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Abstract

In this paper, we prove the existence of the ground state for the spinor Bose-Einstein condensates
with an external Ioffe—Pitchard magnetic field in the one-dimensional case. We also characterise the
ground states of spin-1 Bose—Einstein condensates with an external Ioffe—Pitchard magnetic field; that
is, for ferromagnetic systems, we show that, under some condition, searching for the ground state of
ferromagnetic spin-1 Bose—Einstein condensates with an external Ioffe—Pitchard magnetic field can be
reduced to a ‘one-component’ minimisation problem.
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1. Introduction

The experimental realisation of Bose—Einstein condensates (BEC) in magnetically
trapped atomic gases at ultra-low temperatures [1, 4, 8] has spurred great excitement
in the atomic physics community and renewed interest in studying the macroscopic
quantum behaviour of atoms. In earlier BEC experiments, the atoms were confined
in a magnetic trap, in which the spin degree of freedom is frozen. The particles are
described by a scalar model and the wave function of the particles is governed by the
Gross—Pitaevskii equation within the mean-field approximation [9, 15, 16]. One of
the most important recent developments in BEC was the study of spin-1 and spin-2
condensates. In contrast to a single component BEC, a spin-F BEC is described by the
coupled Gross—Pitaevskii equations which consist of 2F + 1 equations, each governing
one of the 2F + 1 hyperfine states (mp = —-F, —F + 1,..., F + 1, F) within the mean-
field approximation [10, 14]. The spin-1 BEC was realised in experiments recently
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by using both 2Na and 8’Rb [13, 17]. In fact, the emergence of spin-1 BEC has
created great opportunities for understanding degenerate gases with internal degrees
of freedom [2, 3, 5,7, 10, 11].

In this paper, we consider a spin-1 BEC. For temperatures well below the critical
temperature, the dynamics of the spin-1 BEC are well described by the dimensionless
Gross—Pitaevskii equations in n dimensions (n < 3) [2, 3, 10]

1041 (x, 1) = (=38 + V(x) + E1 + Bup + Bs(o1 + po — p-1)Wr1 + Bsth_yrg + Bibo, (1.1)
i0o(x, 1) = (54 + V(x) + Eo + Bup + Bs(p1 + p-1)Wo
+ 28011 + B + 1),
i0_1(x, 1) = (=54 + V(X) + E_y + Bup + Bs(p-1 + po — p)W—1
+ ﬁsalﬁl’% + B¢’0,

(1.2)

(1.3)

where x € R", ¢ > 0, and the initial value (¢t = 0)
Ui(x,0) =y (x), xeR" j=-1,0,1.

Here, ¥ = W(x, 1) := (Y1 (x, 1), Yo(x, 1), Y_1(x, 1))T is the dimensionless wave function
of the spin-1 BEC, V(x) is the dimensionless external trapping potential, p;(x, t) :=
|y (x, ) is the density of the hyperfine spin component mp = j(j=-1,0, 1) and
p=p1+po+p_ is the total density. Also, E; €R is the dimensionless Zeeman
energy of spin component mr = j (j = —1, 0, 1) in the uniform external magnetic field,
B e R is the dimensionless external loffe—Pitchard magnetic field, and 8, and S, are
the dimensionless mean-field and spin-exchange interaction constants, respectively.
Furthermore, f denotes the conjugate of the function f. For 8, <0 (respectively
B. > 0) the spin-independent interaction is attractive (respectively repulsive). For
Bs <0 (respectively B, >0), the spin-exchange interaction is ferromagnetic
(respectively anti-ferromagnetic).

For the ferromagnetic system (1.1)-(1.3) with n =1, Cao et al. [6] proved the
existence of the ground state without the Ioffe—Pitchard magnetic field. Recently,
Lin et al. [12] characterised the ground states of spin-1 Bose—FEinstein condensates
under no external magnetic field. Motivated by [6, 12], the aim of this paper is to
study the ground state of the ferromagnetic system (1.1)—(1.3) for n = 1. We consider
the simplest case when V(x) =0 and all ¢; (j=-1,0, 1) are real. We rename ¢; by
uj (j=-1,0,1). From (1.1)-(1.3), the energy functional is

1
n n+ N
Hon) = [(D (G008 + E)e+ Drug+ BBty + 2 + 2,
B

=1

+ (B, —,BA,.)u%uzl + ZB‘Yulu(z)u_l + 2Bugy(u; + u_l)) dx,
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and the following two integrals are conserved:

qu(x)dx N, (1.4)

Jj==1

f (U(x) — u* (X)) dx = M. (1.5)
R

Here we assume that
N>0, |M|<N.

For given real numbers (N, M), we define

En = {u =y g, ) |uj € H'R), j=1,2,3,

1
f DB dx=N, f W30 — u?,(x) dx = M}.
R =01 R

We consider the minimisation problem
Hy = 1nf{H(u) | uec EN,M}' (16)

A solution to (1.6) is called a ground state. A ground state (u_, ug, u) is nontrivial if
u;#0,for j=-1,0, 1.
Our main result in this paper is the following theorem.

Tueorem 1.1. Let B, < B, <0 and Egy = E_1 < E; <0,B<0,min{|E}, j=-1,0,1} >
2|B|. Then a nontrivial ground state exists. Moreover, the ground state (u_y, up, uy)
is positive and strictly decreasing.

Following the method in [6], Theorem 1.1 is proved via approximation. Namely, we
consider a related minimisation problem in a bounded interval I; := [—k, k] and then
let k — +o00. More precisely, let us define an energy functional on Ij:

1

Hk(l/{ u _ ll /|2+E +&4 ﬁn IBS 4+ 4 +22 2+ 2

1, Up, Uy) = ; 2uj u > 7 —(uy +u’, ug(uy +uZ,)))
kj=—1

+ (B, —Bs)u%uzl + Zﬂsulugu,l + 2Bug(uy + u,l)) dx.
For given real numbers (N, M), we define

EIX/M {M—(u 1,Mo,u1)|uJ€H(Ik) j=1,2,3,

f Z u; (x)dx N, (u (x) — u* () dx = }

Iy j=—1
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We consider the minimisation problem
Hg = inf{H"(u) | u € Ey ,,}. (1.7)
It is easy to see that
HE— Hy ask— co. (1.8)

We will prove the following theorem.

THeEOREM 1.2. Let B, <Bs <0 and Eg=E_| <E; <0,B<0. Then the minimisation
problem (1.8) can be attained by some uf = (u_1x, Uok, u1 k) where uj; >0 and are
strictly decreasing.

Furthermore, in the last section, we will characterise the ground states of spin-1
Bose-Einstein condensates with an external Ioffe-Pitchard magnetic field (1.1)—(1.3).

We organise this paper as follows. In Section 2, we give the proof of Theorem 1.2.
In Section 3, we prove Theorem 1.1. In Section 4, following the method in [12] by Lin
et al., we characterise the ground state.

2. Proof of Theorem 1.2

We now prove Theorem 1.2.
We rewrite H* as follows:

H*u_y, ug, uy) = fl(i:(%m;jz + Ejuﬁ) + %(Zl: M?)z) dx

k==l =1
B

2 Jy
+ f2BM()(M1 +u_y)dx.

Iy

(uF — ) + 2ud(uy +u_y)?®) dx

Letu' = (u’ 1> uf), ull) be a minimising sequence of (1.8). We can always assume that
each component u’j is nonnegative, since it is easy to see that

ko, 1 ! 1 kol ! I
H (|u71|a |u0|, |u1|) <H (’/L]a Ug, u])

and (|u£l|, qu)l, Iull ) e E;‘V’M. Hence we can replace (ufl, ué, ull) by (|Ml,1|, |u6|, Iulll).
For ue H I(R), u >0, let us denote its Schwarz symmetrisation by u*. Then

(see [17])
f|u;|2dx2f|(uj)’|2dx, j=-1,0,1,
R R

fu?a’x=f(u;)2dx, fu‘}dx=f(u;)4dx, j=-1,0,1,
R R R R
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fu,»ukdxzf(uj.)(u;)dx, fuuk dx = f(u V2w dx, j=-1,0,1,
R R R

(51

fujuk dx=f(uj)(u,t)dx, fu_luluo dx=fui1u“f(u3) dx, j=-1,0,1,
R R R R

which imply that
HA ()", (uh)*, )y < H*'y, ub, ul)

and ((u' )", (uh)", (ul)") € EX, .

Now we can assume that «’. are nonnegative, even and nonincreasing in /. Next we
J

show that the minimising sequence is uniformly bounded in H(l) (Ix) fork > 1.

By the Gagliardo—Nirenberg inequality [2] and Young’s inequality, for any u €

Hé (1), we have that, for any & > 0, there exists C(g) > 0 such that

3
uf dx<Ce | WP dx+ C(s)( P dx) .

I I I

Then by the Cauchy inequality and Young’s inequality and (2.1),

1 1
fukujdxs—f(uk+u)dx< =N,
A 2 Jy 2
3 3
f wtil dx < Ce [ ()2 +|u;|2)dx+C(g)(( f " dx) +( f 2 dx) )
I I I I

k k k

and
j; uiugu; dx < Ce fl (g l” + | + ') dx
+C(s)(( f;k 2 dx)3 +( fh 2 dx)3 +( flk 2 dx)a).
Hence,
fZI(u)I dx = HY - fZE(u) dx—'B"(Z(u))
i & i & =
= = G 20+ )
- ZBf] by + ') dx + o(1)

2.1)

< Hj - Mf Z |@})'* dx + C(e)N> = 2BN.

L j=71
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Choosing ¢ sufficiently small, we have

I

which implies that by Sobolev embedding
= <C, j=-1,0,1,1=1,2,....

1
()P + (?) dx <,
j=—1

Then we can obtain the existence of the minimiser (u_; g, Uox, U1 4) by applying
compactness of the embedding of the subspace of H(; (1) that consists of even functions
nto L4(Ik). We can also assume that u;; > 0, for j= -1, 0, 1, and the least component
is not identically O.

Furthermore, there are Lagrange multipliers A%, g% such that (u_jz, uox, uix)
satisfies the Euler—Lagrange equations

%Ml_’l -E_ju_1 - (ﬂn +ﬁs)”31 - ((:811 +ﬁs)u% + (ﬁn _IBS)M%)”—I _ﬁsu%ul — Bug
= = Pu_y ink,

ug = Egug — Bautg — (B + By)uy + u? g — 2Bsu—yuouty — Bluy + u_y)
=y in Iy,

W = Equy — B + B, — By + Bouguy — B — B ur — Byugu_i — Bug
=+ My in I,

uj>0in (=k, k), wuj(xk)=0,;j=-1,0,1.

In what follows, we show that u;(k) # 0 for j=~—1,0, 1. This will be done by two
claims.

Claim 1. upx > 0.

We argue by contradiction. Suppose that up, >0 and ugx(xp) =0. Then by the
maximum principle, up; = 0. Hence (u_; x, u; ) is a solution of

gty = E_qucy = By + By — By = Bufuy = (A —puyin L,
(2.2)
%u’l’ —Eiu — (B, +Bs)u? — By — B uy = A+ 1By in Iy
satisfying the constraint,

N+M N-M
2 2

uy, dx = , u-,, dx=——.
fl. Hk 2 I bk 2

Set (u—1, ug, u1) = (u-1x + e_1¥_1, €%, Uk + E1¢1) with &;>0,y; € H) () for
j=-1,0, 1 such that

2 2 2
f(|u—1,k + el + leopol” + lurx + &1¢1]7) dx = N,
I

2 2
f (rge + e = lu_r g + ey ) dx = M.
I

https://doi.org/10.1017/5S0004972712000305 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972712000305

362 W. Luo, Z. Lii and Z. Liu [7]

This can be done by choosing &; > 0, € Hé(]k), j=-1,0, 1 such that flk U_ -1 dx
<0, j}k I/t]’klﬁl dx <0 and

281ful,k!//1 dx + &l |!//1|2dx=281ful,kll/1 dx+e*, | i dx,
Iy

I I Iy

281fu1‘kl,//| dx+£% |1,//||2dx+28|fu1’k1//1 dx

Iy I Iy

2 2 2
+£§1 ) [—1]° dx + & ) [¥ol” dx =0.
k k

Then

elful,kt/n dx:e_lfu-l,kt//-l dx+ O, + &),

I Iy

1
Slful,k(l/] dx+81fu ]kl,l/ 1d)€——§80 |l,[/0|2dx+0(8 +81)

I Iy I

Applying the above equality to the expression in E*(u_y, ug, u;), we have

EMu_y, ug,uy) = =281 + 1) | wyppr dx =26 (A = ) | usi g dx

I Iy

1
+ f (5000 + o + B + B+ 02, 03

Iy
+ zﬁsul,ku—l,k‘//(z)) dx + Ek(”—l,k, 0, urp) + 0(8‘11 + 3‘1‘) (2.3)

1
& f (gw + (B + A5 + (Bu + Bt 4 + 12y 5

Ik

+ 2,3su1,ku-1,k!//<2)) dx + E*(u_1 4,0, u1 1) + O(&* | + &1)

+ 0(8‘11 + 8‘1‘).

By (2.2) satisfied by U_1 s ULk,

1 2 2 2 2 2 2 4 2 4
f(§(|u,1’k| +n |u,_1’k| )+ EluLk +n E—1|u,_1’k| + (Bn +ﬁs)(u1’k +n u—l,k)
I

+ (B, — By + nz)uzl ku% k) dx 2.4)
(akwk)fulkdx (- u)fnu "

By (2.2) satisfied by u_;x, u; x again,

3 3
f(u’l,ku’_l’k + (Er + E_Duy -y g + 2B, (uy quy g+ u”y qun ) dx
I

(2.5)
=—2/lkfu1,ku_1,k dx.
I
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Let 7= ((N + M)/(N — M))"/2. Then by 8, <0, Ey=E_; <E; <0 and from (2.4)
and (2.5),

1 ,
f] (51000 + M P o+ (Bo 244 (B + B, + 42,
k

(2.6)
+ 2B5uq gu—1 1) (U1 g + U“—l,k)z) dx <0.

Let Yo = uix + nu_14. Then by (2.3) and (2.6), when &_1, &9, &, are sufficiently large,
we have EX(u_y, ug, u1) < Eo. This is a contradiction. Hence upy > 0.
Claim 2. u_1x >0, u14 > 0.

Suppose that u; ; > 0 and u; x(xp) = 0. By the maximum principle, u; x(x) =0. By
the equation satisfied by u x,

2
ﬁxuo’ku_l,k + Buo,k =0.

Therefore either up; =0 or Bsugru—14 + B =0. But by Claim 1 and 5, <0, B<0,
this is impossible. Hence u;; > 0. Similarly, we can prove u_;; > 0. Thus we have
completed the proof of Theorem 1.2. O

3. Proof of Theorem 1.1

From Section 2, for each k> 1, we obtain a minimiser to the minimisation

problem (1.7) which satisfies the following Euler—Lagrange equations
3 2 2

%ul_/l,k - Eflufl,k = (B +,8s)u_1’k = [(Bn +,8s)u(),k + (B _,Bs)ul,k]ufl,k

— Bsttg itk = Buog = (A =gy g in (=k, k),

2 2
%M&k — Eouo —ﬁnu&k = (Bn + By + uZy Iuo g — 2Bsu—y kuto i1k — Buy g + u-1x)
= Akuo,k in (—k, k),

1 3 2 2
514,1,,]( - Elul,k - (B, +ﬁs)u1,k - (B, +,Bs)u0,kul,k - (B, _ﬁs)u_l,kul,k
— Bt git—1x = Buox = (A + i g in (=k, k),

ujr>0in (=k, k), wujp(xk)=0,;j=-1,0,1.

From Section 2, we also know the following results:

(1) ujx >0in (=k, k), u;i is even and decreasing;
(2) for k> ko, Hf < ¢ <O0.

Indeed, from (1.8), we only need prove Hy<O0. Set v;(x)=p'?u;(px) for
j=-1,0, 1. Then for any p > 0, we have that (v_y, vg, v{) also satisfies

1
f Z v?(x) dx =N,
R “

j=-1

f A (x) =V, (x) dx = M,

R
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and
0B .
H_1,vo,v1)=p fz—lu|2dx+fZEu dx + I(Zu%) dx
Jj=-1 j=-1 ==
+ P,gs fR((u% - u%l)2 + 2u(2)(u% + ”31) + 4u1u(2)u_1 G.D

+ 2ud(uy +u_1)?) dx + f 2Bug(uy + u_y) dx.
R

Then Hy < 0 follows from (3.1) and 8, < 8, <0, E; <0, B< 0, min{|E}, j=-1,0,1} >
2|B|, by taking p small enough.

As well as (1) and (2), we have the following result:
Q) Mujrllg ) < C for some C.

Thus by Morrey’s inequality, we can take a subsequence of k — oo such that
u;x — u; uniformly in R where u; € H'(R), u; >0 and u; is decreasing. Then we
can conclude that u;; — u; in L’(R) for p > 2. But since u;; — u; uniformly in R,
we cannot conclude u; — u; in L*(R). Note that if we can prove that u ik = uj in
L*(R), then (u_;, ug, u;) satisfies the constraint (1.4)—(1.5) and is a minimiser of the
minimisation problem (1.6). By the same arguments as for Claim 1 and Claim 2, we
can prove that u; > 0.

Similarly to the proof in [6], we can prove strong convergence in L*(R). We will
give the detailed proof in a few claims.

Claim 3. 1Timg_peo(AX = pF) > 0, limy_ oo AX > 0, limy_, 400 (A* + %) > 0.

In fact, suppose limy_,.co(A¥ + %) < —cy < 0. Then from the equation for Uy g, We
see that c
uyy + Zoul,k <0, wux(x)>0 in(=k,k).

But by the Liouville comparison theorem, for k large, u;; must change signs in
(—=+/com, A/com), which is a contradiction to the fact that u; x(x) > 0 in (=k, k).
The other cases can be proven similarly.

Claim 4. There exists a positive constant ¢ > 0 such that
AN+ 15M > ¢y > 0.
In fact, by integrating by parts,
1 2
f Z (u]k) +E; u)k dx — fﬁn(z Wik
Ik j Ik j=—1

2 2 2 2 2
Bs((uy g —uZy 1 )" + 2ug (U + uy )°) dx — f 2Bug(uyx + u_1 ) dx
Ik Ik

=N +,ukM > —Hk(u_l,k, Uops Urx) = co>0

for k large.
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: : k 2 2
Claim 5. There exists ¢y > 0 such that A > ¢y > 0 for k large and f[k Uy dx — fR ug dx

as k — +oo.
From Claim 3, we deduce that lim;_, , (¥ — |u¥|) > 0. By Claim 4,
AF>co>0. (3.2)

In fact, if M =0, then (3.2) is obvious. If M > 0, then A*N + A*M > A*N + /M >
co > 0 for k large. If M < 0, then A*N — A*M > AN + kM > o > 0 for k large.
For 6 = 4/(3/4)co/(=3B, — 4B;), we can find R > 0 and ko such that

wp(x) <6, u_1x(x)<¢6 for|x| >R, k=>kp. (3.3)

From the equation for u; and (3.3),
ufy— Fu0e >0 forlx >Rk > ko

where R is fixed large number. By the comparison principle,
Note that R depends only on ¢p. Thus we conclude that g4 has exponential decay.
Soflk ug dx — [ u} dxask— co.

Since A* > ¢y > 0, we see that either A* + u* > c/2 or A¥ — ¥ > ¢y/2. Let us assume
that A* + ¥ > ¢(/2. Then by the same proof as for Claim 5, we have the following.

Claim 6. Assuming that A* + u* > cy/2, we have flk u?y  dx — j;% u?, dx as k — oo.

Now it remains to show that flk u%l L dx— fR ”31 dx as k — oo. Suppose this

is not true. By Claim 3, we may assume that lim;_ (¥ —u*)=0. In fact, if
1imy— 400 (¥ = ¥) > C > 0, then similar arguments to those in Claim 5 show that U_1
has exponen.tial decay and hence flk ”31,k dx — fR u%l dx as k — oo, which contradicts
our assumption.

Claim 7. ulu(z) =0and u_, =0.
Using flk “31,/( dx — fR ufl dx as k — oo, we see that the limit u_; satisfies
sully = E_qtcy = B + Buy = ((Bu + By + (B = Bohudu-1 = Byugur = Bug = 0,
in R.

Integrating from O to x, we obtain that [u”  (x)| > C| jg)x uluél. Since ||lu_1||g < C, we
derive u_; = 0 and ulué =0. If both u; =0 and uy = 0, we then derive N = —M (since
uy ; — uy and ug g — ug strongly in L*(R)), which is impossible.

There are two cases to be considered.

Case I. up>0,u; =0.

By Claim 5, *>C>0. Since u; € H'(R) and u; is decreasing, we see that
u;j(x) — 0 as |x| — +oo. Thus, for any 6 > 0, we can find Rs > 0 such that for |x| > R;
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we have u;(x) < /2. As a consequence of the decreasing property of u;;, we can find
ko such that u;(x) < ujr(Rs) <9, for |x| > Rs, k > ko. Then by u; =u_; =0, we see
that |(8, +Bs)u%,k + (B +ﬁs)bt31,k + 2Bsu1 jtt-1k + B(uy g + u—1 )| = O uniformly in R.
Hence from the equation for up; and Claim 7, ug satisfies

1

" _E _ 3 > c
U0k oUo,k ,Bnu()’k 2 =

2°u0,k, wor >0 in(=k, k), up(xk)=0.  (3.4)
Using the equation for u_; ; and 1imy 400 (A¥ — 1¥) = 0, we see that u_y j satisfies

’” o .
%u—l,k - E_lu_l,k —,Bnu(z)’ku_l,k < Zu_l,k, U1 > 0 in (—k, k), u_l,k(ik) =0. (3.5

Multiplying (3.4) by u_; 4 and (3.5) by up, and then integrating over (—k, k), since
E, = E_;, we obtain a contradiction.
Case 2. uy >0,ur =0.

In this case, we observe that u; satisfies
! —E_ju_y = By +Bou; =22%; inR,u; € H'(R) (3.6)

where limy_, oo AX = limy_, 400 1 = 29 > 0.
On the other hand, ugx(x)/uox(0) — u(x) which satisfies

1) — Eqity — (B, + By)ujnr = . (3.7

It is easy to see that 0 <u, < 1 since uz(0) = 1. Multiplying (3.6) by u; and (3.7) by u;
and then integrating over R, since Ey = E_;, we get

/10 f uﬁ[z =0
R
which is impossible.

In conclusion, we have proved that as k — +oco then flk uik - fR u? for j=-1,0, 1.
This completes the proof of Theorem 1.1. O

4. Characterisation of the ground state
We denote the energy density & by
1 1

1, . 2
hw = W, ) = Y (S + Bl )+ 23 )
— —

Bs

2

+ ((u% - ”31)2 + 2u5(u| + u,1)2) + 2Buo(uy + u_y).

Then
f h(u) dx = H(u).
R
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We also denote the set of all minimisers of H (over (A) by G, where
A= {ll =(u_y, uy, Uy) € EN,M|MJ' >0 for J =-1,0, l}

The Euler-Lagrange equations for u € G are given by the following coupled Gross—
Pitaevskii equations:

Sy = E_yuy = (B + B | — (B + By + (Bn — By)u Ju—y — Bstigur — Bug
= - pwu-y,
ug = Equo = Buttg — (B + By)ua; + u> g — 2Bsu—yuouy — B(uy + u_y) = Aug,
W - Eyuy - (B, +Bus = By + Byudus — (Ba — B)u? ur — Bsudu—1 — Bug
= (A + wuy,

where A and u are the Lagrange multipliers.
Similar to the proof of Lemma 2.1 in [12], we give the following lemma.

Lemma 4.1. Ifu € G N (C%(R))?, then for each j, either uj>0o0ru;=0inR.
We recall some results on mass-redistribution of n-tuples of real-valued functions.

DermNiTion 4.2 [12]. Let £ = (fi, f. ..., f,) € (H'(R))" be an n-tuple of real-valued
functions and g = (g1, &2, - - - , &n) be an m-tuple of nonnegative functions. We say g
is a mass-redistribution of f, if 812 =i b sz for each [, where by, > 0 are constants
and )", by = 1 for each k.

We have the following proposition.

Prorosition 4.3 [12]. For any mass-redistribution g of £ as in Definition 4.2, we have
the following results.

(1) lgl=Ifl.
(2) |Vgl> <|VEP. Moreover, |Vg|> = |VE|? if and only if fiVfi = fiVf; for each j+k
with byjby. # 0 for at least one .

Our main result in this section is as follows.

TueOREM 4.4. Let E_| = Ey = E| in the ferromagnetic system (1.1)—(1.3) forn =1, and
letu = (u_y, ug, uy) € A be the ground state of (1.1)—(1.3). Then we have the following
resullts.

(i)  Ifu satisfies ug(u_1 + uy) < 1/%(1 — M2/N?)ul?, then h(y*[ul) < h(u).
(i) IfueGn(C*R)) satisfies ug(u_1 + uy) = 4/ %(1 — M2/N?)|uf?, then u = v*|ul.

Here y* = (¥, v, v}) is given by

R AU SRR (S )
’}/—1_2 N’ ’)/0_ 2 Nz’ 71_ :
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Proor. By direct calculation,
h(w) — h(y"[u)) = (Vul® = [Viul®) = B, ~ 2u-ju)*

1 M?
n 2B(u0(u1 Fu) - 5(1 - m)|u|2).
Then by Proposition 4.3 and ug(u_q + u1) < 1/%(1 — M2/N?)jul?, Bs < 0, we prove (i).

If u € G, from (i), we have H(u) = H(y*|u|), which in turn implies A(u) = h(y*[ua]).
Hence from (2) of Proposition 4.3,

FVfi= fiVf; forj#k .1
u(z):2u_1u1;
T
oty + u_p) = 5(1—ﬁ)|u|. 4.2)

Now assume u € G N (C%(R))>. From Lemma 4.1, at least one u ; is strictly positive
in R. Without loss of generality assume #; > 0 in R. Then from (4.1)

V(@) = V(E) = 0. 4.3)

up up

Since R is connected, by (4.3), it follows that #_; and u are both constant multiples
of u;. Hence (ii) follows by (4.2) and (4.3). O

Remark. Theorem 4.4 implies that, under some condition, searching for the ground
state of a ferromagnetic spin-1 BEC with an external Ioffe—Pitchard magnetic field can
be reduced to a ‘one-component’ minimisation problem.
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