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Abstract The objective of this study is to estimate possible
impacts of global climate change on the geographical
distribution of the African lion Panthera leo in the coming
decades. Current lion population occurrence data across
Africa and distributions of lions in historical times
(6,000-100 years before present) were obtained from the
literature and integrated with data on present-day climates
to generate ecological niche models. Models based on
distributions of African lions were tested for predictive
ability based on various subsetting approaches and were
projected across Asia, Africa and Europe, to retrodict
the distribution of the species for the past 6,000 years. These
models were highly accurate, giving confidence in future
projections. Future potential distributions were predicted
by projecting ecological niche models onto three climate
scenarios of future greenhouse gas emissions based on eight
climate models for the years 2040-2070. The prediction was
of relative range stability into the future: few new areas were
identified as becoming suitable for the species but large
areas of southern Africa and West Africa are expected to
become less suitable. Predictions of effects of climate change
on potential distributions of lions may assist conservation
efforts by clarifying options for mitigation and response.
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Introduction

ions Panthera leo were widely distributed across Africa,
South-west Asia and southern Europe during historical
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times. In Africa lions occupied most of the continent except
for the central Sahara and the rainforest areas of central
Africa (Ray et al., 2005). Sculptures depict Pharaohs killing
male lions on the shores of the Nile. Systematic capture and
culling of North African lions expanded during the time of
the Roman Empire and continued into the 20th century
(Maas, 2010), to the point that they are now extirpated from
the region. Human encroachment in the form of population
expansion, agricultural activities and urban development
has further impinged on the species” habitat and demogra-
phy in recent decades.

Numbers of African lions are currently estimated to be
between 23,000 (Bauer & Van Der Merwe, 2004) and 39,373
(Chardonnet, 2002) and the species is categorized as
Vulnerable on the TUCN Red List (Bauer et al., 2012).
At present lion populations are mostly restricted to
protected areas, where populations have been essentially
stable over the last 3 decades (Ray et al., 2005). Although the
species may largely be protected from direct conflict with
humans, the potential effects of global climate change on
this limited population have not previously been assessed.

Ecological niche modelling offers novel insights into
species’ potential geographical distributions, extending
from the local population perspective to a cross-distribu-
tional, continental view (Guisan & Zimmermann, 2000).
Ecological niche models integrate occurrence data from
across the range of a species with environmental data, to
estimate the conditions under which the species is able to
maintain populations without immigration (Soberén &
Peterson, 2005). Whereas distributions of species are the
result of the dynamics of many individual populations,
only a view taken across the entirety of a species’
geographical range can discern the factors that affect its
global distribution. As a consequence, ecological niche
models offer a perspective on the future conservation status
of species.

Here we evaluate the magnitude of potential changes in
the distribution of lion populations over the next 4 decades
in light of changing climates. We integrate known lion
occurrences (Celesia et al., 2009) with present-day climate
data to produce estimates of the lion’s ecological niche,
which we test via independent data sets, including
predictions across both space and time. These niche models
are then integrated with numerous future climate projec-
tions from general circulation models (GCMs) developed
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under the coordination of the Intergovernmental Panel on
Climate Change (Solomon et al., 2007). We thus develop
a novel, synthetic view of the potential future distribution
of lions that takes into account uncertainty and climate
model variations. The ability to predict impacts of climate
change on potential geographical distributions of lions
across regions will provide information useful in inter-
vention and mitigation strategies to enhance their long-term
survival.

Methods

Input data

Occurrence data for this study were drawn from a previous
compilation (Celesia et al., 2009) that identified 27 sites
across Africa where lion populations have been documen-
ted. These sites generally refer to local regions (such as
protected areas) where lion populations have been studied
in detail, and are divided into low- and high-abundance
sites. We also summarized the historical range of the species
across Africa, Asia and southern Europe (Yamaguchi et al.,
2004). We accumulated occurrence data for lions in
historical times (i.e. from 6,000 years before present to
€.100 years ago) through a detailed literature search covering
scientific journals and books (Supplementary Material 1)
and continuing until discovery of new sources and new
occurrence localities reached an asymptote. We added
geographical coordinates to these occurrences based on
consultation of gazetteer data in Google Earth (2014). The
point-based geographical references were supplemented
with a measure of the uncertainty in the georeference in the
form of the radius of a circle including the entire footprint of
the locality description (Wieczorek et al., 2004). For
example, a site described as ‘southern Iberian Peninsula’ is
best described by the geographical point 39.093°N 3.777°W
but sites in the southern Iberian Peninsula extend up to
680 km from this point, and we therefore use this radius
as the uncertainty measure. In total 49 separate historical
sites were identified and georeferenced at different levels
of precision across North Africa, southern Europe, and
southern and South-west Asia. We note that although the
historical data are attractive as a basis for ecological niche
model calibration, the large uncertainty associated with
most of the historical records makes such a calibration
untenable.

Data describing present-day climatic variation across
Africa, Europe and Asia were drawn from the WorldClim
climate data archive (Hijmans et al., 2005). This data set is
derived from interpolation among weather station data from
14,000-48,000 localities, and provides monthly averages of
precipitation and minimum and maximum temperatures
for 1960-1990 at three spatial resolutions; we chose the
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intermediate spatial resolution of 2.5’ for all analyses, to
match the approximate precision of the occurrence data.
To provide a richer and more directly informative climatic
data set for analysis we used the bioclimatic data layers
in the WorldClim archive, specifically the summaries
of mean annual temperature, mean diurnal temperature
range, maximum temperature of warmest month, minimum
temperature of coldest month, annual precipitation, and
precipitation of wettest and driest months, which we have
found to be relatively uncorrelated and information-rich
(Jiménez-Valverde et al., 2009). We clipped the environ-
mental data to Sub-Saharan Africa, to delimit the area
within which models were calibrated to the approximate
area that has been accessible to the species for colonization
(Barve et al., 2011).

We projected present-day models onto climate output
of GCMs summarizing model projections for anticipated
future conditions. The most relevant time period for which
model results are available is 2040-2070. We used future-
climate data products from the World Climate Research
Program downscaled (Conservation International, 2014)
and provided to us by Y. Nakazawa (pers. comm.). We used
three 21st century standard emissions scenarios explored
by the Intergovernmental Panel on Climate Change
(Houghton et al., 2001), as follows:

Scenario B1 B1 emissions correspond to a convergent world
with a global population peaking in mid century and
declining thereafter. Concurrent changes in economic
structures move towards a service and information
economy, reductions in material intensity, and introduction
of clean and resource-efficient technologies. The emphasis
under this scenario is on global solutions to economic, social
and environmental sustainability, including improved
equity, but without additional climate initiatives. The B1
scenario assumes the most ecologically friendly future.

Scenario A1B A1 emissions correspond to a future world of
very rapid economic growth, global population peaking in
mid century and declining thereafter, and rapid introduc-
tion of new and efficient technologies. Major underlying
themes are convergence among regions, capacity building,
and increased cultural and social interactions, with
substantial reduction in regional differences in per capita
income. The A1B scenario emphasizes balance across all
energy sources.

Scenario A2 A2 emissions correspond to a scenario of a very
heterogeneous world, characterized by self-reliance and
preservation of local identities. Because fertility patterns
across regions converge slowly, global populations are
continuously increasing; economic development is region-
ally oriented, and per capita economic growth and
technological change are more fragmented and slower
than under the other scenarios. The A2 scenario is
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characterized by a future world still heavily dependent
on fossil fuel consumption, and essentially maintains the
current status quo.

These scenarios of emissions form the basis for model
projections of future changes in climate-determined
potential distributions of species, via future climate projec-
tions from GCM outputs. We thus explore these three
scenarios of differing magnitudes of possible climate change
in tandem with eight GCMs, each effectively a distinct
simulation of global climate processes, to be able to consider
effects of model variation in influencing future climate
estimates. We projected present-day ecological niche
estimates onto these 3 scenarios x 8 GCMs, although four
of the emissions scenario x climate model combinations
were unavailable (Table 1).

Ecological niche modelling

We used the Genetic Algorithm for Rule-Set Prediction
(GARP) for generating ecological niche models (Stockwell
& Peters, 1999). Although GARP has been criticized in
comparative analyses (Elith et al., 2006), more careful com-
parisons taking into account different sorts of prediction
error have indicated that the differences in performance
are largely artefactual (Peterson et al., 2008). Furthermore,
for the present application, GARP’s ability to project niche
model results onto 10 future climate surfaces greatly im-
proves efficiency of the future-projection process compared
with other algorithms (Phillips et al., 2006). As a con-
sequence, GARP was an ideal choice as a niche modelling
platform for this study.

GARP is an evolutionary computing method that builds
ecological niche models based on non-random associations
between known occurrence points for species and sets of
digital raster coverages describing ecological landscapes.
Occurrence data are used by GARP as follows: 50% of
occurrence data points are set aside for evaluation of quality
of replicate models for development of consensus models,

Distribution of the African lion

and 50% are used for developing models. ‘Pseudoabsence’
points (i.e. pixels selected from the set of areas lacking
known presences) are also sampled. Presence and absence
points are divided into equal portions for rule generation
and model testing (Stockwell & Peters, 1999).

Initial rules are created by applying methods chosen
randomly from a set of inferential tools (e.g. logistic
regression, bioclimatic rules). The genetic algorithm con-
sists of specially defined operators (e.g. crossover, mutation)
that modify the initial rules; the resulting models have
therefore ‘evolved’. After each modification, the quality of
the rule is tested (maximizing both significance and
predictive accuracy) and a size-limited set of best rules is
retained. Because rules are tested based on independent data
(intrinsic test data), performance values reflect the expected
performance of the rule, an independent verification that
gives a more reliable estimate of true rule performance.
The final result is a set of rules that can be projected onto
a map to estimate the potential geographical distribution
of the species under investigation, which must be dis-
tinguished carefully from estimates of the actual distribution
of the species, which would take into account considerations
of accessibility and barriers to dispersal (Soberén &
Peterson, 2005).

Following best-practice recommendations for appropri-
ate consensus of replicate models built from different
subsamples of occurrence data (Anderson et al, 2003),
we developed 100 replicate random-walk GARP models,
and filtered out 90% of the replicate models based on
consideration of error statistics, as follows. The initial filter
removes models that omit (omission error = predicting
absence in areas of known presence) over much as measured
with extrinsic testing data, and a second filter based on
an index of commission error (= predicting presence in
areas of known absence), in which models predicting very
large or very small areas are removed from consideration.
Specifically, we used a soft omission threshold of 20%, and a
50% retention based on commission considerations; the
result was 10 ‘best subsets’ binary model predictions that

TaBLe 1 Summary of trends in temperature and precipitation anticipated from general circulation models and Special Report on Emissions
Scenarios explored in the future-climate portion of this study. To illustrate the likely effects anticipated under each scenario we present
mean change in temperature/precipitation based on values manifested at 244 random points across Africa. A blank cell indicates that model

output was unavailable for analysis.

A2 scenario A1B scenario B1 scenario

General circulation model (°C/mm) (°C/mm) (°C/mm)
Bjerknes Centre for Climate Research, Norway, BCM2.0 Model 1.6/9.0 1.7/0.0 1.3/15.0
CSIRO Atmospheric Research, Australia, Mk3.0 Model 1.7/-8.5 1.5/0.0 1.2/-6.0
CSIRO Atmospheric Research, Australia, Mk3.5 Model 2.5/-12.5 2.5/-9.5 2.1/-1.5
Institute for Numerical Mathematics, Russia, INMCM3.0 Model 2.2/0.0 2.2/-2.0 1.7/1.0
NASA Goddard Institute for Space Studies, ModelE20/Russell 1.8/-3.0 1.4/0.0
CCSR/NIES/FRCGC, Japan, MIROC3.2, high resolution 2.8/5.5 2.4/8.0
CCSR/NIES/FRCGC, Japan, MIROC3.2, medium resolution 1.8/13. 1.4/17.0
National Center for Atmospheric Research, CCSM3.0 2.7/61 1.9/42.5
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Fic. 1 Summary of spatial
splits used to subset data
points across the range of the
lion Panthera leo across Africa:
black-and-grey lines delimit
the north, central, and south
sectors of the species’ range.
Dotted white circles represent
the occurrence data available.
The shading is an example
prediction (spatial split
omitting the central sector), in
which white indicates
prediction of lack of suitable
conditions, black indicates full
model agreement in predicting
suitability of conditions, and
shades of grey indicate
intermediate levels of model
agreement.

were summed to produce a best estimate of geographical
prediction.

Testing model predictions

Because ecological niche models must be tested for
predictive ability prior to interpretation and exploration
(Peterson, 2005), particularly for transferability challenges
such as this one, we tested the ability of our present-day
African models to anticipate distribution of lions across
regions from which occurrence data were withheld from
model calibration. We used three such manipulations:
(1) random subsetting of available occurrence points into
training and testing sets, (2) spatial stratification of known
occurrences into training and testing areas, and (3) ability to
predict the full spatial footprint of the historical distribution
of lions across Africa, Asia and Europe. Details of these tests
are as follows.

We tested the internal consistency of lion ecological
niche characteristics by means of k-fold subsetting in two
ways. The first was by division into two equal portions at
random to test the ability of models to anticipate the spatial
distribution of the species, were we to have double the
density of occurrence data; this random subsetting was
repeated five times. Secondly, we separated available
occurrence information spatially into three arbitrary regions
of equal sample size: occurrence information from each
sector was set aside, and models developed based on the
occurrences in the other two sectors. The occurrence

https://doi.org/10.1017/50030605312000919 Published online by Cambridge University Press

information from the reserved sector was then overlaid on
the predictions within the range of that sector to test the
predictive ability of the model. Given the crescent-shaped
nature of the distribution of lions in Africa, for these
spatially stratified tests of predictive ability across un-
sampled areas, we separated known occurrences into three
groups of equal sample size (n = 9 points each) by dividing
the continent into radial sectors surrounding a point in the
Congo Basin, leaving equal numbers of points in each sector
(Fig. 1). This arbitrary spatial subdivision into three sectors
permits us to test ability of models to predict across different
sectors of the species’ range.

Because our models are based only on data documenting
presence of lions across Africa, and because information
documenting absence of climatic suitability for lion popu-
lations across Africa are unavailable, customary approaches
to model validation (e.g. receiver operating characteristic,
kappa statistics) are neither appropriate nor applicable
(Lobo et al., 2008). As a consequence, we modified the
receiver operating characteristic (ROC) approach so as not
to depend on absence data by recasting the (1-specificity)
axis as the proportional area predicted as suitable following
Phillips et al. (2006) and Peterson et al. (2008). The area
under the curve (AUC) of traditional ROC approaches
undervalues models that do not provide predictions across
the entire spectrum of proportional areas in the study
area (Peterson et al., 2008). In addition, traditional ROC
approaches incorrectly weight the two error components
(omission and commission) equally (Peterson et al., 2008).
As a consequence, we used the partial-area ROC approach
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TaBLE 2 Summary of results of subset-based tests of predictive
ability of models. Random splits divided the available occurrence
data into two equal subsets but without spatial separation; this
testing process was repeated five times based on different random
splits (testing n =13). Spatial splits divided the available
occurrence data into three subsets (N, C and S sectors), each
holding nine points (Fig. 1). The proportion of 1,000 bootstrap
replicates with AUC ratio < 1 was used as an estimate of P. AUC
indicates the area under the receiver operating characteristic plot
(see text for further details).

Specific test Minimum AUC ratio P

Random split 1 0.976 0.064
Random split 2 1.141 <0.001
Random split 3 1.092 <0.001
Random split 4 0.960 0.640
Random split 5 1.243 <0.001
C and S predict N 1.335 <0.001
S and N predict C 0.953 0.377
N and C predict S 0.984 0.402

that evaluates only over the range of the prediction and
potentially allows differential weighting of the two error
components (Peterson et al., 2008). A more detailed
treatment of model evaluation considerations and preferred
techniques is provided in Peterson et al. (2011).

We performed partial ROC analyses for each of the five
random-subsetting model predictions and the three spa-
tially-stratified predictions, based on the independent sets
of testing points not used to train the models. Partial ROC
analyses (Peterson et al., 2008) were developed principally
to remove the focus of more traditional ROC analyses
(Fielding & Bell, 1997), which include what are generally
considered irrelevant predictions (i.e. massive underpredic-
tion with large omission errors) that can bias conclusions,
although other concerns certainly remain (Lobo et al,
2008). We calculated these values using software developed
by N. Barve (pers. comm.; available upon request from the
authors); we present our results as the ratio of the model
AUC to the null expectation (AUC ratio; Peterson et al.,
2008). AUC ratios were limited to the proportional area
over which models made predictions, and were based on
expected error parameters of E = 5% (Peterson et al., 2008).
Bootstrapping to evaluate the statistical significance of AUC
ratios compared to the null model was performed by
resampling 50% of the test points, with replacement,
1,000 times from the overall pool of testing data; one-tailed
probabilities associated with AUC ratios were assessed by
counting numbers of bootstrap replicates with AUC ratios
<1 (hereafter referred to as P, Table 2).

We tested for prediction of the full distribution of lions
based on the historical occurrence data described above.
We used all available present-day occurrence data (Celesia
et al., 2009) to train models, and projected those models
more broadly across North Africa, Europe, and southern

© 2014 Fauna & Flora International, Oryx, 555-564
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and South-west Asia. The goal was to evaluate the degree to
which historical distributions of lions could be anticipated
from current distributions. As explained in the input data
section above, we restricted these analyses to the past
6,000 years, a period over which global climates have been
relatively stable. These predictions, which depended rather
critically on the uncertainty estimates surrounding the
often-imprecise historical locality descriptors (e.g. ‘Balkans’,
‘North Africa’, ‘southern Iberian Peninsula’), were evaluated
only visually and not via specific statistical tests; however,
we note that a positive result on these tests (i.e. that models
based on the current distribution of the species can
anticipate the entire historical distributional area) would
be taken as indicating that no major biases are introduced by
our use of current distribution data instead of the broader
historical distribution of the species.

Future projections

After niche models were calibrated and tested as described
above, we explored their implications for future potential
distribution of lions. We used all available occurrence
data (Celesia et al., 2009) to train present-day models, and
projected each model onto all available scenarios and
models of future (2050) climate conditions (Table 1). These
projections were summarized in terms of future potential
distribution areas, as well as in terms of variation among
emission scenarios and among models.

To estimate uncertainty in future projections we focused
on pixel-by-pixel variation in future projections among
alternative models under a particular emissions scenario.
We took different climate models (e.g. Hadley, NCAR) as
independent efforts to reconstruct the dynamics of a
complex system, and inspected the variation between
climate models carefully. Specifically, for a given prediction
(e.g. 7 of 10 replicate models indicating suitability of a
site under a given emissions scenario) we calculated the
proportion of available models that disagreed with the
modal prediction (in this case, 3 of 10). This simple measure
of uncertainty nonetheless summarizes the degree to which
individual models may vary from the modal prediction for
a given site.

Results

Initial tests of model predictivity based on subsets of
available occurrence data indicated generally significant
predictive ability of models (Table 2, Fig. 1). Specifically,
with random subsetting, three of the tests showed predictive
ability that was highly significantly better than random
expectations (P < 0.001), one was marginally significantly
better than random (P = 0.064), and one was not significant
(P = 0.640). Spatial subsetting exercises yielded more mixed
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Fic. 2 Spatial test of model
predictions, in which
occurrences from across the
present-day African range of
lions were used to train a
model that was in turn
projected (transferred) across
the historical Asian, European
and North African range of the
species (dark grey, present
range; light grey, historical
range). (a) Summary of
historical range modified from
Barnett et al. (2006b) and
reproduced here with
permission. (b) Niche model

results (white = unsuitable,
light grey = at least one
replicate model predicts
suitability, medium

grey = most replicate models
predict suitability, black = all
replicate models predict
suitability). Occurrence data
(Supplementary Material 1)
from the past 6,000 years are
shown as points and circles
and represent approximate
precision of georeferencing (i.e.
a smaller circle indicates more
precise georeferencing).

results, with one of three tests yielding an AUC ratio
significantly elevated above null expectations. We suspect
that these predictive failures result from incomplete
representation of conditions manifested in the regions
over which the models were trained, given strong environ-
mental gradients across eastern and southern Africa.

The final suite of tests was based on all occurrence data
available (Celesia et al., 2009). We projected current African
distribution models broadly across Asia, Europe and Africa
to investigate the degree to which they could recover the
broader portions of the historical distribution of the species
(Fig. 2). These models were successful in reconstructing
potential distribution of lions in North Africa, the Iberian
Peninsula, parts of the Balkans, the Middle East, and the
Indian subcontinent (Barnett et al., 2006b; Schnitzler, 2011).
Although our evaluation of these predictions was only in

https://doi.org/10.1017/50030605312000919 Published online by Cambridge University Press

visual terms, all known historical distributional areas were
recovered, except for occurrences in the Balkan region.
Whereas predictive failure in the Balkans could be a result of
limited environmental representation in the training region
(eastern and southern Africa), we suspect that the reliability
of the historical data may actually be the cause; i.e. these
particular occurrences were based on cave art and artefacts
(Yamaguchi et al.,, 2004; Schnitzler, 2011) and may reflect
trade or cultural transmission, rather than actual occurrence
of lions. Hence, no major biases appear to be introduced by
basing models on current distribution (i.e. including the
effects of massive reduction in range caused by humans)
instead of the full historical distribution.

We projected present-day models equivalent to those
used in the backwards predictions just discussed onto
scenarios of future climate conditions (Fig. 3), calculating

© 2014 Fauna & Flora International, Oryx, 555-564
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(a) All occurrences
Prediction

Uncertainty

(b) High-abundance only
Prediction

Uncertainty

FiG. 3 Summary of present and future projections (A1B, A2, and B1 emissions scenarios; see text for details) of models based on (a) all
occurrences of lions, and (b) high-abundance occurrences of lions (white = unsuitable, light grey = at least one replicate model
predicts suitability, medium grey = most replicate models predict suitability, black = all replicate models predict suitability).
Accompanying each future projection is an estimate of the uncertainty in those projections, calculated as model disagreement in a
given prediction (white = high confidence, grey = intermediate values, black = greatest uncertainty).

both the consensus prediction among the eight climate
models used to anticipate future climate conditions and
the uncertainty of those predictions. The predictions into
the future generally indicate relative range stability, in the
sense that no broad new areas would become suitable for
lions. Many currently suitable areas, however, particularly in
West Africa and southern Africa, are expected to decline
in suitability (Fig. 3). Uncertainty in these predictions,

© 2014 Fauna & Flora International, Oryx, 555-564
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however, is also highest in these areas, so variation between
models means there is less confidence in the predictions for
these areas. Models based on all occurrences were similar in
broadest terms to those based on high-abundance sites only;
however, the high-abundance models identified more
restricted areas in West Africa and southern Africa, where
the species is known to have lower population densities
(Celesia et al., 2009).
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Discussion

The task of developing models predicting the future
potential distribution of a species under changing condi-
tions is not simple. In the first place, the models must be
well-trained; i.e. they must include all the dimensions of
environmental conditions under which the species can
maintain populations (Soberén & Peterson, 2005). To
achieve this representativeness, models must be trained
over the broadest environmental spectrum possible, in this
case the entire geographical distribution of the species.
Testing and validation of this predictive ability is key to
bolstering the validity of these model projections. In our
analysis the random and spatial subsetting exercises yielded
mixed results, which we suspect reflects the fact that our
occurrence data set was not rich in numbers of occurrences.
This small training data set weakens statistical tests
and makes models more vulnerable to incomplete niche
characterization.

The most thorough test of this full representation of
environments in ecological niche models is that of
predictability of responses to distributional and environ-
mental phenomena when challenged with independent
testing data sets. In this case, the spatial subsetting exercises
showed mixed success, perhaps owing to insufficient
representation of environments in the training regions or
perhaps simply to small sample sizes. However, in exercises
in which occurrences from the entire present-day African
range were projected broadly across North Africa, southern
and south-eastern Asia and southern Europe, the models
were able to anticipate all major features of the broader
historical distribution of the species, which inspires
confidence in their predictive ability and in the representa-
tiveness in ecological dimensions of the niches that were
estimated for the species.

In projecting present-day niche models onto anticipated
future conditions there is little to inspire optimism
regarding the future of lions. A summary of the phenomena
anticipated is that the broadest areas of suitable conditions
(southern Africa) are projected to become less suitable
because of climate change. Moreover, a broad swath of
the species’ potential distributional area (West Africa) is
anticipated to become distinctly less suitable or even
uninhabitable.

Looking closer at future-trend projections from our
models in what could be considered the heart of the
distribution of lions (Kenya and Tanzania; Celesia et al.,
2009), we see that climate change effects on distributional
potential is projected to be more neutral than the picture
across the range of the species (Supplementary Figs. S1-S2).
In the key reserves of the Serengeti and Masai Mara,
climate change effects projected from our models were
close to neutral. Elsewhere, however, our model projections
were less neutral, as can be appreciated by a view of

https://doi.org/10.1017/50030605312000919 Published online by Cambridge University Press

southern Africa, where the Etosha Pan, Lake Opnono,
Cuvelai Drainage, Kalahari Gemsbok, and Kgalagadi
Transfrontier Park areas are expected to decline substan-
tially in suitability for lions (Supplementary Figs. S1-S2). In
this sense, multinational investments in conservation of
lions are best focused in the East African reserves that are
most likely to be able to sustain lion populations in the
medium term.

African lion populations are now essentially confined
to protected areas, where populations have been rela-
tively stable over the past 3 decades (Ray et al., 2005). The
main effort of conservation has been to protect these
areas from habitat conversion and human-wildlife conflicts
(Mesochina et al., 2010). Our models estimate the effects of
climate changes on sustainability of lions in these protected
areas. These tools can be used for the management and
conservation of ecosystems: if well-supported models
predict that a specific set of climate changes would result
in a region becoming less suitable, then regional strategic
plans can be developed to protect the threatened population,
which is particularly relevant in the case of large predators
(Hayward et al., 2007).

Our models assessed direct effects of climate change on
potential distributions of lions, yet secondary influences also
affect their survival, and require attention. Anticipated
climate changes in Africa are generally in the direction of
increased temperature and decreased rainfall (Table 1).
Droughts reduce prey availability, at least for lion popula-
tions that focus on migratory prey, resulting in an increase
in mortality of cubs and older lions from starvation
(Bertram, 1973; Dunham, 1992; Funston & Mills, 2006).
Droughts also affect the survival of livestock, making
pastoralists less tolerant of depredation by lions. Kenya’s
Minister of Forestry and Wildlife was recently quoted by
The Daily Nation regarding the effects of winter droughts
in 2010:

The communities had lost 80% of their livestock to the drought;
when the lions and hyenas turned to the remaining livestock, the
communities were distressed and attacked them in turn... The
drought took a heavy toll on both wild animals and the habitats we
care for. Besides, it also adversely affected the livestock of
communities living adjacent to national parks and reserves.

Thus, and particularly in light of the broader-scale effects
documented in this paper, climate change could increase
human-lion conflicts. Ogutu et al. (2011) have studied
wildlife populations in the Masai Mara National Reserve
and adjoining pastoral ranches since 1977; they found that
almost all wildlife species have declined to a third or less of
their former abundance and that human influences
appeared to be the main cause.

In 1994 a canine distemper virus (CDV) epidemic in
Serengeti lions resulted in the death of one third of the
population, and in 2001 a second high-mortality CDV
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epidemic struck the nearby Ngorongoro Crater lion
population (Munston et al., 2008). The outbreak was
apparently the result of a convergence of extreme drought
conditions, infestation of Babesia (a tick-borne intra-
erythrocytic protozoan), and CDV infection. Munston
et al. (2008) concluded that severe climate changes may
‘alter historic host-pathogen relationships and synchronize
the temporal and spatial convergence of multiple infectious
agents, triggering epidemics with far greater mortality than
those from single pathogens’. These examples emphasize
the close relationship between climate change, disease and
human-animal interactions (Scholte, 2011). The recognition
that local-scale phenomena such as disease outbreaks may
form part of broader-scale trends can guide efforts to
mitigate negative effects of climate change on species such
as lions.
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