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A nonlinear Cauchy–Poisson problem with impulsive surface forcing is investigated
analytically and numerically. An incompressible liquid with an initially horizontal surface
is instantaneously put into motion by an impulsive surface pressure distribution turned
on and off during an infinitesimal time interval. We consider symmetric, antisymmetric
and asymmetric pressure impulses based on dipoles and quadrupoles. The subsequent
inviscid free-surface flow is governed by fully nonlinear surface conditions, which are
solved exactly to third order in a small-time expansion. The small-time expansion applies
to flows dominated by inertia. Such flows are generated by relatively strong pressure
impulses, measured in gravitational units. We solve the problem numerically and find that
only relatively weak pressure impulses will lead to oscillatory waves. The free surface
will break before a full gravitational oscillation is completed when the amplitude of the
pressure impulse exceeds one gravitational unit.

Key words: surface gravity waves, air/sea interactions

1. Introduction

The Cauchy–Poisson problem is classical in fluid mechanics and applied mathematics.
This pioneering initial-value problem for water waves is described in the textbook by
Lamb (1932, pp. 384–398). It is hereafter referred to as the CP problem. There are two
separate subproblems of the fully linearized CP problem: (i) The primary CP problem,
where the fluid starts its motion from rest, with a prescribed surface elevation. (ii) The
secondary CP problem, where the fluid is forced into motion with zero initial surface
elevation (initially horizontal surface). The present paper is devoted to this secondary CP
problem, which we will formulate in its fully nonlinear version. The way to initiate the
flow in our secondary CP problem, is to apply an instantaneous pressure impulse to the
initially horizontal surface and thereafter let the nonlinear free-surface flow evolve in a
uniform gravitational field.

† Email address for correspondence: Bes@physik.tu-cottbus.de
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Not much research exists on the fully nonlinear CP problem. Shinbrot (1976) and Reeder
& Shinbrot (1976, 1979) performed mathematical investigations for this class of problems.
Debnath (1989) studied weak free-surface nonlinearities by the Lagrangian description of
motion.

These mathematical papers did not consider the causal initiation of free-surface
nonlinearity, which is our present focus. At infinite depth, the early time span of a
gravitational time unit will be decisive for the further nonlinear process. This is known
from two theoretical studies on the present class of Cauchy–Poisson problem, where a
surface pressure is turned on to work on the initially horizontal surface of a semi-infinite
fluid. Saffman & Yuen (1979) applied a surface pressure which was sinusoidal in space
and time, but of finite duration. Their aim was to investigate numerically the highest
non-breaking standing waves which are periodic in space and as close as possible
to periodic in time. They found interesting results with full nonlinearity, but their
dilemma was that their induced flow departed too much from strict periodicity in time.
Longuet-Higgins & Dommermuth (2001) realized that a similar model could be interesting
for investigating the highest transient waves, which they did. They applied an instantaneous
pressure impulse instead of the surface pressure of long duration studied by Saffman &
Yuen (1979). Longuet-Higgins & Dommermuth (2001) achieved much higher amplitudes
of transient waves than are known experimentally for periodic waves (Taylor 1953), but
they did not compute the motion after the stagnant peaks had been reached, since these
peaks will experience essentially free fall which inevitably leads to surface breaking.

Our theoretical model follows the earlier work by Longuet-Higgins & Dommermuth
(2001), with one essential difference. They considered a spatially periodic pressure
impulse (sinusoidal), while we will consider a localized pressure impulse (of the multipole
type). Spatial periodicity forbids deep-water dispersion from reducing nonlinearity by
shifting the energy to longer wavelengths, since the longest wavelength is that of the
pressure impulse itself. Only shorter wavelengths can be triggered in these periodic
models, which makes the growing of nonlinearity in time inevitable.

During the first gravitational time unit, it is not very essential whether a nonlinear flow is
spatially periodic or not. The build-up of free-surface nonlinearity that our model will give
during the gravitational time unit will be analogous to the previous work, but after that,
it will become very different. After a gravitational time unit, we will have a dominating
deep-water dispersion spreading out the non-periodic wave pattern to reduce its amplitude
and make it gradually adapt to linear theory. After a couple of gravitational time units, our
type of flow will become linearized, although there will be surviving signatures from the
early stage where nonlinearity was crucial. These signatures will be increasingly difficult
to extract as the linearized dispersive flow dominates.

The strong-impact limit of impulsive flow, which is studied here for the secondary CP
problem, is essentially a slamming type of flow (Wagner 1932; Korobkin & Pukhnachov
1988). The conventional way of modelling incompressible slamming problems (water
impact) is to give the forced impulsive motion of a body entering a liquid with an initially
free horizontal surface, and compute the resulting flow and the impact pressure forces that
it generates on the body. The normal velocity is then the cause, and the impulsive pressure
field is its effect. In the present paper we will take an opposite causal view on slamming,
where an impulsive surface pressure distribution is taken as the cause, and the resulting
free-surface flow is the induced effect. The present type of theory may be considered
as a parallel development which is complementary to the voluminous slamming theory.
A mathematical advantage with our approach is our consistent analysis of the early
free-surface nonlinearities that evolve within an impulsive time scale, before gravity takes
over and dominates the process.
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A nonlinear impulsive Cauchy–Poisson problem. Part 1 906 A24-3

The present work consists of two parts. In this first part we will develop an analytical
small-time expansion to third order in time, in the standard Eulerian description of motion.
Exact closed-form solutions will be given for two families of pressure impulses; the
dipole type and the quadrupole type. Numerical simulations for the fully nonlinear
free-surface flow will be presented, but only for the quadrupole type of pressure impulses
because of the slow far-field decay of the dipole distributions. Comparisons between
analytical and numerical results will be postponed to Part 2 of this work (Tyvand, Mulstad
& Bestehorn 2021), where a second-order small-time expansion is developed in the
Lagrangian description of motion. We will then show and compare two analytical and
one numerical approach to the same strongly nonlinear problem, and investigate in detail
how the analytical solutions fail when the free-surface nonlinearity becomes too strong.

2. Modelling assumptions and formulation

We consider an inviscid and incompressible fluid (liquid) which is initially at rest with
the horizontal free surface z = 0. The fluid has constant depth h and a free surface subject
to constant atmospheric pressure. Time is denoted by t. Cartesian coordinates x, y, z are
introduced, where the z axis is directed upwards in the gravity field and the horizontal
x, y plane defines the undisturbed free surface. The fluid layer is of infinite horizontal
extent. The gravitational acceleration is g, and ρ denotes the constant fluid density. The
components of the velocity vector v are denoted by (u, v, w). The surface elevation is
η(x, y, t). It is very important to note that η by definition represents the strictly vertical
motion of the mathematical free surface, not the motion of a fluid particle at the surface.
This means that the following integral is zero

∫ ∞

−∞

∫ ∞

−∞
η(x, y) dx dy = 0, (2.1)

since the average surface level must be constant in the absence of mass sources in the fluid
domain.

We assume a forced initial flow w(x, y, 0, 0) at the free surface, and its forcing will be
discussed in detail below. The forcing transfers a net downward momentum in the fluid,
and a net energy (being equal to the kinetic energy at t = 0+), but zero mass flux, as
already stated in (2.1). We will see that the forcing induces not only a vertical velocity
but also horizontal velocity components at the parts of the surface where the forcing takes
place. No vorticity is generated within the inviscid fluid, which implies that the flow is
irrotational according to Lord Kelvin’s theorem

∇ × v = 0, (2.2)

implying the existence of a velocity potential Φ(x, y, z, t) so that v = ∇Φ. The
incompressible flow of the homogeneous fluid implies the validity of Laplace’s equation

∇2Φ = 0, (2.3)

in the entire fluid domain. From the equation of motion Bernoulli’s equation follows

p − patm

ρ
+ ∂Φ

∂t
+ 1

2
|∇Φ|2 + gz = 0. (2.4)

The atmospheric pressure patm appears as an integration constant. The flow decays to zero
at infinite distance of a disturbance taking place around the origin, which means that
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P(x)

x

η(x, t)

FIGURE 1. Definition sketch for a two-dimensional free-surface flow generated by a surface
pressure impulse P(x) (dashed) on an initially horizontal surface. The surface elevation is
η(x, t).

p = patm at z = 0 as |∇Φ| → 0 in the far field (x2 + y2 → ∞) for finite time t. From
now on we will disregard the reference pressure patm (which corresponds to making the
transformation p − patm → p).

The nonlinear kinematic free-surface condition is

∂η

∂t
+ ∇Φ · ∇η = ∂Φ

∂z
, z = η(x, y, t). (2.5)

The nonlinear dynamic free-surface condition is given by

∂Φ

∂t
+ 1

2
|∇Φ|2 + gη = 0, z = η(x, y, t), (2.6)

where surface tension is neglected. Both these nonlinear conditions are relevant for t > 0+,
after the forcing of the flow has been finished. We generally assume constant fluid depth
h, and the kinematic bottom condition is

∂Φ

∂z
= 0, z = −h. (2.7)

The analysis below will concentrate on the case of infinite depth.
The initial-value problem remains to be formulated. It is a CP problem of the secondary

type where the free surface is assumed horizontal at t = 0+

η(x, y, 0+) = 0. (2.8)

We assume an initial forcing stage of infinitesimal duration 0 < t < 0+, during which a
surface pressure impulse P(x, y) is applied in order to force the surface into a finite vertical
motion w(x, y, 0, 0+). This pressure impulse has the dimension of pressure multiplied by
time. Figure 1 gives a sketch of the two-dimensional pressure impulse and resulting surface
elevation.

We now introduce the following small-time expansion

( p, Φ, η) = ( p−1, 0, 0)δ(t) + H(t)(( p0, φ0, 0) + t( p1, φ1, η1) + t2( p2, φ2, η2) + · · · ),
(2.9)

where δ(t) is the Dirac delta function and H(t) is the Heaviside unit step function. In
the small-time expansion we have applied the condition (2.8), as there is no zeroth-order
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elevation in this type of Cauchy–Poisson problem. The pressure impulse in the small-time
expansion is linked to the zeroth-order potential by the relationship

p−1 = −ρφ0, (2.10)

which is valid everywhere in the fluid and follows from inserting this small-time expansion
into the Bernoulli equation (2.4). The Dirac term for the pressure is here balanced by the
time derivative of the suddenly triggered zeroth-order potential, since the derivative of
the Heaviside function is the Dirac delta function. This relationship links the pressure
impulse to the initial flow field arising at t = 0+. The pressure impulse received by the
surface, thereby forcing the fluid into motion, is thus given by

P(x, y) = p−1(x, y, 0) = −ρφ0(x, y, 0). (2.11)

The gradient of the function P(x, y) creates a horizontal force on the surface particles,
so that they will not have a purely vertical motion, as they do when the surface remains
free during the impulsive start. This makes the free-surface process in our nonlinear CP
problem more complicated mathematically than the related problem of a submerged body
forced impulsively into motion (Tyvand & Miloh 1995a,b). On the other hand, the absence
of moving solid boundaries is a simplifying element in our problem.

Apart from p−1, which assembles the total pressure impulse received on the surface
during an infinitesimal time span of impulsive forcing, all the other quantities that enter
the small-time expansion will refer to the situation after the forcing has been finished. This
implies that the initial condition for the pressure is

p(x, y, 0, 0+) = 0, (2.12)

which means physically that the surface is again free after the surface forcing has been
finished.

2.1. On conservation of momentum and energy
The physical consistency of the present model will now be demonstrated by checking the
conservation of momentum and energy, but these general arguments will be completed
only for the case of infinite depth. We consider a vertical fluid column below an
infinitesimal surface area dx dy. The principle of momentum conservation for such a
column is given as

dx dy
∫ 0+

0
( p(x, y,−h, t) − p(x, y, 0, t)) dt = ρ dx dy

∫ 0

−h

∂Φ

∂z

∣∣∣∣
t=0+

dz. (2.13)

Here, we will not discuss the possible interaction of the pressure impulse with a rigid
bottom. The present arguments for the conservation of momentum apply only to the limit
h → ∞. Carrying out the integrations for infinite depth yields

−p−1(x, y, 0) = ρΦ(x, y, 0, 0+), (2.14)

which is identical to (2.11), confirming that our model satisfies the conservation of
momentum for infinite depth. The conservation of momentum is also valid for individual
vertical columns of fluid, since the pressure forces in the horizontal direction does not
contribute to that balance. Nevertheless, it can be shown that the local surface momentum
may occasionally be upward, in the direction opposite of a positive local pressure impulse.
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In such cases, there must be a stronger downward momentum in the fluid domain below
the surface to compensate for the surface momentum. The simple identity (2.13) confirms
the conservation of the imposed downward momentum for the initial flow.

We proceed to consider the subsequent momentum balance for t > 0+. Then the surface
is again free, since the surface pressure impulse has been terminated. We restrict this
analysis to two-dimensional (2-D) flow in the x, z plane, and start from the vertical
component of the Euler equation, which can be written as

∂w
∂t

+ ∂

∂x
(uw) + ∂

∂z
(w2) = − 1

ρ

∂p
∂z

− g, (2.15)

valid for incompressible irrotational 2-D flow in an inviscid fluid. We integrate (2.15) over
z, from the bottom z = −h to the instantaneous surface z = η(x, t)∫ η

−h
∂tw dz +

∫ η

−h
∂x(uw) dz + w2(η) − w2(−h) = −p(η) − p(−h)

ρ
− g(η + h). (2.16)

Applying the Leibniz rule and using the kinematic condition expressed as

∂η

∂t
= w(η) − u(η)

∂η

∂x
(2.17)

this turns into
∂

∂t

∫ η

−h
w dz + ∂

∂x

∫ η

−h
uw dz = p(−h)

ρ
− g(η + h) (2.18)

where we assume p(η) = 0 and w(−h) = 0. This applies after the pressure impulse is
terminated, and we let h → ∞. The pressure impulse itself has already been considered
separately. As h → ∞, the fluid at the bottom is at rest, with hydrostatic pressure p(−h) =
ρgh. Thus

∂

∂t

∫ η

−h
w dz = − ∂

∂x

∫ η

−h
uw dz − gη. (2.19)

Equation (2.19) constitutes a formula for the evolution of the vertical momentum of a
column with height h + η. Its linear part is just the local surface deformation. According
to linear theory, the vertical momentum initially delivered by the pressure impulse is
gradually reduced due to the weight of the moving vertical surface column. We may
say that the downward momentum is absorbed by the buoyancy force of the displaced
fluid, when the surface motion is downward. This means that there is a steady-state
vertical motion due to inertia as long as linear theory is valid to first order in the
small-time expansion. In linear theory only gravity can modify this steady initial flow,
and gravity enters the small-time expansion at a higher (third) order and starts reducing
the amplitude of the vertical flow. The initiation of a steady inertial motion is the reason
that we can use the small-time expansion for describing the early stages of the flow,
even with full nonlinear effects included. However, as soon as the gravitational effects
become dominating, the small-time expansion loses its relevance, just as the initial vertical
momentum is being converted to oscillatory motion where there is no longer a net vertical
momentum. The nonlinear contribution to (2.19) expresses that the vertical momentum is
also transmitted in the horizontal direction, and the later oscillatory wave motion will no
longer have any net momentum in the vertical direction.

The validity of the small-time expansion rests on the existence of a net vertical
momentum, which means that the small-time asymptotic expansion will diverge once the
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oscillatory wave motion has started. Strong free-surface nonlinearity can only develop
before the flow has become oscillatory, which is known from the work by Longuet-Higgins
& Dommermuth (2001) on a similar problem with spatial periodicity. These authors
considered infinite depth in order to make the impulsive suction more efficient for
generating high surface peaks with strong nonlinearity. With no bottom present, the
vertical force impulse initially delivered to the surface converts fully and instantaneously
into vertical momentum of the bulk fluid.

We look at the conservation of energy. The kinetic energy E0 in the fluid at t = 0+ is
generated by the pressure impulse, and is equal to the surface-integrated pressure impulse
multiplied by the average velocity (w|z=0/2) during the infinitesimal time interval 0 < t <
0+ of impulsive start. Conservation of energy then gives

E0 = −1
2

∫
S0

p−1(x, y, 0)w(x, y, 0) dx dy = ρ

2

∫
S

(
φ0

∂φ0

∂z

)
z=0

dS, (2.20)

inserting from (2.11). Here, S0 is the entire horizontal plane z = 0, but we have extended
the integration area to S which consists of S0 plus a hemisphere surface (for z < 0) with
infinite radius. Here we assume that the flow field decays sufficiently quickly at infinity, so
the integral has zero contribution from the hemisphere surface at infinity. We develop this
integral further, as follows

E0 = ρ

2

∫
S
(φ0∇φ0)z=0 · dS = ρ

2

∫
z<0

|∇φ0|2 dx dy dz = 1
2

∫
z<0

|∇φ0|2 dm, (2.21)

where we have applied the Gauss theorem and introduced the infinitesimal mass element
dm. We have now reproduced the kinetic energy integral, which confirms the conservation
of energy.

3. The small-time expansion to each order

Laplace’s equation is valid to each order in the small-time expansion

∇2φn = 0, n = 0, 1, 2, . . . . (3.1)

We already have the dynamic surface condition for the initial flow

φ0(x, y, 0) = −P(x, y)

ρ
, (3.2)

where the pressure impulse distribution P(x, y) will be a given function, representing the
causal forcing of the entire flow. This instantaneous forcing delivers the momentum and
energy of the subsequent fluid flow.

The derivation of the higher-order flow conditions is carried out by introducing the
free-surface operator of individual time derivative

(
d
dt

)
surface

= ∂

∂t
+ ∂η

∂t
∂

∂z
. (3.3)

We need to apply this operator (3.3) successively, reinserting the small-time expansion
at each stage, finally taking the limit t → 0. The partial (spatial) derivatives will from
now on be denoted by subscripts. Again we emphasize that the surface elevation η(x, y, t)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

78
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.787


906 A24-8 P. A. Tyvand, C. Mulstad and M. Bestehorn

represents the strictly vertical motion of the surface, otherwise the operator (3.3) could not
have this form with a purely vertical convective term.

First the three leading orders of the kinematic condition (2.5) are derived, giving

η1 = φ0z, z = 0, (3.4)

2η2 = φ1z + η1φ0zz − ∇η1 · ∇φ0, z = 0, (3.5)

6η3 = 2φ2z + 2η2φ0zz + 2η1φ1zz − η2
1∇2η1

− 2∇φ1 · ∇η1 − 2∇φ0 · ∇η2 − 2η1|∇η1|2, z = 0. (3.6)

These kinematic conditions differ from those valid when the surface is free during the
impulsive start (Tyvand & Miloh 1995a,b). New non-zero terms like φ0x and φ0y appear
because of the surface pressure impulse. These terms vanish when the flow is started
by an impulsive forcing beneath the free surface, because an equipotential initial surface
condition will then be valid. We see that the physics of the nonlinear free-surface flow will
be different with a non-zero horizontal surface velocity being present initially.

The mass balance constraint (2.1) must be valid to each order
∫ ∞

−∞

∫ ∞

−∞
ηn(x, y) dx dy = 0, n = 1, 2, . . . . (3.7)

The leading-order dynamic condition has already been stated in (3.2). It tells that a
steady-state velocity field is built up by the externally imposed impulsive pressure field
P(x, y), and this steady flow lasts due to inertia after this instantaneous external forcing
has been turned off. As the leading-order kinematic condition (3.4) shows, this early
steady flow will build up a surface elevation as a linear function of time, as long as
linear theory is valid, and gravity has not yet been triggered. The physical insight that
an impulsive surface pressure creates an immediate yet lasting steady flow with elevation
growing linearly in time, is the basis for applying the small-time expansion. Its validity
is based on the lasting steady inertial flow in the bulk of the fluid kicked into motion
of a surface pressure impulse. The higher-order temporal Taylor series terms then come
automatically as they are triggered by the linearly increasing elevation interacting with
itself and later also involving gravity. These interactions are clean, in the sense that no
other time dependence than power series in time will appear in this small-time asymptotics
as long as there is no singularities at the free surface, which again requires that the function
P(x, y) is a continuous function of x and y along the entire surface. Korobkin & Yilmaz
(2009) showed that singularities in such free-surface flows must be resolved by inner
expansions that are not power series in time.

Now we have argued physically for the validity of the asymptotic small-time expansion
in terms of a Taylor series in time. Since there is no steady forcing, this argument is given
indirectly via fluid inertia, which is a less obvious reasoning than referring to a steady
cause for the flow. In the case of a steady submerged sink being turned on impulsively
(Tyvand 1992; Miloh & Tyvand 1993), the steady cause of the flow is obvious and makes
it easy to argue for the asymptotic validity of a Taylor series expansion in time.

We have now established the kinematic conditions to third order, as well as the
leading-order dynamic condition (3.2). Let us derive the two next orders of the dynamic
condition (2.6). The small-time expansion inserted into the condition itself gives

φ1 = − 1
2 |∇φ0|2, z = 0, (3.8)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

78
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.787


A nonlinear impulsive Cauchy–Poisson problem. Part 1 906 A24-9

after evaluating it at t = 0. Next we apply the operator (3.3) once to derive the third-order
dynamic condition

2φ2 = −η1φ1z − ∇φ0 · ∇φ1 − η1∇φ0 · ∇φ0z − gη1, z = 0. (3.9)

For constant depth h, the kinematic bottom condition to each order is

∂φn

∂z
= 0, z = −h, n = 0, 1, 2, . . . . (3.10)

In the limit of infinite depth (h → ∞), we have the condition |∇φn| → 0 as z → −∞,
valid at each order n.

We note that there is only one gravitational term in this three-term expansion. In order
to determine the three first orders of the flow field, we first need to know the pressure
impulse in the entire fluid, from which the zeroth-order potential and the first-order surface
elevation follows. The next step is to calculate the first-order potential from its Dirichlet
condition (3.8). We can then calculate the second-order potential from the Dirichlet
condition (3.9), inserting the known first-order elevation and lower-order potentials.

So far, the formulation is valid for three-dimensional flow. The following calculations
will be limited to two-dimensional flows, and we will only consider a semi-infinite fluid
domain (h → ∞).

4. Initial flows for given pressure impulses

In the absence of gravity, linearized theory is very simple. It is governed by (2.11) alone.
The initial flow for the semi-infinite fluid continues steadily without any modification
from the linearized surface. This fully linearized flow is steady but represents an artificial
situation where the initial flux is fed steadily through a fixed isoflux boundary z = 0. With
this perspective, we realize that the entire surface deformation is a nonlinear phenomenon
in the absence of gravity. The steady linearized flow that is initially started by the
pressure impulse, continues steadily by inertia, provided the appropriate flux is fed to the
semi-infinite domain, in or out through the boundary z = 0.

The arguments leading to (2.14) show that the zeroth-order potential φ0 takes care of
the initial momentum delivered to the fluid. Equation (2.19) indicates how this initial
momentum is gradually changed by nonlinear advection and buoyancy. Our analytical
study is limited to early stages of this nonlinear process, and the small-time expansion will
diverge before a gravitational time unit has passed since the impulsive initiation of the
flow.

5. The 2-D symmetric dipole pressure impulse

This paper will be devoted to 2-D multipole distributions of the initial pressure impulse
covering the entire surface. One advantage is to avoid singularities in the flow, making the
small-time expansion uniformly valid. Another advantage is that all higher-order flows
belong to the multipole family of flows. The multipole potentials can be derived by
successive differentiations and exact Laurent series expansions, which will be shown in
appendix B. The efficiency of these calculations outperforms residue calculus for each
new potential arising in the small-time expansion.

The family of distributions that we will study here, is generated by a mathematical
source located outside the fluid domain, in the external apex point (x, z) = (0, L). We
first consider the symmetric impulsive pressure field due to a fictitious vertical dipole in
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the apex. The symmetric pressure impulse field is thus chosen as the following harmonic
function

p−1(x, z) = −P0
z/L − 1

(x/L)2 + (z/L − 1)2
, (5.1)

which is a symmetric (vertical) dipole field that is an analytical continuation of the surface
pressure impulse

P(x) = p−1(x, 0) = P0
1

(x/L)2 + 1
, (5.2)

where P0 again denotes the maximal value of the surface pressure impulse. The
zeroth-order potential that is induced by the symmetric pressure impulse is given by

φ0(x, z) = −p−1(x, z)
ρ

= P0

ρ

z/L − 1
(x/L)2 + (z/L − 1)2

. (5.3)

We will now introduce dimensionless variables, noting that L is the only length scale.
Choosing L as the unit of dimensionless surface elevation means that the mathematical
apex point is located one length unit above the undisturbed free surface; P0/(ρL) is the
unit of dimensionless velocity, which implies ρL2/P0 as unit of dimensionless time. The
dimensionless group appearing in our small-time expansion is the dimensionless gravity
parameter G defined as

G = ρ2L3

P2
0

g, (5.4)

measuring the importance of gravity in the early nonlinear CP problem. The larger the
value of G, the smaller time is available for developing strong local nonlinearities at the
free surface before outward radiation of waves will dominate; G increases with the width
of the pressure impulse distribution, and with the density of the fluid, but it decreases with
the amplitude of the pressure impulse. The stronger pressure impulse, the weaker is the
gravitation in comparison with the nonlinear free-surface effects developing during the
early stages of the impulsively generated flow.

The dimensionless free-surface conditions have the same form as those with dimension.
The only modification occurs in the dynamic condition for the second-order potential (3.9)
which gets the dimensionless form

2φ2 = −η1φ1z − ∇φ0 · ∇φ1 − η1∇φ0 · ∇φ0z − Gη1, z = 0, (5.5)

where the dimensionless gravity parameter G = ρ2L3g/P2
0 replaces the gravitational

acceleration g in the version with dimension (3.9). For our 2-D problem, the third-order
dynamic condition (5.5) can be rewritten as

2φ2 = −2η1φ1z − φ0xφ1x − η1η
′
1φ0x + η2

1φ0xx − Gη1, z = 0. (5.6)

The dimensionless version of the zeroth-order potential is

φ0(x, z) = z − 1
x2 + (z − 1)2

. (5.7)

It is advantageous to introduce the harmonic functions fn(x, z) and gn(x, z), defined by
their value at the boundary z = 0

fn(x, 0) = (1 + x2)−n, (5.8)

gn(x, 0) = x(1 + x2)−n, (5.9)
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where n = 1, 2, 3, . . . . Tyvand & Miloh (1995b) considered the functions fn and gn ,
formulating the recursive scheme elaborated in appendix B. It is already known that

φ0(x, z) = −f1(x, z), (5.10)

which is introduced into the dynamic condition (3.8), implying

φ1(x, 0) = − 1
2(x2 + 1)2

= −f2(x, 0)/2, (5.11)

which by analytical extension implies φ1(x, z) = −f2(x, z)/2 in the undisturbed fluid
domain z < 0. From the kinematic conditions (3.4) and (3.5) we have

η1(x) = φ0z(x, 0) = −1 + x2

(1 + x2)2
= f1(x, 0) − 2f2(x, 0) = −∂g1

∂x
(x, 0). (5.12)

η2(x) = φ1z − η1φ0xx − η′
1φ0x

2

∣∣∣∣
z=0

= 5 − 80x2 + 50x4 + 8x6 + x8

8(1 + x2)5

=
(

f1

8
+ f2

2
+ 4f3 − 20f4 + 16f5

)
z=0

= ∂

∂x

(
2g4 − g3 − g2

4
− g1

8

)
z=0

. (5.13)

The separate functions fm(x, 0) arise from Laurent series expansions around the complex
point x = i, carried out by Mathematica (temporarily introducing x2 as a variable). These
series of symmetric fm functions is a sum of horizontally differentiated antisymmetric gm
functions.

A useful check for the surface elevation to each order is the constraint of zero net upward
volume flux ∫ ∞

−∞
ηn(x) dx = 0, (n = 1, 2, 3), (5.14)

which expresses conservation of mass. This constraint is obviously satisfied in (5.12) and
(5.13), since the functions gn vanish in the limit |x | → ∞.

We will now express the third-order dynamic condition (5.6) in terms of the functions
fn and gn:

2φ2 = −2η1φ1z − φ0xφ1x − η1η
′
1φ0x + η2

1φ0xx − Gη1

= η1f2z − f1x f2x/2 + η1η
′
1f1x − η2

1f1xx − Gη1, z = 0. (5.15)

Summing up these contributions, we get the relationship

2φ2 = − f2

2
− f3 + 2f4 + G(2f2 − f1). (5.16)

Equation (5.16) originates from a condition valid at z = 0, but by analytical extension
of these harmonic functions it is valid in the entire half-plane z < 0. We achieve finite
expansions in terms of the functions fm and gm, both for the potentials and the surface
elevations to each order. Due to symmetry around x = 0, the antisymmetric functions gm
disappear in the final expressions for φ2 and η3.
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The total third-order elevation (3.6)

6η3 = (
2φ2z + 2η2φ0zz + 2η1φ1zz − η2

1∇2η1

− 2∇φ1 · ∇η1 − 2∇φ0 · ∇η2 − 2η1|∇η1|2
)

z=0 , (5.17)

consists of three categories of terms

η3 = η33 + η321 + η3111, (5.18)

where

η33 = φ2z

3

∣∣∣∣
z=0

= 1
6

(
− f2z

2
− f3z + 2f4z + G(2f2z − f1z)

)
z=0

=
(

f2

8
− f3

6
− 7

3
f4 + 8

3
f5 + G

(
4
3

f3 − f2

))
z=0

= 1
3

∂

∂x

(
g4 − g2

8
+ Gg2

)
z=0

, (5.19)

are the direct contributions (without interactions) from the third-order flow field
(second-order potential).

There are two remaining contributions to η3: first the contributions from the
second-order solution interacting with the first-order solution

η321 = 1
3

(
η2φ0zz + η1φ1zz − φ1xη

′
1 − φ0xη

′
2

)
z=0

= 1
6

(
2η2f1xx + η1f2xx + f2xη

′
1 + 2f1xη

′
2

)
z=0

=
(

5
12

f3 + 13
2

f4 + 4f5 − 160f6 + 896
3

f7 − 448
3

f8

)
z=0

= 1
12

∂

∂x
(−g3 − 12g4 − 16g5 + 160g6 − 128g7)z=0 , (5.20)

and finally the triple self-interaction of the first-order solution

η3111 = −1
6
(η2

1η
′′
1 + 2η1(η

′
1)

2) = 1
3

(−7f4 + 80f5 − 300f6 + 448f7 − 224f8)z=0

= 1
3

∂

∂x
(g4 − 8g5 + 20g6 − 16g7)z=0 . (5.21)

Each category of third-order terms in (5.18) satisfies mass balance individually∫ ∞

−∞
η33 dx = 0,

∫ ∞

−∞
η321 dx = 0,

∫ ∞

−∞
η3111 dx = 0, (5.22a–c)

as each integral is zero. In total, there are four separate mass balances, including
the gravitational contribution in η33. We leave as an open question whether there are
mathematical reasons for these separate mass balances.

The total third-order elevation is thus

η3(x) = η33 + η321 + η3111

=
(

f2

8
+ f3

4
+ 11

6
f4 + 100

3
f5 − 260f6 + 448f7 − 224f8 + G

(
−f2 + 4

3
f3

))
z=0

= 1
24

∂

∂x
(−g2 − 2g3 − 8g4 − 96g5 + 480g6 − 384g7 + 8Gg2)z=0 . (5.23)
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A nonlinear impulsive Cauchy–Poisson problem. Part 1 906 A24-13

6. The 2-D oblique dipole pressure impulse

We will now study the full early nonlinear interactions between a symmetric
vertical dipole pressure impulse (with dimensionless amplitude A) and an antisymmetric
horizontal dipole pressure impulse (with dimensionless amplitude B). This is equivalent
to consider an oblique dipole (with arbitrary orientation), located in the fictitious apex
point in the dimensionless position (x, z) = (0, 1) outside the fluid. This oblique dipole is
a superposition of a vertical dipole and a horizontal dipole.

The capital subscripts A and B will here refer to the contributions from the symmetric
and antisymmetric dipole pressure impulses. Combined or repeated subscripts like AB and
BB will refer to higher-order cross-interactions or self-interactions.

The total dimensionless zeroth-order potential at the free surface is then

φ0(x, 0) = − A
x2 + 1

− Bx

x2 + 1
= −Af1(x, 0) − Bg1(x, 0), (6.1)

implying that φ0 = φ0A + φ0B = −Af1 − Bg1 in the entire half-plane z ≤ 0. This oblique
dipole field will always have a sign change in the surface pressure impulse P(x) =
−ρφ0(x, 0) = ρ(Af1(x, 0) + Bg1(x, 0)), because |f1(x, 0)| decays more rapidly to zero
than |g1(x, 0)| as |x | → ∞. The first-order elevation is

η1(x) = η1A + η1B = −Af1z − Bg1z = A( f1 − 2f2) − 2Bg2, z = 0. (6.2)

The leading-order interaction potential is denoted by φ1AB, and it is given by the
second-order dynamic condition

φ1AB = −AB( f1x g1x + f1zg1z) = −AB( f1x g1x + (2f2 − f1)2g2) = 0, z = 0, (6.3)

and by analytical extension the first-order potential comprises no interaction between the
two superposed pressure impulses with amplitudes A and B:

φ1AB = 0, z ≤ 0. (6.4)

The total first-order potential is thus

φ1 = φ1A + φ1B = −A2 + B2

2
f2, (6.5)

with the corresponding total second-order elevation

η2(x) = η2A + η2B + η2AB = A2

8
( f1 + 4f2 + 32f3 − 160f4 + 128f5)z=0

+ B2

8
( f1 + 4f2 − 48f3 + 160f4 − 128f5)z=0 + AB(2g3 − 24g4 + 32g5)z=0. (6.6)

This total second-order elevation comprises two qualitatively different contributions:
(i) The symmetric superposition of the separate elevations generated by the vertical and
horizontal dipole fields of pressure impulses. (ii) An antisymmetric function representing
the leading nonlinear interaction between the horizontal-dipole and vertical dipole
pressure impulses, being revealed by the product AB of the respective amplitudes for these
dipole pressure impulses.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

78
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.787


906 A24-14 P. A. Tyvand, C. Mulstad and M. Bestehorn

The third-order elevation η3 is complicated. First we must calculate the new
second-order interactions potentials φ2AAB and φ2ABB at z = 0. The third-order dynamic
condition (3.9) is

φ2 = 1
2
(−2η1φ1z − φ0xφ1x − η1η

′
1φ0x + η2

1φ0xx − Gη1)

= (A2 + B2)

(
A

−f2 − 2f3 + 4f4

4
+ B

g3 + 2g4

2

)

+ G
(

A
2f2 − f1

2
+ Bg2

)
, z = 0. (6.7)

Again, there are three contributions to the third-order elevation

η3 = η33 + η321 + η3111, (6.8)

first the elevation following directly from the vertical gradient of the second-order potential

η33 = φ2z

3

∣∣∣∣
z=0

= (A2 + B2)

(
A

−f2z − 2f3z + f4z

12
+ B

g3z + 2g4z

6

)
z=0

+ G
3

(
A

2f2z − f1z

2
+ Bg2z

)
z=0

= A(A2 + B2)

(
f2

8
− f3

6
− 7

3
f4 + 8

3
f5

)
z=0

+ AG
(

4
3

f3 − f2

)
z=0

+ B(A2 + B2)

(
− g2

12
− g3

2
+ 8

3
g5

)
z=0

+ BG
3

(4g3 − g2)z=0. (6.9)

The contributions from the second-order solution interacting with the first-order solution
are

η321 = −1
3

(
η2φ0xx + η1φ1xx + φ1xη

′
1 + φ0xη

′
2

)
z=0

= A3

(
5
12

f3 + 13
2

f4 + 4f5 − 160f6 + 896
3

f7 − 448
3

f8

)
z=0

+ B3

(
g3

6
+ g4

2
− 88

3
g5 + 120g6 − 224g7 + 448

3
g8

)
z=0

+ A2B
(

g3

6
+ g4

2
+ 8g5 − 760

3
g6 + 672g7 − 448g8

)
z=0

+ AB2

(
5
12

f3 + 67
6

f4 − 463
3

f5 + 1760
3

f6 − 896f7 + 448f8

)
z=0

, (6.10)
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and finally the contributions from the first-order solution interacting three times with itself

η3111 = −1
6
(η2

1η
′′
1 + 2η1(η

′
1)

2) = A3

3
(−7f4 + 80f5 − 300f6 + 448f7 − 224f8)z=0

+ B3

(
40g6 − 112g7 + 224

3
g8

)
z=0

+ A2B
(

56
3

g5 − 440
3

g6 + 336g7 − 224g8

)
z=0

+ AB2

(
−48f5 + 820

3
f6 − 448f7 + 224f8

)
z=0

. (6.11)

In the formulas for η312 and η3111 we have checked that mass balance is satisfied for the
symmetric interaction terms with amplitudes AB2.∫

(η321(x), η3111(x)) dx

= AB2

((
− g3

12
− 5

3
g4 + 44

3
g5 − 40g6 + 32g7

)
,

(
16
3

g5 − 20g6 + 16g7

))

+ O(A3) + O(B3) + O(A2B). (6.12)

These indefinite integrals confirm mass balance, as each of the integrated terms go to zero
as |x | → ∞.

Mass balance is trivial for the antisymmetric terms with amplitudes B3 and A2B. Each
elevation term gn(x) has zero net mass flux over the entire surface, for any n ≥ 2. However,
the case n = 1 is exceptional as the pressure impulse g1(x) gives a diverging momentum
flux on each side of x = 0. In other words, there are infinite upward and downward
momentum fluxes in this case. These fluxes balance one another with zero sum, and there
is finite energy and finite mass fluxes at the surface z = 0.

The total third-order elevation for the oblique dipole field is given by the formula

η3(x) = η33 + η321 + η3111

= A3

(
f2

8
+ f3

4
+ 11

6
f4 + 100

3
f5 − 260f6 + 448f7 − 224f8

)
z=0

+ B3

(
− g2

12
− g3

3
+ g4

2
− 80

3
g5 + 160g6 − 336g7 + 224g8

)
z=0

+ A2B
(

− g2

12
− g3

3
+ g4

2
+ 88

3
g5 − 400g6 + 1008g7 − 672g8

)
z=0

+ AB2

(
f2

8
+ f3

4
+ 53

6
f4 − 572

3
f5 + 860f6 − 1344f7 + 672f8

)
z=0

+ G
(

A
(

−f2 + 4
3

f3

)
+ B

3
(−g2 + 4g3)

)
z=0

. (6.13)

This expression includes the full third-order nonlinear interactions.
Figure 2 illustrates the three different types of dipole-type pressure impulse distributions

that are contained in the general formulas: the symmetric case, the antisymmetric case and
an asymmetric case (with central downward flow). All the first-, second- and third-order
elevation components resulting from this family of pressure impulses are illustrated
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P(x)

1.0

0.5

–0.5

–3 –2 –1 1 2 3
x

FIGURE 2. Dipole-type pressure impulses P(x): the symmetric case where P(x) = P(−x) is
represented by (A = 1, B = 0). The antisymmetric case where P(x) = −P(−x) is represented
(A = 0, B = 1). An asymmetric case (A = B = 1) is added.

η(x)

η(x) η(x)

η(x)

x

x x

x

0.5

6

4

2

–2

–4

2

1

–1

–2

0.3

0.2

0.1

–0.1

–0.2

–0.5

–3 –2 –1 –3 –2 –11 2 3

–3 –2 –1 1 2 3

1 2 3

–3 –2 –1 1 2 3

–1.0

(a) (b)

(c) (d)

FIGURE 3. Dipole-type pressure impulses: their induced dimensionless elevations: η1(x)
(dotted), η2(x) (dashed), η3(x)|G=0. (a) The symmetric case A = 1, B = 0. (b) The
antisymmetric case A = 0, B = 1. (c) An asymmetric case A = B = 1. (d) Gravitational
contributions η3/G for A = 1, B = 0 (symmetric) and A = 0, B = 1 (antisymmetric).

in figure 3. In Part 2, these contributions will be summed up to give the total third-order
elevation, to be compared with the second-order elevation according to the Lagrangian
description of motion.
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7. The 2-D symmetric quadrupole-type impulse

We turn our attention to quadrupole-type pressure impulses. These are fields with
a dominant quadrupole contribution, with a dipole term added for the purpose of
minimizing the far-field forcing of the horizontal velocity. This improves the possibilities
for comparison with slamming flow, where the far-field free-surface flow is strictly
vertical. Our quadrupole-type pressure impulse decays so strongly in space that the
horizontal far-field velocity is negligible compared with the vertical far-field velocity.
The symmetric pressure impulse field of the quadrupole type is chosen as the following
harmonic function

p−1(x, z) = P0
2 − 5(z/L) − (x/L)2(z/L) + 4(z/L)2 − (z/L)3

2((x/L)2 + (z/L − 1)2)2
, (7.1)

which is an analytical continuation of the surface pressure impulse

P(x) = p−1(x, 0) = P0
1

((x/L)2 + 1)2
, (7.2)

where P0 again denotes the maximum pressure impulse. The induced zeroth-order
potential is

φ0(x, z) = −p−1(x, z)
ρ

= P0

ρ

−2 + 5(z/L) + (x/L)2(z/L) − 4(z/L)2 + (z/L)3

2((x/L)2 + (z/L − 1)2)2
, (7.3)

and it is a symmetric quadrupole potential plus a dipole correction providing a far-field
decay as (x/L)−4.

Now we introduce dimensionless variables in the same manner as we did for the dipole
impulses above. The following transformations

ρ

P0
φ → φ,

( x

L
,

z
L

)
→ (x, z),

P0

ρL2
t → t, (7.4a–c)

replace variables with dimension by dimensionless variables, recalling the dimensionless
gravity parameter G, still defined by (5.4) above.

We omit most details of the calculations, being similar to those for the dipole pressure
impulse. We first give the dimensionless version of the zeroth-order potential (7.3)

φ0(x, z) = −2 + 5z + x2z − 4z2 + z3

2(x2 + (z − 1)2)2
= −f2(x, z), (7.5)

leading to the first-order elevation

η1(x) = φ0z|z=0 =
(

1
2

f1 + 2f2 − 4f3

)
z=0

= ∂

∂x

(
−1

2
g1 − g2

)
z=0

. (7.6)

The first-order potential is

φ1(x, 0) = − 1
8(x2 + 1)2

− 1
(x2 + 1)3

= −1
8

f2(x, 0) − f3(x, 0), (7.7)
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which by analytic extension implies φ1(x, z) = −f2(x, z)/8 − f3(x, z) leading to the
second-order elevation

η2(x) = 1
2
(φ1z − η1φ0xx − η′

1φ0x)

∣∣∣∣
z=0

=
(

7
32

f1 + 1
2

f2 + 5
4

f3 + 4f4 + 28f5 − 128f6 + 96f7

)
z=0

= ∂

∂x

(
− 7

32
g1 − 5

16
g2 − 1

2
g3 − g4 − 4g5 + 8g6

)
z=0

. (7.8)

Taking this procedure one step further, yields the second-order potential, first defined
along the undisturbed surface z = 0

2φ2 = −2η1φ1z − φ0xφ1x − η1η
′
1φ0x + η2

1φ0xx − Gη1

= − 7
16

f2 − 11
4

f3 − 3f4 − f5 + 10f6 + G
(

−1
2

f1 − 2f2 + 4f3

)
, z = 0, (7.9)

and by analytic extension this dependency of φ2 on the functions fn, (n = 1, . . . ., 6) holds
for all z ≤ 0. From this knowledge we derive the total third-order elevation

η3(x) =
(

33
128

f2 + 29
32

f3 + 13
24

f4 + 11
3

f5 + 35
3

f6 + 84f7 + 728f8

− 5248f9 + 8256f10 − 3840f11 + G(−f1 − 4f2 − 2f3 + 12f4)

)
z=0

= ∂

∂x

(
− 11

128
g2 − 1

4
g3 − 7

24
g4 − 2

3
g5 − 5

3
g6 − 8g7 − 56g8 + 256g9 − 192g10

+ G (g1 + 2g2 + 2g3)

)
z=0

. (7.10)

These surface elevations are integrated in x in order to verify mass balance, according to
(3.7).

8. The 2-D asymmetric quadrupole-type impulse

We will now study the full early nonlinear interactions between a symmetric
quadrupole-type pressure impulse (with dimensionless amplitude A) and an antisymmetric
quadrupole-type pressure impulse (with dimensionless amplitude B). This oblique
quadrupole-type field has its singularities located in the fictitious apex point with
dimensionless position (x, z) = (0, 1) outside the fluid.

As in case of an oblique dipole field, capital subscripts A and B will refer to the
contributions from the symmetric and antisymmetric pressure impulses. Combined or
repeated subscripts like AB and BB will refer to higher-order cross-interactions or
self-interactions.
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The total dimensionless zeroth-order potential at the free surface is then

φ0(x, 0) = − A
(x2 + 1)2

− Bx

(x2 + 1)2
= −Af2(x, 0) − Bg2(x, 0), (8.1)

and by definition φ0 = φ0A + φ0B = −Af2 − Bg2 in the entire half-plane z ≤ 0. The
dimensionless surface pressure impulse is P(x) = −φ0(x, 0) = (Af2(x, 0) + Bg2(x, 0)).

φ0(x, 0) = − A
(x2 + 1)2

− Bx

(x2 + 1)2
= −Af2(x, 0) − Bg2(x, 0), (8.2)

where the first-order surface elevation

η1(x) = η1A + η1B, z = 0

= −Af2z − Bg2z, z = 0, (8.3)

can be written as

η1(x) = A( 1
2 f1 + 2f2 − 4f3) + B(g2 − 4g3), z = 0. (8.4)

From this we derive the first-order potential

φ1 = − 1
2(φ

2
0x + φ2

0z) = φ1A + φ1B + φ1AB

= A2(− 1
8 f2 − f3) + B2(− 1

2 f3) + AB(− 1
2 g3), (8.5)

where the last expression is valid for all z ≤ 0. There is a non-zero interaction potential
φ1AB = −g3/2, while the similar interaction potential was found to be zero for an oblique
dipole-field impulsive pressure.

The induced second-order elevation is

η2(x) = η2A + η2B + η2AB

= A2( 7
32 f1 + 1

2 f2 + 5
4 f3 + 4f4 + 28f5 − 128f6 + 96f7)z=0

+ B2( 3
32 f1 + 3

16 f2 + 3
4 f3 + 9f4 − 84f5 + 168f6 − 96f7)z=0

+ AB( 1
16 g2 + 1

2 g3 + 3g4 + 32g5 − 200g6 + 192g7)z=0. (8.6)

The second-order potential at the undisturbed surface is

φ2 = 1
2(−2η1φ1z − φ0xφ1x − η1η

′
1φ0x + η2

1φ0xx − Gη1)

= A3(− 7
32 f2 − 11

8 f3 − 3
2 f4 − 1

2 f5 + 5f6)

+ B3(− 3
16 g3 + 3

8 g4 + 3g6)

+ A2B(− 1
2 g3 + 7g6)

+ AB2(− 3
32 f2 − 11

16 f3 − 9
8 f4 − 3

2 f5 + f6)

+ G(A(− 1
4 f1 − f2 + 2f3) + B(− 1

2 g2 + 2g3)), z = 0. (8.7)
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P(x)

x

1.0

0.8

0.6

0.4

0.2

–0.2

–2 2 4–4

–0.4

FIGURE 4. Quadrupole-type pressure impulses P(x): the symmetric case where P(x) = P(−x)
is represented by (A = 1, B = 0). The antisymmetric case where P(x) = −P(−x) is represented
(A = 0, B = 1). An asymmetric case (A = B = 1) is added.

The exact formula for the third-order elevation of an oblique quadrupole-type pressure
impulse distribution is

η3(x) = η33 + η321 + η3111

= A3( 33
128 f2 + 29

32 f3 + 13
24 f4 + 11

3 f5 + 35
3 f6 + 84f7 + 728f8 − 5248f9

+ 8256f10 − 3840f11)z=0

+ B3(− 7
128 g2 − 3

32 g3 − 9
16 g4 + 1

2 g5 + 5g6 + 150g7 − 2016g8 + 6720g9

− 8640g10 + 3840g11)z=0

+ A2B(− 11
128 g2 − 1

32 g3 − 9
16 g4 + 7

3 g5 + 35
3 g6 + 116g7 + 1288g8 − 11392g9

+ 21312g10 − 11520g11)z=0

+ AB2( 35
128 f1 + 65

128 f2 + 35
32 f3 + 29

16 f4 + 19
2 f5 + 73

2 f6 + 722f7 − 8820f8

+ 25920f9 − 29376f10 + 11520f11)z=0

+ G(A(− 10
3 f3 + 4f4) + B(−2g3 + 4g4))z=0. (8.8)

We have performed the mass balance verifications of these expressions, but omit them in
the text. These new consistency checks apply to η2BB and η3ABB, in addition to η1A, η2AA,
η3AAA, already checked in the previous section. The remaining contributions to the surface
elevation (up to third order) have trivial mass balances. Equation (8.8) includes the full
third-order nonlinear interactions.

Figure 4 illustrates the three different types of quadrupole-type pressure impulse
distributions that are contained in the general formulas: the symmetric case, the
antisymmetric case and an asymmetric case (with central downward flow). All the first-,
second- and third-order elevation components resulting from this family of pressure
impulses are illustrated in figure 5. In Part 2, these contributions will be summed up to give
the total third-order elevation, to be compared with the second-order elevation according
to the Lagrangian description of motion. Comparisons with numerical solutions will also
be given.
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FIGURE 5. Quadrupole-type pressure impulses: their induced dimensionless elevations:
η1(x) (dotted), η2(x) (dashed), η3(x)|G=0. (a) The symmetric case A = 1, B = 0. (b) The
antisymmetric case A = 0, B = 1. (c) An asymmetric case A = B = 1. (d) Gravitational
contributions η3/G for A = 1, B = 0 (symmetric) and A = 0, B = 1 (antisymmetric).

9. Numerical results for the nonlinear problem

We will here complement our analytical formulas with numerical simulations for the
resulting nonlinear wave motion generated by the pressure impulse.

For the numerical computations performed in this section, we apply a dimension-
reduced deep-water model which is derived in detail in Bestehorn, Tyvand & Michelitsch
(2019), for a brief overview see appendix C.

The (1 + 1) dimensional system in gravitational units (appendix A) has the form

∂tus = −∂x(
1
2 u2

s + η) + (∂xη)D̂η, (9.1)

∂tη = −∂x(D̂−1us − D̂−1(ηD̂us) + ηus), (9.2)

where us = u(x, z = η(x, t), t) is the horizontal surface velocity and η(x, t) denotes the
location of the free surface. For the definition of the fractal operator D̂ and its inverse D̂−1

see appendix C.
To integrate (9.1), (9.2) numerically it is effective to evaluate D̂η, D̂us and D̂−1us in

Fourier space, then perform the products ηD̂us and ηus in real space and finally compute
D̂−1(ηD̂us) in Fourier space again. Thus, seven Fourier transforms (three forward and four
backward) have to be performed at each time step what is achieved applying standard fast
Fourier transforms (Swarztrauber 1982).
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The derivatives with respect to x are approximated with centred differences

∂x f |xi −→ fi+1 − fi−1

2Δx
(9.3)

which ensures the conservation of
∑

i fi, important for mass conservation of (9.2). Finally,
time marching is obtained by an explicit fourth-order Runge–Kutta algorithm Bestehorn
(2018).

We performed several runs with a symmetric quadrupole-type pressure impulse which
is best suited for numerical investigation because it generates flows that are localized in
the sense that they decay quickly towards infinity.

The numerical representation of the initial delta-shaped pressure pulse is resolved to a
rectangle according to

P(x, t) =

⎧⎪⎨
⎪⎩

1
δt

P0

(1 + x2)2
for 0 ≤ t ≤ δt,

0 for δt < t.
(9.4)

For the impulse time we take δt = 20Δt, where Δt = 3 × 10−5 is the Runge–Kutta
time step. For the spatial discretization, 4048 mesh points are used, giving an accurate
representation for the intrinsic time and length scales of the solutions. The initial condition
for all runs is η(x, 0) = us(x, 0) = 0.

Figure 6 shows time sequences for three different values of p0. Since the shape of η stays
mirror symmetric (η(x, t) = η(−x, t)) for all times, only half of the layer is plotted. It can
be clearly seen how the nonlinearities influence the time evolution of the surface shape if
P0 increases.

Nonlinear effects in wave crests are essentially different from nonlinear effects in wave
troughs. This is seen immediately from our small-time expansion, because a sign change
of the basic amplitude A does not affect the second-order elevation but changes the signs of
the first- and third-order elevations. We will therefore show results for a negative amplitude
of the quadrupole-type distribution of pressure impulse, P0 = −0.225. For a negative
initial pressure, the surface is lifted in the initial phase and then spreads out in the form of
a travelling localized wave, see figure 7.

10. Discussion

We have investigated a nonlinear Cauchy–Poisson problem where the flow is caused
entirely by an impulsive surface pressure which puts the initially horizontal surface
instantaneously into motion. The force impulse that is delivered to the fluid is converted
into a net vertical momentum for each fluid column. Even though the net momentum is
vertical, most surface particles will also be put into tangential initial motion, because of
the tangential derivative of the surface pressure impulse. Due to inertia, the initial flow
continues with its momentum after this instantaneous driving force has been turned off,
and the total energy is conserved in this inviscid flow. Even though the net momentum is
vertical, there is no net mass transport, which is forbidden by mass conservation with zero
net mass flux at infinity.

A small-time expansion of the fully nonlinear free-surface flow has been carried out
exactly to third order, for two multipole families of surface pressure impulses. We let
A represent the amplitude of the symmetric contribution to each multipole family of
pressure impulses that we consider, while B represents the corresponding antisymmetric
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FIGURE 6. Snapshots for different times with an initial pressure as (9.4) with P0 =
0.1, 0.3, 0.5 (a–c). Dashed lines are computed with the linearized set of (9.1), (9.2), solid
lines correspond to fully nonlinear solutions. Nonlinear effects increase with increasing initial
pressure and surface amplitude.

contribution. The third-order Eulerian solution gives us an opportunity of seeing in
detail how the free-surface flow from an asymmetric pressure impulse deviates from a
superposition of symmetric and antisymmetric flows. To the second order in time, these
deviations enter the product terms AB. To the third order in time, these deviations appears
as product terms AB2 and A2B, but their time window of significance is narrow, as the
full numerical solution confirms: there is only a short time span from the time when the
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FIGURE 7. Same as figure 6, but for a negative (sucking) initial pressure P0 = −0.225.

third-order flow becomes important, until the whole small-time asymptotics breaks down
and we are left with only numerical predictions of the further nonlinear flow evolution.

A symmetric pressure impulse with negative amplitude −A will not give a mirror image
of the nonlinear free-surface flow induced by the positive amplitude +A. The second-order
elevation has the amplitude A2 and does not change sign when the pressure impulse
changes sign. As a contrast, the first- and third-order elevations have the amplitudes A and
A3, changing sign when A changes sign. Important nonlinear effects are therefore revealed
by comparing two initial pressure impulses that are equal, apart from having opposite
signs.

The influence of gravity on the early free-surface flow is governed by the parameter G
defined as

G = ρ2L3g
P2

0
, (10.1)

and alternatively the amplitude of the pressure impulse is measured in gravitational units
as

P̂0 = G−1/2 = P0

ρL3/2g1/2
. (10.2)

The highest value of P̂0 that produces a reasonably accurate surface peak in the numerical
computations is P̂0 = 0.5. The surface will probably break if the pressure impulse is
significantly stronger than that.

The present small-time expansion is strictly Eulerian. The higher-order surface
deformations are described solely through adding up these vertical elevations ηn , not by
mixing them with Lagrangian descriptions that include tangential motion of the surface
particles. This is an important point in the presence of initial tangential surface motion, and
it will be investigated in Part 2 of this work whether a small-time expansion in Lagrangian
variables may give a closer approximation to the fully nonlinear process than the present
Eulerian description. We will not be able to develop a third-order analytical solution in a
Lagrangian small-time expansion, only a second-order solution. The present work operates
at the limit of what can be done consistently and exactly analytically for moderately strong
nonlinear processes. Highly nonlinear free-surface processes can hardly ever be followed
closely analytically. The present nonlinear processes are moderately strong, since two
consecutive levels of fully nonlinear interactions are calculated exactly in closed form with
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a finite number of terms. Our full algebra is huge, but it could be carried out efficiently
and systematically by Mathematica. All symmetric contributions to the surface elevation
have been shown to obey the constraints of mass balance, which is a very useful check for
the algebra.

Longuet-Higgins & Dommermuth (2001) investigated a fully nonlinear standing
oscillation which starts as a Cauchy–Poisson problem with a periodic pressure impulse.
Their free-surface flow has the following linearized limit

η̂(x̂, t̂) = C cos(x̂) sin(t̂), (10.3)

expressed in gravitational units. Here, C is the initial vertical velocity at the initially
horizontal free surface. A case that is comparable with our present results is represented by
C = 0.5, where maximal surface deflection occurs at the time t = 1.67 after the impulsive
start. The extremal points at the surface are then approximately ηmax = 0.67 at the crest
and ηmin = −0.4 at the trough. Linear theory would give ηmax = |ηmin| = 0.5 occurring
at t = π/2 = 1.57. When C < 0.5, the surface performs a gentle oscillation with almost
periodic time dependence, even though the initial state of a horizontal free surface is not
fully recovered.

A direct comparison between our results and those of Longuet-Higgins & Dommermuth
(2001) is not possible because of the incompatible definitions of length units, but our
strongest computed pressure impulse P̂0 = 0.5 seems to be reasonably comparable with
their case C = 0.5. Longuet-Higgins & Dommermuth (2001) has also computed cases
with C > 0.5, and in these cases slender upward spikes will be formed under a strong
impulsive suction (negative pressure impulse). Such upward spikes cannot continue as
waves, so they will eventually fall down as slender jet flows with an acceleration close to
gravity and inevitably lead to breaking of the free surface.

More general conclusions concerning the present model and its three solution methods
will be presented at the end of Part 2.
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Appendix A. Gravitational dimensionless variables

In the main text we have introduced and applied dimensionless variables based on the
amplitude of the pressure impulse, which is convenient for the early nonlinear process
where gravity does not enter the second-order problem. However, the process will become
gravitational after this early stage, so we need gravitational units for describing the
gravitational free-surface flow that takes over after the early impulsive stage is finished.

We will now introduce dimensionless variables based on gravity, noting that L is the
only length scale. With infinite depth, L must still be chosen as the length scale of the
pressure impulse. The mathematical apex point for the dipole field is thus located one
length unit above the undisturbed free surface. We choose gravitational units for the flow,
which means that we informally can introduce all the dimensionless units by putting
g = 1, L = 1 and ρ = 1.

The formal introduction of dimensionless variables in gravitational units can be given
as follows

(x, y, z)
L

= (x̃, ỹ, z̃), L∇ = ∇̃, L−1η = η̃,

√
g
L

t = t̃, (A 1a–d)
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(u, v, w)√
gL

= (ũ, ṽ, w̃), (gL3)−1/2Φ = Φ̃,
p

ρgL
= p̃,

P
ρg1/2L3/2

= P̃, (A 2a–d)

where the dimensionless quantities are represented by a tilde superscript. In the main text
we have worked with dimensionless quantities based on the pressure impulse amplitude
P0, which generates unit flow amplitudes in this dimensionless description, and gravity
enters the problem through a dimensionless gravity parameter

G = ρ2L3

P2
0

g, (A 3)

scaled with the amplitude and length scale of the pressure impulse. With gravitational
units for dimensionless variables, the gravitational parameter will always be unity, making
the substitution G → 1 in the equations of the main text. With gravitational variables, the
flow amplitude will no longer be unity but instead given by the initial condition

−ρφ(x, y, 0) = P(x, y), (A 4)

which has the dimensionless version

−φ̃(x̃, ỹ, 0) = P̃(x̃, ỹ) = P(x, y)

ρ(gL3)1/2
. (A 5)

The dimensionless amplitude of the pressure impulse is thus given by

P̃0 = P0

ρ(gL3)1/2
= 1√

G
, (A 6)

which now represents the initial flow amplitude of the dimensionless zeroth-order potential
φ̃0 in the small-time expansion. We note the relationship between P̃0 and the dimensionless
gravity parameter G which was used in the main text.

Appendix B. Two families of harmonic functions

We will here develop recursive schemes for calculating the requested higher orders of
the harmonic functions fn(x, z) and gn(x, z) defined by their values at the boundary of the
half-plane z < 0

fn(x, 0) = 1
(1 + x2)n

, (B 1)

gn(x, 0) = x

(1 + x2)n
, (B 2)

where n is a positive integer. These functions are here presented in dimensionless form.
We note the useful identities

fm(x, 0)fn(x, 0) = fm+n(x, 0), (B 3)

gm(x, 0)fn(x, 0) = gm+n(x, 0), (B 4)

gm(x, 0)gn(x, 0) = fm+n−1(x, 0) − fm+n(x, 0). (B 5)

We will now show how these related families of multipole-type functions can be calculated
recursively. First, we introduce a source potential χ in the apex point (0, 1), which is a
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fictitious point located outside the fluid domain,

χ = 1
2 log(x2 + (z − 1)2) (B 6)

and its gradients give us the two first-order functions

f1(x, z) = −∂χ

∂z
= 1 − z

x2 + (z − 1)2
, (B 7)

g1(x, z) = ∂χ

∂x
= x

x2 + (z − 1)2
. (B 8)

Each new order function is a linear combination of the z derivative of the previous function
plus a linear combination of the lower-order function, according to the following recursive
scheme

2f2 = f1 + ∂f1

∂z
, (B 9)

2g2 = ∂g1

∂z
, (B 10)

4f3 = 1
2

f1 + 2f2 + ∂f2

∂z
, (B 11)

4g3 = g2 + ∂g2

∂z
, (B 12)

6f4 = 3
8

f1 + 3
4

f2 + 3f3 + ∂f3

∂z
, (B 13)

6g4 = 1
4

g2 + 2g3 + ∂g3

∂z
, (B 14)

8f5 = 5
16

f1 + 1
2

f2 + f3 + 4f4 + ∂f4

∂z
, (B 15)

8g5 = 1
8

g2 + 1
2

g3 + 3g4 + ∂g4

∂z
, (B 16)

10f6 = 35
128

f1 + 25
64

f2 + 5
8

f3 + 5
4

f4 + 5f5 + ∂f5

∂z
, (B 17)

10g6 = 5
64

g2 + 1
4

g3 + 3
4

g4 + 4g5 + ∂g5

∂z
, (B 18)

12f7 = 63
256

f1 + 21
64

f2 + 15
32

f3 + 3
4

f4 + 3
2

f5 + 6f6 + ∂f6

∂z
, (B 19)

12g7 = 7
128

g2 + 5
32

g3 + 3
8

g4 + g5 + 5g6 + ∂g6

∂z
, (B 20)

14f8 = 231
1024

f1 + 147
512

f2 + 49
128

f3 + 35
64

f4 + 7
8

f5 + 7
4

f6 + 7f7 + ∂f7

∂z
, (B 21)

14g8 = 21
512

g2 + 7
64

g3 + 15
64

g4 + 1
2

g5 + 5
4

g6 + 6g7 + ∂g7

∂z
, (B 22)
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16f9 = 429
2048

f1 + 33
128

f2 + 21
64

f3 + 7
16

f4 + 5
8

f5 + f6 + 2f7 + 8f8 + ∂f8

∂z
, (B 23)

16g9 = 33
1024

g2 + 21
256

g3 + 21
128

g4 + 5
16

g5 + 5
8

g6 + 3
2

g7 + 7g8 + ∂g8

∂z
, (B 24)

18f10 = 6435
32768

f1 + 3861
16384

f2 + 297
1024

f3 + 189
512

f4 + 63
128

f5 + 45
64

f6 + 9
8

f7

+ 9
4

f8 + 9f9 + ∂f9

∂z
, (B 25)

18g10 = 429
16384

g2 + 33
512

g3 + 63
512

g4 + 7
32

g5 + 25
64

g6 + 3
4

g7 + 7
4

g8 + 8g9 + ∂g9

∂z
,

(B 26)

20f11 = 12155
65536

f1 + 3575
16384

f2 + 2145
8192

f3 + 165
512

f4 + 105
256

f5 + 35
64

f6 + 25
32

f7

+ 5
4

f8 + 5
2

f9 + 10f10 + ∂f10

∂z
, (B 27)

20g11 = 715
32768

g2 + 429
8192

g3 + 99
1024

g4 + 21
128

g5 + 35
128

g6

+ 15
32

g7 + 7
8

g8 + 2g9 + 9g10 + ∂g10

∂z
. (B 28)

Note that these recursive formulas are valid in the entire half-plane z ≤ 0.
In the free-surface conditions we need the first and second derivatives of these functions,

to be expressed by the values of the functions at the undisturbed free surface, fn(x, 0) and
gn(x, 0). The recursion formulas that we have developed here, contain the information for
calculating these derivatives. We will now list the coefficients entering the expressions for
the vertical derivatives at the undisturbed free surface, defined by

∂fn

∂z

∣∣∣∣
z=0

=
j=n+1∑

j=1

Anjfj(x, 0),
∂gn

∂z

∣∣∣∣
z=0

=
j=n+1∑

j=2

Bnjgj(x, 0), (B 29a,b)

where n = 1, 2, . . .. The increasing-order sets of coefficients for the vertical derivatives of
the functions fn are

(A11, A12) = (−1, 2), (B 30)

(A21, A22, A23) = (− 1
2 ,−2, 4), (B 31)

(A31, A32, A33, A34) = (− 3
8 ,− 3

4 ,−3, 6), (B 32)

(A41, A42, A43, A44, A45) = (− 5
16 ,− 1

2 ,−1,−4, 8), (B 33)

(A51, A52, A53, A54, A55, A56) = (− 35
128 ,− 25

64 ,− 5
8 ,− 5

4 ,−5, 10), (B 34)

(A61, A62, A63, A64, A65, A66, A67) = (− 63
256 ,− 21

64 ,− 15
32 ,− 3

4 ,− 3
2 ,−6, 12), (B 35)

(A71, A72, A73, A74, A75, A76, A77, A78) = (− 231
1024 ,− 147

512 ,− 49
128 ,− 35

64 ,− 7
8 ,− 7

4 ,−7, 14),

(B 36)
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(A81, A82, A83, A84, A85, A86, A87, A88, A89)

= (− 429
2048 ,− 33

128 ,− 21
64 ,− 7

16 ,− 5
8 ,−1,−2,−8, 16), (B 37)

(A91, A92, A93, A94, A95, A96, A97, A98, A99, A9,10)

= (− 6435
32768 ,− 3861

16384 ,− 297
1024 ,− 189

512 ,− 63
128 ,− 45

64 ,− 9
8 ,− 9

4 ,−9, 18), (B 38)

(A101, A102, A103, A104, A105, A106, A107, A108, A109, A10,10, A10,11)

= (− 12155
65536 ,− 3575

16384 ,− 2145
8192 ,− 165

512 ,− 105
256 ,− 35

64 ,− 25
32 ,− 5

4 ,− 5
2 ,−10, 20). (B 39)

The increasing-order sets of non-zero coefficients for the vertical derivatives of the
functions gn are

B12 = 2, (B 40)

(B22, B23) = (−1, 4), (B 41)

(B32, B33, B34) = (− 1
4 ,−2, 6), (B 42)

(B42, B43, B44, B45) = (− 1
8 ,− 1

2 ,−3, 8), (B 43)

(B52, B53, B54, B55, B56) = (− 5
64 , − 1

4 ,− 3
4 ,−4, 10), (B 44)

(B62, B63, B64, B65, B66, B67) = (− 7
128 ,− 5

32 ,− 3
8 ,−1,−5, 12), (B 45)

(B72, B73, B74, B75, B76, B77, B78) = (− 21
512 ,− 7

64 ,− 15
64 ,− 1

2 ,− 5
4 ,−6, 14), (B 46)

(B82, B83, B84, B85, B86, B87, B88, B89)

= (− 33
1024 ,− 21

256 ,− 21
128 ,− 5

16 ,− 5
8 , − 3

2 ,−7, 16), (B 47)

(B92, B93, B94, B95, B96, B97, B98, B99, B9,10)

= (− 429
16384 ,− 33

512 ,− 63
512 ,− 7

32 ,− 25
64 ,− 3

4 ,− 7
4 ,−8, 18), (B 48)

(B102, B103, B104, B105, B106, B107, B108, B109, B10,10, B10,11)

= (− 715
32768 ,− 429

8192 ,− 99
1024 ,− 21

128 ,− 35
128 ,− 15

32 ,− 7
8 ,−2,−9, 20). (B 49)

The relationships for the horizontal derivatives of these functions can be written by general
formulas (valid for all positive integers n)

∂fn

∂x

∣∣∣∣
z=0

= −2ngn+1(x, 0), (B 50)

∂gn

∂x

∣∣∣∣
z=0

= (1 − 2n)fn(x, 0) + 2nfn+1(x, 0), (B 51)

∂2fn

∂x2

∣∣∣∣
z=0

= 2n(2n + 1)fn+1(x, 0) − 4n(n + 1)fn+2(x, 0) = − ∂2fn

∂z2

∣∣∣∣
z=0

, (B 52)

∂2gn

∂x2

∣∣∣∣
z=0

= 2n(2n − 1)gn+1(x, 0) − 4n(n + 1)gn+2(x, 0) = − ∂2gn

∂z2

∣∣∣∣
z=0

, (B 53)

where Laplace’s equation has been utilized.
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Appendix C. Dimension-reduced deep-water model

We give a brief derivation for the dimension-reduced deep-water model (9.1), (9.2)
applied for the numerical computations of § 9. For more details see Bestehorn et al. (2019).

Starting from the kinematic boundary condition and the Euler equations for an
incompressible, potential flow, the set

∂tus = − 1
2
∂x(us)

2 − 1
ρ

∂x p
∣∣∣∣
z=η

,

∂tη = −∂x S,

⎫⎪⎬
⎪⎭ (C 1)

is found where us(x, t) = u(x, z = η(x, t), t) is the horizontal velocity component at the
free surface located at z = η(x, t) and

S(x, t) =
∫ η(x,t)

−∞
dzu(x, z, t), (C 2)

denotes the horizontal flux. From ∇2u = 0, the general form for u reads

u =
∑

k

uk(t)e|k|z eikx + c.c., (C 3)

and therefore

S(x, t) =
∑

k

e|k|η(x,t)

|k| uk(t) eikx + c.c., (C 4)

where c.c. stands for complex conjugate. Expanding e|k|η with respect to the (small)
steepness s = |k|η (C 3) is written as

us =
∑

k

uk(t)
N∑

n=0

(|k|η)n

n!
eikx + c.c. (C 5)

We define the linear fractional operator of order sN

L̂N(η) =
N∑

n=0

ηnD̂n

n!
, (C 6)

with D̂ as the self-adjoint operator

D̂ ≡ (−∂xx)
1/2, (C 7)

that has the Fourier representation D̂n −→ |k|n . Now, uk can be eliminated between (C 4),
(C 5) and up to order sN (C 2) takes the form

SN(x, t) = L̂N(η)D̂−1L̂−1
N (η)us(x, t), (C 8)

with L̂−1
N as operator inverse constructed from

L̂−1
N L̂N = 1 + O(ηN+1). (C 9)
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Up to first order (N = 1), (C 6) and (C 9) yield

L̂1 = 1 + ηD̂, L̂−1
1 = 1 − ηD̂, (C 10a,b)

and (C 8) explicitly reads

S1 = D̂−1us − D̂−1(ηD̂us) + ηus. (C 11)

Assuming for the surface pressure p(x, z = η(x)) = const., the pressure gradient in (C 1)
reads ∂x p|z=η = −∂zp|z=η∂xη and with the Euler equation (first order)

∂zp|z=η = ρ(g + ∂tws)∂xη. (C 12)

Here, ws(x, t) = w(x, z = η(x, t), t) denotes the vertical velocity component at the surface
and can be taken from the continuity equation in appropriate order as ws = −∂x D̂−1us.
Finally, (C 1) turns into

[1 − (∂xη)∂x D̂−1]∂tus = −∂x(
1
2 u2

s + gη). (C 13)

Inversion of the operator in the brackets on the left-hand side of (C 13) and scaling
according to appendix A, (9.1) and (9.2) are obtained in the desired second order s2.
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