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The Cubic Dirac Operator for
Infinite-Dimensonal Lie Algebras

Eckhard Meinrenken

Abstract. Letg = @, <z 8i be an infinite-dimensional graded Lie algebra, with dimg; < oo,
equipped with a non-degenerate symmetric bilinear form B of degree 0. The quantum Weil algebra
/Wg is a completion of the tensor product of the enveloping and Clifford algebras of g. Provided that
the Kac—Peterson class of g vanishes, one can construct a cubic Dirac operator D € /V\\?(g), whose
square is a quadratic Casimir element. We show that this condition holds for symmetrizable Kac—
Moody algebras. Extending Kostant’s arguments, one obtains generalized Weyl-Kac character formu-
las for suitable “equal rank” Lie subalgebras of Kac-Moody algebras. These extend the formulas of
G. Landweber for affine Lie algebras.

1 Introduction

Let g be a finite-dimensional complex Lie algebra equipped with a non-degenerate
invariant symmetric bilinear form B. For £ € g, the corresponding generators of the
enveloping algebra U (g) are denoted s(§), while those of the Clifford algebra Cl(g)
are denoted simply by €. The quantum Weil algebra [1]] is the super algebra

W(g) = U(g) @ Cl(g),

with even generators s(¢) and odd generators £. Let D € W(g) be the odd element
written in terms of a basis e, of g as

1
D= Zs(ea)e“ -5 Zfabce“ebec,
a

abc

where ¢ is the B-dual basis and f are the structure constants. The key property of
this element is that its square lies in the center of W(g):

1
D? = Cas, +ﬁ try(Casy),

where Cas; = ) s(eq)s(e?) € U(g) is the quadratic Casimir element. The element
D is called the cubic Dirac operator, following Kostant [[10]. More generally, Kostant
introduced cubic Dirac operators Dy, for pairs of a quadratic Lie algebra g and a
quadratic Lie subalgebra u. For g semi-simple and 1 an equal rank subalgebra, he
used this to prove, among other things, generalizations of the Bott—Borel-Weil theo-
rem and of the Weyl character formula (see also [2}[11]]).
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In this article, we will consider generalizations of this theory to infinite-dimen-
sional Lie algebras. We assume that g is Z-graded, with finite dimensional graded
pieces g;, and equipped with a non-degenerate invariant symmetric bilinear form B
of degree 0. A priori, the formal expressions defining D, Cas, are undefined, since
they involve infinite sums. It is possible to replace these expressions with “normal-
ordered” sums, leading to well-defined elements D’, Casé in suitable completion of
'W(g). However, it is no longer true in general that (D’)? — Casé is a constant, and in
any case Cas, is not a central element. One may attempt to define elements D, Cas,
having these properties by adding lower order correction terms to D', Cas;. Our
main observation is that this is possible if and only if the Kac—Peterson class [1xp] €
H?(g) is zero. In fact, given p € g} with ¢)xp = dp, the elements D = D’ + p
and Cas; = Cas; +2p have the desired properties. These results are motivated by
the work of Kostant-Sternberg [12], who had exhibited the Kac—Peterson class as an
obstruction class in their BRST quantization scheme.

For symmetrizable Kac—-Moody algebras, the existence of a corrected Casimir el-
ement Cas, is a famous result of Kac [4]. In particular, [¢xp] = 0 in this case. As
we will see, Kostant’s theory carries over to the symmetrizable Kac—-Moody case in a
fairly straightforward manner. For suitable “regular” Kac—-Moody subalgebrasu C g,
we thus obtain generalized Weyl-Kac character formulas as sums over multiplets of
u-representations.

For affine Lie algebras or loop algebras, similar Dirac operators were described
in Kac-Todorov [7] and Kazama-Suzuki [8], and more explicitly in Landweber [14]
and Wassermann [[19]. In fact, Wassermann uses this Dirac operator to give a proof
of the Weyl-Kac character formula for affine Lie algebras, while Landweber proves
generalized Weyl character formulas for “equal rank loop algebras”. The cubic Dirac
operator D for general symmetrizable Kac-Moody algebras is discussed very briefly
in Kitchloo [9]].

2 Completions

In this section we will define completions of the exterior and Clifford algebras of
a graded quadratic vector space. We recall from [[6] how the Kac—Peterson cocycle
appears in this context.

2.1 Kac—Peterson Cocycle

Let V. = &D;., Vi be a Z-graded vector space over C, with finite-dimensional
graded components. The (graded) dual space is the direct sum over the duals of
Vi, with grading (V*); = (V_;)*. Given another graded vector space V' with
dimV/ < oo, we let Hom(V, V') be the direct sum over the spaces Hom(V,V"'); =
@D, Hom(V,, V/,;) of finite rank maps of degree i. We let

r+i

Hom(V,V'); = [[Hom(V,,V/,;)

be the space of all linear maps V' — V'’ of degree i, and Ifor\n(V, V') their direct sum.
IfV = V/, we write End(V) = Hom(V,V) and End(V) = Hom(V, V). Note that
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E/I;i(V) is an algebra with unit 1.

Define a splittingV = V_ @ V, where V., = @, , Vi, V_ = @, Vi. Denote
by m_, m; the projections to the two summands. The Kac—Peterson cocycle ([6]; see
also [5, Exercise 7.28]) on I?r;i(V) is a Lie algebra cocycle given by the formula,

(2.1) Yrp(Ar, Ay) = L tr(Aym_Agmy) — S tr(Aym_Aymry).

This is well defined since the compositions m_A;m,: V' — V have finite rank. Ob-
serve that ¢xp has degree 0; that is, (2.1)) vanishes unless the degrees of A}, A, add up
to zero. On the Lie subalgebra End(V) C En\d(V), the Kac—Peterson cocycle restricts
to a coboundary:

(2.2) Ukp(A1, A) = 1 tr(mi [A, A)).

2.2 Completion of Symmetric and Exterior Algebras

Let S(V') be the symmetric algebra of V, with Z-grading defined by assigning degree
i to generators in V;. Let V* be the graded dual as above. The pairing between S(V')
and S(V*) identifies S(V); as a subspace of the space of linear maps S(V*)_; —
K. We define a completion S(V'); as the space of all linear maps S(V*)_; — K.
Equivalently,

SV)i =TI S(V_)i—r @ S(V4),.

r>0

We let §(V) be the direct sum over the §(V)1-. The multiplication map of S(V') ex-
tends to the completion, making S(V') into a 7Z-graded algebra. For each k > 0 one
similarly has a completion ?‘(V) - §(V) of each component S¥(V). Then §(V)i is
the direct product over all Sk (V);. The space s (V*)o may be identified with the space
of symmetric bilinear maps B: V' x V. — C of degree 0; that is, B(V;,V;) = 0 for
i+j#0.

In a similar fashion, one defines a completions A(V); as the spaces of all linear
maps AVH)_; = K, or equivalently

AV); =TT AVL)iy @ AV,
r>0

We let A(V) be the 7-graded super algebra given as the direct sum over all AV,
Again, one also has completions of the individual A*(V'). The space KZ(V*)O may
be identified with the skew-symmetric bilinear maps V' x V' — (C of degree 0. In
particular:

Yrp € Kz(fr;i(V)*) o
2.3 Clifford Algebras

Suppose B is a (possibly degenerate) symmetric bilinear form on V. = &P, V; of
degree 0. Let CI(V) be the corresponding Clifford algebra, i.e., the super algebra with
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odd generators v € V and relations vw + wv = 2 B(v, w) for v, w € V. The Z-grading
on V defines a Z-grading on CI(V') compatible with the algebra structure.

Using the restrictions of the bilinear form to V1, we may similarly form the Clif-
ford algebras CI(V_1). These are Z-graded subalgebras of CI(V'), and the multiplica-
tion map defines an isomorphism of super vector spaces, Cl(V) = CI(V_) ® Cl(V}).
Note that CI(V;) = A(V), since B restricts to 0 on V.

We obtain a Z-graded superalgebra Cl(V) as the direct sum over all

Q)i = T] QUV_)i—, @ CUV,),

r>0
Let °: A (V) — CI(V) denote the standard quantization map for the Clifford alge-
bra, defined by super symmetrization:
1 .
QA A =5 Sign@)Von) oty
TECS,

where S is the permutation group on k elements, and sign(c) = =1 is the parity
of the permutation o. The map ¢° is an isomorphism of super spaces preserving
the 7Z-gradings and taking A(V+) to Cl(V1). While q° itself does not extend to the
completions, we obtain a well-defined normal-ordered quantization map

q: A(V) = Cl(V)
by taking the direct sum over i € Z and direct product over r > 0 of
¢ @4 ANV_)ier @ AV, = CUVL)imy @ V),

The quantization map is;.< an isomorplhism of Z-graded super vector spaces, with
the property that for A € A(V), peN(V),

~k+1—2

q ' (qN)g(p)) =AAp mod A (V).

Any element v € V defines an odd derivation ¢,, called a contraction, of the super
algebra A(V), given on generators by ¢,(w) = B(v, w). The same formula also defines
a derivation of the Clifford algebra, again denotedALV. In both cases, the contractions
extend to the completions. The map g: A(V) = CI(V) intertwines contractions:

qoly =1tk ogq,

since q° o ¢, = ¢, 0 ¢° and since contractions preserve A(V 1) and Cl(V.).

Let o(V) C End(V) and o(V) C ErIl(V) denote the B-skew-symmetric endo-
morphisms. Let

(2.3) AV) S B(V), A Ay

be the map defined by A)(v) = —2:,\. The map (Z.3) is 0(V)-equivariant; that is,
Ay = [X,Ay] for X € B(V)
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Lemma 2.1 Forall X € N*(V), q(A) = ¢°(\) — 3 tr(m,A)).

Proof It suffices to check for elements of the form A = u A v for u,v € V. We have
Aunv(w) = 2(B(v, w)u — B(u, w)v), hence tr(m A,pny) = 2(B(miu,v) — B(myv, u)).

On the other hand, by considering the special cases that u, v are both in V_, both in
VyorueV_,veV,, wefind

(2.4) quAv) = q°(uAv)+B(myv,u) — B(myu,v). [ |

The map q° is o(V')-equivariant. For the normal-ordered quantization map this is
no longer the case.

Proposition 2.2 (Kac—Peterson [6]) Forall A € KZ(V) and X € o(V), one has
Lxq(A) = q(LxA) + ¢xp(X, Ay).

Proof It is enough to prove this for X € o(V) and A € A%(V). Since ¢° intertwines
Lie derivatives, Lemma[2.Jland (2.2)) give

Lxq(\) — q(LxA) = 3 tr(m A ) = S tr(m[X, An]) = vrp(X, A)). u

If B is non-degenerate, the map A — A) defines an isomorphism A*(V) — o(V).
Let
X o(V) = AXV), A— A\A)

be the inverse map. It extends to a map o(V) — KZ(V) of the completions. In a basis
e, of V with B-dual basis ¢* (i.e., B(e,, €’) = 67), one has

AA) = iZA(ea) A el

If A € o(V), the elements 7°(A) = q°(\(A)) are defined. As is well known,
[7°(A1),7°(A2)] = 7°([A1, A3]) for A; € o(V), and Ly = [7°(A), -]. IfA € BD(V),
one still has Ly = [y/(A), -] with v/(A) = q(A(A)), but the map +’ is no longer a
Lie algebra homomorphism. Instead, Proposition 2.2lshows

(2.5) [7/(A1),7"(A2)] =7([A1,A2]) +vkp(AL, Ar)
for A;, A, € o(V).

3 Graded Lie Algebras

We will now specialize to the case that V = g is a Z-graded Lie algebra. We show that
in the quadratic case, the obstruction to defining a reasonable “Casimir operator” is
precisely the Kac—Peterson class of g.
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3.1 Kac—Peterson Cocycle of g

Let g = €D, a; be a graded Lie algebra with dimg; < oo. That is, we assume that
the grading is compatible with the bracket: [g;,a;]q C gi+j. The map ad¢: g — g
defines a homomorphism of graded Lie algebras ad: ¢ — End(g). Recall that g* =
@D, (g")i denotes the restricted dual where (g*); = (g_;)*. The algebra A(g*) carries
contraction operators and Lie derivatives ¢¢, L¢ for £ € g, given on generators by
tepe = (1, &) and Lep = (—ade)*p. If dimg < oo, it also carries a differential d,
given on generators by dy = 2A(u), where A() is defined by ¢z A (1) = %Lgu. On
generators,

()&, &) = —(u, &1, &]q)-

In the infinite-dimensional case, A(x1) and hence d are well defined on the completion
A(g*). The operators t¢, Le, d make A(g*) into a g-differential algebra.
Define

"/}KP(fly fz) = wKP(adfnadfz)

for §; € g. Thus Ykp € Rz(g*)o is a degree 2 Lie algebra cocycle of g called the
Kac—Peterson cocycle of g. Its class [¢xp] € H?(g) will be called the Kac—Peterson
class of the graded Lie algebra g. Note that d has Z-degree 0, so that it restricts to a
differential on each A(g*);. Hence, if 1)xp admits a primitive in g*, then it admits a
primitive in gg.

Example 3.1 ([6]) Suppose f is a finite-dimensional Lie algebra, and let g =

f[z,z7!] be the loop algebra with its usual Z-grading. Let BX!(x, y) = trs(ad, ad,)
for x, y € Tbe the Killing form on f. One finds

Uxel€,©) = Res B9 05 )

for £, € t[z,z7!], where Res picks out the coefficient of z~!. One may check that
unless BKil = 0, the Kac—Peterson class [¢xp] is non-zero.

Example 3.2 (Heisenberg algebra) Let g be the Lie algebra having basis

K, e, fi,e, fo,..., where K is a central element and [e;, f;]q = J;;K. Define a grad-
ing on g such that ¢; has degree i and f; has degree —i, while K has degree 0. One
finds pr =0.

Example 3.3 Suppose g is a finite-dimensional semi-simple Lie algebra. Choose a
Cartan subalgebra b and a system A" C h* of positive roots. Let g carry the principal
grading, i.e., go = b, while g;, 7 # 0 is the direct sum of root spaces for roots of height
i. Using (Z.2) one finds that ¢)xp = dp, where p = 1 3" 1. .

3.2 Enveloping Algebras

The Z-grading on g defines a Z-grading on the enveloping algebra U(g). Both g, =
P,.,9iand g_ = ), gi are graded Lie subalgebras, thus U(g.) are graded sub-
algebras of U(g). By the Poincaré—Birkhoff-Witt theorem, the multiplication map
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defines an isomorphism of vector spaces U(g) = U(g_) ® U(g,). We define a com-
pletion U(g) as a direct sum over

U@)i=[TU@ )i @ U(gy),.
r>0

The multiplication map extends to the completion, making U(g) into a graded alge-
bra. Let ¢°: S(g) — U(g) be the isomorphism given by the standard (PBW) sym-
metrization map

P& &) = % > Lo

ey
This preserves Z-degrees and takes S(g+ ) to U (g4 ). While the map itself does not ex-
tend to the completions, we define a normal-ordered symmetrization (quantization)
map q: §(g) — U(g) by taking the direct sum over 7 and the direct product over r of
the maps
3’ ®q": S(8-)i—r © S(84)r = U@-)i—r @ U(84)y.

Then q is an isomorphism of /Z-graded vector spaces. Let
$*(3) — Hom(g*,q), p — A,
be the linear map given for p = uv, u,v € g by
Ap(g) = (uy )+ (1, Wy,
It extends to a g-equivariant linear map ?(g) — H/or\n(g*7 g). Let
br: Hom(g*,g) — g
be the linear map given by the identification Hom(g*,g) = g ® g followed by the

Lie bracket. In a basis e, of g with dual basis ¢ € g*, br(A) = > [A(e?), e;]4. The
counterpart to Lemma[.Tlreads as follows.

Lemma 3.4 For p € $*(g), q(p) = q°(p) — 3 br(mAp).

Proof It suffices to check for p = uv, where the formula reduces to (cf. (24)))
q(uv) = q°(uv) + %[u,ﬂ'w]g + %[v, Tit]g.

This is straightforward in each of the cases that u, v are both in g, both in g_, or
uegy,veg_. |

In contrast to ¢°, the map g is not g-equivariant. Similar to Proposition we
have the following proposition.

Proposition 3.5 On 5*(g),

Le(q(p)) — q(Le(p)) = %br ((7T+ ade m_ — m_ade¢ 7r+)Ap) .
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The right-hand side is well defined, because 7m_ ad¢ 7, and 7, ad¢ m_ are in
Hom(g, g), and hence (7, ade 7 — 7_ ad¢ 7, )A, € Hom(g", g).

Proof It suffices to verify this for p € S2(g), so that A, has finite rank. Since
Leq’(p) — q°(Lep) = 0, Lemma[3Al gives

Leq(p) — q(Lep) = — 3 (Lebr(miAp) — br(miALp))
= —3br ([Le, mAp] — mi[Le, Ap])
— —Lbr (Lemdy — mLeAy)
= 1br ((miLem_ — m_Lemi)A,) . |

3.3 Quadratic Lie Algebras

We assume that g = €D, ., 6; comes equipped with a non-degenerate ad-invariant
symmetric bilinear form B of degree 0. Thus, B(g;,g;) = 0 for i + j # 0, while B
defines a non-degenerate pairing between g;, g_;. We will often use B to identify g*
with g. The examples we have in mind are the following:

(i) Let f be a finite-dimensional Lie algebra with an invariant symmetric bilinear
form By. Then B extends to an inner product on the loop algebra g = [z, z7!].

(ii) Letl= &P, i beagraded Lie algebra, with finite-dimensional homogeneous
components, and let [* = P, [} be its restricted dual, with grading (I*); =
[* ;. The semi-direct product g = I x [*, with B given by the pairing, satisfies
our assumptions. This case was studied by Kostant and Sternberg in [12].

(iii) Letg = €P,c, 6i be a symmetrizable Kac-Moody Lie algebra with grading the
principal grading (defined by the height of roots). Then g carries a “standard”
non-degenerate, invariant, symmetric, bilinear form; see [5]. We will return to
the Kac—-Moody case in Section[7]

Under the identification Kz(g) = 9(g), the Kac—Peterson cocycle 1/xp corresponds to
an element

Urp €0(9), Yrp(&, Q) = B(¥kp(£),0).

Since 1kp has Z-degree 0, the transformation Wxp preserves each g;. Since 1kp is a
cocycle, Wkp is a derivation of the Lie bracket on g. Moreover, 1gp is a coboundary
if and only if the derivation Wgp is inner:

(3.1 Yxp=dp & Ugp = [p, g,
where p* is the image of p € g¥ under the isomorphism B*: g* — g.
Example 3.6 Let g = f[z,z!] with f semi-simple and with bilinear form defined

in terms of the Killing form on f as B(¢, ¢) = Res(z7'BXI(¢, ¢)) for &, ¢ € [z, z7'].
Then Wgp is the degree operator Ugp(§) = z%.
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3.4 Casimir Elements

Letp € ?(g) be the element p = > eqe” € ?(g), where ¢, is a homogeneous basis
of g, with B-dual basis ¢”. The corresponding transformation A, € Hom(g", g) =

End(g) is 2Id,. We refer to Casé = q(p) € ﬁ(g) as the normal-ordered Casimir
element. It is not an element of the center, in general:

Theorem 3.7 The normal-ordered Casimir element satisfies L¢ Casg = 2Wgp(&) for
allé € g.

Proof From the definition of br, one finds B(br(A),() = tr(ad;A) for all A €
End(g) and ¢ € g. Since A, = 21d, and L¢p = 0, Proposition [3.3] therefore gives
B(L¢ Casy, ¢) = B(br(my adg m_ — 7_ ad¢ m,), ()
= tr(ad¢ m ade m— — ade 71— ade 7y)
= 2¢p (&, ¢) = 2B(¥kp(§), C). u

The normal-ordered Casimir element Casé admits a linear correction to a central
element if and only if the Kac—Peterson class is zero.

Corollary 3.8 For p € g;, Casy := Cas; +2* lies in the center of U(g) if and only if
Yxp = dp.

Proof This is a direct consequence of Theorem B.7] since ¥xp = dp if and only if
Lep? = —WUgp(€), see Equation (3.1). []

Example 3.9 For a loop algebra g = f[z,z7!] with f a semi-simple Lie algebra,
the Kac—Peterson coycle of g defines a non-trivial cohomology class. Hence it is im-
possible to make Cas, invariant by adding linear terms. On the other hand, for a
symmetrizable Kac—-Moody algebra g, a classical result of Kac shows that Cas; be-
comes invariant after a p-shift. Hence the Kac—Peterson class of such a g is trivial. See
Section[7]

3.5 The Structure Constants Tensor and its Quantization

Recall the definition of A: o(g) — Kz(g). We will write A(§) = A(adg); that
is, teA(() = %[g,c]g. In a basis e, of g, with B-dual basis e?, we have \(§) =

T2l ealg Nt
Lemma 3.10 There is a unique element ¢ € K3(g)0 with the property

L§1L52L§3¢ = %B([€1a§2]gv§3>7 Ela£27€3 € g.

Proof The right-hand side is a skew-symmetric trilinear form of degree 0 on g.
Hence it defines an element of A (g). [ ]
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Equivalently, tc¢p = 2A(§), £ € g. In a basis,
1 a b c
qS:fﬁ;fabce ANe’ Ne,
abc

where fu,. = B([eq, €p]g, €) are the structure constants.
From the definition, it is clear that ¢ is g-invariant. This need no longer be true of
its normal-ordered quantization. Write

7€) = a(\ &), ¢a=a(®),

so that Le = [v/(§), -)]. Denote by w}‘(P € Kz(g) the image of Yxp € Kz(g*) under
the isomorphism B*: A(g*) — A(q).

Proposition 3.11 The element ¢(; € él(g) satisfies Leply = Vip(§), and its square
is given by the formula

(04)* = ‘1(1/)?(1)) + 35 trg, (Casy, ).

Here Cas,, € U(qp) is the quadratic Casimir element for §o, and try,(Casg,) s its trace
in the adjoint representation.

Proof The first formula follows from the second, since

Legly = [7'(9), oG] = te(d&)?.

Since
Le(de)? = [V (6), bl = Lely = Up(€) = 1eq(ebep),

the difference (gbél)z - q(wﬁp) is a constant. Let ¢, be the component of ¢ in
(Ag=)—r ® (Ag+)r. The commutator of ¢/, with a term g(¢,) for r > 0 is contained
in the right ideal generated by g, and hence does not contribute to the constant.
Hence the constant equals g(¢g)?, where ¢y € A>gy is the structure constants tensor
of g9 C g. By [IL[10] this constant is given by 5; try, (Casg, ). ]

Corollary 3.12  Suppose yxp = dp for some p € g. Define elements ofal(g) by
da = ¢+ pF (&) =€)+ (p,€),

for & € g. The following commutator relations hold in Cl(q):

[gﬂ C] = 23(57 C)7 [7(5)) ¢Cl] = 07
[53 ¢Cl] = 2’7(6)7 [7(5); 7(4)] = 7([57 C]g),
[7(5)7 C] = [57 C]g» [¢C1a ¢Cl] = ZB(Pﬁ7 Pt) + % trgo(casgg)~

Thus 61(g) becomes a g-differential algebra (see e.g., [16]) with differential d =
[¢a1, - 1, contractions vg = %[5, -1, and Lie derivatives L = [y(£), - ].
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Proof Observe first that A(p*) = —1)xp, since

chf)\(Pﬂ) = L{[&Pﬂ]g = B(Cv [§7pﬂ]g) = _<pa [f?C]Q> .

Consequently [pf, &) = —q(Ykp), which implies the formula for [¢q1, ¢ci]. The
other assertions are verified similarly. ]

Still assuming xp = dp, consider the algebra morphism
(3.2) 7: Ulg) = Cl(g)

extending the Lie algebra homomorphism & — ~(§).

Proposition 3.13 The map extends to an algebra morphism ~y: U(g) — Cl(g).

Proof We claim that for all i > 0, «(g;) is contained in

(3.3) [T Cl(a_)—,Cl(gs)isr < Cl(g);

r>0

(i.e., the components in Cl(g,) have degree > i). Indeed, suppose £ € g; withi > 0.
In particular, (p,&) = 0. Let e, € g be a basis consisting of homogeneous elements,
and let ¢* be the dual basis. Since (p,£) = 0, and since [¢, e,], Clifford commutes
with ¢*, we have

1O = 33, (160 — lg,cal) + 33 €, eale”

where ), is a summation over indices with e, € g, and ) is a summation over
indices with e, € gy. The second and third terms in this expression are in (3.3]) as are
the summands [€, e*]e, from the first sum for e, € g; with s > 7. In the remaining
case s < i we have [£,e?] € g;_s C g4, and hence [, ¢*]e, € Cl(g4);. This proves the
claim. By induction, one deduces that

Y(U(82):) € TT Cla-)—,Cllas )i

r>0
Similarly, if j <0,
v(U(g-);) € TT Clg-);-,Cl(g:)r-

r>0

It follows that

’Y(U(gf)frU(ng)Hr) C H Cl(gf)frfmCl(g+)i+r+m~

m>0

Summing over all » > 0, one obtains a well-defined map ﬁ(g)i — 61(g),». [ |
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4 Double Extension

For the loop algebra g = f[z,z7!] of a semisimple Lie algebra , the Kac—Peterson
class is non-trivial. On the other hand, the usual double extension § of g is a sym-
metrizable Kac—Moody algebra, hence its Kac—Peterson class is zero. In fact, one has
a similar double extension in the general case, as we now explain.

We continue to work with the assumptions from the last sections; in particular
g carries an invariant, non-degenerate, symmetric, bilinear form B of degree 0. As
noted above, the Kac—Peterson cocycle ¢xp gives rise to a skew-symmetric derivation
Uxp € 0(g). By a general construction of Medina—Revoy [[15], such a derivation can
be used to define a double extension g = g & C§ & CK, with the following bracket.

F0r€a§17£2 €9

(€1, 8205 = [€1, &g + Yrp(81, &K, [0,&l5 = Ykr(8),

The bilinear form B on g extends to a non-degenerate invariant bilinear form on g in
such a way that g and C§ & CK are orthogonal and

B(6,K) =1, B(4,8) = B(K,K) = 0.

Introduce the grading g; = g; for i # 0and gy = gy ® CJ & CK. The resulting
splitting is
g— =0- ®C5€B(CK7 §+ = O+

Let pr be the Kac—Peterson cocycle for this splitting, let Ukp be the associated
derivation, and denote by 71 : g — g the projections along g. The adjoint repre-

sentation for g will be denoted ad.

Proposition 4.1 The derivation \T/Kp is inner: \I’Kp = [0, - 5. Equivalently, JKP =
dp, where p = B(5, -).

Proof The desired equation \TJKP = [, - | means that

Uip(€) = Ugp(€), Wp(8) =0, Wgp(K) = 0.

Equivalently, we have to shovyv that JKP(&, &) = Yxp(&1, &) for &,& € g, while
both K, ¢ are in the kernel of 1gp. The last claim follows from

F_ads7, = 0 = 7oady7_,
and similarly for adk, since ads and adk preserve degrees. On the other hand, one
checks that for §;, & € g, the composition 7, adg, m— adg, 74 : g4 — g4 of operators

on g coincides with the composition T,ade, 7_ade, 71: g4 — g4 of operators on g.
Hence the Kac—Peterson coycles agree on elements of g C . ]
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5 The Cubic Dirac Operator

We will define the cubic Dirac operator as an element of a completion of the quantum
Weil algebra W(g) = U(g) ® Cl(g). Following [1I], we take the viewpoint that the

commutator with D defines a differential, making W(g) into a g-differential algebra.

5.1 Weil Algebra

We begin with an arbitrary Z-graded Lie algebra g with dimg; < oo. As usual g*
denotes the restricted dual. Consider the tensor product W(g*) = S(g*) ® A(g*)
with grading
Whe") = @ (") ® A°(g").
2r+s=k

For 11 € g* we denote by s(u) = ¢ ® 1 the degree 2 generators and by p = 1 ® p the
degree 1 generators. Any £ € g defines contraction operators ¢¢; these are derivations
of degree —1 given on generators by tept = (&), tes(u) = 0. The co-adjoint action
on g* defines Lie derivatives Le = Lg RI+1® Lé\. If dim(g) < oo, the algebra W (g)

carries a Weil differential d", given on generators b

(5.1) d"p = 2(s() + M), ds(u) =) s(Le e

Here e, is a basis of g with dual basis e* € g*.

In the general case, we need to pass to a completion in order for the differential to
be defined. Define a second Z-grading on W (g*) in such a way that the generators
s(p), p for € (g%); = (8—;)* have degree i. Letting g7 = ,.,(a*); and g* =
D, <, (a*)i we define a completion W(g*) as the graded algebra with

W@ )i = [T W@ )i, ® W(gh),.
r>0

(Equivalently, W(g*)i is the space of all linear maps (S(g) ® A(g))—; — K.) The
Weil differential d" is defined on generators by the formulas (5.1). Together with the
natural extensions of ¢¢, L, this makes W (g*) into a g-differential algebra.

5.2 Quantum Weil Algebra

Suppose now that g carries an invariant symmetric bilinear form B of degree 0. We
use B to identify g* with g, and will thus write W(g), W(g) and so on. The non-
commutative quantum Weil algebra is the tensor product

W(g) = U(g) ®@ Cl(g).

It is a super algebra with even generators s(¢) = ( ® 1 and odd generators { = 1 ® (.
Any ¢ € g defines Lie derivatives Ly = Lg ®1+1® Lgl and contraction operators

I'The conventions for the differential follow [16} §6.11]. They are arranged to make the relation with
the quantum Weil algebra appear most natural. One recovers the more standard conventions used in e.g.,
[T}3] by a simple rescaling of variables.
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t¢, given as odd derivations with ¢e( = B(&, (), tes(¢) = 0. Super symmetrization
defines an isomorphism

(5.2) 7°: W(g) — W(g),

given simply as the tensor product of ¢°: S(g) — U(g) and ¢°: A (g) — Cl(g). Note
that (5.2) intertwines the contractions and Lie derivatives. We define a completion
'W(g) as the graded super algebra with

W) = [T W(s_)i_r ® W(gy),.

r>0

The “normal-ordered” quantization map q: W(g) — W(g) is defined by summing
over all
P’ ®q°: W(@o)i—r @ W(gs)r = W(_)i—y © W(G4);-

It extends the quantization maps q: §(g) — ﬁ(g) and g: Ag) — 61(9).

5.3 The Element g(D)

If dim g < 00, one obtains a differential d*” on Wq as a derivation given on genera-
tors by formulas similar to (5.1)):

dV¢ = 2(s(0) + o)), dVs(¢) = Zas(LeaOeu;
see 1. In fact, d”¥ = [¢°(D), -], where D € W3(g) is the element

D= Z s(eq)e’ + ¢
a
with ¢ € A’g C W?3(g) being the structure constants tensor. The fact that av
squares to zero means that q°(D) squares to a central element, and indeed one finds
012 — 1
q (D)° = Casg +5; try(Casy).

R If dimg = oo, the element D is well defined as an element of the completion
W3(g), but g°(D) is ill-defined. On the other hand,

D' = q(D) = > slea)e" + ¢y

a

is defined but does not square to a central element.

Proposition 5.1 The square of D' = q(D) is given by

(D)? = Casl, +q(¢kp) + 2 trg, (Casg, ).
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Proof We have L;D’ = Legply = Ugp(§) = qu(wﬁp) because ) s(e,)e” € W(g) is
g-invariant. Using that

D" =5(8) + 1e(q(d)) = (&) +~/(8)
are generators for the g-action on VAV(g), we have
(D) = q(p)) = [1eD', D'] — q(p) = 0.

This shows (D’)? — q(wﬁp) S ﬁ(g) - W(g). To find this element we calculate,
denoting by - - - terms in the kernel of the projection W(g) — ﬁ(g),

(D) = s(ea)s(er)e’e” + (¢) + - -

ab

1
= 1) slea)s(ey)le, €] + 54 e (Casy,) + -
ab

1
= Cas, 2 trg, (Casg,) + - - - ]

If the Kac—Peterson class is trivial, one obtains an element D with better proper-
ties.

Corollary 5.2 Suppose that yxp = dp for some p € g;. Define
D =D+, yw(&) = s(6) +74(€) + (p,€),
and put Casy = Cas, +2p* as before. Then
D? = Casy ®1 + i trg, (Casy, ) + B(pﬁ,pﬁ).
One has the following commutator relations in \/A\?(g),
[D, D] = 2 Casy ®1 + 5 trg, (Casg,) + 2B(p*, pP),
[yw(£), D] =0,
[§, D] = 2yw(8),
[Yw () Yw (O] = yw ([, ¢y,

[7W(§)7<] = [é-aC]ga
[€,¢1 = 2B(&, Q).

Thus W(g) becomes a g-differential algebra with differential, Lie derivatives, and con-
tractions given by

AV =1D, -1, LY =[w©, ], ¥ =11

We will refer to D € \/AV(g) as the cubic Dirac operator, following Kostant [10]].
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6 Relative Dirac Operators

In his paper [10], Kostant introduced more generally Dirac operators for any pair
of a quadratic Lie algebra g and a quadratic Lie subalgebra 1. We now consider an
extension of his results to infinite-dimensional graded Lie algebras.

Let g, B be as in the last section, and suppose u C g is a graded quadratic subalge-
bra. Thatis, u; C g; for all 7, and the non-degenerate symmetric bilinear form B on g
restricts to a non-degenerate bilinear form on u. We have an orthogonal decomposi-
tion g = u @ p, where p = ut. Forany £ € u, the operator ade € D(g) breaks up as a
sum ad; = adg + ad’g, ¢ € uof operators ad; € d(u), and ad’g € 0(p). Accordingly,

AE) = Au(€) + Ap(§), Ecu

with \,(€) € Kz(u) and A\, (§) € K2(p). Denote by 7(£), 7,(§) their images under
q: W(g) — W(g). We have (cf. (Z3))

(%67 =1 ([€,¢1) +¥kp(€, Q)

where Yp(€, () = Ygp(adf,ady) defines a cocycle Yy € A2(u). If %, = dpy for
some p, € 1, then v, () = 7,(&) + (pp, &) gives a Lie algebra homomorphism 1t —
Cl(p) generating the adjoint action of 1. One obtains an algebra homomorphism
7 W) — W(g) given on generators by

O =¢ j(s©) =€)+, Eeu

Proposition 6.1 The homomorphism W(u) — W(g) extends to an algebra homo-
morphism for the completion: j: W(u) — W(g). It intertwines Lie derivatives and
contraction by elements £ € .

Proof The first part follows by an argument parallel to that for Proposition
The second part follows from

joLe=jo[s€)+7(), -] = [s(&) +74(&), -] o j=Leoj,

and similarly jo e = 3jo[&, -] =3[¢, - ]oj=1c0]. u

Let W(g, 1) = (U(g) ® Cl(p))" be the u-basic part of W(g), i.e., the subalgebra of
elements annilated by all L¢ and all ¢¢ for £ € 1. Similarly let W(g, 11) be the 11-basic
part of W(g).

Proposition 6.2 The subalgebra W(g, n) is the commutant of the range j(VA\?(u)).

Proof Since tr = %[5 , + ], an element of VAV(g) commutes with the generators j(&)
for & € u precisely if it lies in the u-horizontal subspace given as the completion of
U(g) ® Cl(p). The elements j(s(§)) = s(&) + 7{,(5) generate the u-action on that

subspace. Hence, an element of W(g) commutes with all j(£), j(s(€)) if and only if
it is u-basic. [ |
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We will now make the stronger assumption that the Kac—Peterson classes of both
g and 1 are zero. Let p € g, pu € U5 be elements such that Yxp = dp, Ygp = dpy,
and take py := ply, — pu € 1 so that ¢, = dpy. Put

() ="+ (0, C)y (&) =& + (pu, €)
forall¢ € g, £ € 1, and let
D="D"+p € W(g), Dy=D.+pl e W)

be the cubic Dirac operators for g, . The commutator with these elements defines
differentials on the two Weil algebras.

Lemma 6.3 Themap j: W) — W(g) isa homomorphism of u-differential alge-
bras.

Proof It remains to show that the map j intertwines differentials. It suffices to check
on generators. For £ € 1,

J(dE) = j(5u(€) + (&) = (&) +7p(&) + (&) = s(&) + (&) = dj(),
and similarly j(ds,(£)) = dj(s.(€)). [ |
We define the relative cubic Dirac operator Dy ,, as a difference, Dy, = D—j(D,,).

Proposition 6.4 The element Dy, lies in \X?(g7 u) and squares to an element of the
center of W(g, ). Explicitly,

Déu = Casy —j(Cas,) + i trg, (Casg,) — i try, (Casy,) + B(pﬁ, pj) — B(pﬁ, pﬁ).

Proof Using that j intertwines contractions ¢¢, £ € u, we find

teDgu = 1D — j(1eDy) = s(&) + (&) — j(su(&) + ()
= 7(5) - 71)(5) - ’Vu(f) =0.

Thus Dy, is u-horizontal, and it is clearly u-invariant as well. Thus Dy, € W(g, ).
In particular, Dg,, commutes with j(D,). Consequently, [D, D] = j([D,, Dy]) +
[Dyg.u, Dgul; thatis, Di , = D> — j(D}). Now use Corollary[5.2} [ ]

7 Application to Kac-Moody Algebras

In [10]], Kostant used the cubic Dirac operator Dy, to prove generalized Weyl char-
acter formulas for any pair of a semi-simple Lie algebra g and equal rank subalgebra
u. In this section, we show that much of this theory carries over to symmetrizable
Kac—Moody algebras with only minor adjustments.
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7.1 Notation and Basic Facts

Let us recall some notation and basic facts; our main references are the books by Kac
[5] and Kumar [13].

Let A = (a;j)1<i,j<1 be a generalized Cartan matrix, and let (b, II, ITY) be a realiza-
tion of A. Thus b is a vector space of dimension 2] — rk(A), and I = {a, ...,y } C
b* (the set of simple roots) and IIV = {o,..., )} C b (the corresponding co-
roots) satisfy (aj, ;) = a;j. The Kac-Moody algebra g = g(A) is the Lie algebra
generated by elements /i € [) and elements e;, f; for j = 1,...,1, subject to relations

(h,ei] = (ai, h)e;, [h, il = —(ai, h) fi, [h,h']1 =0, [e, fi] = ;e
ad(e;)'"“i(e;) =0, ad(f)' "% (f;)) =0, i#j.

The non-zero weights o € b* for the adjoint action of §) on g are called the roots;
the corresponding root spaces are denoted g,. The set A of roots is contained in the
lattice Q = @;:1 Zoj C h*. Let Q" = EBZJ':lZZOaj’ and put A* = AN Q* and
A7 =—-A*.Onehas A = A*UA™.

Let W be the Weyl group of g, i.e., the group of transformations of ) generated by
the simple reflections & — £ — (o, § >a>/. The dual action of W as a reflection group
on b* preserves A. Let A™ be the set of real roots, i.e., roots that are W-conjugate to
roots in II, and let A™ be its complement, the imaginary roots. For v € A™ one has
dimg, = 1.

The length I(w) of a Weyl group element may be characterized as the cardinality
of the set A}, = A" N wA™ of positive roots that become negative under w=! ([13}
Lemma 1.3.14]). We remark that A}, C A™ ([5} §5.2]).

Fix a real subspace hg C b containing ITV. Let C C by be the dominant chamber,
and let X be the Tits cone ([5, §3.12]). Thus C is the set of all £ € by such that
(o, &) > 0 for all @ € TI, while X is characterized by the property that («, &) < 0
for at most finitely many o € A. The W-action preserves X, and C is a fundamental
domain in the sense that every W-orbit in X intersects C in a unique point.

For any p = le:l kja; € Q one defines ht(y) = 22:1 k;. The principal grading
on g is defined by letting g; for i # 0 be the direct sum of root spaces g, with ht(a) =
i,and gy = b. Letting ny = @, cr+ G, it follows that g, =1, andg_ =n_ @ D.

7.2 The Kac—Peterson Cocycle

Suppose from now on that A is symmetrizable; that is, there exists a diagonal ma-
trix D = diag(ey,...,¢) such that D7!A is symmetric. In this case, g carries a
non-degenerate symmetric invariant bilinear form B with the property B(Oé>/, & =
€j(aj, &), & € b ([5 §2.2]). One refers to B as a standard bilinear form. Choose
p € b* with (p,a}) =1forj=1,...,1

Proposition 7.1 The Kac—Peterson cocycle of the symmetrizable Kac—-Moody algebra
g is exact. In fact, yxp = dp.

Proof Use B to define Casé. As shown by Kac in [5) Theorem 2.6], the operator
Cas, := Cas, +2p* is g-invariant. By Corollary[3.8this is equivalent to 1)xp = dp. B
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7.3 Regular Subalgebras

We now introduce a suitable class of “equal rank” subalgebras. Following Morita and
Naito ([IZ18]), consider a linearly independent subset IT,, C A™* with the property
that the difference of any two elements in I, is not a root. We denote by u C g the
Lie subalgebra generated by b together with the root spaces g45 for 8 € II,. Let
p=ul sothatg=u®p.

Examples 7.2 (a) IfII, = &, one obtains u = . (b) Suppose g is an affine Kac—
Moody algebra, i.e., the double extension of a loop algebra [z, z7!] of a semi-simple
Lie algebra f. Let | C f be an equal rank subalgebra of f. Let II; C A; be the simple
roots of [, and let IT, C A" be the corresponding affine roots. Then u = I[z,z7!].
This is the setting considered in Landweber’s paper [[14].

It was shown in [I7)[18] that u is a direct sum (as Lie algebras) of a symmetrizable
Kac-Moody algebra 1t with a subalgebra of bE Furthermore, the standard bilinear
form B on g restricts to a standard bilinear form on 1.

For any root o € A put n,(a) = dimu, and n,(«) = dim(p,). Thus n(a) =
ny(a@) + nyp(a) is the multiplicity of o in . Let A, (resp. A;) be the set of roots such
that n,(a) > 0 (resp. ny(c) > 0). Thus A, is the set of roots of u. Let W, C W be
the Weyl group of 1 (generated by reflections for elements of II, ), and define a subset

Wy={wew |w Al C A"}

Lemma 7.3 Wehavew € W, & A} C A,. Every w € W can be uniquely written
as a product w = wyw, withwy € Wy and w, € W,

Proof By definition, w € W, if and only if the intersection A} NwA™ = A, N A},
is empty. Since A}, consists of real roots, this means A}, C A,. For the second claim,
let C, C Xy be the chamber and Tits cone for u. One has w € W, if and only if
w™lA} C A%, ifand only if wC C C,. Let w € W be given. Then wC C X C X,
is contained in a unique chamber of u. Hence there is a unique w; € W, such that
wC C w,C,. Equivalently, w, := wflw € W, [ |

We have a decomposition p = p, @ p_, where p. = pNnr. The splitting defines a
spinor module S, = Ap_ over Cl(p), where the elements of p, act by contraction and
those of p_ by exterior multiplication. The Clifford action on this module extends
to the completion 61(Sp).

Fix py € h* with {(p,,8Y) = 1 forall 8 € II,. Let p, = p|y — py defining a Lie
algebra homomorphism 7, = v, + py: 1 — él(p). By composition with the spinor
action one obtains an integrable u-representation 7s: u — End(S,).

Proposition 7.4 The restriction of ws to §) C u differs from the adjoint representation
of b by a py-shift:
7s(&) = (pp, &) +ad(§), €.

2In fact, Naito [I8]] constructs an explicit subspaceg C b such that the Lie algebra g generated byﬁ and
the g4+ 3, B € Ily is a Kac—-Moody algebra. He also considers subsets IT that do not necessarily consist of
real roots, and finds that the resulting # is a symmetrizable generalized Kac—Moody algebra.
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Hence, the weights for the action of ) on S, are of the form p, — ZaeAgkaa, where
0 < ko < nyp(). The parity of the corresponding weight space is ) | k, mod 2. For
allw € W, the element wp — p is a weight of Sy, of multiplicity 1. The parity of the
weight space Sy, equals I(w) mod 2.

Proof Foreacha € A}, fixabasisel), s = 1,...,ny() of p,, and let e be the
B-dual basis of p_,. By definition, we have v,(§) = (pp, &) +7,(£) with
”u(a)
WO == 3" > (0, 8) el
a€A} s=1

The action of y,(£) on the spinor module is just the adjoint action of £. This proves
the first assertion. It is now straightforward to read off the weights of the action on S,.
Forallw € W one has p—wp = EaeA; o (cf. [13} Corollary 1.3.22]). If w € Wy, so
that A7 C Aj, it follows that wp—py = wp—p+p, = pp—zaeAa avis a weight of Sy,.
We now use Sy = S, ®S,,p+ as modules over Cl(h1) = Cl(p) ® Cl(uNpht). Hence,
the tensor product with a generator of the line (S, ),, defines an isomorphism of
the weight space (Sp)w,—p, With (Sp )y, but the latter is 1-dimensional, and its parity
is given by I(w) mod 2 (cf. [13} Lemma 3.2.6]). [ |

7.4 Action of the Cubic Dirac Operator

The subalgebra u inherits a Z-grading from g with 1; the direct sum of root spaces 11,
fora =3 kB andi = > k.m,. Itis thus the grading of type m = (my, ..., m,)
[5 §1.5] with m, = ht(3,). Let \/A\?(u) be the completion of the quantum Weil algebra
for this grading. (Itisjust the same as the completion defined by the principal grading
of u).

Let P C b* be the weight lattice of g, and let P* C P be the dominant weights.
Thus p1 € Pifand only if (u,a}) € Zfor j = 1,...,I, and p1 € P if these pair-
ings are all non-negative. For any p1 € P* let L(i) be the irreducible integrable
representation of g of highest weight 1. By [5, §11.4], L() carries a unique (up to
scalar) Hermitian form for which the elements of the real form of g are represented
as skew-adjoint operators. The weights v of L(u) satisfy p — v € QT, hence there
is a Z-grading on L(u) such that elements of L(x), have degree j = —ht(u — v).
The g-action is compatible with the gradings; i.e., the action map g ® L(u) — L(u)
preserves gradings. The spinor module S, = Ap_ carries the Z-grading defined by
the Z-grading on p_, and the module action Cl(p) ® S, — S, preserves gradings.
The action of W(g, 1) on the graded vector space L(11) ® S, extends to an action of
the completion W(g, u). We denote by Dy, € E/n\d(L(u) ® Sy) the image of Dy,
under this representation. Then Dy, is an odd, skew-adjoint operator.

Since Dy, commutes with the diagonal action of 1 on L(p) ® Sy, its kernel
ker(Dy,y) is a Z,-graded u-representation.

Let Pf C P, C b* be the set of dominant weights for u. For any v € P}, let
M(v) be the corresponding irreducible highest weight representation of u. Parallel to
[10, Theorem 4.24] we have the following theorem.
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Theorem 7.5 The kernel of the operator Dy, is a direct sum

ker(Dry) = @ M(w(p+p) = pu) -
weW,

Here the even (resp. odd) part of the kernel is the sum over the w € Wy, such that I(w)
is even (resp. odd).

Proof Given an integrable u-representation and any u-dominant weight v € P}, let
the subscript [v] denote the corresponding isotypical subspace. We are interested in
ker(Dr()) (1. Since Dy, is skew-adjoint, its kernel coincides with that of its square:

ker(Dyy) = ker(Di(u) ).

The action of Casy on L(p) is as a scalar B(p + p, it + p) — B(p, p), and similarly for
the action of Cas, on M(v). Hence,

D,y = Blp+ p, pu+ p) — j(Casy) — B(pu, pu)
acts on (L() ® Sp)p as a scalar, B(u + p, 1t + p) — B(v + py, v + py). This shows that

ker(Dy () = D, (L(1) © Sp)p,

where the sum EB; isover all v € A satisfying B(u + p, p + p) = B(v + pu, vV + pu)-
We want to identify this sum as a sum over W,,.
Suppose v is any weight with (L(¢) ® Sy), # 0. We will show that

B(v+ pu, v+ pu) < Blu+p, n+p).

By [5, Prop. 11.4(b)], an element v € P, for which equality holds is automatically in
Py, and the multiplicity of M(v) in L(11) ® S, is then equal to the dimension of the
highest weight space (L(¢t)®Sy),. Write v = v, +1;, where L(t),, and (Sy),, are non-
zero. By our description of the set of weights of Sy, the element v, + p,, is among the
weights of the g-representation L(p), and in particular lies in the dual Tits cone XV of
g. Since the Tits cone is convex, and v, € XV, it follows that v, + (v, + py) = v+ py €
XV. Consequently, there exists w € W such that w™! (v+p,) € C¥ C b*. Since v,+py
is a weight of L(p), so is its image under w—!. Hence, x; = p—w ™ (1, +py) € Q'. On
the other hand, since w™!v; is a weight of L(1), we also have x; = u — w™lv; € QY.
Adding, we obtain i1+ p = K+ w (v + py) with K = Kk; + K, € Q'. Since the
pairing of x with w™! (v + p,) € CY is non-negative, the inequality B(x + p, pu + p) >
B(v + pu, v + py) follows. Equality holds if and only if kK = 0, i.e., k; = 0 and kK, = 0,
i.e, vy = wp — py and v; = wp. The h-weight spaces (Sp)y,—p, and L(p)y,, are 1-
dimensional, hence so is their tensor product, (L(1t) ® S,),. It follows that v appears
with multiplicity 1.

This shows that M(v) appears in ker(Dy,,)) if and only if it can be written in the
form v = w(p+p)— py, for some w € Wy, and in this case it appears with multiplicity
1. Note finally that w with this property is unique, since p + p is regular. The parity
of the v-isotypical component follows, since (Sy)w,—p, has parity equal to that of
I(w). [ |
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The weights v = w(u + p) — py, w € W, are referred to as the multiplet corre-
sponding to . Note that for given y, the value of the quadratic Casimir Cas, on the
representations M (w(u + p) — py) is given by the constant value B(p + p, u + p) —
B(pu, pu), independent of w.

7.5 Characters

For any weight v € h*, we write e(r) for the corresponding formal exponential. We
will regard the spinor module as a super representation, using the usual Z,-grading
of the exterior algebra. The even and odd parts are denoted S?) and S%), and its formal
character is denoted

ch(Sy) = > (dim(S?), — dim(S}),) e(v).

v

Here (Sg),, and (S;)V are the ) weight spaces, and e(v) is the formal character defined
by v (cf. [5, §10.2]).

Proposition 7.6 The super character of the spin representation of u on p is given by
the formula

Ch(sp) - e(pp) H (1 _ e(_a)) Hp((&).

a€A}

Proof For each root space p_,, the character of the adjoint action of ) on Ap_,,
equals (1—e(—a))™@, The character of the adjoint action on Ap_ = ®aeA; AP_q
is the product of the characters on Ap_,. By Proposition [Z.4] the action of }) as a
subalgebra of u differs from the adjoint action by a p,-shift accounting for an extra
factor e(py). [ |

Consider L(pt) ® Sy as a super representation of u. Its formal super character is
ch(L(p) ® Sy) = ch(L(w)) ch(Sy).

On the other hand, since Dy, is an odd skew-adjoint operator on this space, this
coincides with

ch(ker(Dy) = 3 (=1ch(M(w(u+p) ~ pu) ).

wep
This gives the generalized Weyl-Kac character formula,

Swew, (DM eh(M(w(p + p) — pu))
e(Pp) HaeA;(l — e(fa))n,,(a) )

ch(L(w) =

valid for quadratic subalgebras 1 C g of the form considered above. For u = ) one
recovers the usual Weyl-Kac character formula [5, §10.4] for symmetrizable Kac—
Moody algebras. Note that the Weyl-Kac character formula also holds for the non-
symmetrizable case; see Kumar [[13, Chapter 3.2]. We do not know how to treat this
general case using cubic Dirac operators.
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Example 7.7 As a concrete example, consider the Kac—Moody algebra of hyper-
bolic type, associated with the generalized Cartan matrix ( _3 73 ) (cf. [5, Exercise
5.28]). The Weyl group W is generated by the reflections ry, r, corresponding to
oy, . The set P* of dominant weights is generated by w; = —%(2041 + 3a,) and
wy = —é(Zaz +3a1). One has p = w; + w, = — (g + ).

PutlIl, = {51, 62} with Bl = oy, ,82 = fz(al) = oy +3a,. Since 52 _Bl =3, s

not a root, II, is the set of simple roots for a Kac-Moody Lie subalgebra u C g. One

finds that p, = @, and the fundamental 1--weights spanning P} are 7, = w; — 1@,

3
and, = %wz.

The Weyl group W, is generated by the reflections defined by 31, 5,, i.e., by r; and
rar172. A general element of Wy, is thus a word in ry, r,, with an even number of r,’s.
One has W, = {1, .}, giving duplets of u-representations. Write weights 1 € P* in
the form p = kjw; + kyw,. Then the corresponding duplet is given by the weights

wE+p—py = klwl + (kz + 1)@2 = k1T1 + (kl + 3k2 + 3)7’27

1’2([1, + p) — pPu = (k1 + 3(](2 + 1))@1 — (kz + I)W2 = (k1 + 3k2 + 3)7’1 + szz.
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