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A Sharp Bound on RIC in Generalized
Orthogonal Matching Pursuit

Wengu Chen and Huanmin Ge

Abstract. The generalized orthogonal matching pursuit (§OMP) algorithm has received much at-
tention in recent years as a natural extension of the orthogonal matching pursuit (OMP). It is used
to recover sparse signals in compressive sensing. In this paper, a new bound is obtained for the exact
reconstruction of every K-sparse signal via the gOMP algorithm in the noiseless case. That is, if the
restricted isometry constant (RIC) Syk+1 of the sensing matrix A satisfies

ONK+1 <

>
K
N+1

then the gOMP can perfectly recover every K-sparse signal x from y = Ax. Furthermore, the bound
is proved to be sharp. In the noisy case, the above bound on RIC combining with an extra condition
on the minimum magnitude of the nonzero components of K-sparse signals can guarantee that the
gOMP selects all of the support indices of the K-sparse signals.

1 Introduction

It is well known that compressive sensing acquires signals at a rate greatly below
Nyquist rate. It has attracted growing attention in recent years [L, 2,4, 5} 7, (15, [18].
The main aim of compressive sensing is to reconstruct signals from inaccurate and
incomplete measurements from the model

y=Ax+e,

where y € R™ is a measurement vector, the matrix A € R™*" (m <« n) is a sens-
ing matrix, the vector x € R” is an unknown sparse signal, and e € R™ is a mea-
surement error vector. The goal is to recover the signal x based on y and A. In this
paper, A; (i = 1,2,...,n) denotes the i-th column of A and all columns of A are
normalized, i.e, |A;||, = 1for i = 1,2,...,n. Define the support of the vector x by
T = supp(x) = {i|]x; # 0} and the size of its support by |T| = | supp(x)|. For a signal
x, if | supp(x)| < K, then x is called K-sparse.
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For the recovery of the K-sparse signal x, the most intuitive approach is to solve
the following optimization problem

(1D min |x|o subjectto Ax — y € B,
X

where ||x| o denotes the Iy norm of x, i.e., the number of nonzero coordinates, B is
a bounded error set, i.e, B = {e € R™ | |le|, < &}. Particularly, in the noiseless
case, B = {0}. Unfortunately, it is well known that the above optimization problem is
NP-hard. Therefore, researchers seek computationally efficient methods to approxi-
mate the sparse signal x, such as /; minimization [8], /,(0 < p < 1) minimization [10],
greedy algorithm [26], and so on.

To ensure that the K-sparse solution is unique, we shall need the restricted isom-
etry property (RIP) introduced by Candeés and Tao in [[8]. A matrix A satisfies the
restricted isometry property of order K if there exists a constant 8 € [0,1) such that

(1= 8x) x[3 < [[Ax]3 < (1+0x) | x]3

holds for all K-sparse signals x. And the smallest constant J is called the restricted
isometry constant (RIC). Candes and Tao also proposed that if §,x < 1, the above
optimization problem has a unique K-sparse solution [8]. Candés showed that if
82k < \/2 — 1, then the above optimization problem is equivalent to the ; min-
imization problem in [[7]. Up to now, there have been many results improving the
bound on the RIC, such as [2,3,/5/6,20].

Recently, a family of iterative greedy algorithms for recovery of sparse signals
has attracted significant attention; it includes orthogonal least square (OLS) [11],
orthogonal matching pursuit (OMP) [27], generalized orthogonal matching pur-
suit (gOMP) [28], regularized orthogonal matching pursuit (ROMP) [23], orthog-
onal multi-matching pursuit (OMMP) [32], stagewise orthogonal matching pursuit
(StOMP) [16]], subspace pursuit (SP) [13], and compressive sampling matching pur-
suit (CoSaMP) [22].

Specifically, the OMP algorithm is one of the most effective algorithm, in sparse
signal recovery due to its implementation simplicity and competitive recovery per-
formance. In the noiseless case, many efforts have been made to find sufficient con-
ditions based on RIC for OMP to exactly reconstruct every K-sparse signal x within
K iterations. Davenport and Wakin demonstrated that OMP can recover exactly the
K-sparse signal x under 8x,; < 1/(3v/K) [14]. Since then, there have been many
papers that improve the condition in [12}[17}19}21,29}/30]. Recently, Mo improved
the sufficient condition to dx4; < 1/v/K +1, and proved that this condition is sharp
[19]. In the presence of noise, Shen and Li proved that OMP can exactly recover the
support of the K-sparse signal x under 8x.; < 1/(v/K + 3) and some assumption on
the minimum magnitude of the nonzero elements of x in [25]]. Later, these sufficient
conditions on RIC upper bound and minimum magnitude of the nonzero elements
of K-sparse signal x were improved in [9,31]].

Wang, Kwon, and Shim introduced generalized orthogonal matching pursuit [28],
which is a natural extension of OMP. It is well known that the OMP algorithm only
selects one correct index at each iteration. However, the gOMP algorithm selects
N (N > 1) indices that contain at least one correct index from the support of x in
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Input measurements y € R™, sensing matrix A € R"™*”, sparse level K,
number of indices for each selection N (N < Kand N < ).
Initialize iteration count k = 0, residual vector r° = y,
estimated support set A =g
While Ir*l, > eand k < min{K, 2} do k = k +1.
(Identification step) Select indices set Tk corresponding to N

largest (in magnitude) in A’ ¥,

(Augmentation step) A* = AU Tk,
(Estimation step) X« = argmin, |y — Axtt]2.
(Residual Update step) 7 = y — A \xXpx.

End Output the estimated signal X = arg min,,.qupp(u)=at |y — Att]2.

Table 1: The gOMP algorithm

each iteration. Therefore, the number of iterations for the gOMP algorithm is much
smaller when compared to the OMP algorithm. Wang, Kwon, and Shim obtained that
a sufficient condition

VN

VK +3VN
can ensure the reconstruction of any K-sparse signal [28]]. Later, Satpathi et al. im-
proved the sufficient condition to yx < v/N/(v/K + 2v/N) in [24]. They also refined
the bound further to

VN

Onk < TR TN
which reduces to 0x4; < 1/(\/E+ 1) of OMP in [21,29] for N = 1.
Motivated by the mentioned papers, we further investigate the recovery of any
K-sparse signal by the gOMP. In this paper, we demonstrate that the condition

1

Onk+1 < —
Vytl

is sufficient to perfectly reconstruct any K-sparse signal via the gOMP in the noiseless
case. As N = 1, the sufficient condition is dx+1 < 1/(v/K + 1) which is a sharp bound
for OMP [19]]. Moreover, for any given K € N*, we construct a matrix A satisfying

1

(SNKH:T
Vi tl

such that the gOMP may fail to recover some K-sparse signal x. That is, the above
bound dnk+1 < 1/v/K/N +1is sharp for the gOMP.

The frame of the gOMP is listed in Table[l}

The rest of the paper is organized as follows. In Section [2] we give notation and
prove some basic lemmas that will be used. The main results and their proofs are
given in Section 3}

6NK <
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2 Notation and Preliminaries

Throughout this paper, let I' be an index set and let ' be the complementary set of T.
The standard notation |[x|. = max;-;,,.. . |x;| denotes the l.,—norm of the vector
x € R™. xp € Rl denotes the vector composed of components of x € R” indexed by
iel,ie, (xr); =x; (i €T). Define Xt € R" by

— Xi ieF,
(Xr)i = {

0 otherwise,

where i = 1,2, ..., n. Denote by Ar a submatrix of A corresponding to I that consists
of all columns with index i € T of A and the usual inner product of R” with (-, -).
Let e; € R" be the i-th coordinate unit vector.

Let ak™! be the N-th largest correlation in magnitude between r* and A;
(i € (T U A¥)9), and let B¥*! be the largest correlation in magnitude between r* and
A; (i € (T - AF)) in the (k + 1)-th iteration of the gOMP algorithm. Let Wi, ¢
(T u AF)® be the set of N indices that correspond to N largest correlation in magni-
tude between r* and A; (i € (T u A¥)*).

Suppose A‘;\k represents the pseudo-inverse of A s x. When A ,« is full column rank
(|A%] < m), A’:\k = (A,AkAAk)_lAIAk. Moreover, Pyx = AAkA’;\k and PX,C =1- Pk de-
note two orthogonal projection operators that project a given vector orthogonally
onto the spanned space by all columns of A ,x and onto its orthogonal complement,
respectively.

First, we recall the following lemma, that is, the monotonicity of the restricted
isometry constant in [8}/13].

Lemma 2.1 For any K; < K, if the sensing matrix A satisfies the RIP of order K,
then 6K1 < 81(2-

Next, we show the main lemma that plays the key role during our analysis.

Lemma 2.2 ForanyS, C>0,lett= i% and

. -£(1-1*) (Ax,Ae;) >0,
+Sa-2)  (Ax,Ae) <o,

wherei€ W € {1,2,...,n} that is a nonempty subset. Then we have t* <1and

|a(x+ e [ A(#x- 3 ned) | = -1 (442, 4x)-C 3 (ax,aca)] ).

ieW
Proof For t = + Y5171 e have that

V5
o (VS+1-17 _ VS+1-1

© = = 1.

S VS+1+1
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The lemma is established by the following chain of equalities and the definition of
t; (l € W)

[AGe+ 3 tie) |5 - [A(Ex = 3 ties) |
ieW ieW
= <AX,A.X> +2 Z t,‘(AX,AE,‘) +2 Z Z',‘l'j(AE,‘,A@j) + Z tf(Ae,-,Ae,-)
iew i,jeW,itj iew
- ( t*(Ax, Ax) - 22 " t;(Ax, Ae;)
ieW
+2 Z t,-tj(Ae,-,Aej) + Z t?(Ae,-,Ae,-))
i,jeW,itj iew
= (1-t*)(Ax, Ax) +2(1+ ) > t;{Ax, Ae;)

ieW

- (1= ) (A, Ax) = 2 3 [l (A )

- ieWw

2= Y (ax 4e))))

1-¢2 2 jew

= (1= )((4x, Ax) - C 3 [(Ax, 4ei)]).

ieW

= (1= %) ((Ax, Ax) -

We have already completed the proof of the Lemmal[2.2] ]

Remark 2.3 Lemmal[2.2]is a generalization of [19} Lemma IL.1].

3 Main Results

It is well known that if at least one index of N indices selected is correct in
every iteration, the gOMP makes a success; ie., in each iteration, there exists
B > ak (1< k < K). The following theorems show that a sufficient condition guaran-
tees the gOMP algorithm success. The proof of these theorems mainly uses Lemmas
and 2.2] Without loss of generality, we assume | x|, = 1in the proof of Theorem
B.l|and [@ryax |2 = 1in the proof of Theorem[3.3).

Theorem 3.1 Suppose x is a K-sparse signal and the restricted isometry constant Sx.. N
of the sensing matrix A satisfies

—

(3.1 Or+N <

—

+

z|=

Then the gOMP algorithm makes a success in the first iteration.

Remark 3.2 1In [28], the authors proved that

6 <£
N R+ VN
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is sufficient to make a success in the first iteration of the gOMP. It is clear that

VN

1

6K+N< < >
K

\/E+\/N /ﬁ+1

i.e., the sufficient condition is weaker than that in [28].

Proof In the first iteration, by the definition of a},, it satisfies

Ziewl |(Ae;, Ax)|

(3.2) ay = min{|(Ae;, Ax)||i e Wi} < N

>

where W; € T¢.
For B, which is the largest correlation in magnitude in A%, Ax, we have

(3.3) (Ax,Ax) = (A xiei, Ax) = Y xi(Ae;, Ax) < ) |xil|(Ae;, Ax)|
ieT ieT ieT

<Bilxl < fiVK|x]z = VK.

Let
VE+1-1 K1) (Ax,Ae;) >0,
t=—2Y"_ and t;=
VE +YK(1- 1) (Ax,Ae;) <0,

where i € W ¢ T° with |W;| = N. Then we have that

e (E (K

(3.4) > tfz(ﬁ(l—tz))zN— K(1-V§+H)2:t2,

G 2N T 4N
By (3:2), (3.3), and Lemma[2.2} we obtain
(1= VK - aly) > (1- #)( (Ax, Ax) - K Ziew {Aen Ax)l |<f]e"’A")|)
2 2
= |4l 32 e | a(x - 3 e

Because the sensing matrix A satisfies the RIP of order K + N with dg.n, [|x]]2 = 1
with supp(x) ¢ T, W; ¢ T¢, it follows from (3.4) that

2 2
[4(x+ 3 te) [, - [a(rix- 3 nes) |
ieW; ieW;

> (1= 0kan)(Ix+ X tieil3) = L+ Seen) (1825 = Y tiel3)
ieWw; ieW;
= (1= Okan)(Ix13+ 3 ) = (14 dxean) (213 + 3 £2)
iew; ieW;
:(1—6K+N)(1+t ) (1+8K+N)(f +t )

= (1) = S ) = (1 22 (1~ ).

1+ 12
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It follows from the definition of ¢ that

+1-1

\/ 5 +1+1

z|=

—
|
—~
)
z|=

z|=
+
A
L

ZIR|| —
+
= .

—
+

%
-
¥
%
¥

Therefore, by the condition §x.n < \/%, we obtain
~+Hl

1-¢2

(- )VK (B -ay) > (14 £)*( 15 )
>(1+ t2)2( Kl 1
Nt

W. Chen and H. Ge

- 5K+N) >0,

i.e., B > a), which represents the gOMP selects at least one index from the support

T

As mentioned, if §x.n < 1/(1/ % +1), then the gOMP algorithm makes a success

in the first iteration.

Theorem 3.3

If the gOMP algorithm has performed k iterations successfully, where

1 < k < K and the sensing matrix A satisfies the RIP of order NK + 1 with RIC Snk.+1

fulfilling
1
Onk+1 < —
yt+1

then in the (k + 1)-th iteration, the gOMP will succeed.

Proof For the gOMP algorithm, r¥ = Py, y is orthogonal to each column of A x«.

Then

k 1 L L
1" =Py =PuArxr = PAk(ATfA"xT—A" + Aok XTAAK)

1
= AkAT—AkxT—A" :AT—A"xT—Ak —PAkAT,AkxT,Ak

= AT_AkxT_Ak - AAkZAk = ATUAkwTUAk’

where we used the fact that Pyx Ap_qxx7_px € span(A ), s0 Pyx Ap_pxX7_px can be

. k . .
written as A yxz« for some z,x € R and @y« is given by

_ xT—Ak
WAk ( N ) .
By the definition of a%*! and B¥*!, we have that

(3.5) k! = min{|(Ae;, )i € Wis1, Wiar € (T U AF)*} <

ZiGWk+l |(Aei’ rk>|

N

_ Ziewk+1 |(Aej, Ao ak@ropk)] _ Ziewk+1 |(Ae;, Awrypk)

N N
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and
r k I’
(3.6) B = A gt loo = |[Ar_ak Araar] Apoar@ruas oo
r
= |ApAryar@Tupk oo

= H [AT AA"—T] A ar @Ak Hoo = HATU,\kATuAkwTuAk Hoo
Notice the fact that
1

(3.7) ”A,TA TUAFQTUAK |00 > VR HA’TATUA" wroak2
1

TR lATuarATuar@ruak]2:
By the hypothesis of || pyax |2 = 1, (3.6]), and (3.7)), it follows that

(3.8) (AaTuAk > AaTUAk > = <ATUAk Wruak> ATUAK @ TUAK )

= (A AkATUAK O TUAK @TUAK)

< HA’TuAkATUAk @ruak 2] @roax ]2

VKB |wruara = VKB
As in the proof of Theorem 3.3} let

K
=+1-1 _VK 1-¢2 Ax, Ae;) >0
t=-YN _—  and t; :{ an ( ) {Ax,Aei) >0,

K +YK(1- 1) (Ax,Ae;) <0,

N
where i € Wiy € (AF U T)C. By B.3), (3:8), and Lemma 2.2} we obtain
(1= VKB - oy

i€ Aei)Aaj
>(1_t4)(<A5TUAk7A5TUAk>_\/fZ Wi | TUAk>|)

N
2
= |A@roa+ Y tie)l3-|A(PEra- Y e
i€Wi Wit 2

Let [ = |TnA¥|. Then k < I < Kand Nk+K—-1+N < NK +1. Since A satisfies RIP of
order NK-+1with Snxs1, |@7uak |2 = 1with supp(@pax) € TUAK, Wiy € (TUAF)S,
it follows from Lemma[2.1] that

[A@roar + 3 tie)ls = [A(P@rope = 3 tied)l2

i€Wip i€Wip

2
2(1—5Nk+K—1+N)(H Dropk + ), Lie; 2)

i€ Wi

—(1+5Nk+1<—1+N)(Ht25TuAk— > t,-ei|\§)

i€Wii1

= (1= Oniek1on) ([ @roar 3+ Y #2)

i€ Wi

-(1+ 5Nk+1<—1+N)( Hl@roanls+ Y tlz)

i€Wip
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= (1= Onksr—ton) (L + £2) = (L+ Onpsi—ran ) (£ + £7)

1-12 1-£2
=(1+ tz)z( e 5Nk+K—l+N) > (1+ tz)z( i 5NK+1)-
Since
1-2 1
1+2 /X
N Tl
and the condition Sk < \/%, we obtain
[
4 K+l k+l o 1-1
(1= VR —af™) > 1+ ) ~ O
1
> (1+t2)2( —5NK+1) >0,

/K
N+l

i.e., BE*1 > ak*l which ensures that the set A¥*! contains at least one correct index in
the (k + 1)-th iteration of the gOMP algorithm.
As mentioned, we have completed the proof of the theorem. ]

Now combining the condition for success in the first iteration in Theorem 3.1 with
that in non-initial iterations in Theorem we obtain overall sufficient condition
of the gOMP algorithm guaranteeing the perfect recovery of K-sparse signals in the
following theorem.

Theorem 3.4  Suppose x is a K-sparse signal and the sensing matrix A satisfies RIP of
order KN + 1 with the RIC Snk fulfilling

—

Onk+1 <
K

§y+1

Then the gOMP algorithm can recover the signal x exactly.

Proof For N >1,K > 1,and N < min{K, %}, K + N < NK + 1. It follows Lemma

R that
Ox+n < ONk+1 < —
N+l
By Theorems [3.1] and the gOMP algorithm can recover perfectly any K-sparse
signals under the sufficient condition dyg+1 < 1/y/K/N +1from y = Ax. [ |

Remark 3.5 The condition dyk41 < 1/4/K/N +1is weaker than the sufficient con-
dition dxx+1 < VN/(VK ++V/N) in [31].

Remark 3.6 If N =1, this sufficient condition is consistent with the sharp condition
Sk < ﬁ of OMP in [19].

In the following theorem, we show that the proposed bound dyx1 <1//K/N +1
is optimal.
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Theorem 3.7  For any given K € N7, there are a K-sparse signal x and a matrix A
satisfying

—

5NK+1 =

z|~
+
—

such that the gOMP may fail.

Proof For any given positive integer K, let A ¢ RIVK+D*(NK+1) e

1 1
0 0o 1 i
K . . .
KN 1K - : 1
0 o 1 1
0 0 0 -~ 0
A= : Ink+1-N-K R K
0 0 0 - 0
1 1
1 1o 0
1 1
1 Lo 0
where b = \/K(K + N). Then we have that
1 1
© 0 0 K+N K+N
©en K ' S :
0 0 ™8 7 wN
0 0 0 0
AA=| 5 : INk+1-N-K 5 : 0
0 0 0 0
1 1 1 1
e e 0 () 1+ BY  GE
i ' L ; o U
8y mn O 0 ™  ltrw

Moreover, by direct calculation, we obtain that

AA- M= (I—A)NK’K(% ) (- KfN)

It is clear that ﬁKN and 1 are eigenvalues of A’ A with multiplicity of K—1and NK - K
respectively; 1+1/y/K/N +1also are eigenvalues of A’ A. Therefore, we have
1

Onks1 = —F—.
/K
§ 1

Consider K-sparse signal x = (1,1,...,1,0...,0)" € RN je T = supp(x) =
{1,2,...,K}. Asi e T, we have

K
K+N’

|{Aei, y)| = |{Ae;, Ax)| = [(A"Ae;, x)| =
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Forie {K+1,...,NK+1- N}, it follows immediately that

[(Aei, y)| = [(Aes, Ax)| = |[(A"Ae;, x)| = 0.
Ifie {NK+2-N,...,NK +1}, we have

K
[(Aes, )| = [{Aes, Ax)] = [{A'Aer, x)] = ———.
Therefore, we have /3% = WKN and a}\] = ﬁ by the definitions of /3% and a}v’ that

is, B} = ay. This implies the gOMP may fail to identify at least one correct index in
the first iteration. So the gOMP algorithm may fail for the given matrix A and the
K-sparse signal x. ]

Finally, we show a sufficient condition guarantees exact support identification by
the gOMP algorithm from y = Ax + e. This sufficient condition is in terms of the
RIC dnk+1 and the minimum magnitude of the nonzero entries of K-sparse signal x.
Here, we only consider I, bounded noise, i.e., | e, < e.

Theorem 3.8  Suppose ||, < € and the sensing matrix A satisfies
1

8NK+1<K7-
\/ﬁ+1

Moreover, assume all the nonzero components x; satisfy

2VKe/v /X +1
(3.10) |xi| > VKey +

1/\/% +1- 8Nk

Then there exists an integer 1 < ko < K such that the gOMP algorithm with the stopping
rule |r¥|, < & recovers the correct support of any K-sparse signals x, that is, T < A%,
Meanwhile, for X' = arg min gy (x)-ako |y = Ax||2, there are

(3.9)

€
V1= 8Nkl

Proof Suppose that the gOMP performed k iterations successfully. Consider the
(k +1)-th iteration. First, we observe that

[ =% <

rk = Pyiy = PucArxr + Prie = Apacwropn + (I = Ppu)e = Awppr + (I— Pyx)e

for some wr,x as in the proof of Theorem Consider the following two cases to
prove the theorem.

Case1: T — AF = @. In this case, there is T € A¥. Then the correct support T of the
original K-sparse signal x has already been selected.

Case2: T — A¥ # @, ie., |T — A¥| > 1. By the definitions of k! and BF*!, we obtain

that

(3.10) akt = min{|(Ae;, 7¥)||i € Wipr, Wir € (T U AF)}
< YicWen (A€, AB k) + Tiew,,, [{Aei, (I - Pax)e)
h N
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and
(12) B = A gt = AT oo = AT pr
2 ”A,TuAkATuA" @rupkfleo = HA,TUAk(I —Ppr)e| o
Let

K
Va+l-1 ti:{—g(l—tz)mm/\kb (Ax, Ae;) >0,

(1= ) wpoals (Ax, Ae;) <0,

where i € Wi,y € (A¥ U T). Then we have ¥y, | 17 = £ @ px 3. It follows from

i
2. €. E1D, and G that

(1= ) VE|0rops |2 (B - ay”

> (1- t4)( (AB ok, AB k) = VK| @roak]2 |A 7 pk (I = Par)e]loo

N
= lA(@rone+ 30 tien) |3 - [A(ETroa = 3 tien)s

i€eWkp i€eWkn

3 \/?HwTUA" HZ(ZieWk+l [(Aei, AW pr)| + ZieWkH [(Ae;, (1~ PAk)e>|))

Yiew,, [(Aei, (1- PA")e>|)

= (= ) VK @rons |2 (|14 7upc (- Par)el o + >

Asin the proofofTheorem I =|TnA¥|;then Nk+ K -1+ N < NK +1. Because A
satisfies RIP of order NK + 1 with 8,1, supp(@riax) € T U A¥, Wiy € (T U AF)S,
it follows from Yy, 17 = t*|wryax |3 and Lemmathat

2 2
HA( Wropk + Z t,‘ei) H - HA( t25TuAk - Z tie,-) H
i€Wip 2 i€Wip 2

> (1~ 5Nk+K—l+N)( |@roae + D, t,-e,-||§)

i€Wiq1

- (14 Onker o) (1PTrom = Y tieil)

i€ Wi
= (1= Onkak—1+8) | @roac [3(1+ 1) = (1+ Snirkran) [@poar |3 (£ + £2)

= (1= ) @roarls = Swkex-1en|Froas 31+ £2)?

_ 1-t
= (1+ )| @pupe H%( e 5Nk+K—l+N)
202~ y(1-1
> (1 2 f@ro 3( 1~ Owke).

Moreover, notice the fact that

|4 (1= Py el = max|{Ae;, (I = Pax)e)| < [Aeil2[(1 = Pax)e2 < flef2 <e.
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By the above three inequalities, (3.9), and (3.10)), it follows that
(1= )VEK|wroar|2(BF - oy
1-
> (1 )T (0 - bwa) - (1 VRl wpne o

Liew,, |(Aei (I - PA")e)|)
N

(14 upr (1= Pas)elloo +

> (14 ) |@roae3

~ k) - (1= #)WVRl@muila(e+ 37
—t

)
)

1+ t2

1- 12 ~
m - 6NK+1) HwTUAk ”2 2\/E€
1-#

> (14 2| @rune 2 ~Owica) 1, |2 - 2VRe

1+¢t2

(1
- (e Pl
((

- 1 . 2\/?8
> (1+ )| @ropc |2 = 0Nk )|T = Ag| min [x;| - >0,
T-A
L+1 T Nl

i.e., B¥1 > akl which guarantees at least one index selected from the correct support
in the (k +1)-th iteration.

Now, we shall turn to show that the gOMP algorithm exactly stops under the stop-
ping rule |r¥| < & when all the correct indices are selected. That is, we shall prove that
there exists 0 < ko < K such that T € A*o. First, assume that T— A¥ = &; then T ¢ A*
and (I - Py« )Ax = 0. Therefore, it follows that ||7* |, = | (I - Py« )Ax + (I— Py )e|2 =
I(I-Pyi)e|a < |le]2 < e. Second, assume that T — A¥ # &; then it follows from the
definition of the RIP and (3.10) that

[7*12 > [Aroar@poarl2 = | (T = Pyr)e]2 > V1= 8o lxr_ax ]2 = el

2\/?8/\/% +1
\/1—8NK+1mln|xl|2—£ (1—8NK+1) = —€E>E,
1/\/% +1-06nkn

which implies that the gOMP algorithm does not terminate until all the correct indices
are selected. By all of the above, there exists 0 < ko < K such that T ¢ A%,
It remains to estimate an upper bound of ||x — X, where

X=arg min |y-Ax|,.
x:supp(x)=Ako

Then we have
1 1

——|[AGx-%) |2 < ——

1
- ﬁ |Ax = Apr AT Ax = A AT ]2
— ONky

[Prcls e

- \/1_6Nk0 b \/1—6NK+1’

Jx =% < [Ax = A i AL, 712
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where we apply the fact T = supp(x) € Ak, Ax — A« A’;\ko Ax = 0and ||Pyke|2 <

lel2 < e. We complete the proof of the theorem. |
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