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PRE-VECTOR VARIATIONAL INEQUALITIES

LAI-JIU LIN

Existence theorems for pre-vector variational inequalities are established under
different conditions on the operator T and the function i). As an application, we
establish the existence of a weak minimum of an optimisation problem on jj-invex
functions.

1. INTRODUCTION

Throughout this paper, let X, Z be Banach spaces, (Y,D) be an ordered Banach
spaces, ordered by a closed convex cone D. Let L{X, Y) be the space of all bounded
linear operators from X to Y, E C X and C C Z be nonempty sets, rj : E x E —> E
be a function, V : E —» 2C and G : E —* 2E be set-valued maps. We consider the
following three problems:

P R E - V V I P . Find xEE such that

(T(x),T){y,x)) •£ 0 tor a]l y E E,

where T is a map from E to L(X, Y).

PRE-QVVIP. Find x £ E, y € V(x) such that

{H(x,y),r,{y,x)) £ 0 for all y £ G(x),

where If is a map from E x C to L(X, Y).

The Pre-VVIP has some relation with vector optimisation problems of 77-invex
function.

(P) V-min f(x) subject to x G E,

where / : E —» Y is a 77-invex function [8].

It is easy to see that if x 6 E, and T[x) is the Frechet derivative of / at x, and
if x is a solution of Pre-VVIP, then x is a weak-minimum of (P).
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Hence sufficient conditions for the existence theorem of Pre-VVIP are also suffi-
cient conditions for the existence of the weak minimum of (P). Therefore the study of
Pre-VVIP is important in research concerning vector optimisation problems of 77-invex
functions.

In [7], F.Giannesi first introduced vector variational inequalities in a finite dimen-
sional Euclidean space. Since then, many results have been obtained on the vector-
variational inequality and vector complementary problems [2, 3, 4, 13]. In [2, 3, 13],
Cheng, Yang and Cheng, considered the case 7}(y, x) — y — x in Pre-VHP and Pre-
QVVIP. In [11], Parida, Sahoo and Kumar considered the case Y = R, D = R+ and
X = R n i n P r e - V V I P . If X = R n , Y = R , D = R+, rj(y,x) =y-x, t h e n P r e - V V I P
reduces to the well-known Hartman and Stampacchia variational inequality problem
[9]. If X = Rn, Z = Rm, Y = R, D = R+, G{x) = E for all x £ E, then the
Pre-Quasi VVIP reduces to the problem studied by Parida and Sen [10].

In this paper, we investigate existence theorems for Pre-VVIP, Pre-QVVIP and as
a consequence of our results, we establish sufficient conditions for the existence theorem
of a weak minima [3] of the problem (P).

2. PRELIMINARIES

Throught this paper, let D* be the polar cone of D. Let x,y 6 Y. We denote
x ^ y if y — x £ D and x •?£ y ii y — x $ intD. If D is a pointed, closed, convex cone
and D induces a partial order in Y, then (Y,D) is called an ordered topological vector
space.

DEFINITION 1: Let T : X -> L(X,Y), r\ : X x X -> X. Then T is said to be
77-monotone if (T(x),r)(x,y)) - (T{y),r)(x,y)} > 0 for all x,y 6 X.

DEFINITION 2: [8] Let / : X -> Y be Frechet differentiable on X. Then / is said

to be 77-invex on X if there exists a function 77 : X x X —> Y such that for all x,y £ X,

f(v)-f(*)>(Dfi*)Mv,*)h

where Df{x) is the Frechet derivative of / at x.

DEFINITION 3: Let T : E C X -» L(X,Y). Then T is said to be pre-v-
hemicontinuous if for all x,y £ E, the map t —» (T(x + t(y — x)),rj(y,x)} is continuous
at t = 0.

3. MAIN RESULTS

LEMMA 1. Let E Q X be a non-empty convex subset and rj : E x E —» E be a

map with rj(x,x) — 0, for all x 6 E. Suppose that T : E —* L(X,Y) is rj-monotone
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and pre-v-hemicontinuous and the map (T(x), T/(U,y)) is convex with respect to u £ E.
Then the following two problems are equivalent.

(a) Find x £ E such that (T(x),rj(y,x)) £ 0 for all y £ E.
(b) Find x£ E such that (T(y),Tj(y,x)) £ 0 for all y £ E.

PROOF: (a) That implies (b) follows immediately from the 77-monotonicity of T.

Conversely, if (b) holds for each x £ E, then

(1) {T{\y + (1 - \)x,T,(\y + (I - \)x,x))} •£ 0, forallt/e£.

Since (T(x),r](u,y)) is convex with respect to u and T](X,X) = 0, it follows that

(2) (T{x + \{y-x),r,{* + Hy-*),*)))

^ \(T(x + X(y - x),v{y,x))) for all 0 < A < 1.

(1) and (2) imply

(3) (T(x + X(y - x),r}(y,x))) * 0 for all A 6 (0,1).

Since T is pre-v-hemicontinuous, it follows from (3) that

(T{x),v{y,x)) ^ 0 for all y € £.

Hence (a) is true. D

THEOREM 1 . Let intD ^ <j> and intD* ^ <f>. Let E be a nonempty, compact
convex set in X, r\ : E x E —* E be a map, TJ(X,X) — 0, for all x £ E. Suppose

T : E —* L(X,Y) is rj-monotone, pre-v-hemicontinuous and (T(x),r](u,y)) is convex
with respect to u, and for each fixed y £ E, r](y, x) is continuous with respect to x on
E. Then there exists x £ E such that

(T(x),77(x,z)) ft 0 for all x € E.

PROOF: For each fixed y £ E, let Fi(y) = {x £ E \ (T(x),T](y,x)) £ 0}. Then
Fi : E -> 2E. We prove that Fi is a KKM map [12]. If this is not the case, there exists

n
a finite set A — {xi,- • • , x n } C E such that covA (/L |J F I ( X J ) , where covA denotes

n
the convex hull of A. Hence there exist a j ^ 0, for all t = 1, • • • , n , ]T]ai = l and

n n ir=l
x = X) OiXi such that x g \J Fi(x,) . Then x g Fi(xi) for all i - 1,•• • ,n . Hence

i=l i=l

(T(x),7](xi,x)) < 0 for all i - I , - - ,n. Since r/(x,x) = 0 and T(x) £ L{X,Y), it

follows that
o = (r(x),7,(x,x)>
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This leads to a contradiction. Hence Fi is a KKM map.

Let F2(y) = {x £ E \ (T(y),r,(y,x)) £ 0}.
Since T is rj-monotone, it is easy to see that F2 is also a KKM map on E. By

Lemma 1

f| F1(y)= f)F2(y).

Since for each fixed y £ E, we have T(y) £ L(X,Y) and rj[y, x) is continuous with
respect to x £ E and Y\(—int D) is closed, it follows that F2(y) is a compact subset
in E. By the F-KKM theorem [5].

f)^i(y)= f\ F2{y) ^ <f>.
y€B

Hence there exists i £ £ such tha t

(T(x),7](x,x)) ^OtoraRxeE.

D
LEMMA 2 . Let E C X be a nonempty convex set and r\ : E x E —> E be a

map with t)(x,x) = 0 for all x £ E. Suppose T = (Tu- • • ,Tn) : E -> L(X,Rn) is
•q-monotone and pre-v-hemicontinuous. Suppose further that for fixed x,y 6 E and
for each i = I,--- , n , the map (T,(x),7/(w,y)) is strongly qasiconvex with respect to
u 6 E and Rn is ordered by R% = {x = {xx, • • • , xn) : x, ^ 0 for all i - 1, • • • , n).
Then the following two problems are equivalent.

(a) Find x£ E such that (T(x),ri(y,x)} £ 0 for all y £ E.

(b) Find x £ E such that (T(y),Tj(y,x)) ^ 0 for all y £ E.

PROOF: That (a)=> (b) is the same as Lemma 1. Conversely, suppose (b) holds.
Then there exists x £ E such that (T(y),T)(y,x)) £ 0 for all y £ E. Let y £ E, y ^ x

and 0 < A < 1, then {T(\y + (1 - A)s),7/(Ay + (1 - X)x,x)) £ 0. Hence there exists
1 ^ i $S n such that

(Ti(Xy + (1 - \)x,r,{\y + (1 - \)x,x))) > 0.

Since (Ti(x),7]{u,y)) is strongly quasiconvex with respect to u £ E,

0 ^ (Ti{\y + (1 - A)s

+ (1 - A)*),^,*)), (ItfAy + (1 -

+ (1 - A)*,^,*)))^}.
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Hence (Ti{\y + (1 - X)x,V{y,x))) > 0, and (T(\y + (1 - X)x),V(y,x)) £ 0. Then
following the same argument as Lemma 1, we can show that

THEOREM 2 . Let E C X be a nonempty convex set in E, TJ : E x E -> E be a.
function, and for each fixed y G E ,let the map r)(y, x) be a continuous function of x on
E which, T)(x,x) = 0 for all xe E. Suppose that T = ( T l r • • ,Tn) : E -> L(X,Rn) is
•q-monotone and pre-v-hemicontinuous. For fixed x,y £ E and for each i = 1,2, • • • ,n,
suppose (Ti(x), 7/(u, y)) is strongly quasiconvex with respect to u. Suppose further that
there exists a compact convex subset K of E such that for each y £ E\K there exists
x G K with (T(y),ri(x,y)) < 0. Then there exists ax G K such that (T(X),T](X,X)) £ 0
for all x G E.

By Lemma 2 and with the same argument as in the proof of Theorem 1, we can show
that for every compact set M C E there exists an x" G M such that (T(aF,77(01,2?))) •£ 0
for all x G M. For each y G E, let

= {xeK,{T(x),V(y,*))<0}-

Since T : E —> i ( X , y ) is continuous and Y\intD is a closed set, it follows that
the set K(y) is closed in K and hence compact. Let {3/1, • •• ,i/m} Q E and let
yl = cov[K U {j/i, • • • , 2/m}] • Thus A is a compact and convex set in E, so there exists
an x G 2? such that

(T(5F), 7,(1/, 5-)) ^Ofora l lyG A

Now af G if, for otherwise, there exists a y £ K such that {T(x),r](y,x)) < 0, which
m

contradits (4). Since (T(x),r](y,x)} •£ 0 for all x e A, it follows that z € f) X(i/i).
i= l

Thus the family of closed subsets {K(y) : y G E} has the finite intersection property.
Since K is compact, it follows that f) K(y) ^ <j>. So there exists an xo G K{y) for all

y £ E. Therefore there exists a. x0 G K such that (r(a5o),r/(j/,xo)) £ 0 for all y G E.

LEMMA 3 . [1] Let G : X -> 2 y and TV be a reai valued function defined on
XxY,V(x) = suPj,6G(l) W(x, y) and M(x) = {y G G(x) \ V(x) = W(x, y)}. Suppose
that

(a) W is continuous on X x Y.

(b) G is continuous [1] with compact values [1].

Then the set-valued map M is upper semi-continuous [1].

THEOREM 3 . Let E be a nonempty compact convex set in X and C a compact
convex set in Y. Let V : E —* 2C be upper semicontinuous, convex and closed valued
and let <f>: ExCxE—*R be continuous. Suppose that

(a) <j>{x,y,x) ^ 0 for all x GE,
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(b) For each fixed {x,y) £ E x C, <j>(x,y,u) is quasiconvex with respect to
u G E.

(c) G : E —* 2E is continuous with compact convex values.

Then there exists x £ G(x) and y £ V(x) such that

<j>(x,y,x)^Oforallx£ G(x).

PROOF: For each (x,y) £ E xY, let

Tr(x,y) = { « 6 G{x) \ <j>{x,y,s) = min A(x,y,u)}.

Then it follows from Lemma 3 that Tr(x,y) is upper semicontinuous. Since <j>(x,y,u) is
quasiconvex with respect to u, it follows that Tv(x,y) is a convex subset of E. The set-
valued function F :E xC ->2E x2c is defined by F(x,y) = {(n(x,y), V(x))}. Then
F is nonempty, convex closed and upper semicontinuous. By the generalised Kakutani
fixed point theorem [6], there exists (sf,y) £ E x C such that (af,y) £ F{x, y). Hence
there exist a x G G(x) and a y G V(x) such that

4>{x,y,x) ^ <f>(x,y,x) ^ 0 for all x G G(x). D

THEOREM 4 . Let E be a nonempty convex set in X and C a closed convex set
in Y. Let V : E —» 2C be an upper semicontinuous closed and convex valued map and
let <f> : E x C x E —> R be a continuous function. Suppose that

(a) <j>(x,y,x) ^ 0 for all x G E.

(b) For each fixed (x,y) £ E x C, (j>(x,y,u) is quasiconvex with respect to
uG E.

(c) There exists nonempty compact convex set K C E such that for each
(x,y) e E x C with x g K, there exists u G K such that <j>(x,y,u) < 0.

Then there exist a x G K, and a y £ V(x) such that

(j>{x,y,u) ^ 0 for all u G E.

PROOF: Let M be a compact and convex subset of C. For each u G E, let
K(u) = {x G K | there exists y £ V(x) (1 M such that (f>(x,y,u) ^ 0 } . It is easy to
see that K(u) is a closed subset of K. Let «i , - -- ,um G E and W(x) = V(x)C\M
and A = conv(K U {tii, • • • ,um}). Then A is a compact and convex subset of E. By
Theorem 3, there exist xo € A, yo £ W(xo) = V[XQ) n M such that $(zo,2/o,w) ^ 0

m

for all u G A. By the assumption (c), we see that XQ £ K and XQ G f| iT(iti). Thus

the collection {K(u) : u £ E} of closed sets in K has the finite intersection property.
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We have f| K(u) ^ <f>. Hence there exists x £ K(u) for all u £ E. This shows that

there exist x £.K and y £ V(x) D M C V(x) such that <£(z,y,u) ^ 0 for all u £ £ . D

THEOREM 5 . Le< £ be a nonempty compact convex set in X and C be a closed
convex set in Z. Let V : E —» 2C be an upper semicontinuous closed convex valued
map, H : ExC —> L(X, Y) be continuous and -r\: Ex E —» E be continuous functions.
Suppose that

(a) T}(x,x) = 0.

(b) Tiere exists 0 ̂  y* € £>* such that for each (x,y) e E x C, the function
(y* o H(x,y),Tj(u,x)} is quasiconvex with respect to v. £ E.

(c) G : E —» 2E is continuous with compact values.

Then there exist x 6 G(x) and y £ V(x) such that

(H(x,y),ri{u,x)) £ 0 for all u <= G(x).

PROOF: Let <j>{x,y,u) — (y* o H(x,y),T)(u,x)). Then the theorem follows from
Theorem 3 and the assumption 0 ̂  y" £ D* . D

COROLLARY 1 . Let E be a nonempty compact convex set in Rn, and C be a
nonempty convex set in Rm . Let V : E —> 2C be an upper semicontinuous, convex and
closed valued map, let H : E x C —» Rn and r\ : E x E —» E be continuous functions.
Suppose that

(a) r,(x,x)=0.
(b) For each (x,y) £ ExC, the function (H(x,y),rj(u,x)) is quasiconvex in

u.

(c) G : E —» 2E is continuous with compact values.

Then there exist x £ G(x), y £ V(x) such that

(H(x,y),r)(u,x)) ^ 0 for all u £ G(x).

PROOF: If we let X = Rn, Y = R, Z = Rm, then H : E x C -» L{X,Y) =
L(Rn,R) = Rn and the Corollary follows immediately from Theorem 5. D

REMARK. If G(x) = E for all x £ E, then Corollary 1 reduces to Theorem 2 [11].

THEOREM 6 . Let E be a nonempty, convex set in X, intD = <f> and intD* ^ <j>.
Let r\ : E x E —» E be a function, r)(x,x) = 0, TJ(X, y) = -T](y, x) for all x,y £ E and
for each fixed y £ E, let f](y,x) be continuous with respect to x £ E. Suppose that
f : E —» Y is rj-invex on E with T(x) be the Frechet derivative of f at x. Suppose
that T is pre-v-hemicontinuous on E and {T(x),t)(u,y)) is convex with respect to
u £ E. Then there exists a x £ E such that x is a weak minimum of problem (P).
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PROOF: Let x,y G E. Since / is 77-invex in E it is easy to see that T is 77-
monotone. Then by Theorem 1 and the 7;-invexity of / , there exists x £ E such that
x is a weak minimum of (P). D
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