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"PRE-VECTOR VARIATIONAL INEQUALITIES

Lar-Jiv Lin

Existence theorems for pre-vector variational inequalities are established under
different conditions on the operator T' and the function 7. As an application, we
establish the existence of a weak minimum of an optimisation problem on 7-invex

functions.

1. INTRODUCTION

Throughout this paper, let X, Z be Banach spaces, (Y, D) be an ordered Banach
spaces, ordered by a closed convex cone D. Let L(X,Y) be the space of all bounded
linear operators from X to Y, EC X and C C Z be nonempty sets, n: Ex E - E
be a function, V : E — 2€ and G : E — 2F be set-valued maps. We consider the

following three problems:

PRE-VVIP. Find Z € F such that
(T(z),n(y,z)) £ Oforall y € E,

where T is a map from F to L(X,Y).
PRE-QVVIP. Find Z € E, 7 € V(Z) such that

(H(Z,9),n(y,)) £ 0 for all y € G(2),

where H is a map from E x C to L(X,Y).
The Pre-VVIP has some relation with vector optimisation problems of 7-invex

function.
(P) V-min {(x) subject to =z € E,
where f: E — Y is a n-invex function [8].

It is easy to see that if T € E, and T(Z) is the Fréchet derivative of f at T, and
if T is a solution of Pre-VVIP, then Z is a weak-minimum of (P).
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Hence sufficient conditions for the existence theorem of Pre-VVIP are also suffi-
cient conditions for the existence of the weak minimum of (P). Therefore the study of
Pre-VVIP is important in research concerning vector optimisation problems of 5-invex
functions.

In [7], F.Giannesi first introduced vector variatignal inequalities in a finite dimen-
sional Euclidean space. Since then, many results have been obtained on the vector-
variational inequality and vector complementary problems [2, 3, 4, 13]. In [2, 3, 13],
Cheng, Yang and Cheng, considered the case 7(y,z) = y — = in Pre-VIIP and Pre-
QVVIP. In [11], Parida, Sahoo and Kumar considered the case Y = R, D = R, and
X =R"inPre-VVIP.If X =R*, Y =R, D=R,, n(y,z) =y — z, then Pre-VVIP
reduces to the well-known Hartman and Stampacchia variational inequality problem
[9]. f X =R*, Z=R™,Y =R, D=R;, G(g) = E for all z € E, then the
Pre-Quasi VVIP reduces to the problem studied by Parida and Sen [10].

In this paper, we investigate existence theorems for Pre-VVIP, Pre-QVVIP and as
a consequence of our results, we establish sufficient conditions for the existence theorem
of a weak minima [3] of the problem (P).

2. PRELIMINARIES

Throught this paper, let D* be the polar cone of D. Let z,y € Y. We denote
zLyify—zceDandz£Lyif y—z¢&wntD. If D is a pointed, closed, convex cone
and D induces a partial order in Y, then (Y, D) is called an ordered topological vector

space.

DEFINITION 1: Let T: X —» L(X,Y), n: X x X — X. Then T is said to be
n-monotone if (T'(z),n(z,y)) — (T(¥),;n(z,¥)) > 0 for all z,y € X.

DEFINITION 2: [8] Let f: X — Y be Fréchet differentiable on X . Then f is said
to be n-invex on X if there exists a function 7: X X X — Y such that for all z,y € X,

f(y) = f(=) 2 (Df(=),n(y, =),

where Df(z) is the Fréchet derivative of f at .

DEFINITION 3: Let T : E C X — L(X,Y). Then T is said to be pre-v-
hemicontinuous if for all z,y € E, the map t — (T(z + t(y — z)),n(y,z)) is continuous
at t=0.

3. MAIN RESULTS

LEMMA 1. Let E C X be a non-empty convex subset and n: E x E — E be a
map with n(z,z) = 0, for all z € E. Suppose that T : E — L(X,Y) is n-monotone
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and pre-v-hemicontinuous and the map (T(z),n(u,y)) is convex with respect to u € E.
Then the following two problems are equivalent.

(a) Find z € E such that (T(z),n(y,2)) £0 forall y€ E.

(b) Find z € E such that (T(y),n(y,z)) £0 forall ye E.
PROOF: (a) That implies (b) follows immediately from the 7-monotonicity of T'.
Conversely, if (b) holds for each z € E, then

(1) (T + (1 - 2,100y + (1 = )2,2))) £ 0, for all y € E.
Since (T(z),n(u,y)) is convex with respect to v and 7(z,z) = 0, it follows that

(2) (T(=z+ My — z),n(z + Ay — ),2)))
< MT(z + My — z),7(y,z))) forall 0 < A < 1.

(1) and (2) imply
(3) (T(z + My — z),m(y,z))) £ 0 for all A € (0,1).
Since T is pre-v-hemicontinuous, it follows from (3) that

(T(z),n(y,z)) £ 0forally € E.

Hence (a) is true. I

THEOREM 1. Let intD # ¢ and intD* # ¢. Let E be a nonempty, compact
convex set in X, n: Ex E — E be a map, n(z,z) = 0, for all = € E. Suppose
T : E - L(X,Y) is n-monotone, pre-v-hemicontinuous and (T'(z),n(u,y)) is convex
with respect to u, and for each fixed y € E, 7(y,z) is continuous with respect to z on
E. Then there exists T € E such that

(T(z),n(z,Z)) £ 0 forallz € E.

PROOF: For each fixed y € E, let Fi(y) = {z € E | (T'(z),n(y,z)) £ 0}. Then
Fy: E — 2P We prove that F; is a KKM map [12]. If this is not the case, there exists
a finite set A = {z;,--- ,z,} € E such that covA ¢ U Fi(z;), where covA denotes

=1

the convex hull of A. Hence there exist a; 2 0,forall 1 =1,--- ,n, Ea, =1 and
z = E a;z; such that z ¢ U Fy(z;). Then z ¢ Fy(z;) for all i = 1 -,n. Hence

(T(= ),_'r](:c,,z)) <0 forali=1,---,n. Since n(z,z) =0 and T(z) € L(X,Y), it
follows that

n

0 = ({T(),n(=,)) < Y es(T(2),m(21,2)) <O

i=1
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This leads to a contradiction. Hence F; is a KKM map.

Let F3(y) = {z € E | (T(y),n(y,)) £ 0}.
Since T is 7-monotone, it is easy to see that F, is also a KKM map on E. By

Lemmal

N A6 =) FW)

yEE yEE

Since for each fixed y € E, we have T(y) € L(X,Y) and n(y,z) is continuous with
respect to ¢ € E and Y'\(—int D) is closed, it follows that F;(y) is a compact subset
in E. By the F-KKM theorem [5].

) F(y) = ] FR(v) # 4.

yE€E yeEE

Hence there exists £ € E such that
(T(z),n(=,Z)) £ 0 forall z € E.

O

LEMMA 2. Let E C X be a nonempty convex set and 7 : Ex E — E be a

map with n(z,z) = 0 for all ¢ € E. Suppose T = (Th,--- ,Tn) : E —» L{X,R"™) is

n-monotone and pre-v-hemicontinuous. Suppose further that for fixed z,y € E and

for each 1 = 1,--- ,n, the map ({Ti(z),n(u,y)) is strongly qasiconvex with respect to

u € E and R" is ordered by R} = {& = (z1,--- ,2z5) :2; 2 0foralli =1, .- ,n}.
Then the following two problems are equivalent.

(a) Find z € E such that (T(z),n(y,z)) £ 0 forall y€ E.
(b) Find z € E such that (T(y),n(y,z)) £0 forall y€ E.

ProoF: That (a)=> (b) is the same as Lemma 1. Conversely, suppose (b) holds.
Then there exists ¢ € E such that (T'(y),n(y,z)) £0foral ye E. Let y€ E, y # =z
and 0 < A < 1, then (T'(Ay + (1 — A)z),n(Ay + (1 — A)z,z)) £ 0. Hence there exists
1 <7 < n such that

(Ti(Ay + (1 = Az, 7(dy + (1 = A)=,2))) > 0.
Since (Ti(z),n(w,y)) is strongly quasiconvex with respect to v € E,

0 < (Ti(Ay + (1 = A)z),n(Ay + (1 — A)z, z))
< ma.x{(T,(,\y +(1- '\)3),77(%-‘0)), (T:(Ay +(1- A):c)a 77(3,2))}
= ma.x{(T,-(Ay + (1 - /\)w,ﬂ(y,w))),o}-
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Hence (Ti(Ay+ (1 — A)z,5(y,z))) > 0, and (T'(Ay + (1 — X)z),n(y,z)) £ 0. Then
following the same argument as Lemma 1, we can show that

(T(2),n(y,2)) £ 0 for all y € E. L
THEOREM 2. Let EC X be a nonempty convex setin E, n: EXE — E bea
function, and for each fixed y € E, let the map n(y,z) be a continuous function of = on
E which, n(z,z) =0 for all z € E. Suppose that T = (T1,--- ,Tn) : E — L(X,R"™) is
n-monotone and pre-v-hemicontinuous. For fixed z,y € E and for each : =1,2,--- ,n,
suppose {T;(z),n(u,y)) is strongly quasiconvex with respect to u. Suppose further that
there exists a compact convex subset K of E such that for each y € E\K there exists
z € K with {T(y),n(=,y)) < 0. Then there exists a Z € K such that (T(z),n(z,z)) £0
forallz € E.

By Lemma 2 and with the same argument as in the proof of Theorem 1, we can show
that for every compact set M C E there exists an T € -M such that (T(Z,n(z,Z))) £0
forall z € M. For each y € E, let

K(y) = {z € K, (T(m)’n(yaz)) % 0}'

Since T : E —» L(X,Y) is continuous and Y\intD is a closed set, it follows that
the set K(y) is closed in K and hence compact. Let {y1,-:: ,ym} C E and let
A=cov[KU{y1, - ;ym}]- Thus A is a compact and convex set in E, so there exists
an T € E such that

(T(Z),n(y,z)) £ 0 for all y € A.

Now Z € K, for otherwise, there exists a y € K such that (T(Z),n(y,Z)) < 0, which
contradits (4). Since (T(Z),7(y,Z)) £ 0 for all z € A, it follows that z € () K ().

i=1
Thus the family of closed subsets {K(y) : y € E} has the finite intersection property.

Since K is compact, it follows that [} K(y) # ¢. So there exists an zo € K(y) forall
yEE

y € E. Therefore there exists a zo € K such that (T'(zo),7(y,%0)) £ 0 forall y € E.

LEMMA 3. (1] Let G : X — 2Y and W be a real valued function defined on
XY, V(2) = supyeaie) W(2,3) and M(z) = {y € G(z) | V(2) = W(z,3)}. Suppose
that
(a) W is continuouson X XY .
(b) G is continuous [1] with compact values [1].
Then the set-valued map M is upper semi-continuous [1].
THEOREM 3. Let E be a nonempty compact convex set in X and C a compact
convex set in Y. Let V : E — 2€ be upper semicontinuous, convex and closed valued
andlet ¢: E x C x E — R be continuous. Suppose that

(a) ¢(z,y,2) 20 forallz€ E,
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(b) For each fixed (z,y) € E x C, ¢(z,y,u) is quasiconvex with respect to
u€ E.
(c¢) G :E - 2F is continuous with compact convex values.

Then there exists T € G(Z) and § € V(z) such that
#(Z,7,2) 20 for all z € G(T).
Proo¥F: For each (z,y) € E XY, let

m(z,y) = {s € G(z) | ¥(z,y,8) = ugg?:)d%z,y, u)}.

Then it follows from Lemma 3 that m(z,y) is upper semicontinuous. Since ¢(z,y,u) is
quasiconvex with respect to u, it follows that n(z,y) is a convex subset of E. The set-
valued function F : E x C — 2F x 2© is defined by F(z,y) = {(v(«,y), V(z))}. Then
F is nonempty, convex closed and upper semicontinuous. By the generalised Kakutani
fixed point theorem [6], there exists (Z,7) € E x C such that (%,y) € F(Z,y). Hence
there exist a £ € G(Z) and a § € V(Z) such that

#(Z,7,2) > ¢(%,3,%) 2 0 for all z € G(Z). 0

THEOREM 4. Let E be a nonempty convex set in X and C a closed convex set
inY. Let V: E — 2° be an upper semicontinuous closed and convex valued map and
let ¢: Ex C x E — R be a continuous function. Suppose that

(a) ¢(z,y,z) 20 forall z€ E.

(b) For each fixed (z,y) € E x C, ¢(z,y,u) is quasiconvex with respect to
ve E.

(c) There exists nonempty compact convex set K C E such that for each
(z,9) € E x C with = € K, there exists u € K such that ¢(z,y,u) <0.

Then there exist a z € K, and a § € V(z) such that
¢(Z,7,u) >0 foralluc E.

PRrROOF: Let M be a compact and convex subset of C. For each u € E, let
K(u) = {z € K | there exists y € V(z) N M such that ¢(z,y,u) > 0}. It is easy to
see that K(u) is a closed subset of K. Let uy, - ,um € E and W(z) = V(z)N M
and A = conv(K U {u1,- - ,um})}. Then A is a compact and convex subset of E. By
Theorem 3, there exist zo € 4, yo € W(xg) = V(zo) N M such that ¢(zo,y0,u) = 0
for all u € A. By the assumption (c), we see that zo € K and z; € ﬁ K(u;). Thus

i=1

the collection {K(u) : u € E} of closed sets in K has the finite intersection property.
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We have ()| K(u)# ¢. Hence there exists z € K(u) for all u € E. This shows that
ueElE

there exist Z € K and § € V(Z)NM C V(Z) such that ¢(z,7,u) > 0 forall uc E. 0
THEOREM 5. Let E be a nonempty compact convex set in X and C be a closed
convex set in Z. Let V : E — 2° be an upper semicontinuous closed convex valued
map, H : ExC — L(X,Y) be continuous and 5 : E x E — E be continuous functions.
Suppose that
(a) m(=z,z)=0.
(b) There exists 0 # y* € D* such that for each (z,y) € E x C, the function
(y* o H(z,y),n(u,z)) is quasiconvex with respect to u € E.

¢) G:E — 2F is continuous with compact values.
p

Then there exist T € G(Z) and § € V(Z) such that
(H(Z,7),n(u,7)) £ 0 for all u € G(z).

PrROOF: Let ¢(z,y,u) = (y* o H(z,y),n(u,z)). Then the theorem follows from
Theorem 3 and the assumption 0 # y* € D*. 1

COROLLARY 1. Let E be a nonempty compact convex set in R, and C be a
nonempty convex set in R™. Let V : E — 2° be an upper semicontinuous, convex and
closed valued map, let H: Ex C — R™ and n: E x E — E be continuous functions.
Suppose that

(3) n(z,2)=0.

(b) For each (z,y) € E x C, the function (H(z,y),n(u,z)) is quasiconvex in
u.

(¢) G:E — 2F is continuous with compact values.

Then there exist T € G(Z), y € V(Z) such that
(H(Z,¥),n(u,Z)) > 0 for all u € G(T).

PROOF: If welet X = R*, Y =R, Z = R™, then H: ExC — L(X,Y) =
L(R™,R) = R™ and the Corollary follows immediately from Theorem 5. 0

REMARK. If G(z) = E for all ¢ € E, then Corollary 1 reduces to Theorem 2 [11].

THEOREM 6. Let E be a nonempty, convex set in X, intD = ¢ and intD* # ¢.
Let n: Ex E — E be a function, n(z,z) =0, n(z, y) = —n(y, z) forall z,y € E and
for each fixed y € E, let n(y,z) be continuous with respect to z € E. Suppose that
f:E —>Y is n-invex on E with T(z) be the Fréchet derivative of f at z. Suppose
that T is pre-v-hemicontinuous on E and (T(z),n(u,y)) is convex with respect to
u € E. Then there exists a T € E such that F is a weak minimum of problem (P).
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ProoOF: Let z,y € E. Since f is n-invex in E it is easy to see that T is -

monotone. Then by Theorem 1 and the #-invexity of f, there exists T € E such that

T is a weak minimum of (P). 0
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(3]

(4]
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