
Canad. Math. Bull. Vol. 61 (1), 2018 pp. 40–54
http://dx.doi.org/10.4153/CMB-2017-009-6
©Canadian Mathematical Society 2017

A Sharp Bound on RIC in Generalized
Orthogonal Matching Pursuit

Wengu Chen andHuanmin Ge

Abstract. _e generalized orthogonal matching pursuit (gOMP) algorithm has received much at-
tention in recent years as a natural extension of the orthogonal matching pursuit (OMP). It is used
to recover sparse signals in compressive sensing. In this paper, a new bound is obtained for the exact
reconstruction of every K-sparse signal via the gOMP algorithm in the noiseless case. _at is, if the
restricted isometry constant (RIC) δNK+1 of the sensing matrix A satisûes

δNK+1 <
1

√
K
N + 1

,

then the gOMP can perfectly recover every K-sparse signal x from y = Ax. Furthermore, the bound
is proved to be sharp. In the noisy case, the above bound on RIC combining with an extra condition
on theminimum magnitude of the nonzero components of K-sparse signals can guarantee that the
gOMP selects all of the support indices of the K-sparse signals.

1 Introduction

It is well known that compressive sensing acquires signals at a rate greatly below
Nyquist rate. It has attracted growing attention in recent years [1, 2, 4, 5, 7, 15, 18].
_e main aim of compressive sensing is to reconstruct signals from inaccurate and
incompletemeasurements from themodel

y = Ax + e ,

where y ∈ Rm is a measurement vector, the matrix A ∈ Rm×n (m ≪ n) is a sens-
ing matrix, the vector x ∈ Rn is an unknown sparse signal, and e ∈ Rm is a mea-
surement error vector. _e goal is to recover the signal x based on y and A. In this
paper, A i (i = 1, 2, . . . , n) denotes the i-th column of A and all columns of A are
normalized, i.e., ∥A i∥2 = 1 for i = 1, 2, . . . , n. Deûne the support of the vector x by
T = supp(x) = {i∣x i /= 0} and the size of its support by ∣T ∣ = ∣ supp(x)∣. For a signal
x, if ∣ supp(x)∣ ⩽ K, then x is called K-sparse.
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For the recovery of the K-sparse signal x, the most intuitive approach is to solve
the following optimization problem

(1.1) min
x

∥x∥0 subject to Ax − y ∈ B,

where ∥x∥0 denotes the l0 norm of x, i.e., the number of nonzero coordinates, B is
a bounded error set, i.e., B = {e ∈ Rm ∣ ∥e∥2 ⩽ ε}. Particularly, in the noiseless
case,B = {0}. Unfortunately, it iswell known that the above optimization problem is
NP-hard. _erefore, researchers seek computationally eõcient methods to approxi-
mate the sparse signal x, such as l1 minimization [8], lp(0 < p < 1)minimization [10],
greedy algorithm [26], and so on.

To ensure that the K-sparse solution is unique, we shall need the restricted isom-
etry property (RIP) introduced by Candès and Tao in [8]. A matrix A satisûes the
restricted isometry property of order K if there exists a constant δK ∈ [0, 1) such that

(1 − δK)∥x∥2
2 ⩽ ∥Ax∥2

2 ⩽ (1 + δK)∥x∥2
2

holds for all K-sparse signals x. And the smallest constant δK is called the restricted
isometry constant (RIC). Candès and Tao also proposed that if δ2K < 1, the above
optimization problem has a unique K-sparse solution [8]. Candès showed that if
δ2K <

√
2 − 1, then the above optimization problem (1.1) is equivalent to the l1 min-

imization problem in [7]. Up to now, there have been many results improving the
bound on the RIC, such as [2,3, 5,6,20].

Recently, a family of iterative greedy algorithms for recovery of sparse signals
has attracted signiûcant attention; it includes orthogonal least square (OLS) [11],
orthogonal matching pursuit (OMP) [27], generalized orthogonal matching pur-
suit (gOMP) [28], regularized orthogonal matching pursuit (ROMP) [23], orthog-
onal multi-matching pursuit (OMMP) [32], stagewise orthogonal matching pursuit
(StOMP) [16], subspace pursuit (SP) [13], and compressive sampling matching pur-
suit (CoSaMP) [22].

Speciûcally, the OMP algorithm is one of the most eòective algorithm, in sparse
signal recovery due to its implementation simplicity and competitive recovery per-
formance. In the noiseless case, many eòorts have been made to ûnd suõcient con-
ditions based on RIC for OMP to exactly reconstruct every K-sparse signal x within
K iterations. Davenport andWakin demonstrated that OMP can recover exactly the
K-sparse signal x under δK+1 < 1/(3

√
K) [14]. Since then, there have been many

papers that improve the condition in [12, 17, 19, 21, 29, 30]. Recently, Mo improved
the suõcient condition to δK+1 < 1/

√
K + 1, and proved that this condition is sharp

[19]. In the presence of noise, Shen and Li proved that OMP can exactly recover the
support of the K-sparse signal x under δK+1 < 1/(

√
K + 3) and some assumption on

theminimum magnitude of the nonzero elements of x in [25]. Later, these suõcient
conditions on RIC upper bound and minimum magnitude of the nonzero elements
of K-sparse signal x were improved in [9,31].

Wang, Kwon, and Shim introduced generalized orthogonal matching pursuit [28],
which is a natural extension of OMP. It is well known that the OMP algorithm only
selects one correct index at each iteration. However, the gOMP algorithm selects
N (N ⩾ 1) indices that contain at least one correct index from the support of x in
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Input measurements y ∈ Rm , sensing matrix A ∈ Rm×n , sparse level K,
number of indices for each selection N (N ⩽ K and N ⩽ m

K ).
Initialize iteration count k = 0, residual vector r0 = y,

estimated support set Λ0 = ∅.

While ∥rk∥2 > є and k < min{K , m
K } do k = k + 1.

(Identiûcation step) Select indices set T k corresponding to N
largest (in magnitude) in A

′

rk−1.
(Augmentation step) Λk = Λk−1 ∪ T k .
(Estimation step) x̂Λk = argminu ∥y − AΛku∥2.
(Residual Update step) rk = y − AΛk x̂Λk .

EndOutput the estimated signal x̂ = argminu∶supp(u)=Λk ∥y − Au∥2.

Table 1: _e gOMP algorithm

each iteration. _erefore, the number of iterations for the gOMP algorithm is much
smallerwhen compared to theOMP algorithm. Wang,Kwon, and Shim obtained that
a suõcient condition

δNK <
√

N√
K + 3

√
N

can ensure the reconstruction of any K-sparse signal [28]. Later, Satpathi et al. im-
proved the suõcient condition to δNK <

√
N/(

√
K + 2

√
N) in [24]. _ey also reûned

the bound further to

δNK+1 <
√

N√
K +

√
N
,

which reduces to δK+1 < 1/(
√

K + 1) of OMP in [21,29] for N = 1.
Motivated by the mentioned papers, we further investigate the recovery of any

K-sparse signal by the gOMP. In this paper, we demonstrate that the condition

δNK+1 <
1√
K
N + 1

is suõcient to perfectly reconstruct any K-sparse signal via the gOMP in the noiseless
case. As N = 1, the suõcient condition is δK+1 < 1/(

√
K + 1) which is a sharp bound

for OMP [19]. Moreover, for any given K ∈ N+, we construct amatrix A satisfying

δNK+1 =
1√
K
N + 1

such that the gOMP may fail to recover some K-sparse signal x. _at is, the above
bound δNK+1 < 1/

√
K/N + 1 is sharp for the gOMP.

_e frame of the gOMP is listed in Table 1.
_e rest of the paper is organized as follows. In Section 2, we give notation and

prove some basic lemmas that will be used. _e main results and their proofs are
given in Section 3.
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2 Notation and Preliminaries

_roughout this paper, let Γ be an index set and let Γc be the complementary set of Γ.
_e standard notation ∥x∥∞ = maxi=1,2, . . . ,n ∣x i ∣ denotes the l∞−norm of the vector
x ∈ Rn . xΓ ∈ R∣Γ∣ denotes the vector composed of components of x ∈ Rn indexed by
i ∈ Γ, i.e., (xΓ)i = x i (i ∈ Γ). Deûne x̃Γ ∈ Rn by

(x̃Γ)i =
⎧⎪⎪⎨⎪⎪⎩

x i i ∈ Γ,
0 otherwise,

where i = 1, 2, . . . , n. Denote by AΓ a submatrix of A corresponding to Γ that consists
of all columns with index i ∈ Γ of A and the usual inner product of Rn with ⟨ ⋅ , ⋅ ⟩.
Let e i ∈ Rn be the i-th coordinate unit vector.

Let αk+1
N be the N-th largest correlation in magnitude between rk and A i

(i ∈ (T ∪ Λk)c), and let βk+1
1 be the largest correlation in magnitude between rk and

A i (i ∈ (T − Λk)) in the (k + 1)-th iteration of the gOMP algorithm. Let Wk+1 ⊆
(T ∪ Λk)c be the set of N indices that correspond to N largest correlation in magni-
tude between rk and A i (i ∈ (T ∪ Λk)c).

Suppose A†Λk represents the pseudo-inverse of AΛk . When AΛk is full column rank
(∣Λk ∣ ⩽ m), A†Λk = (A′ΛkAΛk)−1A

′

Λk . Moreover, PΛk = AΛkA†Λk and P�Λk = I − PΛk de-
note two orthogonal projection operators that project a given vector orthogonally
onto the spanned space by all columns of AΛk and onto its orthogonal complement,
respectively.
First, we recall the following lemma, that is, the monotonicity of the restricted

isometry constant in [8, 13].

Lemma 2.1 For any K1 ⩽ K2, if the sensing matrix A satisûes the RIP of order K2,
then δK1 ⩽ δK2 .

Next, we show themain lemma that plays the key role during our analysis.

Lemma 2.2 For any S , C > 0, let t = ±
√

S+1−1
√

S
and

t i =
⎧⎪⎪⎨⎪⎪⎩

− C2 (1 − t2) ⟨Ax ,Ae i⟩ ⩾ 0,
+ C2 (1 − t2) ⟨Ax ,Ae i⟩ < 0,

where i ∈W ⊆ {1, 2, . . . , n} that is a nonempty subset. _en we have t2 < 1 and

∥A(x+∑
i∈W

t i e i)∥
2

2
−∥A( t2x−∑

i∈W
t i e i)∥

2

2
= (1− t4)(⟨Ax ,Ax⟩−C ∑

i∈W
∣ ⟨Ax ,Ae i⟩∣) .

Proof For t = ±
√

S+1−1
√

S
, we have that

t2 = (
√

S + 1 − 1)2

S
=

√
S + 1 − 1√
S + 1 + 1

< 1.
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_e lemma is established by the following chain of equalities and the deûnition of
t i (i ∈W):

∥A(x + ∑
i∈W

t i e i)∥2
2 − ∥A(t2x − ∑

i∈W
t i e i)∥2

2

= ⟨Ax ,Ax⟩ + 2∑
i∈W

t i⟨Ax ,Ae i⟩ + 2 ∑
i , j∈W , i /= j

t i t j⟨Ae i ,Ae j⟩ + ∑
i∈W

t2i ⟨Ae i ,Ae i⟩

− ( t4⟨Ax ,Ax⟩ − 2t2 ∑
i∈W

t i⟨Ax ,Ae i⟩

+ 2 ∑
i , j∈W , i /= j

t i t j⟨Ae i ,Ae j⟩ + ∑
i∈W

t2i ⟨Ae i ,Ae i⟩)

= (1 − t4)⟨Ax ,Ax⟩ + 2(1 + t2)∑
i∈W

t i⟨Ax ,Ae i⟩

= (1 − t4)(⟨Ax ,Ax⟩ − 2
1 − t2 ∑i∈W

∣t i ∣∣⟨Ax ,Ae i⟩∣)

= (1 − t4)(⟨Ax ,Ax⟩ − 2
1 − t2

(1 − t2)C
2 ∑i∈W

∣⟨Ax ,Ae i⟩∣)

= (1 − t4)(⟨Ax ,Ax⟩ − C ∑
i∈W

∣⟨Ax ,Ae i⟩∣) .

We have already completed the proof of the Lemma 2.2.

Remark 2.3 Lemma 2.2 is a generalization of [19, Lemma II.1].

3 Main Results

It is well known that if at least one index of N indices selected is correct in
every iteration, the gOMP makes a success; i.e., in each iteration, there exists
βk
1 > αk

N (1 ⩽ k ⩽ K). _e following theorems show that a suõcient condition guaran-
tees the gOMP algorithm success. _e proof of these theorems mainly uses Lemmas
2.1 and 2.2. Without loss of generality, we assume ∥x∥2 = 1 in the proof of _eorem
3.1 and ∥ω̃T∪Λk∥2 = 1 in the proof of_eorem 3.3 .

_eorem 3.1 Suppose x is aK-sparse signal and the restricted isometry constant δK+N
of the sensing matrix A satisûes

(3.1) δK+N < 1√
K
N + 1

.

_en the gOMP algorithm makes a success in the ûrst iteration.

Remark 3.2 In [28], the authors proved that

δK+N <
√

N√
K +

√
N
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is suõcient to make a success in the ûrst iteration of the gOMP. It is clear that

δK+N <
√

N√
K +

√
N

< 1√
K
N + 1

;

i.e., the suõcient condition (3.1) is weaker than that in [28].

Proof In the ûrst iteration, by the deûnition of α1
N , it satisûes

(3.2) α1
N = min{ ∣ ⟨Ae i ,Ax⟩∣ ∣i ∈W1} ⩽ ∑i∈W1

∣⟨Ae i ,Ax⟩∣
N

,

whereW1 ⊆ T c .
For β1

1 , which is the largest correlation in magnitude in A′TAx, we have
⟨Ax ,Ax⟩ = ⟨A∑

i∈T
x i e i ,Ax⟩ =∑

i∈T
x i⟨Ae i ,Ax⟩ ⩽∑

i∈T
∣x i ∣∣⟨Ae i ,Ax⟩∣(3.3)

⩽ β1
1∥x∥1 ⩽ β1

1

√
K∥x∥2 = β1

1

√
K .

Let

t = −

√
K
N + 1 − 1
√

K
N

and t i =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−
√

K
2N (1 − t2) ⟨Ax ,Ae i⟩ ⩾ 0,

+
√

K
2N (1 − t2) ⟨Ax ,Ae i⟩ < 0,

where i ∈W1 ⊆ T c with ∣W1∣ = N . _en we have that

t2 = (
√

K
N
+ 1 − 1)/(

√
K
N
+ 1 + 1) < 1,

∑
i∈W1

t2i = (
√

K
2N

(1 − t2))
2
N = K

4N
( 1 −

√
K
N + 1 − 1

√
K
N + 1 + 1

)
2
= t2 .(3.4)

By (3.2), (3.3), and Lemma 2.2, we obtain

(1 − t4)
√

K(β1
1 − α1

N) ⩾ (1 − t4)(⟨Ax ,Ax⟩ −
√

K∑i∈W1
∣⟨Ae i ,Ax⟩∣
N

)

= ∥A(x + ∑
i∈W1

t i e i)∥
2

2
−∥A( t2x − ∑

i∈W1

t i e i)∥
2

2
.

Because the sensing matrix A satisûes the RIP of order K + N with δK+N , ∥x∥2 = 1
with supp(x) ⊆ T ,W1 ⊆ T c , it follows from (3.4) that

∥A(x + ∑
i∈W1

t i e i)∥
2

2
− ∥A( t2x − ∑

i∈W1

t i e i)∥
2

2

⩾ (1 − δK+N)(∥x + ∑
i∈W1

t i e i∥2
2) − (1 + δK+N)(∥t2x − ∑

i∈W1

t i e i∥2
2)

= (1 − δK+N)(∥x∥2
2 + ∑

i∈W1

t2i ) − (1 + δK+N)( t4∥x∥2
2 + ∑

i∈W1

t2i )

= (1 − δK+N)(1 + t2) − (1 + δK+N)(t4 + t2)

= (1 − t4) − δK+N(1 + t2)2 = (1 + t2)2( 1 − t2

1 + t2
− δK+N) .
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It follows from the deûnition of t that

1 − t2

1 + t2
=

1 −
√

K
N +1−1

√
K
N +1+1

1 +
√

K
N +1−1

√
K
N +1+1

= 1√
K
N + 1

.

_erefore, by the condition δK+N < 1
√

K
N +1

, we obtain

(1 − t4)
√

K(β1
1 − α1

N) ⩾ (1 + t2)2( 1 − t2

1 + t2
− δK+N)

⩾ (1 + t2)2( 1√
K
N + 1

− δK+N) > 0,

i.e., β1
1 > α1

N , which represents the gOMP selects at least one index from the support
T .
As mentioned, if δK+N < 1/(

√
K
N + 1), then the gOMP algorithm makes a success

in the ûrst iteration.

_eorem 3.3 If the gOMP algorithm has performed k iterations successfully, where
1 ⩽ k < K and the sensing matrix A satisûes the RIP of order NK + 1 with RIC δNK+1
fulûlling

δNK+1 <
1√
K
N + 1

,

then in the (k + 1)-th iteration, the gOMP will succeed.

Proof For the gOMP algorithm, rk = P⊥Λk y is orthogonal to each column of AΛk .
_en

rk = P⊥Λk y = P⊥ΛkATxT = P⊥Λk(AT−Λk xT−Λk + AT∩Λk xT∩Λk)
= P⊥ΛkAT−Λk xT−Λk = AT−Λk xT−Λk − PΛkAT−Λk xT−Λk

= AT−Λk xT−Λk − AΛk zΛk = AT∪ΛkωT∪Λk ,

wherewe used the fact that PΛkAT−Λk xT−Λk ∈ span(AΛk), so PΛkAT−Λk xT−Λk can be
written as AΛk zΛk for some zΛk ∈ R∣Λk

∣ and ωT∪Λk is given by

ωT∪Λk = (xT−Λk

−zΛk
) .

By the deûnition of αk+1
N and βk+1

1 , we have that

αk+1
N = min{∣⟨Ae i , rk⟩∣∣i ∈Wk+1 ,Wk+1 ⊆ (T ∪ Λk)c} ⩽ ∑i∈Wk+1

∣⟨Ae i , rk⟩∣
N

(3.5)

= ∑i∈Wk+1
∣⟨Ae i ,AT∪ΛkωT∪Λk ⟩∣

N
= ∑i∈Wk+1

∣⟨Ae i ,Aω̃T∪Λk ⟩∣
N
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and
βk+1
1 = ∥A

′

T−Λk rk∥∞ = ∥[AT−Λk AT∩Λk ]
′

AT∪ΛkωT∪Λk∥∞(3.6)

= ∥A
′

TAT∪ΛkωT∪Λk∥∞
= ∥[AT AΛk−T]

′

AT∪ΛkωT∪Λk∥∞ = ∥A
′

T∪ΛkAT∪ΛkωT∪Λk∥∞ .
Notice the fact that

∥A
′

TAT∪ΛkωT∪Λk∥∞ ⩾ 1√
K
∥A

′

TAT∪ΛkωT∪Λk∥2

= 1√
K
∥A

′

T∪ΛkAT∪ΛkωT∪Λk∥2 .

(3.7)

By the hypothesis of ∥ωT∪Λk∥2 = 1, (3.6), and (3.7), it follows that
⟨Aω̃T∪Λk ,Aω̃T∪Λk ⟩ = ⟨AT∪ΛkωT∪Λk ,AT∪ΛkωT∪Λk ⟩(3.8)

= ⟨A
′

T∪ΛkAT∪ΛkωT∪Λk ,ωT∪Λk ⟩

⩽ ∥A
′

T∪ΛkAT∪ΛkωT∪Λk∥2∥ωT∪Λk∥2

⩽
√

Kβk+1
1 ∥ωT∪Λk∥2 =

√
Kβk+1

1 .
As in the proof of_eorem 3.1, let

t = −

√
K
N + 1 − 1
√

K
N

and t i =
⎧⎪⎪⎨⎪⎪⎩

−
√

K
2N (1 − t2) ⟨Ax ,Ae i⟩ ⩾ 0,

+
√

K
2N (1 − t2) ⟨Ax ,Ae i⟩ < 0,

where i ∈Wk+1 ⊆ (Λk ∪ T)c . By (3.5), (3.8), and Lemma 2.2, we obtain

(1 − t4)
√

K(βk+1
1 − αk+1

N )

⩾ (1 − t4)(⟨Aω̃T∪Λk ,Aω̃T∪Λk ⟩ −
√

K
∑i∈Wk+1

∣⟨Ae i ,Aω̃T∪Λk ⟩∣
N

)

= ∥A(ω̃T∪Λk + ∑
i∈Wk+1

t i e i)∥2
2 − ∥A( t2ω̃T∪Λk − ∑

i∈Wk+1

t i e i)∥
2

2
.

Let l = ∣T ∩Λk ∣. _en k ⩽ l ⩽ K and Nk+K − l +N ⩽ NK + 1. Since A satisûes RIP of
orderNK+1with δNK+1, ∥ω̃T∪Λk∥2 = 1with supp(ω̃T∪Λk) ⊆ T∪Λk ,Wk+1 ⊆ (T∪Λk)c ,
it follows from Lemma 2.1 that

∥A(ω̃T∪Λk + ∑
i∈Wk+1

t i e i)∥2
2 − ∥A(t2ω̃T∪Λk − ∑

i∈Wk+1

t i e i)∥2
2

⩾ (1 − δNk+K−l+N)(∥ ω̃T∪Λk + ∑
i∈Wk+1

t i e i∥
2

2
)

− (1 + δNk+K−l+N)(∥t2ω̃T∪Λk − ∑
i∈Wk+1

t i e i∥2
2)

= (1 − δNk+K−l+N)(∥ω̃T∪Λk∥2
2 + ∑

i∈Wk+1

t2i )

− (1 + δNk+K−l+N)( t4∥ω̃T∪Λk∥2
2 + ∑

i∈Wk+1

t2i )
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= (1 − δNk+K−l+N)(1 + t2) − (1 + δNk+K−l+N)(t4 + t2)

= (1 + t2)2( 1 − t2

1 + t2
− δNk+K−l+N) ⩾ (1 + t2)2( 1 − t2

1 + t2
− δNK+1) .

Since
1 − t2

1 + t2
= 1√

K
N + 1

and the condition δNK+1 < 1
√

K
N +1

, we obtain

(1 − t4)
√

K(βk+1
1 − αk+1

N ) ⩾ (1 + t2)2( 1 − t2

1 + t2
− δNK+1)

⩾ (1 + t2)2( 1√
K
N + 1

− δNK+1) > 0,

i.e., βk+1
1 > αk+1

N , which ensures that the set Λk+1 contains at least one correct index in
the (k + 1)-th iteration of the gOMP algorithm.
As mentioned, we have completed the proof of the theorem.

Now combining the condition for success in the ûrst iteration in _eorem 3.1 with
that in non-initial iterations in _eorem 3.3, we obtain overall suõcient condition
of the gOMP algorithm guaranteeing the perfect recovery of K-sparse signals in the
following theorem.

_eorem 3.4 Suppose x is a K-sparse signal and the sensing matrix A satisûes RIP of
order KN + 1 with the RIC δNK+1 fulûlling

δNK+1 <
1√
K
N + 1

.

_en the gOMP algorithm can recover the signal x exactly.

Proof For N ⩾ 1, K ⩾ 1, and N ⩽ min{K , m
K }, K + N ⩽ NK + 1. It follows Lemma

2.1 that
δK+N ⩽ δNK+1 <

1√
K
N + 1

.

By _eorems 3.1 and 3.3, the gOMP algorithm can recover perfectly any K-sparse
signals under the suõcient condition δNK+1 < 1/

√
K/N + 1 from y = Ax.

Remark 3.5 _e condition δNK+1 < 1/
√

K/N + 1 is weaker than the suõcient con-
dition δNK+1 <

√
N/(

√
K +

√
N) in [31].

Remark 3.6 IfN = 1, this suõcient condition is consistentwith the sharp condition
δK+1 < 1

√
K+1

of OMP in [19].

In the following theorem, we show that the proposed bound δNK+1 < 1/
√

K/N + 1
is optimal.

https://doi.org/10.4153/CMB-2017-009-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-009-6


A Sharp Bound on RIC in Generalized Orthogonal Matching Pursuit 49

_eorem 3.7 For any given K ∈ N+, there are a K-sparse signal x and a matrix A
satisfying

δNK+1 =
1√
K
N + 1

such that the gOMP may fail.

Proof For any given positive integer K, let A ∈ R(NK+1)×(NK+1) be

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋅ ⋅ ⋅ 0 1
b ⋅ ⋅ ⋅ 1

b√
K

K+N IK ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋅ ⋅ ⋅ 0 1

b ⋅ ⋅ ⋅ 1
b

0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
⋮ ⋱ ⋮ INK+1−N−K ⋮ ⋱ ⋮
0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

1
b ⋅ ⋅ ⋅ 1

b 0 ⋅ ⋅ ⋅ 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮ IN
1
b ⋅ ⋅ ⋅ 1

b 0 ⋅ ⋅ ⋅ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where b =
√

K(K + N). _en we have that

A′A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋅ ⋅ ⋅ 0 1
K+N ⋅ ⋅ ⋅ 1

K+N
K

K+N IK ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋅ ⋅ ⋅ 0 1

K+N ⋅ ⋅ ⋅ 1
K+N

0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋮ INK+1−N−K ⋮ ⋮ 0
0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

1
K+N ⋅ ⋅ ⋅ 1

K+N 0 ⋅ ⋅ ⋅ 0 1 + 1
K+N ⋅ ⋅ ⋅ 1

K+N
⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
1

K+N ⋅ ⋅ ⋅ 1
K+N 0 ⋅ ⋅ ⋅ 0 1

K+N ⋅ ⋅ ⋅ 1 + 1
K+N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Moreover, by direct calculation, we obtain that

A′A− λI = (1 − λ)NK−K( K
K + N

− λ)
K−1

( λ2 − 2λ + K
K + N

) .

It is clear that K
K+N and 1 are eigenvalues of A′Awith multiplicity of K − 1 and NK −K

respectively; 1 ± 1/
√

K/N + 1 also are eigenvalues of A′A. _erefore, we have

δNK+1 =
1√
K
N + 1

.

Consider K-sparse signal x = (1, 1, . . . , 1, 0 . . . , 0)′ ∈ RNK+1, i.e., T = supp(x) =
{1, 2, . . . ,K}. As i ∈ T , we have

∣⟨Ae i , y⟩∣ = ∣⟨Ae i ,Ax⟩∣ = ∣⟨A′Ae i , x⟩∣ =
K

K + N
.
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For i ∈ {K + 1, . . . ,NK + 1 − N}, it follows immediately that

∣⟨Ae i , y⟩∣ = ∣⟨Ae i ,Ax⟩∣ = ∣⟨A′Ae i , x⟩∣ = 0.

If i ∈ {NK + 2 − N , . . . ,NK + 1}, we have

∣⟨Ae i , y⟩∣ = ∣⟨Ae i ,Ax⟩∣ = ∣⟨A′Ae i , x⟩∣ =
K

K + N
.

_erefore, we have β1
1 = K

K+N and α1
N = K

K+N by the deûnitions of β1
1 and α1

N , that
is, β1

1 = α1
N . _is implies the gOMP may fail to identify at least one correct index in

the ûrst iteration. So the gOMP algorithm may fail for the given matrix A and the
K-sparse signal x.

Finally, we show a suõcient condition guarantees exact support identiûcation by
the gOMP algorithm from y = Ax + e. _is suõcient condition is in terms of the
RIC δNK+1 and theminimum magnitude of the nonzero entries of K-sparse signal x.
Here, we only consider l2 bounded noise, i.e., ∥e∥2 ⩽ ε.

_eorem 3.8 Suppose ∥e∥2 ⩽ ε and the sensing matrix A satisûes

(3.9) δNK+1 <
1√
K
N + 1

.

Moreover, assume all the nonzero components x i satisfy

(3.10) ∣x i ∣ >
2
√

Kε/
√

K
N + 1

1/
√

K
N + 1 − δNK+1

.

_en there exists an integer 1 ⩽ k0 ⩽ K such that the gOMP algorithm with the stopping
rule ∥rk∥2 ⩽ ε recovers the correct support of any K-sparse signals x, that is, T ⊆ Λk0 .
Meanwhile, for x̂ = argminx ∶supp(x)=Λk0 ∥y − Ax∥2, there are

∥x − x̂∥2 ⩽
ε√

1 − δNK+1
.

Proof Suppose that the gOMP performed k iterations successfully. Consider the
(k + 1)-th iteration. First, we observe that

rk = P⊥Λk y = P⊥ΛkATxT + P⊥Λk e = AT∪ΛkωT∪Λk + (I − PΛk)e = Aω̃T∪Λk + (I − PΛk)e
for some ωT∪Λk as in the proof of _eorem 3.3. Consider the following two cases to
prove the theorem.

Case 1: T − Λk = ∅. In this case, there is T ⊆ Λk . _en the correct support T of the
original K-sparse signal x has already been selected.

Case 2: T − Λk /= ∅, i.e., ∣T − Λk ∣ ⩾ 1. By the deûnitions of αk+1
N and βk+1

1 , we obtain
that

αk+1
N = min{∣⟨Ae i , rk⟩∣∣i ∈Wk+1 ,Wk+1 ⊆ (T ∪ Λk)c}(3.11)

⩽ ∑i∈Wk+1
∣⟨Ae i ,Aω̃T∪Λk ⟩∣ +∑i∈Wk+1

∣⟨Ae i , (I − PΛk)e⟩∣
N
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and

βk+1
1 = ∥A

′

T−Λk rk∥∞ = ∥A
′

T rk∥∞ = ∥A
′

T∪Λk rk∥∞(3.12)

⩾ ∥A
′

T∪ΛkAT∪ΛkωT∪Λk∥∞ − ∥A
′

T∪Λk(I − PΛk)e∥∞ .

Let

t = −

√
K
N + 1 − 1
√

K
N

and t i =
⎧⎪⎪⎨⎪⎪⎩

−
√

K
2N (1 − t2)∥ωT∪Λk∥2 ⟨Ax ,Ae i⟩ ⩾ 0,

+
√

K
2N (1 − t2)∥ωT∪Λk∥2 ⟨Ax ,Ae i⟩ < 0,

where i ∈ Wk+1 ⊆ (Λk ∪ T)c . _en we have∑i∈Wk+1
t2i = t2∥ωT∪Λk∥2

2. It follows from
(3.7), (3.8), (3.11), and (3.12) that

(1 − t4)
√

K∥ωT∪Λk∥2(βk+1
1 − αk+1

N )

⩾ (1 − t4)(⟨Aω̃T∪Λk ,Aω̃T∪Λk ⟩ −
√

K∥ωT∪Λk∥2∥A
′

T∪Λk(I − PΛk)e∥∞

−
√

K∥ωT∪Λk∥2(∑i∈Wk+1
∣⟨Ae i ,Aω̃T∪Λk ⟩∣ +∑i∈Wk+1

∣⟨Ae i , (I − PΛk)e⟩∣)
N

)

= ∥A(ω̃T∪Λk + ∑
i∈Wk+1

t i e i)∥2
2 − ∥A(t2ω̃T∪Λk − ∑

i∈Wk+1

t i e i)∥2
2

− (1 − t4)
√

K∥ωT∪Λk∥2(∥A
′

T∪Λk(I − PΛk)e∥∞ + ∑i∈Wk+1
∣⟨Ae i , (I − PΛk)e⟩∣

N
) .

As in the proof of_eorem 3.3, l = ∣T ∩Λk ∣; then Nk+K− l +N ⩽ NK+ 1. Because A
satisûes RIP of order NK + 1 with δNk+1, supp(ω̃T∪Λk) ⊆ T ∪ Λk ,Wk+1 ⊆ (T ∪ Λk)c ,
it follows from∑i∈Wk+1

t2i = t2∥ωT∪Λk∥2
2 and Lemma 2.1 that

∥A( ω̃T∪Λk + ∑
i∈Wk+1

t i e i)∥
2

2
− ∥A( t2ω̃T∪Λk − ∑

i∈Wk+1

t i e i)∥
2

2

⩾ (1 − δNk+K−l+N)(∥ω̃T∪Λk + ∑
i∈Wk+1

t i e i∥2
2)

− (1 + δNk+K−l+N)(∥t2ω̃T∪Λk − ∑
i∈Wk+1

t i e i∥2
2)

= (1 − δNk+K−l+N)∥ω̃T∪Λk∥2
2(1 + t2) − (1 + δNk+K−l+N)∥ω̃T∪Λk∥2

2(t4 + t2)
= (1 − t4)∥ω̃T∪Λk∥2

2 − δNk+K−l+N∥ω̃T∪Λk∥2
2(1 + t2)2

= (1 + t2)2∥ω̃T∪Λk∥2
2(

1 − t2

1 + t2
− δNk+K−l+N)

⩾ (1 + t2)2∥ω̃T∪Λk∥2
2(

1 − t2

1 + t2
− δNK+1) .

Moreover, notice the fact that

∥A
′

(I − PΛk)e∥∞ = max
i

∣⟨Ae i , (I − PΛk)e⟩∣ ⩽ ∥Ae i∥2∥(I − PΛk)e∥2 ⩽ ∥e∥2 ⩽ ε.
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By the above three inequalities, (3.9), and (3.10), it follows that

(1 − t4)
√

K∥ωT∪Λk∥2(βk+1
1 − αk+1

N )

⩾ (1 + t2)2∥ω̃T∪Λk∥2
2(

1 − t2

1 + t2
− δNK+1) − (1 − t4)

√
K∥ωT∪Λk∥2

(∥A
′

T∪Λk(I − PΛk)e∥∞ + ∑i∈Wk+1
∣⟨Ae i , (I − PΛk)e⟩∣

N
)

⩾ (1 + t2)2∥ω̃T∪Λk∥2
2(

1 − t2

1 + t2
− δNK+1) − (1 − t4)

√
K∥ωT∪Λk∥2( ε +

Nε
N

)

= (1 + t2)2∥ω̃T∪Λk∥2(( 1 − t2

1 + t2
− δNK+1)∥ω̃T∪Λk∥2 − 2

√
Kε 1 − t2

1 + t2
)

⩾ (1 + t2)2∥ω̃T∪Λk∥2(( 1 − t2

1 + t2
− δNK+1)∥xT−Λk∥2 − 2

√
Kε 1 − t2

1 + t2
)

⩾ (1 + t2)2∥ω̃T∪Λk∥2(( 1√
K
N + 1

− δNK+1) ∣T − Λk ∣ min
i∈T−Λk

∣x i ∣ −
2
√

Kε√
K
N + 1

) > 0,

i.e., βk+1
1 > αk+1

N ,which guarantees at least one index selected from the correct support
in the (k + 1)-th iteration.

Now,we shall turn to show that the gOMP algorithm exactly stops under the stop-
ping rule ∥rk∥ ⩽ ε when all the correct indices are selected. _at is,we shall prove that
there exists 0 ⩽ k0 ⩽ K such that T ⊆ Λk0 . First, assume that T −Λk = ∅; then T ⊆ Λk

and (I −PΛk)Ax = 0. _erefore, it follows that ∥rk∥2 = ∥(I −PΛk)Ax + (I −PΛk)e∥2 =
∥(I − PΛk)e∥2 ⩽ ∥e∥2 ⩽ ε. Second, assume that T − Λk /= ∅; then it follows from the
deûnition of the RIP and (3.10) that

∥rk∥2 ⩾ ∥AT∪ΛkωT∪Λk∥2 − ∥(I − PΛk)e∥2 ⩾
√

1 − δ∣T∪Λk ∣∥xT−Λk∥2 − ∥e∥2

⩾
√

1 − δNK+1 min
i∈T

∣x i ∣2 − ε ⩾ (1 − δNK+1)
2
√

Kε/
√

K
N + 1

1/
√

K
N + 1 − δNK+1

− ε > ε,

which implies that the gOMP algorithmdoesnot terminateuntil all the correct indices
are selected. By all of the above, there exists 0 ⩽ k0 ⩽ K such that T ⊆ Λk0 .

It remains to estimate an upper bound of ∥x − x̂∥2, where

x̂ = arg min
x ∶supp(x)=Λk0

∥y − Ax∥2 .

_en we have

∥x − x̂∥2 ⩽
1√

1 − δNk0

∥A(x − x̂)∥2 ⩽
1√

1 − δNk0

∥Ax − AΛk0A†Λk0 y∥2

= 1√
1 − δNk0

∥Ax − AΛk0A†Λk0Ax − AΛk0A†Λk0 e∥2

= ∥PΛk0 e∥2√
1 − δNk0

⩽ ε√
1 − δNK+1

,
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where we apply the fact T = supp(x) ⊆ Λk0 , Ax − AΛk0A†Λk0
Ax = 0 and ∥PΛk0 e∥2 ⩽

∥e∥2 ⩽ ε. We complete the proof of the theorem.
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