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Summary

No exact method for determining genotypic and identity-by-descent probabilities is available for
large complex pedigrees. Approximate methods for such pedigrees cannot be guaranteed to be
unbiased. A new method is proposed that uses the Metropolis–Hastings algorithm to sample a
Markov chain of descent graphs which fit the pedigree and known genotypes. Unknown genotypes
are determined from each descent graph. Genotypic probabilities are estimated as their means.
The algorithm is shown to be unbiased for small complex pedigrees and feasible and consistent for
moderately large complex pedigrees.

1. Introduction

Many methods are currently used for estimating
genotypic and identity by descent (IBD) probabilities
in human and animal pedigrees. Genotypic and IBD
probabilities are of interest to geneticists studying the
transmission of genes through complex pedigrees,
where a gene might be for a genetic disorder, a mol-
ecular test or marker. Commonly, the genotypes of
some individuals in the population are known with
certainty, partially known for other individuals (in
that some genotypes can be excluded) and unknown
for the remainder of the population. Most methods
for estimating genotypic and IBD probabilities are
suitable for small pedigrees, but have disadvantages
when applied to large and complex pedigrees, where
‘complex’ implies the presence of many marriage and
inbreeding loops.

Gene dropping provides unbiased estimates, but it
is only feasible for very small pedigrees. Methods
based on peeling (e.g. Elston & Stewart, 1971; van
Arendonk et al., 1989; Fernando et al., 1993; Stricker
et al., 1995; Janss et al., 1995b ; Kerr & Kinghorn,
1996) provide unbiased estimates of genotypic

probability for small pedigrees or pedigrees without
loops. However, exact peeling is computationally in-
feasible for large complex pedigrees. Pedigree simpli-
fication and iterative peeling are two feasible methods
used for large complex pedigrees, but estimates can no
longer be guaranteed to be unbiased (Fernando et al.,
1993).

To solve the problem, a number of Markov chain
Monte Carlo (MCMC) methods have been used to
estimate genotypic and IBD probabilities (e.g. Lange
& Sobel, 1991; Sobel & Lange, 1993, 1996; Guo &
Thompson, 1994; Janss et al., 1995a). These methods
sample either genotypes or descent graphs. They can
produce unbiased samples for large complex pedi-
grees, provided that the sampling algorithm can
traverse the parameter space efficiently ; however, im-
pediments to traversing the parameter space can be
severe. Furthermore, when there are more than two
alleles at the locus, MCMC methods for sampling
genotypes are not necessarily irreducible (Sheehan &
Thomas, 1993). MCMC methods which operate by
sampling descent graphs need not be subject to irre-
ducibility problems, but as noted by Sobel & Lange
(1996), ‘mixing’ may be very poor. Adjacent samples
are highly correlated and it may be infeasible to ob-
tain sufficient samples to guarantee estimates have a
low probability of error.

Attempts to improve the performance of descent
graph sampling algorithms have focused on the
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correlation of adjacent samples, and on drawing legal
descent graphs through genotype elimination. At one
extreme are MCMC algorithms such as those of Sobel
& Lange (1996) where the autocorrelation of legal
candidate samples is high. To reduce this auto-
correlation composite transmission rules have been
proposed (e.g. Lange & Sobel, 1991; Sobel & Lange,
1993, 1996), in which structured groups of elements
of the descent graph are changed together. However,
changing more of the descent graph reduces the
probability that the result will be legal, so more sam-
ples may be required. At the other extreme are meth-
ods for sampling uncorrelated descent graphs, such as
those of Henshall et al. (1999, 2001). By applying the
genotype elimination through inheritance constraint
(GEIC) algorithm, all samples are legal, but the den-
sity of the samples drawn is due not only to the like-
lihood of the sample but also to properties of the
algorithm used to obtain the sample (the GEIC sam-
pling density). While it is easy to use importance
sampling or a Metropolis–Hastings step to adjust for
the GEIC sampling density, for pedigrees of reason-
able size this adjustment results in a small number
of effective samples, resulting in estimates of low
accuracy.

In this paper a new MCMC method for sampling
descent graphs is proposed in which the independent
descent graph method of Henshall et al. (2001) is
placed into aMCMC context. AMetropolis–Hastings
(MH) step is used to accept or reject candidate graphs
which have far less autocorrelation than the can-
didate graphs used in other MCMC methods. The
paper shows that the algorithm can produce un-
biased estimates on small complex pedigrees and that
it may be feasible for moderately large complex
pedigrees.

2. Method

Henshall et al. (1999, 2001) describe a method (GEIC)
for estimating genotypic and IBD probabilities from
independently sampled descent graphs. Each descent
graph is sampled de novo and consequently adjacent
samples are completely uncorrelated. A description of
this method, reprinted from Henshall et al. (2001), is
contained in the Appendix.

This new algorithm puts the GEIC algorithm into
an MCMC framework. An initial descent graph is
sampled using GEIC. Subsequent samples are ob-
tained by using the GEIC and MH algorithms. A
subset of the primary descent graph is retained from
the previous sample, and the remainder of the pri-
mary descent graph is sampled using GEIC. A MH
step is used to accept or reject the candidate. This
sampling procedure in the algorithm differs from that
described in Henshall et al. (2001) in two important
ways.

Firstly, a partial primary descent graph is sampled
from the inheritance constraints of the current sample
primary descent graph. This is a legal subset of
the current descent graph. GEIC is then used to com-
plete a new primary descent graph. Base alleles and
a secondary descent graph are then sampled as in
Henshall et al. (2001).

Secondly, the MH algorithm is used to accept or
reject candidate samples, based on the likelihood of
the sample and the probability of moving from the
current descent graph to the candidate descent graph,
rather than using importance sampling to weight
samples. This probability is similar to the importance
sampling density in the method of Henshall et al.
(2001), and is a function of the number of elimination
and base gamete sampling steps required to produce
each sample. The MH algorithm is of benefit here as
adjacent samples are correlated.

The new algorithm is an MCMC descent graph
sampling algorithm, but has the ability to make long
jumps between adjacent samples. Accordingly it is
referred to here as the long jumping descent graph
sampler (LJDGS). A full description of the algorithm
follows:

1. Obtain a legal descent graph and associated likeli-
hood (p(x)) and GEIC sampling density (g(x))
using the method of Henshall et al. (2001).

2. Repeat

(a) Sample a subset of the primary descent graph
to retain.

(b) Apply GEIC to the pedigree, constraining the
subset to remain unchanged, to obtain a new
primary descent graph with likelihood p(y)
and GEIC sampling density g(y).

(c) Apply the MH algorithm, with q(x, y)=g(y),
q(y, x)=g(x), and acceptance criterion

min ((p(y)q(y, x))=(p(x)q(x, y)), 1)

(d) If the candidate sample is accepted, then set
p(x)=p(y) and g(x)=g(y)

(e) Accumulate the most recently accepted descent
graph and associated genotypes

3. Summarize parameters of interest as means of the
samples.

(i) Subset sampling algorithm

It is critical to the success of the algorithm that the
method of sampling subsets of the primary descent
graph to retain (step 2a) is balanced, and does not
affect the candidate generating density g(y). While one
can simply prove that a particular subset sampling
algorithm does not satisfy this criterion by exception,
to prove that a particular subset sampling algorithm
does satisfy this criterion would require consideration
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of all possible genotype–pedigree configurations. For
other than very small or simple pedigrees this may not
be possible. However, exhaustive testing has failed to
find fault with the strategy described below.

A primary descent graph consists of the set of paths
connecting informative gametes to base gametes.
Before choosing the subset to be retained, a binary
variable is initialized to ‘save’ for all gametes in the
primary descent graph. All paths connecting informa-
tive gametes to base gametes are traversed. With each
step (gamete) on the traverse, a random number be-
tween zero and one is drawn. If the random num-
ber exceeds a predetermined non-zero probability b,
then the binary variable associated with the gamete
switches from the ‘save’ state to a ‘discard’ state. All
binary variables associated with gametes on the path
between, and including, it and the base gamete are set
to ‘discard’ (the initial change to ‘discard’ breaks the
link between the informative and base gametes). It is
possible for paths connecting a number of informative
gametes to intersect at the same gamete. If when
traversing a path a gamete with a variable set to
‘discard’ is found then the remainder of that path has
also been set to ‘discard’ and is not reset again. For
any individual on a path where one of its gametes’
variables has been set to ‘discard’, the state of the
variable associated with its other gamete (and all ga-
metes between it and the connected base gamete) is
also set to ‘discard’. To facilitate mixing, the gametes
of full-sib animals are also set to ‘discard’. Gametes
that remain set to ‘save’ retain their current in-
heritance state when a new primary descent graph is
sampled.

The variable b need not remain constant, and the
algorithm may be ‘tuned’ to different pedigrees by
varying the method of selecting b.

3. Test analyses

Two test pedigrees were used to test the LJDGS
algorithm.

A pedigree with 11 individuals (pedigree A, Table 1)
was used to validate that the method was able to
produce unbiased estimates. This pedigree is small,
allowing the calculation of exact genotypic prob-
abilities for comparison purposes. A single locus, with
4 alleles with founder allele frequencies (0.5, 0.25, 0.2,
0.05) was assumed, and test data sets obtained by
sampling base gametes and Mendelian transmission.
On each test data set genotypes were made available
for four randomly chosen individuals, and assumed
unknown on the remaining seven individuals.

From pedigree A, 1000 random data sets were
analysed twice, once with adjacent samples indepen-
dent – essentially the algorithm used by Henshall et al.
(2001) but with a MH step instead of importance
sampling (IDGS), and once with the LJDGS, with

correlated descent graph samples. With LJDGS, the
parameter b did not remain constant, but for each
sample was drawn from a b(1,1) distribution. Geno-
typic and IBD probabilities were estimated as the
mean of 10 000 samples. As the MH algorithm is used,
the effective number of samples is fewer than 10 000.
A simple estimate of the effective number of samples
was used. The sample which was retained for the most
MH cycles (rmax) was assumed to have contributed
one to the effective number of samples, the effective
number of samples then being ns/rmax, where ns is the
total number of samples. This measure is less appro-
priate for LJDGS than IDGS, because in LJDGS
adjacent samples are correlated. Exact genotypic
probabilities were obtained using MENDEL (Lange
et al., 1988), which uses a peeling-based algorithm.

To compare the sampled genotypic probabilities
with the exact probabilities, the test statistic used
in Henshall et al. (2001) was used, x2=

P
Ekll0

(OklxEkl)
2=Ekl, where k relates to the individual, l is

the unordered (no distinction between paternal and
maternal) genotype, Ekl is the number of samples ex-
pected to occur for genotype l in individual k (calcu-
lated from the probabilities obtained usingMENDEL
and the effective number of samples) and Okl is the
effective number of samples which were observed for
genotype l in individual k. This statistic has an ap-
proximate x2 distribution, with nx11 degrees of free-
dom, where n is the number of non-zero Ekl in the
sum. The distribution of the test statistic is only ap-
proximate as both within and across individuals,
genotype probabilities are not independent, and the
effective number of samples is only an approximation.

A larger pedigree with 1600 individuals was used to
evaluate the performance of the LJDGS algorithm on
more challenging data. This pedigree, modelled on the
simulated pedigree of Heath (1998), consisted of 20
discrete generations, each with 80 individuals. These

Table 1. Pedigree A

id Father Mother

1 0 0
2 0 0
3 0 0
4 2 1
5 2 3
6 2 4
7 5 4
8 5 3
9 7 6
10 7 8
11 10 9

For each analysis, genotype was sampled for base in-
dividuals and Mendelian transmission was sampled for
non-base individuals. Unordered genotype was then made
available for only four randomly chosen individuals.
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were the 10 progeny from each of 8 matings between
males and females from the previous generation. A
single locus with 16 alleles, with uniform frequencies
in the base individuals, was assumed. A single data set
was obtained by sampling base gametes and Mendel-
ian transmission. Analyses were then performed with
varying proportions of the simulated genotypes made
available. For all analyses genotypes for all individ-
uals born in the final generation were available. Three
data sets were constructed, with genotypes made
available on 0, 25% or 50% of the remaining in-
dividuals, with individuals to be genotyped chosen at
random (pedigrees B0, B25 and B50).

Each of pedigrees B0, B25 and B50 was analysed
using two methods: once with no correlation between
adjacent samples (IDGS) and once with correlated
descent graph samples (LJDGS). Each analysis in-
volved drawing 10 000 samples, and was repeated five
times, using different seeds for the random number
generator each time. In each case the first 1000 sam-
ples were discarded. With LJDGS, the parameter b
did not remain constant, but for each sample was
drawn from a b(80,1) distribution. Genotypic and
IBD probabilities were estimated as means of the last
9000 samples, and the effective number of samples
calculated as described above.

Mixing was assessed in four ways. The first was by
examining the degree of symmetry in the inheritance
of base gametes, as the probability of a base gamete
being sampled as ‘paternal ’ should equal the prob-
ability of it being sampled as ‘maternal ’. The test
statistic used was

SYM=1x

Pnb

i=1

Pna

j=1

Pj

k=1

pijk x pikj
�
�

�
�

nb

where nb is the number of base individuals (=80), na is
the number of alleles (=16) and pijk is the probability
that individual i inherited allele j from its sire and
allele k from its dam. This statistic can take values
from zero to one, with lower values less symmetric in
the inheritance of base alleles.

For the second measure of mixing unordered geno-
typic probability estimates were considered across the
five replicates. The number of genotypic probability
estimates in which at least one replicate had a zero
probability while at least one replicate had a prob-
ability greater than 0.00, 0.01, 0.02, 0.05 or 0.10 was
calculated. The statistics Z0, Z01, Z02, Z05 and Z10 are
these counts, expressed as percentages of the total
number of cells with non-zero probabilities, excluding
cells in which there was no variation.

For the third measure of mixing unordered geno-
typic probability estimates were again considered
across replicates. The statistics S01, S02, S05 and S10 are
the number of cells in which the standard deviation

(over replicates) of the genotypic probability estimate
exceeded 0.01, 0.02, 0.05 or 0.10 respectively, ex-
pressed as percentages of the total number of cells
with non-zero standard deviations.

The fourth measure of mixing was to compare the
within- and across-replicate variation in the sampled
descent graphs. The statistic W is the percentage of
gametes (excluding base gametes) for which the
across-replicate variation was significant at the 1%
level. To compute this statistic, the within-sample
variance was calculated assuming a binomial distri-
bution, using the estimated number of effective sam-
ples. The degrees of freedom were also calculated with
respect to the estimated number of effective samples,
and approximate significance level obtained from
significance levels for an F distribution.

While these tests may identify inadequate mixing,
that inadequate mixing has not been identified is not
a guarantee of adequate mixing.

4. Results

The genotypes for pedigree A are well estimated
(Fig. 1). The test statistics obtained for the 1000 anal-
yses of pedigree A are plotted against the approxi-
mate degrees of freedom, for both IDGS and LJDGS.
The test statistics show chance deviations from ex-
pectation. Although the distributions of test statistics
are similar for the two methods, there appear to be
fewer extreme test statistics for LJDGS.

With large complex pedigrees LJDGS performs
much better than IDGS (Table 2). Of the 9000 sam-
ples, the number accepted is far higher with LJDGS
than IDGS, and this is reflected in the much higher
effective number of samples for LJDGS. The effective
number of samples for IDGS is so low that genotypic
probability estimates would be expected to be of very
low accuracy, while with LJDGS one would expect
reasonable estimates. However, for LJDGS samples
are not independent, so it is possible that the effective
number of samples is an overestimate.

Most of the measures of mixing indicate that
LJDGS shows better mixing than IDGS. The first
measure of mixing, symmetry in the base individuals,
provides no evidence of mixing problems with LJD-
GS. However, reasonably high levels of symmetry
also occur for IDGS for pedigree B0, despite only 2.5
effective samples, suggesting that base symmetry is
not in itself an indicator of good mixing. The second
measure of mixing, the percentage of genotypes in
which at least one zero probability was observed while
the maximum probability observed was greater than
0.00, 0.01, 0.05 or 0.10, suggests that mixing has been
good with LJDGS for all pedigrees. Again, however,
no problem with mixing has been observed for IDGS
for one pedigree, in this case B50. This casts some
doubt on the worth of this statistic as an indicator of
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mixing. The third measure of mixing, the standard
deviation of genotype probabilities across replicates,
suggests that LJDGS mixes better than IDGS. Stan-
dard deviations of less than 5% suggest that geno-
typic probability estimates are accurate to around 5%,
which may be acceptable for some applications. A
relatively small percentage of genotypic probabilities
had standard deviations above 5%, especially for
pedigrees B25 and B50.

The fourth measure of mixing, the significance of
the between-sample variation in gamete inheritance,
suggests that IDGS is superior to LJDGS. This is
because, with such a low effective number of samples
within-replicate variation is assumed to be high,
making between-replicate variation insignificant. For
LJDGS, this statistic clearly indicates that mixing has
not been ideal, especially for pedigree B25, where for
almost one-quarter of gametes the between-replicate
variance is significant at the 1% level. Alternatively or
as well, this may be an indication that the number of
effective samples has been overestimated.

In Table 3 the mean and minimum percentage of
the primary descent graph saved is provided for both
accepted and rejected samples. It is clear that samples
are more likely to be accepted if a large proportion of

100

80

60

40

20

0
0 10 20 30 40 50 60

Degrees of freedom

LJDGS

1% threshold
5% threshold

T
es

t s
ta

tis
tic

100

80

60

40

20

0
0 10 20 30 40 50 60

Degrees of freedom

IDGS

1% threshold
5% threshold

T
es

t s
ta

tis
tic

Fig. 1. Distribution of the test statistic obtained for 1000
replicates of pedigree A analysed using the descent graph
sampler with independent samples (IDGS) and the long
jumping descent graph sampler with correlated samples
(LJDGS).

Table 2. Results of five repeated analyses of a
pedigree with 1600 individuals

Pedigree

B0 B25 B50

IDGS LJDGS IDGS LJDGS IDGS LJDGS

NACC 5 1116 4 719 27 1471
NEFF 1.5 137.9 1.6 96.4 4.7 209.1

SYM 0.96 0.99 0.77 0.96 0.80 0.98

Z0 19.3 1.9 14.9 5.9 2.1 1.9
Z01 19.2 0.8 14.8 4.5 1.6 0.8
Z02 19.2 0.5 14.6 3.8 1.4 0.6
Z05 19.1 0.3 14.3 2.6 1.1 0.2
Z10 18.9 0.3 14.2 1.9 0.9 0.0

S01 92.0 77.5 94.7 79.3 94.8 72.8
S02 69.0 58.1 89.8 54.6 93.2 19.5
S05 69.0 22.2 85.3 20.1 90.2 0.4
S10 51.6 5.6 76.7 8.3 78.2 0.2
S20 41.1 0.6 69.4 2.8 33.8 0.0

W 0.0 9.8 0.2 23.0 0.0 8.7

A 16-allele locus was simulated, with genotypes available on
the last generation and on 0 (B0), 25% (B25) or 50% (B50)
of the remaining individuals. Ten thousand samples were
drawn using the independent descent graph sampler (IDGS)
and the long jumping descent graph sampler, with the first
1000 samples discarded. The number of samples accepted
(NACC) and an approximation of the effective number of
samples (NEFF) is provided. For these, along with one of the
measures of mixing, base allele symmetry (SYM), larger
values are desirable. Three other measures of mixing are
provided, for which smaller values are desirable. Mixing in
genotype estimates is compared using the percentage of
genotypes in which at least one replicate had a zero prob-
ability while at least one replicate had a probability greater
than 0.00 (Z0), 0.01 (Z01), 0.02 (Z02), 0.05 (Z05) or 0.10 (Z10),
and the percentage of genotypes in which the standard
deviation of the probability estimate across replicates ex-
ceeded 0.01 (S01), 0.02 (S02), 0.05 (S05), 0.10 (S10) or 0.20
(S20). These percentages are calculated using only genotypes
in which there was some variation across replicates. The last
measure of mixing (W) is the percentage of gametes for
which the variation in origin (grandpaternal or grand-
maternal) across replicates is significant at the 1% level,
when compared with the within-sample variation.

Table 3. Summary statistics for accepted and rejected
samples for pedigrees B0, B25 and B50

ACC ma mr mina minr

B0 0.12 0.98 0.85 0.58 0.24
B25 0.08 0.98 0.72 0.71 0.22
B50 0.16 0.95 0.74 0.54 0.29

The percentage of samples accepted (ACC) is provided,
along with the mean and minimum percentage of the pri-
mary descent graph retained for both the accepted samples
(ma and mina) and rejected samples (mr and minr).
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the current primary descent graph is retained. How-
ever, it is also evident that on occasions samples are
accepted which retain only two-thirds of the current
primary descent graph.

Runs of 10 000 samples took on average 16.6, 3.4
and 4.5 hours for LJDGS on pedigrees B0, B25 and
B50 respectively, using a Pentium III Xeon 1.7 GHz
processor.

5. Discussion

By using the GEIC (genotype elimination by inherit-
ance constraint) algorithm the method described in
this paper generalizes the method of Sobel & Lange
(1993) for sampling descent graphs. The GEIC al-
gorithm ensures that all candidate descent graphs are
legal, and there is no need to ‘tunnel through’ illegal
descent graphs. As with all descent graph sampling
algorithms, LJDGS is suitable for loci with more than
two alleles to be evaluated without concern about the
Markov chain being reducible.

The results from pedigree B suggest that this
method may feasible on moderately sized pedigrees
with large numbers of alleles per locus. The variation
in mixing, and large variation in time taken for pedi-
grees B0, B25 and B50, suggest that size and number
of alleles are not the only factors affecting feasibility.
The proportion and distribution of genotyped in-
dividuals in the pedigree is also very important, with
pedigrees rich in genotyped individuals more quickly
analysed than pedigrees with sparse genotype in-
formation, but with pedigrees with an intermediate
level of genotype information more likely to produce
poor mixing.

The evaluation of the small pedigrees described in
Table 1 indicates that the results from this algorithm
are unbiased. Nevertheless, we found that the choice
of too few gametes for re-sampling could limit mixing.
The variation in the MH acceptance rate between
pedigrees B0, B25 and B50 suggests that the algorithm
may be tuned by varying the method of sampling b,
the proportion of the primary descent graph to retain.
Here, b was sampled from a b(a,1) distribution, where
a=max(n/20,1) and n was the number of individuals.
It may be more appropriate to use a function of the
number of genotyped individuals as the first para-
meter in the beta distribution. This tuning may be
very important. If b is consistently small, then fewer
candidate graphs will be accepted, and the effective
number of samples will be reduced. If b is consistently
large, then adjacent samples will be more corre-
lated, again reducing the number of effective samples.
This could be determined while the algorithm is
running.

The method for sampling descent graphs, by ran-
domly drawing a number of gametes to be re-sampled,
should permit rapid exploration of the parameter

space, enhancing mixing. While it has not been shown
that mixing is a problem in descent graph sampling
methods such as Sobel & Lange (1996), it is difficult
to be sure that it is not. These methods are roughly
equivalent to LJDGS but with a value of b very close
to 1.0, and as mixing is shown to be a problem for
LJDGS in pedigree B25, it is likely that mixing
will also be a problem for descent graph sampling
methods that move through the parameter space
making smaller jumps. The methods used here to
test mixing are not perfect ; for example, the methods
which use the similarity between replicates would give
a favourable statistic if all replicates were similar, even
if this similarity were due solely to the use of similar
starting values. This could be a problem with any
MCMCmethod that requires a valid descent graph as
a starting value, as the descent graph sampling density
of Henshall et al. (2001) shows that some descent
graphs are thousands of times more likely to be found
than others, and this variation is not due to the like-
lihood of the descent graph. Therefore, there may be
a significant chance that sampled descent graphs,
drawn for use as ‘fresh’ starting values, all share some
characteristic. It would appear that this is less likely
to be a problem with LJDGS, as the descent graph
sampling density is explicitly included in the MH step.
LJDGS correctly accounts for the density of the
starting values, and provides a statistically sound
method for combining replicates.

The execution times presented are for development
software, and it is likely that significant speedups
could be made through enhancements to the GEIC
algorithm such as those proposed by Du & Hoeschele
(2000). As they are cheap to obtain, it is possible to
sample many secondary descent graphs for each pri-
mary descent graph, and to use a weighted average for
determining genotypic and IBD probabilities. Even
with significant speedups it will not be possible to
draw as many samples as is possible with other
MCMC descent graph sampling algorithms, such as
those of Sobel & Lange (1996). However, as adjacent
samples obtained with LJDGS should be less cor-
related than those from other MCMC algorithms,
fewer samples need be drawn to get good genotypic
probability estimates. A composite method, using
a conventional MCMC descent graph sampler to
sample in the region of each LJDGS sample, is also
possible.

While the results presented here are for single loci,
the extension to multiple loci is straightforward, using
the likelihoods in Sobel & Lange (1996). As the al-
gorithm operates by re-sampling whole regions of the
descent graph together, re-sampling all loci within
individuals together promotes efficient mixing. Inter-
estingly, for multilocus graphs the GEIC sampling
density has less effect on the probability of accepting a
sample, as it becomes a function of powers of 1xr
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and r, where r is the recombination rate, instead of
a function of powers of 1

2. Estimates of haplotype
probabilities can be obtained for multilocus data.
Descent graph sampling methods for quantitative
trait loci (QTL), such as that of Tier & Henshall
(2001), can also be combined with LJDGS, to sample
QTL linked to markers.

Estimating genotypic and IBD probabilities in
large complex pedigrees remains a difficult and com-
plicated process. With the method described here, the
output should be critically examined to ensure that
the likelihood is not being dominated by the GEIC
sampling density, and all available measures of mix-
ing should be considered. For some pedigrees the
method may be totally unsuitable, but the diagnostics
suggested here should give an indication of whether or
not this is the case.

6. Conclusions

By combining the best elements of existing MCMC
descent graph sampling algorithms with the best el-
ements of independent descent graph sampling meth-
ods, the method proposed here has the potential to be
of use in estimating genotypic probabilities and IBD
probabilities in moderately large complex pedigrees.
Adjacent samples are potentially less correlated than
those produced using other MCMC descent graph
sampling algorithms, reducing the number of samples
required to produce reliable estimates. At the same
time, allowing some correlation ensures that enough
samples are accepted to make the analysis of large
pedigrees feasible.

Appendix. The GEIC algorithm

(from Henshall et al. 2001)

1. Construct a list of informative gametes, ordered
in reverse pedigree order (i.e. progeny before
parents).

2. Construct a list of feasible ordered genotypes for
each individual, using the genotype elimination
algorithm (Lange & Goradia, 1987).

3. For each informative gamete, construct a path
from the informative gamete to a base gamete by
repeating the following:

(a) If a path already exists from the gamete to a
parent gamete, proceed up the path until a
gamete with an unconstrained inheritance state
is found.

(b) If the gamete is a base gamete, proceed to the
next informative gamete.

(c) Otherwise, sample an inheritance state for the
gamete, by eliminating one inheritance state at
random.

(d) Construct a new list of feasible ordered geno-
types for each individual, using the genotype
elimination algorithm, modified to take ac-
count of inheritance constraints. Note that
there may be no valid genotypes for some in-
dividuals, in which case the sample is illegal,
and the algorithm has failed.

The sample now consists of a set of constrained in-
heritance states connecting informative gametes to
base gametes. We will refer to this set as the primary
descent graph sample.

4. Assign an inheritance state at random to every
non-base gamete which is not in the primary de-
scent graph sample. These will be referred to as the
secondary descent graph sample.

5. If the sample is legal, each base gamete in the pri-
mary descent graph sample will now be constrained
to have either a single possible allelic type, or a
subset of possible allelic types. Construct a list of
those which have more than one possible allelic
type.

6. Repeat for each base gamete in the list of base
gametes with more than one possible allelic type:

(a) Constrain the allelic type by assigning at ran-
dom one of the possible allelic types ; reference
may be made to prior allele frequencies for
base alleles.

(b) Use the genotype elimination algorithm,
modified to take account of inheritance con-
straints, to determine the consequences of this
constraint. This may include removing base
gametes from the list to be constrained.

7. Base gametes which are not in the primary descent
graph sample can be sampled according to prior
allele frequencies for base alleles.

8. Drop down through the pedigree, assigning allelic
types to all gametes.

The sampled inheritance states obtained following
step 4 comprise a legal descent graph. With base ga-
metes uniquely determined (steps 6 and 7), and a legal
descent graph, the allelic type of all gametes in the
pedigree is also uniquely determined, and comprise a
legal descent state.
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