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Climate exhibits a vast range of dissipative structures. Some have characteristic

times of a few days; others evolve over thousands of years. All these structures

are interdependent; in other words, they communicate. It is often considered that

the only way to cope with climate complexity is to integrate the equations

of atmospheric and oceanic motion with the finest possible mesh. Is this the

sole strategy? Aren’t we missing another characteristic of the climate system:

its ability to destroy and generate information at the macroscopic scale?

Paleoclimatologists consider that much of this information is present in

palaeoclimate archives. It is therefore natural to build climate models such as to

get the most of these archives. The strategy proposed here is based on Bayesian

statistics and low-order non-linear dynamical systems, in a modelling approach

that explicitly includes the effects of uncertainties. Its practical interest is illu-

strated through the problem of the timing of the next great glaciation. Is glacial

inception overdue or do we need to wait for another 50,000 years before ice

caps grow again? Our results indicate a glaciation inception in 50,000 years.

Introduction

L’analyse mathématique peut déduire des phénomènes généraux et simples
l’expression des lois de la nature; mais l’application spéciale de ces lois à des
effets très-composés exige une longue suite d’observations exactes.1 (Joseph
Fourier, 1768–1830)

This quote by Joseph Fourier appeared first in the ‘discours préliminaire’ of the
analytical theory of heat.2 With this sentence, Fourier expresses the need of
an inductive approach to complex physical phenomena at the macroscopic scale.
He repeated it at least once, to conclude his mémoire sur les températures du
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globe terrestre et des espaces planétaires,3 in which Fourier formulates what is
known today as the ‘greenhouse effect’. Fourier confesses that ‘the question of
Earth’s temperature is one of the most important and difficult of all the Natural
Philosophy’3 and solving it was one central motivation for the theory of heat.
Clearly, Fourier had fully perceived the complex character of the climate system.
How, two centuries later, do we cope with climate’s complexity? Which math-
ematical analysis is the most appropriate to get the best out of observations? With
this paper, we wish to convince the reader that the most complex model is not
necessarily the most useful. Predicting and understanding the climate system
requires a consistency between the level of complexity of observations, model
prediction and what one wants to predict. Choosing the right model is thus also a
question of information theory.

The case will be illustrated through a polemic currently taking place in the
circle of Quaternary climate scientists. As we shall see in more detail, the climate
history of the past few million years is characterised by repeated transitions
between ‘cold’ (glacial) and warm (interglacial) climates. The first modern men
were hunting mammoth during the last glacial era. This era culminated around
19,000 years ago4 and then declined rapidly. By 9000 years ago, the climate was
close to the modern one. The current interglacial, called the Holocene, has lasted
about the same time as previous interglacials. The polemic is about when it is
supposed give way to a new glacial inception, keeping aside human activities that
have most probably perturbed natural cycles.

On the one side, Bill Ruddiman, Professor of Environmental Sciences, carefully
inspected and compared palaeo-environmental information about the different
interglacial periods. This comparison let him to conclude that glacial inception is
largely overdue.5,6 According to him, the Holocene was not supposed to be that
long, but the natural glacial inception process was stopped by an anthropogenic
perturbation that began as early as 6000 years ago (rice plantations and land man-
agement by antique civilisations). On the other side, Professor André Berger and
colleagues developed a mathematical model of the climate system, rated today as a
‘model of intermediate complexity’7,8 including 15,000 lines of FORTRAN code
to solve the dynamics of the atmosphere and ice sheets on a spatial grid of 1935
elements, with a reasonably extensive treatment of the shortwave and longwave
radiative transfers in the atmosphere. Simulations with this model led Berger and
Loutre to conclude that glacial inception is not due before 50,000 years as long as the
CO2 atmospheric concentration stays above 220ppmv.9 Who is right? Both (Crucifix
and Berger argued that the two statements are not strictly incompatible10)? Neither?
Both Ruddiman and Berger judge that it is possible to predict climate thousands
of years ahead, but is this a realistic expectation? Michael Ghil11 wondered ‘what
can we predict beyond one week, for how long and by what methods?’ This is the
fundamental motivation behind the present article.
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Steps towards a dynamical model of palaeoclimates

An inductive approach to complex system modelling

A system as complex as climate is organised at different levels: clouds, cloud
systems, synoptic waves, planetary waves, pluri-annual oscillations such as El-Niño,
glacial–interglacial cycles, and so on. These patterns constitute information that
is susceptible to being modelled, understood and predicted.

Schematically, spatio-temporal structures are created by instabilities (necessarily
fed by some source of energy), and destroyed by relaxation processes (return
to equilibrium). The resulting stationary patterns are a balance between both. A
typical laboratory example is the Bénard Cells. In the atmosphere, local hydro-
dynamical instabilities result in planetary waves, such as the ones responsible for
dominant north-westerly winds in Canada and south-westerly winds in Europe.

In order to predict the macroscopic properties of atmospheric waves, it is more
useful to consider the conditions under which the instability may develop (the
thermal gradient, the jet stream and the position of the Rockies) than the time and
position of the hypothetic butterfly that triggered the initial instability. The latter
information is irrelevant in the sense that it does not help us to provide a reliable
prediction. (Some philosophers say here that the cause of the baroclinic wave is
then the jet stream and not the butterfly12 because if I wanted to change the shape
of the wave I would act on the jet stream, not on the butterfly).

Our understanding of a complex system may therefore be rated by (1) our
capacity to formulate powerful predictive models linking causes to effects at the
macroscopic scale; and (2) establishing logical connections between different scales
of description, from the microscopic one to the coarsest-grained macroscopic.

Returning to the Bénard cell example, task (1) consists of formulating the
hydrodynamical model that explains the Bénard cell pattern through the growth
of the most unstable wave, given the boundary conditions, and task (2) is to infer
water viscosity from its molecular structure.

We have just seen that macroscopic patterns depend on the parameters that
control the growth of instabilities. Unfortunately, only in relatively idealised and
simple cases is it possible to correctly predict macroscopic patterns from the
microscopic scale. In most natural cases, the mechanisms of instability growth are
so numerous and intricate that the resulting effects cannot possibly be predicted
without appropriate observations. Namely, Saltzman repeatedly insisted13,14 on the
fact that neither current observations nor modelling of the present state of the
atmosphere can possibly inform us of the ice-sheet mass balance with sufficient
accuracy to predict the evolution of ice sheets at the timescale of several thousands
of years. We need to look at palaeoclimate history to get this information.

Climate models should therefore be developed according to an inductive
process: physical arguments provide a prior on the system dynamics and parameters,
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and observations lead us to update the parameters of this model. If the prior model
turns out to be unsatisfactory, new physical considerations are needed to refine the
model. This inductive approach never allows us to affirm that one model is correct,
but it is expected gradually to lead us to models that have good explanatory power
while being at the same time parsimonious and physically sound.

In The Logic of Science Jaynes15 provides a number of elements of statistical
decision theory needed to proceed safely. The foundations date back to the works
of Bayes, Bernouilli and Laplace (who formalised the principle of non-infor-
mative prior), and then Gibbs and Boltzman, according to which the second
principle of thermodynamics is a logical consequence of the fact that one
instance of a macroscopic variable may be realised by many different micro-
scopic configurations. What have been termed causes here, become constraints in
the inductive paradigm – one example is the conservation of energy. Constraints
put conditions on our predictions, and our job is to identify and understand which
constrains are needed to provide good predictions.2 For example, it is observed
that the atmospheric circulation of several planets of the solar system, including
the Earth, is close to a regime of maximum entropy production under the single
constraint of energy balance, given surface albedo.16 This observation suggests
to us that the rotation rate and atmospheric composition do not effectively
constrain the magnitude of the poleward heat transport in these planets (see also
Ref. 17). Dewer18 proposed a formal derivation of the maximum entropy pro-
duction principle based on Jayne’s MaxENT formalism,19 but objections have
been raised.20

Empirical evidence about the quaternary

Building a robust theory of glacial–interglacial cycles requires a profound
knowledge of the Quaternary. This section has no more ambition than to provide
a short glimpse at the vast amount of knowledge that scientists have accumulated
on that period before we tackle Ruddiman’s hypothesis.

The natural archives. By the 1920s, geomorphologists were able to interpret
correctly the glacial moraines and alluvial terraces as the leftovers of previous
glacial inceptions. Penk and Brückner21 (cited by Berger22) recognised four
previous glacial epochs, named the Günz, Mindel, Riss and Würm. The wealth of
data on the Quaternary environments that has since been collected and analysed
by field scientists can be appreciated from the impressive four-volume Ency-
clopedia of Quaternary Sciences recently edited by Elias.23 Analysis of and
interpreting palaeoenvironmental data involve a huge variety of scientific dis-
ciplines, including geochemistry, vulcanology, palaeobiology, nuclear physics,
stratigraphy, sedimentology, glacial geology and ice-stream modelling.

Only a schematic overview of this rich and intense field of scientific activity
could possibly be given here. The reader will find most of the relevant references
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in the Encyclopedia of Quaternary Sciences, and only a few historical ones are
provided here.

Stable isotopes constitute one important class of natural archives. It is indeed
known, since the works of Urey,24 Buchanan25 and Dansgaard26 that physical and
chemical transformations involved in the cycles of water and carbon fractionate the
isotopic composition of these elements. To take but a few examples, ice-sheet
water is depleted in oxygen-18 and deuterium compared with sea water; clouds
formed at low temperatures are more depleted in oxygen-18 and deuterium than
clouds formed at higher temperatures; organic matter is depleted in 13C, such that
inorganic carbon present in biologically active seas and soils is enriched in 13C.
15N is another useful stable palaeo-environmental indicator sensitive to the bio-
logical activity of soils. The isotopic compositions of water and biogenic carbon
are extracted deep-sea sediments, ice and air trapped in ice bubbles, palaeosols,
lake-sediments and stalagmites. One of the first continuous deep-sea records of
glacial-interglacial cycles was published by Cesare Emiliani.27

Radioactive tracers are used to estimate the age of the record and rate of ocean
water renewal. At the timescale of the Quaternary, useful mother-daughter pairs
are 230Th/238,234U (dating carbonates), and 40K/40Ar in potassium-bearing
minerals. The ratio 230Th/231Pa is a useful indicator of ocean circulation rates.

The chemical composition of fossils is also indicative of past environmental
conditions. In the ocean, cadmium, lithium, barium and zinc trapped in the calcite
shells of foraminifera indicate the amount of nutrients at the time of calcite
formation, while the foraminifera content in magnesium and strontium are
empirically correlated to water-temperature.

Glaciologists have also developed ambitious programmes to analyse the com-
position of air (oxygen, nitrogen, plus trace gases such as methane, carbon-dioxide
and nitrogen oxide, argon and xenon) trapped in ice accumulating on ice sheets, of
which the European Project for Ice Core in Antarctica is a particularly spectacular
achievement.28 It was demonstrated that the central plateaus of Antarctica offer a
sufficiently stable environment to reliably preserve air’s chemical composition over
several hundreds of thousands of years. The chemical composition of water is
sensitive to atmospheric circulation patterns and sea-ice area.

Additional sources of information are obtained from a variety of marine and
continental sources. Plant and animal fossils (including pollens) trapped in lakes,
peat-bogs, palaeosols and marine sediments provide precious indications on the
palaeoenvironmental conditions that conditioned their growth. Their presence
(quantified by statistical counts) or absence may be interpreted quantitatively to
produce palaeoclimatic maps.29 Preservation indicators of ocean calcite fossils
are used to reconstruct the history of ocean alkalinity. Palaeosols and wind-blown
sediments (loess) provide precious indications on past aridity at low-latitudes.
The loess grain-size distribution is also sensitive to atmospheric circulation
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patterns. Geomorphological elements remain a premium source of information
about the configuration of past ice sheets, which is complemented by datable
evidence (typically coral fossils) on sea-level.

The structure of Quaternary climate changes. It is straightforward to appreciate
which fraction of the information available in a climate record is relevant to
understanding climate dynamics at the global scale. For example, minor shifts in
oceanic currents may have sensible effects on the local isotopic composition
of water with, however, no serious consequence for glacial–interglacial cycle
dynamics. One strategy is to collect samples from many areas of the world and
average them out according to a process called ‘stacking’. One of the first ‘stacks’,
still used today, was published by John Imbrie and colleagues30 in the framework
of theMapping Spectral Variability in Global Climate Project. It is usually referred
to as the SPECMAP stack. Here, we concentrate on the more recent compilation
provided by Lisiecki and Raymo,31 called LR04. The stack was obtained by
superimposing 57 records of the oxygen-18 composition of benthic foraminifera
shells. Benthic foraminifera live in the deep ocean and therefore record the isotopic
composition of deep water (an indicator of past ice volume). However, there is an
additional fractionation associated to the calcification process, which is proportional
to water temperature. The isotopic composition of calcite oxygen is reported by a
value, named d18Oc, giving the relative enrichment of oxygen-18 versus oxygen-16
compared with an international standard. High d18O indicates either low continental
ice volume and/or high water-temperature.

Visual inspection of the LR04 stack (Figure 1) nicely shows the gradual
transition from the Pliocene – warm and fairly stable – to the spectacular
oscillations of the late Pleistocene. The globally averaged temperature at the
early Pliocene was about 58C higher than today (Ref. 32 and references therein);
and the globally averaged temperature at the last glacial maximum (20,000 years
ago) was roughly 58C lower. Our central research is to characterise these oscil-
lations, understand their origin and qualify their predictability.

The Morlet Continuous wavelet transform provides us with a first outlook on
the backbone of these oscillations (Figure 2). The LR04 record is dominated
most of the time by a 40,000 year signal, until roughly 900,000 years ago, after
which the 40,000 year signal is still present but topped by longer cycles. At
the very least, this picture should convince us that LR04 contains structured
information susceptible of being modelled and possibly predicted.

How many differential equations will be needed? There will be no clear-cut
answer to that question. Time-series extracted from complex systems are
sometimes characterised by their correlation dimension, which is an estimator for
the fractal dimension of the corresponding attractor.35 The first estimates for the
Pleistocene were provided by Nicolis and Nicolis36 (d5 3.4) and Maasch et al.37

(4, d, 6). For this article we calculated correlation dimension estimates for the
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LR04 stack (d5 1.54) and the HW04 stack38 (d5 3.56). HW04 is similar to
LR04 but it is based on different records and dating assumptions. Several
authors, including Grassberger himself39–41 have discouraged the use of corre-
lation dimension estimates for the ‘noisy and short’ time series typical of the
Quaternary because they are overly sensitive to sampling and record length. They
are therefore unreliable.

In response to this problem, Ghil and colleagues41,42 promoted single-spectrum
analysis, in which a time series is linearly decomposed into a number of prominent
modes (which need not be harmonic), plus a number of small-amplitude modes.
Assuming that the two groups are indeed separated by an amplitude gap, the first
group provides the low-order backbone of the signal dynamics while the second
group is interpreted as stochastic noise. Single spectrum analysis was applied with a
certain success to various sediment and ice-core records of the few last-glacial
interglacial cycles42 and have, in general, confirmed that the backbone of climate
oscillations may be captured as a linear combination of a small number of amplitude
and/or frequency-modulated oscillations. Single-spectrum analysis of the last
million years of LR04 (Figure 3) confirms this statement.

The Achilles Heel. Now the time has come to mention a particularly difficult
and intricate issue: dating uncertainty in palaeoclimate records. No palaeoclimate
record is dated with absolute confidence. Marine sediments are coarsely dated by
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Figure 1. The LR04 benthic d18O stack constructed by the graphic correlation
of 57 globally distributed benthic d18O records.31 Note that the full stack goes
back in time to 25.2Myr (1Myr5 1 million years). The signal is the
combination of global ice volume (low d18O corresponding to low ice volume)
and water temperature (low d18O corresponding to high temperature). The Y-
axis is reversed as standard practice to get ‘cold’ climates down. Data
downloaded from http://www.lorraine-lisiecki.com
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routine adapted by J. L. Melice and the author from the original code supplied
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Figure 3. Single Spectrum Analysis (SSA) of the LR04 and HW04 benthic stacks.
Displayed are the eigenvalues of the lagged-covariance matrix of rank M5 100 as
given by Ref. 43, equation (6). The records were cubic-spline interpolated
(Dt51kyr) and only the most recent 900 kyr were kept. The SSA decomposition
of LR04 is very typical: it shows three oscillators (recognisable as pairs of
eigenvectors), then about four modes that are generally interpreted as harmonics of
the dominant ones, and finally a number of modes typically interpreted as stochastic
background. The HW04 stack contrasts with LR04 because the dominant modes
are not so easily evidenced. HW04 uses less benthic records than LR04, but it also
relies on more conservative dating assumptions and this probably resulted in
blurring the quasi-periodic components of the signal. HW04 data were obtained
from http://www.people.fas.harvard.edu/ phuybers/
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identification of a number of reversals of the Earth’s magnetic field, which have
been previously dated in rocks by radiometric means (Ref. 44 and references
therein). Magnetic reversals are pretty rare (four of them over the last 3 million
years) and their age is known with a precision no better than 5000 years. Local
sedimentation rates may vary considerably between these time markers such that
any individual event observed in any core taken in isolation is hard to date.
Irregularities in the sedimentation rate blur and destroy information that might
otherwise be shown by spectral analysis.

One strategy to contend this issue is to assume synchrony between oscillation
patterns identified in different cores. Statistical tests may then be developed on
the basis that dating errors of the different cores are independent. For example,
Huybers45 considered the null-hypothesis that glacial–interglacial transitions (they
are called terminations in the jargon of palaeoclimatologists) are independent on the
phase of Earth’s obliquity. While this null-hypothesis could not be rejected on the
basis of a single record, the combination of 14 cores allowed him to reject it with
99% confidence, proving once more the effect of the astronomical forcing on
climate. The first tests of this kind were carried out by Hays et al.46 in a seminal
paper. Note that in many cases the oscillation patterns recognised in different cores
are so similar that it is hard to dispute the idea of somehow ‘matching them’, but it
is remarkable that rigorous statistical tests assessing the significance of a correlation
between two ill-dated palaeoclimate records are only being developed (Haam and
Huybers, manuscript in preparation).

Another strategy is known as orbital tuning. The method consists of squeezing
or stretching the time-axis of the record to match the evolution of one or a
combination of orbital elements, possibly pre-filtered by a climate model.30,46

The method undeniably engendered important and useful results (e.g. Ref. 47),
but the astute reader has already perceived its potential perversity: orbital tuning
injects a presumed link between orbital forcing and the record. Experienced
investigators recognise that orbital tuning has somehow contaminated most of the
dated palaeoclimate records available in public databases. This has increased the
risk of tautological reasoning.

For example, compare the two SSA analyses shown in Figure 3. As men-
tioned, LR04 and HW04 are two stacks of the Pleistocene but LR04 contains
more information. It is made of more records (57 instead of 21 in HW04) and it is
astronomically tuned. We can see from the SSA analysis that LR04 presents
more quasi-periodic structures than HW04 (recall that quasi-periodic modes are
identified as pairs of eigenvalues with almost the same amplitude). Why is this
the case? Is this because age errors in HW04 blurred the interesting information,
or is it because this information has been artificially injected in LR04 by the
tuning process? There is probably a bit of both (but note that HW04 displays a
similar wavelet structure as LR04).
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Leads and lags between CO2 and ice volume is another difficult problem, where
risks posed by hidden dating assumptions and circular reasoning lie at every corner.
Here is one typical illustration: Saltzman and Verbitsky have shown on several
occasions (e.g. Ref. 48) a phase diagram showing the SPECMAP d18O stack versus
the first full ice-core records of CO2 available at that time.

49,50 It is reproduced here
(Figure 4, left). The phase diagram clearly suggests that CO2 leads ice volume at the
100kyr time scale. However, a detailed inspection of the original publications
reveals that the SPECMAP record was astronomically tuned, and that the Vostok
time-scale uses a conventional date of isotopic stage 5.4 of 110kyr BP y by
reference to SPECMAP50! The hysteresis is therefore partly conditioned by arbitrary
choices. In Figure 4 we further illustrate the fact that the shape of the hysteresis
depends on the stack record itself. The situation today is that there is no clear
consensus about the phase relationship between ice volume and CO2 at the glacial
interglacial time scale (compare Refs 51–53). According to the quite careful analysis
of Ref. 52, CO2 leads ice volume at the precession (20 kyr) period, but CO2 and
ice volume are roughly synchronous at the obliquity (40 kyr) period. Current evi-
dence about the latest termination is that a decrease in ice volume and the rise in CO2

were grossly simultaneous and began around 19,000 years ago.51,54

Getting physical laws into the model

So far, we have learned that palaeoclimate oscillations are structured and that it is
not unreasonable to attempt modelling them with a reduced order model forced

Figure 4. The concentration in CO2 measured in the Vostok ice core record55

over the last glacial-interglacial cycle is plotted versus two proxies of
continental ice volume: (left) the planctonic d18O stack by Imbrie et al.
(1984); and (right) the benthic d18O stack by Lisiecki and Raymo.31 Numbers
are dates, expressed in kyr BP (before present). While the Imbrie stack suggests
a hysteresis behaviour with CO2 leading ice-volume variations, the picture
based on LR04 is not so obvious
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by the astronomical variations of Earth’s orbit. What is the nature of the physical
principles to be embedded in such a model, and how can they be formalised? The
history of Quaternary modelling is particularly enlightening in this respect (the
reader will find in Ref. 22 an extensively documented review of Quaternary
climates modelling up to the mid-1980s). After Joseph Adhémar (1797–1862)
suggested56 that the cause of glaciations is the precession of the equinoxes,
Joseph John Murphy and James Croll (1821–1890) argued about how precession
may affect climate. Murphy maintained that cold summers (occurring when
summer is at aphelion) favour glaciation,57 while Croll considered that cold
winters are critical.58

Croll’s book demonstrates a phenomenal encyclopaedic knowledge. His jud-
gements are at places particularly far-sighted, but they are barely substantiated by
the mathematical analysis Fourier was so much insistent about. The nature of his
arguments is essentially phenomenological, if not, in places, frankly rhetorical.

Milutin Milankovitch (1879–1958) is then generally quoted as the person
having most decisively crossed the step towards mathematical climatology. In a
highly mathematical book that crowns a series of articles written between 1920
and 1941,59 Milankovitch extends Fourier’s work to estimate the zonal dis-
tribution of the Earth’s temperature from incoming solar radiation. He also
computes the effects of changes in precession, eccentricity and obliquity on
incoming solar radiation at different latitudes to conclude, based on geological
evidence, that summer insolation is indeed driving glacial–interglacial cycles.

Mathematical analysis is the process that allows Milankovitch to deduce the
consequences of certain fundamental principles, such as the laws of Beer,
Kirchhoff and Stefan, on global quantities such as Earth’s temperature. On the
other hand, Milankovitch uses empirical macroscopic information, such as the
present distribution of the snow-line altitude versus latitude, to estimate the
effects of temperature changes on the snow cover. In today’s language, one may
say that Milankovitch had accepted that some information cannot be immediately
inferred from microscopic principles because they depend on the way the system
as a whole has been dealing with its numerous and intricate constraints (Earth’s
rotation, topography, air composition etc).

The marine-record study published by Hays, Imbrie and Shackleton46 is often
cited as the most indisputable proof of Milankovitch’s theory. Hays et al. iden-
tified three peaks in the spectral estimate of climate variations that precisely
correspond to the periods of obliquity (40 kyr) and precession (23 kyr and 19 kyr)
calculated analytically by André Berger (the supporting papers by Berger would
only appear in the two following years;60–62 Hays et al. based themselves on a
numerical spectrum estimate of the orbital time-series provided by Vernekar63).

However, sensu stricto, Milankovitch’s theory of ice ages was invalidated by
evidence – already available in an article by Broecker and van Donck64 – that the
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glacial cycle is 100,000 years long, with ice build up taking about 80,000 years
and termination about 20,000 years.46,64 Neither the 100,000-year duration of
ice ages, nor their saw-tooth-shape were predicted by Milankovitch. The bit
Milankovitch’s theory is missing is the dynamical aspect of climate’s response.
Glaciologist Weertman65 consequently addressed the evolution of ice sheet size
and volume by means of an ordinary differential equation, thereby opening the
door to the use of dynamical system theory for understanding Quaternary
oscillations.

In the meantime, general circulation models of the atmosphere and oceans
running on supercomputers became widely available (cf. Ref. 66 for a review),
and used for palaeoclimate purposes.67–69 The interest of these models is that
they provide a consistent picture of the planetary dynamics of the atmosphere and
the oceans. Just as Milankovitch applied Beer and Kirchoff’s laws to infer Earth’s
temperature distribution, general circulation models allow us to deduce certain
aspects of the global circulation from our knowledge of balance equations in each
grid cell. However, these balance equations are uncertain and quantifying the
consequences of these uncertainties at the Earth global scale is a very deep
problem that only begins to be systematically addressed.70 While general cir-
culation models are undeniably useful to constrain the immediate atmospheric
response to changes in orbital parameters, they are far too uncertain to reliably
estimate glacial accumulation rates with enough accuracy to predict the evolution
of ice sheets over tens of thousands of years.13

In the following sections we will concentrate on a three-dimensional climate
dynamical model written by Saltzman. This choice was guided by the ease of
implementation as well as the impressive amount of supporting documentation.14

However, there were numerous alternatives to this choice. The reader is referred to
the article by Imbrie et al.71 and pp. 264–265 of Saltzman’s book14 for an outlook
with numerous references organised around the dynamical concepts proposed to
explain glacial–interglacial cycles (linear models, with or without self-sustained
oscillations, stochastic resonance, a model with large numbers of degrees of freedom).

The series of models published by Ghil and colleagues72–74 are among the
ones having the richest dynamics. They present self-sustained oscillations with a
relatively short period (6000 years). The effects of the orbital forcing are taken
into account by means of a multiplicative coefficient in the ice mass balance
equation. This causes non-linear resonance between the model dynamics and
the orbital forcing. The resulting spectral response presents a rich background
with multiple harmonics and band-limited chaos. More recently, Gildor and
Tziperman75 proposed a model where sea-ice cover plays a central role. In this
model, termination occurs when extensive sea-ice cover reduces ice accumula-
tion over ice sheets. Like Saltzman’s, this model presents 100-kyr self-sustained
oscillations that can be phase-locked to the orbital forcing.
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Field scientists with life-long field experience have also proposed models usually
qualified as ‘conceptual’, in the sense that they are formulated as a worded causal
chain inferred from a detailed inspection of palaeoclimate data without the support
of differential equations. Good examples are Refs 52,71,76,77. In the two latter
references, Ruddiman proposes a direct effect of precession on CO2 concentration
and tropical and southern-hemisphere sea-surface temperatures, while obliquity
mainly affects the hydrological cycle and the mass-balance of northern ice sheets.

The Saltzman model (SM91)

As a student of Edward Lorenz, Barry Saltzman (,2002) contributed to the
formulation and study of the famous Lorenz63 dynamical system78 traditionally
quoted as the archetype of low-order chaotic system.79 Saltzman was therefore in
an excellent position to appreciate the explanatory power of dynamical system
theory. Between 1982 and 2002 he and his students published several dynamical
systems deemed to capture and explain the dynamics of Quaternary oscilla-
tions.13,14,80–83 In the present article we choose to analyse the ‘palaeoclimate
dynamical model’ published by Saltzman and Maasch82. We will refer to this
model as SM91.

Saltzman estimated that the essence of Quaternary dynamics should be captured
by a three-degree-of-freedom dynamical system, possibly forced by the variations
in insolation caused by the changes in orbital elements.13 The evolution of
the climate at these time scales is therefore represented by a trajectory in a three-
dimensional manifold, which Saltzman called the ‘central manifold’. The three
variables are ice volume (I), atmospheric CO2 concentration (m) and deep-ocean
temperature (y). It is important to realise that Saltzman did not ignore the
existence of climate dynamics at shorter and longer time scales than those that
characterise the central manifold, but he formulated the hypothesis that these
modes of variability may be represented by distinct dynamical systems. In this
approach, the fast relaxing modes of the complex climate system are in thermal
equilibrium with its slow and unstable dynamical modes. This assumption is
called the ‘slaving principle’ and it was introduced by Haken.84

The justification of time-scale decoupling is a very delicate one and it deserves
a small digression. In some dynamical systems, even small-scale features may
truly be informative to predict large-scale dynamics. This phenomenon, called
‘long-range interaction’, happens in the Lorenz63 model.85 The consequence is
that one might effectively ignore crucial information by averaging the fast modes
and simply assume that they are in thermal equilibrium. To justify his model,
Saltzman used the fact that there is a ‘spectral gap’ – that is, a range of periods
with relatively little variability – between weather (up to decadal time-scales)
and climate (above one thousand years). This gap indicates the presence of
dissipative processes that act as a barrier between the fast and the slow dynamics.
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It is therefore reasonable to apply the slaving principle. In relation to this, Huybers
and Curry recently published a composite spectral estimate of temperature varia-
tions ranging from sub-daily to Milankovitch time scales.86 No gap is evident, but
Huybers and Curry identify a change in the power-law exponent of the spectral
background: signal energy decays faster with frequency at the above the century time
scale than below. They interpret this as an indication that the effective dissipation
time scale is effectively larger above the century time scale than below, and therefore
that the dynamics of slow and fast climatic oscillations are at least partly decoupled.

The three differential equations of SM91 are now given.
The ice-mass balance is the result of the contribution of four terms: a drift, a

term inversely proportional to the deviation of the mean global temperature
compared with today (t), a relaxation term, and a stochastic forcing representing
‘all aperiodic phenomena not adequately parameterised by the first three terms’:

dI

dt
¼ j1 � j2 �t� j3IþWI ðtÞ ð1Þ

According to the slaving principle, t is in thermal equilibrium with the slow vari-
ables {I, m, y} and its mean may therefore be estimated as a function of the latter:

�t ¼ �tI ðIÞ þ �tmðmÞ þ �tyðyÞ þ �tRðRÞ ð2Þ

where tx(x) is the contribution variation of x compared with a reference state,
keeping the other slow variables or forcing constant. R designates the astro-
nomical forcing (Saltzman used incoming insolation at 658 N at summer solstice).
The different terms �tð:Þ are replaced by linear approximations, the coefficients of
which are estimated from general circulation model experiments.

The CO2 equation includes the effects of ocean outgassing as temperature
increases, a forcing term representing the net balance of CO2 injected in the
atmosphere minus that eliminated by silicate weathering, a non-linear dissipative
term and a stochastic forcing:

du

dt
¼ b0 � byyþ Fm � KmmþWm ð3Þ

with

Km ¼ b1 ¼ b2mþ b3m
2

The dissipative term (Kmm) is a so-called Landau form and its injection into the
CO2 equation is intentional to cause instability in the system. In an earlier paper
(e.g. Ref. 87), Saltzman and Maash attempted to justify similar forms for the CO2

equation on a reductionist basis: each term of the equation was identified to
specific, quantifiable mechanisms such as the effect of sea-ice cover on the
exchanges of CO2 between the ocean and the atmosphere or that of the ocean
circulation on nutrient pumping. It is noteworthy that Saltzman and Maash
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gradually dropped and added terms to this equation (compare Refs 81,82,87) to
arrive at the above formulation by which they essentially posit a carbon cycle
instability without explicitly caring about causal mechanisms.

The deep-ocean temperature simply assumes a negative dependency on ice
volume with a dissipative relaxation term:

dy

dx
¼ g1 � g2I� g3yþWy ð4Þ

The carbon cycle forcing term Fm is assumed to vary slowly at the scale of
Quaternary oscillations. It may therefore be considered to be constant and its value
is estimated assuming that the associated equilibrium is achieved for a CO2 con-
centration of 253 ppmv. We shall note {I0, m0, y0} the point of the central manifold
corresponding to that equilibrium, and {I0, m0, y0} the departure from it. Further
constraints are imposed by semi-empirical knowledge on the relaxation times of
ice sheet mass balance (10,000 years) and deep-ocean temperature (4,000 years).

Saltzman and Maasch82,88 explored the different solution regimes of this
system and they observed that climate trajectories converged to a limit cycle
characterised by saw-tooth shaped oscillations for a realistic range of parameters.
When the model is further forced by the astronomical forcing, the uncertainty left
on the empirical parameters of equations (1)–(4) provides the freedom to obtain
very convincing solutions for the variations in ice volume and CO2 during the
late Quaternary. Figure 5 reproduces the original solution,82 using the parameters
published at the time. As in the original publication, the solution is compared
with Imbrie’s d18O-stack30 interpreted as a proxy for ice volume, and CO2 record
extracted from the Vostok and EPICA(Antarctica) ice cores.55,89

Limit-cycle solutions in SM91 (Figure 6) owe their existence to cubic terms
in the CO2 equation. In fact, all parameters being constant, a limit-cycle occurs
only for certain carefully chosen values of m0, which led Saltzman to conclude
that the cause of glacial–interglacial oscillations is not the astronomical forcing
(a linear view of causality) but rather the gradual draw-down of m0 at the tectonic
time scale that permitted the transition between a stable regime to a limit-cycle
via a Hopf bifurcation. According to this approach, astronomical forcing controls
in part the timing of terminations by a phase-locking process, but terminations
essentially occur because negative feedbacks associated with the carbon cycle
become dominant at low CO2 concentration and eject the system back towards
the opposite region of its phase space.

The Bayesian inference process

Approaches founded on low-order dynamical systems are regularly suspected
of being tautological: what can you learn from a model if you tuned it to match
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observations? There is no doubt that the empirical content of any model – i.e.
its capacity of being in conflict with observations – has to be assessed with the
utmost care. Several authors have, in particular, insisted on the difficulty of finding
discriminating tests for models with similar dynamical characteristics but built on
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Figure 5. Response of the palaeoclimate model of Saltzman and Maasch.82

Shown are the insolation forcing, taken as the summer solstice incoming solar
radiation at 658 N after Ref. 62; the ice volume anomaly (full), overlain with the
SPECMAP planctonic d18Oc stack

30 (dashed), the CO2 atmospheric concentration,
overlain with the Antarctic ice core data from Vostok and EPICA,55,89 and finally
deep-ocean temperature. Note that I0 and m0 are anomalies to the tectonic average.
A similar figure was shown in the original article by Saltzman and Maasch
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different interpretations of the climate system’s functioning.90,91 It is therefore
challenging but important to identify and design powerful tests for such models.

Nevertheless, it has to be appreciated that the risk of tautology is also present in
the most sophisticated general circulation models of the atmosphere and ocean.
Once assembled, these models are ‘tuned’ to capture major and global character-
istics of climate such as the overturning cell or the global mean temperature (e.g.
Ref. 92). This ‘tuning’ is an effective way of incorporating macroscopic information
in the model, and this information can no longer said to be ‘predicted’.

Statistical decision theory allows us to address, at least partly, these difficult
problems. We will concentrate on one branch of it: Bayesian inference. The para-
digm of Bayesian inference finds its roots in early works by Bayes, Laplace and
Bernouilli who were looking for ways of augmenting their knowledge of certain
quantities, such as initial conditions or parameters, by means of observations.19

Rougier93 explains how Bayesian inference methods may be applied to the problem
of climate prediction. His conclusions are summarised hereafter, but adapted where
relevant to the problems posed by palaeoclimate time-series analysis. Compared with
Rougier, we more explicitly consider here the fact that climate is a dynamical body,
whose evolution has to be predicted by means of time-differential equations.

Before embarking on the mathematical details, it is useful to recall two aspects
inherent to complex system modelling introduced in the subsection on ‘An
inductive approach to complex system modelling’. The first aspect is that by
focusing on certain modes of climate variability we ignore a large body of
information, such as its synoptic variability and, for example, the occurrence of a
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Figure 6. Phase-space diagrams of trajectories simulated with the SM91 model,
using standard parameters. The model exhibits a limit cycle in the absence of
external forcing, with a trajectory that resembles those obtained with data
(Figure 4). The astronomical forcing adds a number of degrees of freedom that
complicates the appearance of the phase diagram
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particular volcanic eruption at any particular moment. This ignorance causes
prediction errors that have to be parameterised, typically as a stochastic forcing
or error (we will here neglect the epistemological distinction between stochastic
forcing and error). Model validation consists of verifying that the model
assumptions are compatible with observations. A crucial but often forgotten point
is that validation tests depend on the judgements we will have made about the
probability distribution of the model error: if we considered that the model error
could take any value, the model would always be compatible with observations,
but it would also be useless.

The second aspect of complex system modelling is that we accept considering
information that it is not immediately deduced from our knowledge of micro-
scopic interactions. In the case we are considering, these extra statements take the
form of conjectures about the mathematical expressions of carbon, ocean and ice-
sheet feedbacks, which are calibrated by reference to observations.

Our purpose is to formalise as rigorously as possible the validation and calibration
processes. To this end, let us denote y(t) as a vector describing the state of climate at
a given time t. We further denote y as the climate evolution over a given time interval
not necessarily restricted to the observable past. It is useful to distinguish notationally
the variable Y, which may a priori take any value in a given space, from its realisation
y. The exact value of y is never known because any measurement or prediction is
affected by errors, but the fact of positing the existence and attaching a meaning to
y enables us to structure and justify our judgements.

Palaeoclimatologists attempt to retrieve information on y by taking measurements
in a palaeoenvironmental record. Let z be a series of observations such as, for
example, the delta-Deuterium of ice in an Antarctic ice core sampled at certain
depths. They estimate that z is conditionally dependent on y, which one may write as:

y�!
p

z ð5Þ

This means that their expectation on z depends on their knowledge of y. This
expectation can be quantified by means of a probability density function for Z,
thought of as a function of z:

PðZ ¼ z Yj ¼ y; pÞ ð6Þ

Building an expression for equation (6) requires us to formulate a number of
assumptions, forming a climate proxy model that we have symbolically denoted
p. In practice, it may be preferable to decompose this model into a chronological
chain of nested processes, each bearing uncertainties: the effect of climate on the
hydrological cycle, isotopic fractionation, accumulation of ice, preservation of
the signal in the core, drilling and actual measurement. The more there are
uncertainties, the wider will be PðZ ¼ z Yj ¼ y; pÞ.
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Bayesian inversion then indicates how z is informative on y:

PðY ¼ y Zj ¼ z; pÞ ¼
PðZ ¼ z Yj ¼ yÞPðY ¼ yÞ

PðZ ¼ z pÞ
�� ð7Þ

This equation has important lessons. First, updating an estimate of y on the basis of
observations requires us to have some prior judgement expressed in the form
P(Y5 y). This important question will be kept aside a moment. Second, the
denominator on the right-hand side is independent of y. It represents a marginal
likelihood, which may be thought of as a point-estimate of a predictive distribution
of Z given our prior judgement on y along with the assumptions contained in p.
In practice it is evaluated as:

PðZ ¼ z pÞ ¼

Z
PðZ ¼ z Y ¼ y; pÞPðY ¼ yÞdy

��
���� ð8Þ

The validation of p consists of determining whether P(Z5 z|p) lies in the tails of
its distribution. The presence of an observation in the tails of its predictive
distribution means that it was not likely to occur according to the theory
expressed in p. Such an outcome will incline us to confidently reject the theory in
the same way that one rejects a null-hypothesis in classical statistics tests. This is
easily diagnosed in the case where z is a scalar, in which case it may be checked
whether the marginal probability P(Z, z|p) is not too close to zero or one.

PðZz pÞ ¼

Z
PðZoz Y ¼ y; pÞPðY ¼ yÞdy

��
���� ð9Þ

In practice, z is often highly dimensional and its predictive distribution may be
particularly intricate, especially in chaotic dynamical systems.

At present, it is useful to split y into its ‘past’ (yp) and ‘future’ (yf) components. If
the past is known, the record content is obviously independent on the future, i.e.

PðZ ¼ z Yp ¼ yp; Yf ¼ yf ; pÞ ¼ PðZ ¼ z Yp ¼ yp; pÞ
���� ð10Þ

Equations (7) and (11) tell us that in the absence of any additional assumption,
past observations are not informative on the future. Predicting climate requires us
to assume a certain dynamical structure to climate evolution to link yp to yf. This
is the role of the climate model. It is, in principle, always possible to formulate
this model in terms of first-order differential stochastic equations if the climate
state y(t) is suitably defined. Climate time-series are in this case Markovian:
given climate at any time t0, the probability density function of climate at time t1
may be estimated and written:

Pðyðt1Þjyðt0Þ; c;A ¼ aÞ ð11Þ

where we distinguish the ensemble of model equations (denoted c) from their
parameters, gathered into a single vector variable denoted A. More generally, the
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model allows us to estimate the probability density of any climate time-series,
which we shall write as:

a c

c

y

y (t0)

ð12Þ

The model makes it thus possible to build a predictive distribution function for y
given any prior estimate of the possible values of a and y(0).

The climate and climate proxy models may then be combined to form a
Bayesian network:

a

c c

c

c
p

z

yp

yh

y(t0)

ð13Þ

Solving the network means finding the joint distribution of a, y(t0), yh, yp and z
compatible with all the constraints expressed in p and c (e.g. Ref. 94, pp. 167 and
onwards). Keeping in mind that the arrows may be ‘inverted’ by application of
Bayes’ theorem, it appears that there are two routes by which z constrains yp: via
yh (that is, constraining the initial conditions to be input to the model forecast of
the future), and more indirectly via a. In the latter route, all observations agree to
constrain a distribution of the model parameters that is compatible with both the
model structure and the data.

Two more remarks: first, equation (13) shows that the climate model has
solved the problem of finding a prior to y (it is provided by the model), but this is
at the price of having to find a prior for parameter a. It may happen that one
parameter has no clearly identified physical meaning (such as b4 in equation (3))
and we would like to express our total ignorance about it, except for the fact that
it is positive. It happens that there is no definitive solution to the problem of
formulating a totally ignorant prior. However, if the observations are very
informative, the posterior distribution of a is expected to depend little on its prior.

The second remark is about the marginal likelihood, that is, our assessment of the
plausible character of observations z given the structural assumptions in models
p and c along with the prior on a. It is crucial to be clear about what is being tested.
For example, one may be content to assess the position of z, thought of as an
n-dimensional vector (n is the number of observations) in the manifold of likely
Z values given the prior on a. This test takes for granted that the stochastic error is
effectively white-noise distributed. This being said, it may be useful to effectively
test the white-noise character of the model error, typically by estimating the
likelihood of the lagged-correlation coefficients of the stochastic error. Lagged-
correlation coefficients significantly different than zero almost surely indicate that
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there is information in the stochastic error terms. This would prove that the model is
incomplete in the sense that its predictive ability can almost surely be improved.

An Application of the Particle Filter95

Network (13) is an example of a combined parameter and time-varying state esti-
mation problem. This kind of problem is highly intractable, but statisticians have
been looking at ways of finding approximate solutions based on Monte-Carlo
simulations. Here we use an implementation of the particle filter developed by Liu
and West.96 This is a filter that is a sequential assimilation method: observations are
used to refine parameter distribution estimates as the time-integration of the model
progresses. The reader is referred to the original publication for a fuller discussion
of the method and we will briefly summarise here the sequential algorithm.

First we reformulate network (13) into a more tractable problem:
y(t0)

c

c

c

c

c

c

a

c

c

p

p

y1

y2

ym

ym+1

yn

p

z1

z2

zm

...

...

ð14Þ

The important difference with network (13) is that the observations are bound to
individual state vectors. This implies that their dating is certain (they can
unambiguously be associated with a climate state at a given time) and that there
is no diffusion of the signal within the record.

The climate model (c) is SM91 (equations (1)–(3)), the equations of which are
summarised hereafter:

dI 0

dt
¼ �a1½kmm0 þ kyy

0
þ kRR

0ðtÞ� � KII
0 þWI ðc1Þ

dm0

dt
¼ b1m0 � b2m02 þ b3m03 � byyþWm ðc2Þ

dy0

dt
¼ �c1I

0 � K
0

y þWy ðc3Þ
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The coefficients ai, bi, ci and Ki are functions of the fi, bi, gi determined using
the condition that the equations for {I0,m0, y0} present a fixed-point at 0 (i.e.
{I0,m0, y0} is a long-term, ‘tectonic’ equilibrium). Coefficients kx appear in the

(unitless)

Figure 7. Prior (dashed) and posterior (full) density estimates of the parameters
allowed to vary in SM91. The filter has been successful in narrowing down the
distributions

392 Michel Crucifix

https://doi.org/10.1017/S106279870900074X Published online by Cambridge University Press

https://doi.org/10.1017/S106279870900074X


process of linearising the short-term response and can in principle be estimated
with general circulation models. The reader is referred to the original publica-
tions for fuller details.

The climate proxy model (p) is very simple. We will use the SPECMAP stack
of planctonic foraminifera to constrain ice volume,30 and the Vostok (Antarctica)
ice core by Petit et al.55 for CO2.

d18Oc ¼
0:71

45� 1018 m3
I 0 þWd ðp1Þ

CO2 ¼ mþWCO2
ðp2Þ

Equation (p1) uses the fact that the Imbrie et al. record is expressed in standard
deviation units with zero mean, along with the constraint that a total ice melt of
453 1015m3 is recorded as a drop of 0.71 (unitless) in Imbrie et al. We therefore
neglect the influence of ocean temperature on the record, while this issue is
contentious. Errors are parameterised by means of additive stochastic Gaussian
white noise with standard deviations of 0.2 (equation (p1)) and 20 ppm (equation
(p2)), respectively.

The above approximations (neglecting dating uncertainty, in-core diffusion and an
unduly simple isotope model) will no longer be tenable as this research project
develops but they are suitable for a first application of the particle filter algorithm.
Consequently, results should be considered with the necessary caution.

We now review the particle-filter algorithm. A particle is essentially a rea-
lisation of the state vector (say: y(t0)) associated with a realisation of the para-
meters (A5 {ln(ai,bi,ci)}) and a weight (w). Ten thousand (n) particles are
initialised by sampling the prior of y(t0) and A. Prior parameter distributions are
log-normal around the values given in SM91 (Figure 7). Only the ai, bi, c1 and ky
are considered to be uncertain, while the dissipative exchange coefficients KI and
Ky as well as the climate sensitivities km and kR are assumed to be known (Table 1).

All weights are initialised to 1. The filter then consists of an iterative six-step
process. Say we are at time t.

Step 1. Propagation, that is, time-integration of all particles until the time
(t1 1) corresponding to the next available data (either CO2 or d18O).

Step 2. Shrinkage. Particles are now dispersed in a region of the {Y, A}. This region
is shrunk, that is, the particles are made closer to each other by a factor a.

Step 3. Weight estimate. Particle weights are multiplied by the likelihoods
P(Z5 z|Y5 yj), where yj is the state of particle j, and z is the
encountered data.

Step 4. Importance of resampling based on posterior estimate. After Step 2,
some particles may be given a large weight while others only a small
one. Particles are therefore resampled in such a way that they all get a
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similar weight. This implies that some particles are duplicated while
others are killed. Particles are now distributed along k, n kernels.

Step 5. Resampling of kernels. Each kernel is broken apart into particles with
parameters scattered with variance h2.

Step 6. Weight update. Particles’ weights are updated according to their likelihood.

Shrinkage and kernel sampling are artefacts introduced to avoid filter degeneracy.
Liu and West96 note that the estimator is unbiased for a 5 (3d21)/2d and
h2 5 12a2. The parameter d is called a discount factor. It must lie in [0,1] and
typically be around 0.95–0.99. Here we choose d 5 0.95. We found that the
parameter disturbance due to the filter dominates any reasonable amount of
stochastic error that could be parameterised via W. Therefore, we decided not to
account for the model stochastic error noise to gain computing efficiency.

Figure 8 summarises the essential features of the particle filter run. It repre-
sents, for each prognostic variable, the evolution of the state estimate (shaded)
along with the data. The dark and light shades represent the central 50 and 90%
percentiles of the weighted particle distribution. The filter algorithm updates the
parameter estimates as it meets the data (The posterior parameter distributions are
compared to the prior in Figure 7), which explains why the state estimates
become narrowed as time progresses. The dots and pluses are the observation
estimates of ice volume and CO2. The fourth panel is a first step towards model
validation. It displays, for each observation, the model predictive probability that
this observation was smaller or equal than its value, exactly in the spirit of
equation (9). Values too close to zero or one cast doubt on the model.

It was unexpected that the fit of the state estimates of the ice volume on SPEC-
MAP would be so poor. In fact, the model systematically overestimates ice volume
during interglacials and this occurs as soon as CO2 observations are taken into
account. Strictly speaking, the model is invalidated. Where does the problem lie?

The most obvious possibility is that we have incompletely modelled the
SPECMAP stack. Indeed, we know that water temperature contributes to the d18Oc

signal but this contribution is missing in the model (Refs 53,97–99, the latest
reference being another example of data reanalysis).

Table 1. Values of SM91 fixed parameters used both in the
original publications and in the present article.

Parameter Fixed value
kg 0.04K/ppm/yr
k0 0.51/yr
kR 0.08K/Wm22/yr
KI 1.e-41/yr
Ky 2.5e-4 yr21
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In spite of this weakness, we will assume that the model estimates of I’give a
correct representation of ice volume anomalies around a tectonic time-scale
average. Ice-volume levels typical of the last interglacial then correspond to
I05 2153 1018m3 in the model. The model prediction is an immediate but slow
decrease in CO2 concentration (Figure 8) but without glacial inception before
about 50,000 years (this is the Berger and Loutre prediction9!). The particle filter
also tells us that given the information at our disposal (the model, the data, and

Figure 8. Filtered state estimates with the SM91 model constrained by the
SPECMAP data (squares), and the Antarctic ice core data (pluses). The state
estimates are represented by shades, dark and light grey representing the [25th;
75th] and [5th; 95th] quantiles of the particle weighted distributions,
respectively. The lower graph represents, for each data, the model predictive
probability that the data would have been lower than it actually was, given the
previous parameter and state estimates. The repetition of probabilities below
0.05 or above 0.95 tend to invalidate the model
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the parameter priors), it is not possible to provide a reliable estimate of the
evolution of climate beyond 50,000 years.

What about Ruddiman’s hypothesis? Ruddiman considers that humans perturbed
climate’s evolution around 8000 years ago. Therefore, we want to only consider data
until that time, and see whether the model prediction differs from the previous one.
The experiment was carried out and the results are presented on Figure 9. The grey
boxes provide the prediction with data assimilated until 8,000 years ago, and the
white ones are the prediction with data assimilated until today. The two predictions
are clearly indistinguishable. Contrarily to Ruddiman, our model was therefore not
‘surprised’ by the fact that CO2 continued to increase during the last 6000 years.

Conclusion

Behind this paper is the message that climate modelling is not and should not be
a mere technological question. Of course, general circulation models skilfully

Figure 9. State estimate with the SM91 model, given data on CO2 and ice
volume between 410 kyr BP and 8 kyr BP (white) or 0 lyr BP (grey). The
subsequent prediction, with glacial inception in 50 kyr, is little affected by the
data between 8 and 0 kyr BP. This is opposed to Ruddiman’s hypothesis
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predict many complicated aspects of atmosphere and ocean dynamics; in that
sense they are important and useful. Yet, they are but one aspect of the theoretical
construct that underlies state-of-the-art knowledge of the climate system.
Important questions are how we validate and calibrate climate models to provide
the most informed predictions on climate change.

Palaeoclimates offer a premium playground to test the paradigms of complex
system theory. We have been insistent on the fact that palaeoclimate theory must
rely on two pillars of modern applied mathematics: dynamical system theory and
statistical decision theory. Along with the fact that palaeoclimate data have to be
interpreted and retrieved by skilful field scientists, their analysis turns to be a
truly multidisciplinary experience. The exceptionally difficult challenges so
posed are definitively at the frontier of knowledge.
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