-completed divided power envelope of the ideal (𝐸) ⊆ 𝔖, that is,

𝑆 = 𝔖

{
𝜑(𝐸)

𝑝

}∧
𝑝

in the category of 𝛿-rings. Note that the composition

𝜓𝐾 : 𝔖
𝜑
−→𝔖→ 𝑆

induces to a morphism (𝔖, (𝐸)) → (𝑆, (𝑝)) of prisms. Via the composition O𝐾 � 𝔖/(𝐸)
𝜓𝐾
−−→ 𝑆/(𝑝),

we consider (𝑆, (𝑝)) as an object of the (absolute) prismatic site (O𝐾 )Δ. The antiequivalence

𝑀Kis (−) : BT(O𝐾 ) � BKmin(O𝐾 )

of Kisin has the characteristic property (cf. [30, Theorem 2.2.7]) that for a p-divisible group G over O𝐾 ,
there is a canonical Frobenius equivariant isomorphism

𝑀Kis (𝐺) ⊗𝔖,𝜓 𝑆 � D(𝐺) (𝑆),
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where the right-hand side denotes the evaluation of the crystalline Dieudonné crystal of G on the PD-
thickening 𝑆 → O𝐾 (which sends all divided powers of E to zero).

Let G be a p-divisible group over O𝐾 with absolute prismatic Dieudonné crystal MΔ (𝐺). We use
Lemma 4.38 and Proposition 4.4 and considerMΔ (𝐺) as a crystal on the absolute prismatic site (O𝐾 )Δ.

Lemma 5.17. There is a natural Frobenius-equivariant isomorphism

𝛼𝐾 : MΔ (𝐺) (𝑆, (𝑝))
�
−→ D(𝐺) (𝑆).

Here, D(𝐺) (𝑆) denotes the evaluation of the Dieudonné crystal of G at the PD-thickening 𝑆 → O𝐾 .

Proof. This follows from Lemma 4.45. �

We want to show that the natural isomorphism 𝛼𝐾 restricts to an isomorphism MΔ (𝐺) ((𝔖, (𝐸)) �
𝑀Kis (𝐺). In other words, we want to prove the existence of the dotted morphisms in the diagram

MΔ (𝐺) ((𝔖, (𝐸))
��� � � � �

��

��

𝑀Kis (𝐺)
�� ����� ��

��
MΔ (𝐺) (𝑆, (𝑝))

∼
D(𝐺) (𝑆).

Let C be the completion of an algebraic closure of K, and let O𝐶 ⊆ 𝐶 be its ring of integers. Set
𝐴inf := 𝐴inf (O𝐶 ), 𝐴crys := 𝐴crys(O𝐶 ).

We can extend the morphism O𝐾 → O𝐶 to a morphism of prisms39

𝑓 : (𝔖, (𝐸)) → (𝐴inf , (𝜉))

by sending 𝑢 ↦→ [𝜋♭] = [(𝜋, 𝜋1/𝑝 , . . .)] (after choosing a compatible system of p-power roots 𝜋1/𝑝𝑛
∈

O𝐶 of 𝜋). Let

𝜓𝐶 : 𝐴inf
𝜑
−→ 𝐴inf → 𝐴crys.

Then analogous 𝜓𝐶 induces a morphism (𝐴inf , (𝜉)) → (𝐴crys, (𝑝)) of prisms.
By faithful flatness of 𝔖 → 𝐴inf (cf. [11, Lemma 4.30]40), it suffices to prove the existence of the

dotted arrows after base change to 𝐴inf :

MΔ (𝐺) ((𝔖, (𝐸)) ⊗𝔖, 𝑓 𝐴inf

��� � � 	 �

��

��

𝑀Kis (𝐺) ⊗𝔖, 𝑓 𝐴inf�� ���	� ��

��
MΔ (𝐺) (𝑆, (𝑝)) ⊗𝔖, 𝑓 𝐴inf

∼
D(𝐺) (𝑆) ⊗𝔖, 𝑓 𝐴inf .

(5.2)

By flat base change of PD-envelopes (cf. [52, Tag 07HD]), we get

𝑆⊗̂𝔖𝐴inf � 𝐴crys,

and thus D(𝐺) (𝑆) ⊗𝔖 𝐴inf � D(𝐺OC ) (𝐴crys).
Similar to Lemma 5.17, there is a canonical isomorphism

𝛼𝐶 : MΔ (𝐺) ((𝐴crys, (𝑝)) � D(𝐺O𝐶 ) (𝐴crys)

39Note that we take 𝜉 , not 𝜉 .
40But note that our map f differs from the one of [11], which is 𝜑 ◦ 𝑓 .
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by Lemma 4.45, and thus the lower horizontal isomorphism in (Equation (5.2)) identifies with 𝛼𝐶 . By
the crystal property of MΔ (𝐺), the left vertical injection

MΔ (𝐺) ((𝔖, (𝐸))) ⊗𝔖, 𝑓 𝐴inf ↩→MΔ (𝐺O𝐶 ) (𝑆, (𝑝)) ⊗𝔖, 𝑓 𝐴inf

identifies with the inclusion

MΔ (𝐺) ((𝐴inf , (𝜉))) ↩→MΔ (𝐺O𝐶 ) (𝐴crys, (𝑝))

along the morphisms of prism 𝜓𝐶 : (𝐴inf , (𝜉)) → (𝐴crys, (𝑝)). By Proposition 4.48, there is a canonical
isomorphism

𝛽 : 𝜑∗𝐴inf
MΔ (𝐺) ((𝐴inf , (𝜉))) = MΔ (𝐺) ((𝐴inf , (𝜉))) � 𝑀SW (𝐺O𝐶 )

∗

to the dual of the functor constructed by Scholze-Weinstein. By [51, Theorem 14.4.3], 𝑀SW (𝐺)∗ ⊗𝐴inf

𝐴crys � D(𝐺O𝐶/𝑝) (𝐴crys) and, moreover, the diagram

𝜑∗𝐴inf
MΔ (𝐺) ((𝐴inf , (𝜉)))

𝛽 ��

��

𝑀SW (𝐺O𝐶 )
∗

��
MΔ (𝐺) ((𝐴crys, (𝑝)))

� �� D(𝐺) (𝐴crys) � 𝑀SW (𝐺O𝐶 )
∗ ⊗𝐴inf 𝐴crys

commutes by construction of 𝛽 (cf. Proposition 4.48 and its proof). Hence, it suffices to prove that there
exists an isomorphism

𝛾 : 𝑀Kis (𝐺) ⊗𝔖,𝑔 𝐴inf → 𝑀SW (𝐺O𝐶 )
∗,

where 𝑔 = 𝜑 ◦ 𝑓 is a morphism of prisms

𝑔 : (𝔖, (𝐸)) → (𝐴inf , (𝜉)),

such that the diagram

𝑀Kis (𝐺) ⊗𝔖,𝑔 𝐴inf

��

𝛾 �� 𝑀SW (𝐺O𝐶 )
∗

��
D(𝐺O𝐶 ) (𝐴crys, (𝑝))

� �� 𝑀SW (𝐺O𝐶 )
∗ ⊗𝐴inf 𝐴crys

commutes.
Let T be the dual of the p-adic Tate module𝑇𝑝𝐺 of G. Then T is a lattice in a crystalline representation

of Gal(𝐾/𝐾) (where 𝐾 ⊆ 𝐶 is the algebraic closure of K) and 𝑀Kis (𝐺) � 𝑀 (𝑇), where 𝑀 (−) is Kisin’s
functor from lattices in crystalline representations to Breuil-Kisin modules. By [11, Proposition 4.34],
𝑀 (𝑇) ⊗𝔖,𝑔 𝐴inf corresponds under Fargues’ equivalence (cf. [51, Theorem 14.1.1]) to the pair (𝑇,Ξ),
with Ξ ⊆ 𝑇 ⊗Z𝑝 𝐵dR the 𝐵+dR-lattice generated by 𝐷dR (𝑇Q𝑝 ) = (𝑇 ⊗Z𝑝 𝐵dR)

Gal(𝐾/𝐾 ) . But this pair is
exactly the one associated to 𝐺O𝐶 by Scholze-Weinstein.
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Thus, in the end, our discussion implies the following proposition.

Proposition 5.18. The two functors

𝐺 ↦→ 𝑀Kis (𝐺)
𝐺 ↦→MΔ (𝐺) (𝔖, (𝐸))

from p-divisible groups over O𝐾 to minuscule Breuil-Kisin modules are naturally isomorphic.

5.3. Admissible prismatic Dieudonné crystals and displays

The work of Zink provides a classification of connected p-divisible groups over p-adically complete
rings (cf. [54]). In this section, we want to relate it to the classification obtained (for quasisyntomic
rings) in Theorem 4.90.

Definition 5.19. Let R be a p-complete ring. A display over R is a window (cf. Section 4.1 and [37,
Example 5.4]) over the frame

𝑊 (O) = (𝑊 (O), 𝐼 (O) := ker(𝑊 (O) → O), 𝐹, 𝐹1),

in the topos of sheaves on the p-completely faithfully flat site of R, where F is the Witt vector Frobenius
and 𝐹1 : 𝐼 (O) → 𝑊 (O) the inverse of the bijective Verschiebung morphism V.

The category of displays over R is denoted by Disp(𝑅).

Remark 5.20. We have phrased the definition of a display in a manner parallel to the definition of a
prismatic Dieudonné crystal. In this form, it is, however, unnecessarily abstract. The category of displays
satisfies faithfully flat descent (see [54, Theorem 37]). Since displays over a p-complete ring R (with
bounded 𝑝∞-torsion) are equivalent to compatible systems of displays over 𝑅/𝑝𝑛 for all 𝑛 ≥ 1, we
see that displays even satisfy p-completely faithfully flat descent (cf. [12, Corollary 4.8]). Hence, the
category of displays over R in the sense of Definition 5.19 is the same as the usual category of displays
over R (i.e. windows over the frame (𝑊 (𝑅), 𝐼 (𝑅), 𝐹, 𝐹1)).

Proposition 5.21. Let R be a quasiregular semiperfectoid ring. Assume that 𝑝𝑅 = 0 or that R is p-
torsion free. The natural morphism from Theorem 3.29

Δ𝑅 → 𝑅

(given by moding out N ≥1Δ𝑅) lifts to a u-morphism of frames (in the general sense of Definition 4.16)

𝑓 : Δ𝑅,Nyg → 𝑊 (𝑅),

where Δ𝑅,Nyg is the frame associated to (Δ𝑅, 𝐼) and 𝜉, as in Example 4.18, and 𝑢 ∈ 𝑊 (𝑅) is a unit,
such that 𝑝 = 𝑢 𝑓 (𝜉).

Proof. By adjunction (cf. [26, Theorem 4]), the morphism Δ𝑅 → 𝑅 gives rise to a morphism of 𝛿-rings:

𝑓 : Δ𝑅 → 𝑊 (𝑅),

lifting the morphism to R, that is, sending N ≥1Δ𝑅 to 𝐼 (𝑅). In particular, 𝑓 (𝜉) ∈ 𝐼 (𝑅), and thus

𝑓 (𝜉) = 𝜑( 𝑓 (𝜉)) = 𝑝𝜑1 ( 𝑓 (𝜉))

and so p divides 𝑓 (𝜉). By [13, Lemma 2.24], we deduce that (𝑝) = ( 𝑓 (𝜉)), and thus there exists a unit
𝑢 ∈ 𝑊 (𝑅), such that 𝑝 = 𝑢 𝑓 (𝜉). It is then easy to conclude when 𝑊 (𝑅) is p-torsion free since the
commutation (up to a unit) of f with the divided Frobenius can be proved after multiplying by p. In the
case where 𝑝𝑅 = 0, one argues as in [36, Lemma 7.4]. �
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It would be nice to prove that for any R quasiregular semiperfectoid, the morphism of the proposition
always defines a morphism of frames. Although we did not succeed in doing so, the next proposition
shows that one can circumvent this difficulty.

Proposition 5.22. Let R be a quasisyntomic ring. If G is a p-divisible group over R, set

𝑍𝑅 (𝐺) = MΔ (𝐺) ⊗Opris 𝑊 (O)

with Frobenius 𝐹𝑍𝑅 (𝐺) = 𝜑MΔ (𝐺)
⊗ 𝐹, and let Fil 𝑍𝑅 (𝐺) be the submodule of 𝑍𝑅 (𝐺) generated by

𝐼 (O).𝑍𝑅 (𝐺) and the image of 𝜑−1
MΔ (𝐺)

(Ipris.MΔ(𝐺)). There exists a unique way to extend the functor

𝐺 ↦→ (𝑍𝑅 (𝐺), Fil 𝑍𝑅 (𝐺), 𝐹𝑍𝑅 (𝐺) )

to a functor

𝑍𝑅 : BT(𝑅) → Disp(𝑅), 𝐺 ↦→ 𝑍𝑅 (𝐺) = (𝑍𝑅 (𝐺), Fil 𝑍𝑅 (𝐺), 𝐹𝑍𝑅 (𝐺) , 𝐹𝑍𝑅 (𝐺) ,1)

natural in R which, moreover, coincides (through Proposition 4.29) with the composition of the prismatic
Dieudonné functor with the functor induced by the morphism of frames of Proposition 5.21 when R is
quasiregular semiperfectoid and 𝑝𝑅 = 0 or R is p-torsion free.

Proof. The requirement of the proposition already says what

(𝑍𝑅 (𝐺), Fil 𝑍𝑅 (𝐺), 𝐹𝑍𝑅 (𝐺) )

must be. Therefore, the only issue is to define the divided Frobenius 𝐹𝑍𝑅 (𝐺) ,1.
Assume first that R is quasiregular semiperfectoid and p-torsion free. If it exists, 𝐹𝑍𝑅 (𝐺) ,1 is neces-

sarily unique, since 𝑊 (𝑅) is p-torsion free; thus, we only need to show its existence. For this, we define
𝑍𝑅 as the composition of the prismatic Dieudonné functor with the functor induced by the morphism
of frames of Proposition 5.21. By quasisyntomic descent (Remark 5.20), one gets a functor 𝑍𝑅 for any
p-torsion free quasisyntomic ring R. For such rings R, the functor 𝑍𝑅 is necessarily unique by p-torsion
freeness of 𝑊 (𝑅). In particular, it commutes with base change in R.

To obtain the functor 𝑍𝑅 in general, we use smoothness of the stack of p-divisible groups, following an
idea of Lau [34, Proposition 2.1]. Let 𝑋 = Spec(𝐴) → BT ×Spec(Z𝑝) be an ind-smooth presentation of
the stack of p-divisible groups as in loc. cit. Then Spec(𝐵) = 𝑋 ×BT 𝑋 is affine. The p-adic completions
𝐴̂ and 𝐵̂ are both p-torsion free (cf. [34, Lemma 1.6]).

Let R be a quasisyntomic ring and G be a p-divisible group over R. It gives rise to a map 𝛼 :
Spec(𝑅) → BT × Spec(Z𝑝). Let

Spec(𝑆) = Spec(𝑅) ×BT ×Spec(Z𝑝) Spec(𝐴),

and

Spec(𝑇) = Spec(𝑆) ×Spec(𝐴) Spec(𝐵).

Let 𝑆 and 𝑇 be their p-adic completions. The rings 𝐴̂ and 𝐵̂ are quasisyntomic. By base change, the
rings 𝑆 and 𝑇 are also quasisyntomic. The base change

(𝑍𝑆̂ (𝐺 𝑆̂), Fil 𝑍𝑆̂ (𝐺 𝑆̂), 𝐹𝑍𝑆̂ (𝐺𝑆̂ )
)

of the triple (𝑍𝑅 (𝐺), Fil 𝑍𝑅 (𝐺), 𝐹𝑍𝑅 (𝐺) ) along 𝑅 → 𝑆 is also the base change of the triple

(𝑍 𝐴̂(𝐻 𝐴̂), Fil 𝑍 𝐴̂(𝐻 𝐴̂), 𝐹𝑍𝐴̂ (𝐻𝐴̂)
)
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along 𝛼 ⊗ 𝐴̂ of the universal p-divisible group H over A. The divided Frobenius 𝐹𝑍𝐴̂ (𝐻𝐴̂) ,1 on 𝑍 𝐴̂(𝐻 𝐴̂)

(coming from the first part of the proof) therefore induces an operator 𝐹𝑍𝑆̂ (𝐺𝑆̂ ) ,1 on 𝑍𝑆̂ (𝐺 𝑆̂). This
operator 𝐹𝑍𝑆̂ (𝐺𝑆̂ ) ,1 is compatible with the descent datum for the base change along the two natural maps
𝑆 → 𝑇 , since the functor 𝑍𝐵̂ exists and is unique. By descent (Remark 5.20), this defines a display
structure 𝑍𝑅 (𝐺) on the triple (𝑍𝑅 (𝐺), Fil 𝑍𝑅 (𝐺), 𝐹𝑍𝑅 (𝐺) ).

This display structure is uniquely determined by the requirement that it is compatible with the maps
𝑅 → 𝑆, 𝑆 → 𝐴̂. In particular, it has to coincide with the composition of the prismatic Dieudonné functor
with the functor induced by the morphism of frames of Proposition 5.21 also when R is quasiregular
semiperfectoid and killed by p. �

The functor of Proposition 5.22 is not an antiequivalence when 𝑝 = 2. Nevertheless, one has the
following positive result, reproving the main result of [32][54] in the special case of quasisyntomic rings.

Proposition 5.23. Let R be a quasisyntomic ring, flat over Z/𝑝𝑛 (for some 𝑛 > 0) or Z𝑝 . The functor
𝑍𝑅 restricts to an antiequivalence

BT 𝑓 (𝑅) � Dispnilp(𝑅)

between the category of formal p-divisible groups over R and the category of F-nilpotent displays over R.

Recall that a display is said to be F-nilpotent if its Frobenius is nilpotent modulo p.

Proof. Assume first that R is quasiregular semiperfect. The functor 𝑍𝑅 is the composite of the prismatic
Dieudonné functor, which is an antiequivalence by Theorem 4.74, and of the functor induced by the
morphism of frames

(Δ𝑅 � 𝐴crys (𝑅),N ≥1Δ𝑅, 𝜑, 𝜑1) → (𝑊 (𝑅), 𝐼 (𝑅), 𝐹, 𝐹1).

The morphism Δ𝑅 → 𝑊 (𝑅) is surjective (indeed, the composition Δ𝑅♭ � 𝑊 (𝑅♭) → 𝑊 (𝑅) is surjective,
since 𝑅♭ → 𝑅 is, and factors through the map Δ𝑅 → 𝑊 (𝑅)). We claim that the divided Frobenius is
topologically nilpotent on its kernel. It suffices to show the same for the surjection 𝐴crys (𝑅) → 𝑊 (𝑅)
coming from the PD-thickening 𝑊 (𝑅) → 𝑅. We recall that 𝐴crys(𝑅) is obtained from 𝑊 (𝑅♭) by
passing to the PD-envelope for the ideal ker(𝑊 (𝑅♭) → 𝑅). This kernel is (topologically) generated
by the elements 𝑉𝑚([𝑥]) for 𝑚 ≥ 0 and 𝑥 ∈ 𝐼 := ker(𝑅♭ → 𝑅). If 𝑚 ≥ 1, then 𝑉𝑚([𝑥]) ∈ 𝑊 (𝑅♭)

already has divided powers. As 𝐴crys(𝑅) is p-torsion free (by quasiregularity of R), we can conclude
that 𝐴crys(𝑅) is (topologically) generated (as a module over 𝑊 (𝑅♭)) by the divided powers [𝑥] (𝑛) of [𝑥]
for 𝑥 ∈ 𝐼 (i.e. the divided powers of 𝑉𝑚([𝑥]) for 𝑚 ≥ 1 are not necessary). We note that for 𝑥 ∈ 𝐼, each
divided power [𝑥] (𝑛) ∈ 𝐴crys (𝑅) lies in the kernel of 𝐴crys(𝑅) → 𝑊 (𝑅) because [𝑥] ∈ 𝑊 (𝑅♭) maps to
0 ∈ 𝑊 (𝑅). Hence, we can conclude that the kernel of 𝐴crys (𝑅) → 𝑊 (𝑅) is (topologically) generated
by 𝑉𝑚([𝑥]), [𝑥] (𝑛) for 𝑥 ∈ 𝐼 and 𝑛, 𝑚 ≥ 1. Now 𝑉𝑚([𝑥]) = 𝑝𝑚 [𝑥1/𝑝𝑚

] and thus 𝜑𝑚
1 (𝑉

𝑚 ([𝑥])) = [𝑥].
Hence, it suffices to show that 𝜑1 is topologically nilpotent on the elements [𝑥] (𝑛) , 𝑛 ≥ 1, 𝑥 ∈ 𝐼. For
such an element, one has

𝜑1([𝑥]
(𝑛) ) =

(𝑛𝑝)!
𝑛!𝑝
[𝑥] (𝑛𝑝) .

Iterating, one sees that 𝜑1 is topologically nilpotent on the kernel (with respect to the p-adic topology).
By Remark 4.34, the functor

DMadm(𝑅) � Win(Δ𝑅,Nyg) → Disp(𝑅)

is an equivalence. It is easily seen that it restricts to an antiequivalence between formal p-divisible
groups and F-nilpotent displays.
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By quasisyntomic descent, this yields the statement of the proposition when R is quasisyntomic with
𝑝𝑅 = 0. In general, 𝑅/𝑝 is quasisyntomic ([12, Lemma 4.16 (2)]) and one can consider the following
commutative diagram:

BT(𝑅)
𝑍𝑅 ��

��

Disp(𝑅)

��
BT(𝑅/𝑝)

𝑍𝑅/𝑝 �� Disp(𝑅/𝑝).

Grothendieck-Messing theory for F-nilpotent displays (cf. [54, Theorem 48]) coupled with
Grothendieck-Messing theory for p-divisible groups (cf. [44, Chapter V (1.6)] and [54, Corollary 97])
show that this diagram is 2-cartesian. Since 𝑍𝑅/𝑝 is an antiequivalence, 𝑍𝑅 also is one. �

5.4. Étale comparison for p-divisible groups

Let R be a quasisyntomic ring, and let G be a p-divisible group over R. In this section, we show how
the (dual of the) Tate module of the generic fibre of R, seen as a diamond ([49, Definition 11.1]), can be
recovered from the prismatic Dieudonné crystal MΔ (𝐺) of G.

Let

Opris

be the prismatic sheaf on (𝑅)qsyn and

I := Ipris ⊆ Opris

the natural invertible Opris-module (cf. Definition 4.1). Fix 𝑛 ≥ 0. Note that the Frobenius

𝜑 : Opris → Opris

induces a morphism, again, called Frobenius,

𝜑 : Opris/𝑝𝑛 [1/I] → Opris/𝑝𝑛 [1/I]

as 𝜑(I) ⊆ (𝑝, I), although I is not stable under 𝜑.
We let

(𝑅)𝑣

be the v-site of all maps Spf (𝑆) → Spf (𝑅) with S a perfectoid ring over R. By definition, the coverings
in (𝑅)𝑣 are v-covers Spf (𝑆′) → Spf(𝑆) (cf. [13, Section 8.1]). Let

(𝑅)qsyn,qrsp

be the site of all maps Spf (𝑆) → Spf (𝑅) with S quasiregular semiperfectoid (covers given by quasisyn-
tomic covers). The perfectoidisation functor

𝑆 ↦→ 𝑆perfd

from [13, Definition 8.2] induces a morphism of sites

𝛼 : (𝑅)𝑣 → (𝑅)qsyn,qrsp
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sending Spf (𝑆) to Spf (𝑆perfd). Indeed, by [13, Proposition 8.10] and the fact that quasisyntomic covers
are v-covers, the conditions of [52, Tag 00WV] are satisfied. Moreover, we have the ‘inclusion of the
generic fiber’

𝑗 : Spa(𝑅[1/𝑝], 𝑅)�𝑣 → (𝑅)𝑣

induced by sending Spf (𝑆) to Spa(𝑆[1/𝑝], 𝑆)41. Here, Spa(𝑅[1/𝑝], 𝑅)�𝑣 is the v-site of the diamond
associated with Spa(𝑅[1/𝑝], 𝑅) (cf. [49, Section 15.1], [49, Definition 14.1.iii)]).

The sites (𝑅)𝑣 , (Spa(𝑅[1/𝑝], 𝑅))𝑣 carry tilted structure sheaves O♭
(𝑅)𝑣

, O♭ sending 𝑆 ∈ (𝑅)𝑣 to
𝑆♭, respectively, Spa(𝑆, 𝑆+) ∈ (Spa(𝑅[1/𝑝], 𝑅))𝑣 to 𝑆♭. We let 𝑊 (O♭

(𝑅)𝑣
), respectively, 𝑊 (O♭) be the

associated Witt vector sheaves. It is easy to see that for every 𝑛 ≥ 1, there are natural morphisms
Opris/𝑝𝑛 → 𝛼∗(𝑊𝑛 (O♭

(𝑅)𝑣
)), Opris/𝑝𝑛 [1/I] → (𝛼 ◦ 𝑗)∗(𝑊𝑛 (O♭)).

Lemma 5.24. The above morphisms induce natural isomorphisms

𝛼∗(Z/𝑝
𝑛) � (Opris/𝑝𝑛)𝜑=1

and

(𝛼 ◦ 𝑗)∗(Z/𝑝
𝑛) � (Opris/𝑝𝑛 [1/I])𝜑=1

of sheaves on (𝑅)qsyn,qrsp after passing to 𝜑-fixed points.

Here, (−)𝜑=1 denotes the (nonderived) invariants of 𝜑 on the sheaf Opris/𝑝𝑛 [1/I], and we use that
𝑊𝑛 (O♭

(𝑅)𝑣
) � Z/𝑝𝑛, 𝑊𝑛 (O♭) � Z/𝑝𝑛, as will be explained in the proof.

Proof. We only prove the second statement. The first is similar (but easier). Let S be a quasiregular
semiperfectoid R-algebra. Then

(Opris/𝑝𝑛 [1/I])𝜑=1(𝑆) � (lim
−−→
𝜑

Opris/𝑝𝑛 [1/I])𝜑=1(𝑆) � (lim
−−→
𝜑

Opris(𝑆)/𝑝𝑛 [1/I])𝜑=1.

The first isomorphism follows from commuting Frobenius fixed points with the filtered colimit over N
along 𝜑 and the second as lim

−−→
𝜑

Opris is p-torsion free (cf. [13, Proof of Lemma 2.28]) and S is quasiregular

semiperfectoid (which implies that the sheaf lim
−−→
𝜑

Opris has no higher cohomology over S). Then [13,

Lemma 9.2] implies that

(lim
−−→
𝜑

Opris (𝑆)/𝑝𝑛 [1/I])𝜑=1 � (𝐴inf (𝑆perfd)/𝑝
𝑛 [1/I])𝜑=1.

By [13, Lemma 9.3], the equivalence of underlying topological spaces under tilting of perfectoid spaces,
[51, Theorem 7.1.1] and [28, Proposition 3.2.7], the right-hand side becomes

𝑊𝑛 ((𝑆perfd [1/𝑝])♭)𝜑=1 � Homcts(𝜋0 (Spa(𝑆perfd [1/𝑝], 𝑆perfd)),Z/𝑝
𝑛),

which agrees with

(𝛼 ◦ 𝑗)∗(Z/𝑝
𝑛) (𝑆).

This finishes the proof. �

We can derive the following description of the Tate module of the generic fibre.

41We use the notation Spa(𝑆 [1/𝑝], 𝑆) when S is not necessarily integrally closed in 𝑆 [1/𝑝].
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Proposition 5.25. Let G be a p-divisible group over R with prismatic Dieudonné crystal MΔ (𝐺), and
let 𝑛 ≥ 0. Then

𝑗∗𝛼∗(MΔ (𝐺)/𝑝
𝑛 [1/I]𝜑=1)

is canonically isomorphic to H𝑜𝑚Z/𝑝𝑛 (𝐺 [𝑝𝑛]𝜂 ,Z/𝑝
𝑛), where 𝐺 [𝑝𝑛]𝜂 denotes the sheaf

Spa(𝑆[1/𝑝], 𝑆) ↦→ 𝐺 [𝑝𝑛] (𝑆[1/𝑝]) on Spa(𝑅[1/𝑝], 𝑅)�𝑣 .
Proof. Set M := MΔ (𝐺). By Lemma 4.40

M � H𝑜𝑚 (𝑅)qsyn,qrsp (𝑇𝑝𝐺,Opris).

From the proof of Proposition 4.69, we can conclude that

H𝑜𝑚 (𝑅)qsyn,qrsp (𝑇𝑝𝐺,Opris)/𝑝𝑛 � H𝑜𝑚 (𝑅)qsyn,qrsp (𝑇𝑝𝐺,Opris/𝑝𝑛)

� H𝑜𝑚 (𝑅)qsyn,qrsp (𝐺 [𝑝
𝑛],Opris/𝑝𝑛).

It follows that

M/𝑝𝑛 [1/I] � H𝑜𝑚 (𝑅)qsyn,qrsp (𝐺 [𝑝
𝑛],Opris/𝑝𝑛 [1/I]),

as using Section 4.4, the functor H𝑜𝑚 (𝑅)qsyn,qrsp (𝐺 [𝑝
𝑛],−) commutes with filtered colimits. Finally,

M/𝑝𝑛 [1/I]𝜑=1 � H𝑜𝑚 (𝑅)qsyn,qrsp (𝐺 [𝑝
𝑛],Opris/𝑝𝑛 [1/I]𝜑=1).

By Lemma 5.24

Opris/𝑝𝑛 [1/I]𝜑=1 � (𝛼 ◦ 𝑗)∗(Z/𝑝𝑛)

and thus

M/𝑝𝑛 [1/I]𝜑=1 � H𝑜𝑚 (𝑅)qsyn,qrsp (𝐺 [𝑝
𝑛], (𝛼 ◦ 𝑗)∗(Z/𝑝

𝑛))

� (𝛼 ◦ 𝑗)∗(H𝑜𝑚Z/𝑝𝑛 ((𝛼 ◦ 𝑗)∗𝐺 [𝑝𝑛],Z/𝑝𝑛))).

The definitions of 𝛼 and j imply that for any sheafF on (𝑅)qsyn,qrsp, the nonsheafified pullback (𝛼◦ 𝑗)−1F
is the presheaf Spa(𝑆, 𝑆+) ↦→ F (Spf (𝑆+)). In particular, we see that

(𝛼 ◦ 𝑗)∗ ◦ (𝛼 ◦ 𝑗)∗

is naturally isomorphic to the identity. We obtain thus

(𝛼 ◦ 𝑗)∗M/𝑝𝑛 [1/I]𝜑=1 � H𝑜𝑚Z/𝑝𝑛 ((𝛼 ◦ 𝑗)∗𝐺 [𝑝𝑛],Z/𝑝𝑛),

and can now conclude by Lemma 5.26. �

Lemma 5.26. With the notations from Proposition 5.25,

(𝛼 ◦ 𝑗)∗𝐺 [𝑝𝑛] � 𝐺 [𝑝𝑛]𝜂 .

Proof. By right exactness of (𝛼 ◦ 𝑗)∗, it suffices to show

(𝛼 ◦ 𝑗)∗𝑇𝑝𝐺 � 𝑇𝑝𝐺𝜂 .

Moreover, we may assume that R is perfectoid by passing to slice topoi. Let S be the R-algebra
representing 𝑇𝑝𝐺 on p-complete rings. Thus, S is the p-completion of lim

−−→
𝑚

𝑆𝑚, where 𝑆𝑚 represents
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𝐺 [𝑝𝑚]. Then S is quasiregular semiperfectoid. By definition, (𝛼◦ 𝑗)∗𝑇𝑝𝐺 is represented by the perfectoid
space

Spa(𝑆perfd [1/𝑝], 𝑆+perfd)

over Spa(𝑅[1/𝑝], 𝑅), where 𝑆+perfd is the integral closure of 𝑆perfd in 𝑆perfd [1/𝑝]. Let Spa(𝑇,𝑇+) be an
affinoid perfectoid space over Spa(𝑅[1/𝑝], 𝑅), in particular, we assume that 𝑇+ is integrally closed in
𝑇 = 𝑇+[1/𝑝]. Then any morphism 𝑆perfd [1/𝑝] → 𝑇 sends 𝑆+perfd → 𝑇+ because S is a p-completed
direct limit of finite R-algebras and 𝑇+ is perfectoid and integrally closed in T. Thus

Hom(𝑅 [1/𝑝],𝑅) ((𝑆perfd [1/𝑝], 𝑆+perfd), (𝑇, 𝑇
+)) � Hom𝑅 (𝑆

+
perfd, 𝑇

+)

� Hom𝑅 (𝑆, 𝑇
+)

� Hom𝑅 (lim−−→
𝑚

𝑆𝑚, 𝑇
+)

� Hom𝑅 (lim−−→
𝑚

𝑆𝑚, 𝑇) = 𝑇𝑝𝐺 (𝑇),

where 𝑆𝑚 represents 𝐺 [𝑝𝑚] (thus, S is the p-adic completion of lim
−−→
𝑚

𝑆𝑚)). In the last isomorphism,

we used, again, that all 𝑆𝑚 are finite over R and thus any morphism 𝑆𝑚 → 𝑇 of R-algebras factors
over 𝑇+. �

A. Descent for p-completely faithfully flat morphisms

In this appendix, we want to record some descent statements that are used in the main body of this text.

Lemma A.1. Let R be derived p-complete ring with bounded 𝑝∞-torsion. Then the natural functor

{ finite projective 𝑅 − modules} → 2 − lim
←−−
𝑛

{ finite projective 𝑅/𝑝𝑛 − modules}

is an equivalence. In particular, the fibred category 𝑅 ↦→ { finite projective 𝑅 − modules} is a stack
for the p-completely faithfully flat topology on the category of derived p-complete rings with bounded
𝑝∞-torsion.

Proof. As R is classically p-complete, the first statement follows from [52, Tag 0D4B]. If 𝑅 → 𝑅′

is a p-completely faithfully flat morphism between p-complete rings of bounded 𝑝∞-torsion, then
𝑅/𝑝𝑛 → 𝑅′/𝑝𝑛 is faithfully flat for all 𝑛 ≥ 0 (flatness follows from [12, Lemma 4.7.(2)] and surjectivity
of Spec(𝑅′/𝑝𝑛) → Spec(𝑅/𝑝𝑛) is implied by the case 𝑛 = 1). Thus, classical descent of finite projective
modules holds for this morphism. Passing to the ((2)-)inverse limit implies the last statement. �

Proposition A.2. The fibred categories of p-divisible groups and finite locally free group schemes over
p-complete rings with bounded 𝑝∞-torsion are stacks for the p-completely faithfully flat topology.

Proof. It suffices to show the statement for finite locally free group schemes as p-divisible groups are
canonically a colimit of such. From A.1, we know that finite locally free modules form a stack for the
p-completely faithfully flat topology on p-complete rings with bounded 𝑝∞-torsion. As base change
commutes with fibre products, this implies that finite locally free group schemes form a stack, too. �

Recall that a morphism

(𝐴, 𝐼) → (𝐵, 𝐽)

of prisms is called faithfully flat if it is (𝑝, 𝐼)-completely flat.
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Proposition A.3. The fibred category

(𝐴, 𝐼) ↦→ { finite projective 𝐴 − modules}

on the category of bounded prisms is a stack for the faithfully flat topology.

Proof. If (𝐴, 𝐼) is a prism, then A is classically I-complete, and, thus finite projective A-modules are
equivalent to compatible systems of finite projective 𝐴/𝐼𝑛-modules, that is,

{ finite projective 𝐴 −modules} � 2 − lim
←−−
𝑛

{ finite projective 𝐴/𝐼𝑛 −modules}

(cf. [52, Tag 0D4B]). As the 2-limit of stacks is, again, a stack, it suffices to show that for any 𝑛 ≥ 0, the
fibred category

(𝐴, 𝐼) ↦→ { finite projective 𝐴/𝐼𝑛 −modules}

is a stack on bounded prisms. If (𝐴, 𝐼) → (𝐵, 𝐽) is a faithfully flat morphim of prisms, then

𝐴/𝐼𝑛 → 𝐵/𝐽𝑛

is a p-completely faithfully flat morphism of rings with bounded 𝑝∞-torsion. Thus the proposition
follows from A.1. �

Example A.4. We give an example of a ring R which is classically (𝑝, 𝑓 )-complete, where 𝑓 ∈ 𝑅 is a
nonzero divisor, such that 𝑅/ 𝑓 has bounded 𝑝∞-torsion, but R has unbounded 𝑝∞-torsion. Set

𝑅 := Z[ 𝑓 , 𝑥𝑖, 𝑗 | 𝑖 ≥ 0, 0 ≤ 𝑗 ≤ 𝑖]∧(𝑝, 𝑓 ) /𝐽

with J generated by the elements

𝑝𝑥𝑖, 𝑗 − 𝑓 𝑥𝑖, 𝑗+1

(where 𝑥𝑖,𝑖+1 := 0). Then f is a nonzero divisor in R and all 𝑝∞-torsion in

𝑅/ 𝑓 � Z[𝑥𝑖, 𝑗 ]/(𝑝𝑥𝑖, 𝑗 )

is killed by p. But

𝑝𝑖𝑥𝑖,0 = 𝑝𝑖 𝑓 𝑥𝑖,1 = . . . = 𝑓 𝑖𝑥𝑖,𝑖 ≠ 0

while 𝑝𝑖+1𝑥𝑖,0 = 𝑓 𝑖 𝑝𝑥𝑖,𝑖 = 0. This shows that R has unbounded 𝑝∞-torsion. As f is a nonzero divisor in
R, the (𝑝, 𝑓 )∞-torsion in R is zero.
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