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A NEW UPPER BOUND FOR |ζ(1 + it)|
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Abstract

It is known that ζ(1 + it)� (log t)2/3 when t� 1. This paper provides a new explicit estimate |ζ(1 + it)| ≤
3
4 log t, for t ≥ 3. This gives the best upper bound on |ζ(1 + it)| for t ≤ 102·105

.
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1. Introduction

For s = σ + it and σ > 1 one defines the Riemann zeta function to be ζ(s) =
∑∞

n=1 n−s.
The zeta function can be continued analytically to the entire complex plane with the
exception of the solitary point s = 1. For more properties on ζ(s) the reader is referred
to [7, Ch. 2].

Mellin [5] (see also [7, Theorem 3.5]) was the first to show that

ζ(1 + it)� log t. (1.1)

This was improved by Littlewood (see [7, Theorem 5.16]) to

ζ(1 + it)�
log t

log log t
. (1.2)

This was improved in turn by several authors; the best known result (see [7, Equation
(6.19.2)]) is

ζ(1 + it)� (log t)2/3. (1.3)

As usual, the Riemann hypothesis gives a stronger result, ζ(1 + it)� log log t when
t� 1 (see [7, Section 14.18]).

As far as explicit results are concerned, Backlund [1] made (1.1) explicit by proving
that

|ζ(1 + it)| ≤ log t, (1.4)
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for t ≥ 50. Ford [3] has made (1.3) explicit by proving that

|ζ(1 + it)| ≤ 72.6(log t)2/3, (1.5)

for t ≥ 3. Ford’s result is actually much more general: he obtains excellent bounds
for |ζ(σ + it)| where σ is near 1. Should one be interested in a bound only on
σ = 1, one can improve on (1.5) slightly. The integral inequality on [3, page 622],
originally verified for y ≥ 0, can now be evaluated at y = 0 only. This shows that
|ζ(1 + it)| ≤ 62.6(log t)2/3. Note that this improves on (1.4) when t ≥ 10105

. Without
a complete overhaul of Ford’s paper it seems unlikely that his methods could furnish
a bound superior to (1.4) when t is at all modest, say t ≤ 10100.

To the knowledge of the author there is no explicit bound of the form (1.2). One
could follow the arguments of [7, Section 5.16] to produce such a bound, though this
leads to a result that only improves on (1.4) when t is astronomically large. However,
one can still use the ideas in [7, Section 5.16] to re-prove (1.1). Indeed, if one were
lucky, as the author was, one may even be able to supersede (1.4). This fortune is
summarised in the following theorem.

T 1.1. When t ≥ 3,
|ζ(1 + it)| ≤ 3

4 log t.

Good explicit bounds on |ζ(1 + it)| enable one to bound the zeta function more
effectively throughout the critical strip. Since, for σ > 1,

|ζ(σ + it)| =
∣∣∣∣∣ ∞∑

n=1

1
nσ+it

∣∣∣∣∣ ≤ ∞∑
n=1

1
nσ

= ζ(σ),

one has a bound for the zeta function to the right of the line σ = 1. By the functional
equation (see [7, Section 2.1]) this bounds the zeta function to the left of the line
σ = 0. One may now apply the Phragmen–Lindelöf theorem to bound ζ(σ + it)
in −η ≤ σ ≤ 1 + η for some fixed positive η. This leads to a bound of the type
ζ(σ + it)� t(1+η−σ)/2. This bound throws away rather a lot of information since we
know that ζ(1 + it)� log t.

It is better to bound ζ(σ + it) for −η ≤ σ ≤ 1 + η by dividing this strip into three
strips

{s : −η ≤ σ ≤ 0} ∪ {s : 0 ≤ σ ≤ 1} ∪ {s : 1 ≤ σ ≤ 1 + η}

and applying the bound on ζ(1 + it), and that of ζ(it), obtained from the functional
equation, on each strip. Indeed, Theorem 1.1 has been used in [8] to improve the
estimate on ζ(s) for −η ≤ σ ≤ 1 + η.

Throughout this paper bxc and {x} denote respectively the integer part and the
fractional part of x.

2. Backlund’s result

To prove (1.4) consider σ > 1 and t > 1, and write ζ(s) −
∑

n≤N n−s =
∑

N<n n−s.
Now invoke the following version of the Euler–Maclaurin summation formula—this
can be found in [6, Theorem 2.19].
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L 2.1 (Euler–Maclaurin summation). Let k be a nonnegative integer and f (x) be
k + 1 times differentiable on the interval [a, b]. Then

∑
a<n≤b

f (n) =

∫ b

a
f (t) dt +

k∑
r=0

(−1)r+1

(r + 1)!
( f (r)(b) − f (r)(a))Br+1

+
(−1)k

(k + 1)!

∫ b

a
Bk+1(x) f (k+1)(x) dx,

where B j(x) is the jth periodic Bernoulli polynomial and B j = B j(0).

Apply this to f (n) = n−s, with k = 1, a = N and with b dispatched to infinity. Thus

ζ(s) −
∑

n≤N−1

n−s =
N1−s

s − 1
+

1
2N s

+
s

12N s+1
−

s(s + 1)
2

∫ ∞

N

{x}2 − {x} + 1
6

xs+2
dx, (2.1)

where, since the right-hand side converges for Re(s) > −1, the equation remains valid
when s = 1 + it. Hence one can estimate the sum in (2.1) using∑

n≤N

1
n
≤ log N + γ +

1
N
, (2.2)

which follows from partial summation, and in which γ denotes Euler’s constant. Now
if N = bt/mc, where m is a positive integer to be chosen later, (2.1) and (2.2) combine
to show that

|ζ(1 + it)| − log t ≤ − log m + γ +
1
t

+
m

2(t − m)
+

m2(1 + t)(4 + t)
24(t − m)2

. (2.3)

The aim is to choose m and t0 such that t ≥ t0 guarantees the right-hand side of (2.3)
to be negative. It is easy to verify that when m = 3, choosing t = 49.385 . . . suffices.
Thus (1.4) is true for all t ≥ 50; a quick computation shows that (1.4) remains true for
t ≥ 2.001 . . . .

It seems impossible to improve upon (1.4) without a closer analysis of sums of the
form

∑
a<n≤2a n−it. Taking further terms in the Euler–Maclaurin expansion in (2.1) does

not achieve an overall saving; choosing N = btαc for some α < 1 in (2.2) means that the
integral in (2.1) is no longer bounded when t→∞.

The next section aims to secure a good bound for
∑

a<n≤2a n−it for ‘large’ values of a.
For ‘small’ values of a one may estimate the sum trivially. The inherent optimism is
that, when combined, these two estimates give an improvement on (1.4).

3. Exponential sums: beyond Backlund

The following is an explicit version of [7, Theorem 5.9].

L 3.1 (Cheng and Graham). Assume that f (x) is a real-valued function with
two continuous derivatives when x ∈ (a, c]. If there exist two real numbers V < W
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with W > 1 such that
1
W
≤ | f ′′(x)| ≤

1
V

for x ∈ [a + 1, c], then∣∣∣∣∣ ∑
a<n≤c

e2πi f (n)
∣∣∣∣∣ ≤ 1

5

(c − a
V

+ 1
)

(8W1/2 + 15).

P. See [2, Lemma 3]. �

Applying Lemma 3.1 to f (x) = −(2π)−1t log x gives

max
a<c≤2a

∣∣∣∣∣ ∑
a<n≤c

n−it
∣∣∣∣∣ ≤ t1/2

8
5

√
2
π

+
16
√

2πa
5t

+
3t1/2

2πa
+ 3t−1/2

 , (3.1)

subject to 2πa2 > t. Imposing that 2πa2 > t is to ensure that, in Lemma 3.1, W > 1;
see (4.2). Now take A1t1/2 < a ≤ bt/mc for some constant A1 and positive integer m
to be determined later. To ensure that this is a nonempty interval, see (4.2). If t ≥ t0
then (3.1) shows that

max
a<c≤2a

∣∣∣∣∣ ∑
a<n≤c

n−it
∣∣∣∣∣ ≤ A2t1/2,

and hence, by partial summation,∣∣∣∣∣ ∑
a<n≤2a

n−1−it
∣∣∣∣∣ ≤ A2a−1t1/2 ≤

A2

A1
, (3.2)

where

A2 =
8
5

√
2
π

+
16
√

2π
5m

+
3

2πA1
+ 3t−1/2

0 .

One may now apply (3.2) to each of the sums on the right-hand side of∣∣∣∣∣ ∑
A1t1/2<n≤(t/m)

1
n1+it

∣∣∣∣∣ =
∑

1
2 (t/m)<n≤(t/m)

+
∑

1
4 (t/m)<n≤ 1

2 (t/m)

+ · · · .

There are at most
1
2 log t − log(mA1) + log 2

log 2
(3.3)

such sums. This gives an upper bound for
∑

n−1−it when n > A1t1/2. When n ≤ A1t1/2

one may use (2.2) to estimate the sum trivially.
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4. Proof of Theorem 1.1

In ζ(s) −
∑

n≤N n−s =
∑

N<n n−s use Lemma 2.1 and expand to k terms. Choosing
N − 1 = bt/mc, recalling (3.2) and (3.3), and estimating all complex terms trivially
gives

|ζ(1 + it)| ≤ log t

(
1
2

+
A2

2A1 log 2

)
+

A2(log 2 − log(mA1))
A1 log 2

+ log A1 + γ

+
1

A1t1/2
0

+
m
2t

+
1
t

+

k∑
r=1

|Br+1|

(r + 1)!
(1 + t) · · · (r + t)

(m
t

)r+1

+
(1 + t) · · · (k + 1 + t)

(k + 1) · (k + 1)!
max |Bk+1(x)|

(m
t

)k+1
.

(4.1)

Note that each term in the r-sum in (4.1) is Om,k(t−1). This is cheap relative to the last
term which is Om,k(1). Thus one can take k somewhat large to reduce the burden of the
final term. For a given t0, when t ≥ t0 one can optimise (4.1) over k, m and A1 subject
to

A1 >
1
√

2π
, mA1 ≤ t1/2

0 . (4.2)

One finds that, when k = 14, m = 6, A1 = 23 then |ζ(1 + it)| ≤ 0.749818 . . . , for all
t ≥ 108. A numerical check on Mathematica suffices to extend the result to all
t ≥ 2.391 . . . , whence Theorem 1.1 follows.

4.1. Improvements. Lemma 3.1 is unable to furnish a value less than 1
2 in

Theorem 1.1. On the other hand, by verifying that |ζ(1 + it)| < 1
2 log t for t larger than

108 one will improve slightly on Theorem 1.1.
One could also take an analogue of Lemma 3.1 that incorporates higher derivatives.

Such a result, giving explicit bounds on exponential sums of a function involving k
derivatives, is given in [4, Proposition 8.2]. It is unclear how much could be gained
from pursuing this idea.
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