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Introduction. By a representation of the extended Dynkin diagram D,, we shall
mean a list of 5 vector spaces P, E,, E,, E;, E, over an algebraically closed field K, and 4

linear maps a,, a,, a3, a, as shown.
E, E, E,
a RM (1)
P

The spaces need not be of finite dimension.

In their solution of the 4-subspace problem [6], Gelfand and Ponomarev have
classified such representations when the spaces are finite dimensional. A representation
like (1) can also be viewed as a module over the K-algebra R, consisting of all 5X 5
matrices having zeros off the first row and off the main diagonal.

The algebra R, is an interesting example of a tame, hereditary, finite dimensional
algebra. A general theory of infinite dimensional representations of tame, hereditary
algebras A was developed by C. M. Ringel in [11]. Most of the terminology that we use
may be found in Ringel. In particular, this includes notions of purity, torsion freeness,
rank and regularity. In [11, § 6], we find a classification of all torsion free A-modules of
rank 1, including those of infinite dimension over the field K. However the infinite
dimensional, torsion free, indecomposable modules of rank 2 or more require further
investigation. Especially, how are they to be constructed? What interesting isomor-
phism invariants do they possess? It seems that examples of such A-modules are
needed.

In this note we shall construct a family of infinite dimensional, torsion free,
indecomposable R,-modules of rank 2, each having no proper pure submodule. Such
purely simple modules have been constructed in total for the Kronecker algebra

E,

K 2
A=[ 0 K] by use of some exotic K-linear functionals on the space K(x) of

rational functions in the indeterminate x, see e.g. (3], [5], [8]. Our approach for R,
vaguely resembles the ones for the algebra A. We expect that a general method for
constructing all purely simple A-modules of finite rank may evolve from these methods, at
least when the ground field KX is algebraically closed.

Our paper is in two parts. The first part deals with a general criterion (Theorem 2.6)
for pure simplicity of an infinite dimensional, torsion free, finite rank A-module, where A
is any tame, hereditary, finite dimensional algebra. In passing we obtain a structural result
for purely simple modules of rank 2 (Theorem 2.5). This theorem extends Okoh’s result
[10, Proposition B] for the rank 2 case to all tame, hereditary algebras. Theorem 2.5 also
suggests that the purely simple modules of rank 2 form a tractable part of the class of
indecomposables.

In the second part, we use the general criterion in the construction of the infinite
dimensional, purely simple R;,-modules of rank 2. When dealing with R,-modules, we
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shall take the approach of (1). In particular a homomorphism, as shown

E, E, Ey E F E K K
P R
between two Rs;-modules, is a list of 5 linear maps

PSR, E-*>F, E;-%>F, E;—>F, E,~*>F

such that
pea;=b;°q; ()

for i =1, 2, 3, 4. All of the homomorphisms between the R,-modules in the second part
will be displayed as such lists of 5 linear maps.

In [3, Theorem 2.8], it is shown that one can obtain examples of infinite dimensional,
purely simple R,-modules of arbitrary finite rank by constructing Kronecker modules with
the same properties and then applying a certain functor from Kronecker modules to
Rs;modules. The advantages of the approach which is taken in this paper are twofold.
First, the construction procedure is self-contained within the category of R,-modules.
Secondly, it gives a method for obtaining all infinite dimensional purely simple
R;-modules of rank 2 and not just those which are images of rank 2 Kronecker modules.

A homomorphism test for pure simplicity. The results of this section are valid for
modules over any tame, hereditary, finite dimensional algebra A. Ringel’s paper [11]
provides a good background to the definitions and concepts which we will use. However,
for the sake of completeness we include some of these definitions.

Let M be a finite dimensional right N-module, and let 0— P1L>P2—->M—>O be the
complete minimal projective resolution of M (the map f is a monomorphism because A is
hereditary). Applying the functor * = Hom,( , A,), we obtain a map f*: P5— Py of left
A-modules. The cokernel of this map is denoted by Tr M. Similarly, starting with a finite
dimensional left A-module N, and its complete minimal projective resolution, we apply
* = Hom,( , AA), and obtain as cokernel a right A-module denoted by Tr N. Now, using
the duality functor D = Homg( , K), we obtain, from the left A-module Tr M, a right
A-module AM = D Tr M. If we first apply D to the right module M and then apply Tr to
the left module DM, we obtain the right module A™'M =Tr DM. Let X be a finite
dimensional right A-module. We say that X is preprojective if X is isomorphic to AP for
some non-negative integer { and some indecomposable projective module P. We say that
X is preinjective if X is isomorphic to A‘l for some non-negative integer i and some
indecomposable injective module I. A module is called regular provided it has no
indecomposable preprojective or preinjective direct summands.

Given a A-modul€ X, let £X be the sum of all finite dimensional submodules U of X
such that U has no indecomposable preprojective direct summand. Call X torsion
provided {X = X, and torsion free if {X =0.

A module Y is called divisible provided Ext,(X, Y)=0 for every simple regular
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module X. By simple regular, we mean a regular module which does not have any proper,
non-zero regular submodules.

There exists a unique indecomposable, torsion free, divisible A-module which we
denote by (, see [11, 5.3]. This module is important for investigating infinite
dimensional, torsion free A-modules. The module Q can be characterized in a different
way; it is the only infinite dimensional A-module whose endomorphism ring is a division
ring and which is finite dimensional as a vector space over its endomorphism ring, [11,
5.3, 5.7]. This characterization of Q is used by Ringel in [12].

Any torsion free A-module X can be embedded into a direct sum Y of copies of Q
such that Y/X is torsion regular. The number of copies of Q in the direct sum Y is an
invariant of X and is called the rank of X (see [11, 5.5])). Using [11, 5.1], we can easily
show that any two embeddings of X into Y with torsion regular quotient are equivalent up
to an automorphism of Y. As a result, we will speak about the embedding of X into Y
with torsion regular quotient. Our first observation is that the embedding of X into Y with
torsion regular quotient determines all homomorphisms from X to Q. The proof of this
proposition follows immediately from [11, 4.7 Corollary].

ProrosiTion 2.1. Let X and Y be as above and let o: X — Y be the embedding with
torsion regular quotient. Then any homomorphism o : X — Q factors through a.

We shall need to know that the notion of rank is additive in short exact sequences.

PropoSITION 2.2. Suppose that 0— P £, X F—0is a short exact sequence of torsion
free A-modules. Then rank X = rank P + rank F.

Proof. Let a,:P— Y], a,: F— Y, be the embeddings of P and F into direct sums Y,
and Y, of copies of O, with torsion regular quotients. From the definition of rank it
suffices to give an embedding «: X — Y, @ Y, with torsion regular quotient.

By [11, 4.7 Corollary], there is a map 6:X—Y; such that a,=3d°f. Define
a: X->Y,BY, by x> (6(x), arey(x)). If a(x)=1(0,0) for some x in X then y(x)=0
since @, is an embedding. Thus x = B(p) for some p in P. Then 0=06(x)=6°B(p) =
a,(p) forces p, and x, to be 0 because «, is an embedding. Hence « is an embedding.

We define a map Y,/a(P)— (Y, @ Y2)/a(x) by y, + a(P)— (3, 0) + «(X). This is
well defined. So is the map (Y, D Vo) a(X)— Yo/ ao(F) given by (yy, y2) + a(X)—
y2+ a(F). The diagram below commutes.

B 13

— F

Yy — Y, oY, —Y),

|

Yi/a((P)= (Y, ® Y2)/ a(X)— Y/ an(F)

Since all three columns of the diagram and the top two rows are short exact, the bottom
row is short exact. But Y;/a,(P) and Y,/a,(F) are torsion regular. By [11, 4.1, 4.2], the
torsion regular modules are closed under extensions. Thus (Y, ® Y,)/«(X) is torsion
regular, and « fulfills the requirements.
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We are interested in the class of infinite dimensional A-modules which are purely
simple of finite rank. A module is purely simple if it does not have any proper, non-zero
pure submodules. Here pure is used in the sense of P. M. Cohn [2]; also see [11, § F].
Unlike the more restrictive notion of direct summand, that of a pure submodule has led
to a fruitful analysis of infinite dimensional modules. In the case of finite dimensions, pure
simplicity coincides with indecomposability.

We shall say that a submodule M of a module X is torsion closed in X if X/M is
torsion free.

ProposITION 2.3. Let M be a pure submodule of a torsion free module X. Then M is
torsion closed in X.

Proof. According to [11, 4.1], a module is torsion free provided every finite
dimensional, indecomposable submodule is preprojective. Let U/M be a finite dimen-
sional, indecomposable submodule of X/M. Since M is pure in X, M is a direct summand
in U. Let N be a direct complement of M in U. Then N, being isomorphic to U/M, is
finite dimensional and indecomposable. Since X is torsion free, N is preprojective and
thus U/M is preprojective.

Proposition 2.3 confirms that torsion free modules of rank 1 are purely simple.
Indeed if X is a torsion free module with a proper, non-zero, pure submodule P then
Proposition 2.2 applied to the short exact sequence 0—P— X—X/P—0 forces
rank X =2.

The next theorem has been proved by Okoh for modules over the Kronecker algebra
A (see [8, Lemma 1.12]). Using [11, 2.2 Corollary 3, 6.1 Proposition] it is possible for us
to imitate Okoh'’s proof to cover the general setting.

THEOREM 2.4. Let X be a purely simple A-module. Then any proper, torsion closed
submodule which is of finite rank must be finite dimensional.

The above results yield an interesting structural property of purely simple modules of
rank 2.

THEOREM 2.5. If X is a purely simple module of rank 2, then either

(i) every non-zero homomorphism X — Q is an embedding or

(i) X sits in an extension 0— P— X — F —0, where P and F are torsion free of rank
1 and P is finite dimensional.

Proof. We note that situations (i) and (ii) are mutually exclusive because F embeds
in Q and the map X — F in the extension is a non-zero, non-monic homomorphism.

Now there always exists a non-zero map X — Q. For instance, take the embedding
X — 0 @ Q with torsion regular quotient and follow it by a projection onto one of the
components Q in the direct sum. If (i) fails then there is a non-zero homomorphism
@:X— Q with a non-zero kernel. Let P=ker ¢, F=image @. We have the exact
sequence 0— P— X — F— 0. By Theorem 2.2, P and F have rank 1 and, by Theorem
2.4, P is finite dimensional.

In the case of the Kronecker algebra A, condition (i) of Theorem 2.5 does not occur
(see [10, Proposition B]). However, for the algebra R, (i) does occur. Indeed, there exist
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simple projective modules X of rank 2, and these cannot satisfy (ii). In Section 3 we
construct examples of purely simple, infinite dimensional R,-modules that fall into the
situation of (ii). However, it would be interesting to know if there exist purely simple
R4-modules of rank 2 that are infinite dimensional and satisfy (i).

We are now ready to present our main result.

THEOREM 2.6. A torsion free module X of finite rank and infinite dimension is purely
simple if and only if every non-zero homomorphism X — Q has a finite dimensional
kernel.

Proof. Suppose there exists a non-zero homomorphism X — Q with infinite dimen-
sional kernel. Since Q is torsion free, the kernel is a proper torsion closed submodule. By
Proposition 2.2 and Theorem 2.4, X is not purely simple.

Conversely, suppose that X is not purely simple. Let M be a proper pure submodule
of X. If M is finite dimensional then it is a direct summand in X by [11, § F], and its
complement is a proper, infinite dimensional, pure submodule of X. As a result, we see
that X has a proper, infinite dimensional, pure submodule. Let L be such a submodule.
By Proposition 2.3, L is torsion closed in X. Since L is proper, rank L <rank X. Let
m =rank X —rank L. The quotient module X /L is torsion free of rank m. Let « be the
embedding of X/L into m copies of Q such that the quotient is torsion reguiar. If we
follow « by any one of the canonical projections onto (, we have a non-zero
homomorphism B:X/L— Q. The canonical projection of X onto X /L followed by
yields the required homomorphism from X to Q.

Purely simple representations of D,. For the representations of D,, i.e. R,-
modules, we take the point of view given by (1). The ground field in this section needs to
be algebraically closed.

We will construct explicitly a family of purely simple R,-modules that are infinite
dimensional and of rank 2. Each will be an extensions of a torsion free, finite dimensional
module P of rank one by an infinite dimensional module F of rank one, as in Theorem
2.5(ii).

(The module F that we shall use is the unique indecomposable, torsion free, divisible
module Q. For D,, the module Q is

Kx)  K(x) K(x)  K(x) 3)
K(x)® K(x)
with action given by

a(nN=(r,r), afr)=(rxr), a()=(0), alr)=(0,r)

Here K(x) is the space of rational functions in one variable x.

To show that (3) gives the unique torsion free, divisible, indecomposable module,
one has two approaches. The first is to calculate the endomorphism ring of Q. Such a
computation yields that End Q = K(x). A rational function ¢ furnishes an endomorphism
of (3) by multiplying each of the 5 component spaces of (3) by . Since dimg,qo Q =6, we
are done by the comments about Q at the beginning of the previous section.
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The second approach is more circuitous. There exists a functor T from the category
of Kronecker modules to the category of R,-modules (see [4]). One of the properties of
this functor is that it maps the unique torsion free, indecomposable divisible Kroncker
module onto the unique torsion free, indecomposable divisible R,-module by [3, Theorem
2.8].

The torsion free, indecomposable, divisible Kronecker module is described in
Definition 9.6 of [1]. Applying T to that module gives us (3).

For the module P, take
K 0 0 0
K

with a, the identity and the other maps 0. This P given by (4) is clearly indecomposable
and torsion free, in fact projective. The defect of P is —1, and hence, by [11, 5.6], the
rank of P is 1. See [4] for a definition of defect.

We will be looking at modules X which lie in the middle of short exact sequences of
the form

0-PS5X50—0. (5)

In order to construct the modules, we need K-linear functionals f: K(x)— K. For each
functional f, let X be the module

K®K(x) K(x) K(x) K(x)
a; a, a a4 (6)
K®K(x)DK(x)

with action given by

a(d, ry=(Ar,r),  axr)=(f(r), r, xr)
ay(r)=(0,r,0), a4(r)=(0,0,r)

for all A in K, r in K(x). This module X is the middle term of a short exact sequence (5)
with obvious maps ¢ and z.

Using techniques similar to those in [10], one can show that every extension X of P
by Q, as in (5), is equivalent to (6) for some functional f. However we will leave this
aside.

In order to determine necessary and sufficient conditions on the functional f for the
module X to be purely simple, we need the derived function that was introduced in [7,
§ 3]. For each functional f, the derived function is a K-linear map 9, : K(x)— K(x) with
the properties that

3(1)=0 and J;(xr)=x3,(r)+f(r) (7)

for all r in K(x).
The rank of P is 1, and the embedding p:P— Q with torsion regular quotient is
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given by the S linear maps:
K— K(x)+ K(x), where A—(A,4A), K— K(x), where A—A,
0— K(x), 0— K(x), 0— K(x).

According to [11, 4.7 Corollary], there is a module map €:X — Q such that p = €o. By
using (7), we can check that € is given by the following list of 5 linear maps:

K@ K(x)®D K(x)— K(x) D K(x),
where .
(A, r, )= A+ (x —1)3(n), A+ (x —1)3,(ry)),

K® K(x)— K(x), where (4, r)— A+ (x—1)3:(r),
K(x)— K(x), where r—f(r)+(x —1)3,(r),
K(x)— K(x), where r—(x—1)3,(r),

K(x)— K(x), where r—(x—1)3:(r).

As in the proof of Proposition 2.2, there results from this € a module map
a: X — Q © Q with torsion regular quotient. The following list of S maps gives a:

KD Kx)D K(x)—(K(x)DK(x)) D (K(x) D K(x)),
h
mhere (A, r, )= A+ (x —1)3,(n), A+ (x —1)3,(rs), nn, 1),

K®K(x)— K(x)® K(x), where (A, r)—>(A+(x—1)3(r), r),
K(x)— K(x) ® K(x), where r—(f(r)+(x—1)3:(r), r), (8)
K(x)— K(x) ® K(x), where r—((x—1)3(r),r),
K(x)— K(x) ® K(x), where r—((x—1)3,(r), r)).

According to Theorem 2.6, we are interested in what conditions f must satisfy so that
every non-zero homomorphism v: X — Q has a finite dimensional kernel. Using Proposi-
tion 2.1, any homomorphism v:X— Q factors through the embedding (8). Since
End Q = K(x), it follows that every map Q © Q— O, and hence v, arises from two
rational functions s and . The map v will be zero if and only if both s =0 and ¢ = 0. Given
the nature of the embedding a in (8), a homomorphism v: X — Q is thus defined by the
following list of S linear maps:

K®K(x)® K(x)— K(x) ® K(x),
(A, n, )= (s(A+ (x = 1)3,(ry) + try, (A + (x — 1)3(ry)) + 1),
K® K(x)— K(x), where (A, r)—s(A+(x—1)3,(r))+1tr,
K(x)— K(x), where r—s(f(r)+ (x—1)3:(r)) +1r, 9)
K(x)— K(x), where r—s(x—1)3,(r)+1r,
K(x)— K(x), where r—s(x—1)3,(r)+1r.

Now ker v is infinite dimensional if and only if one of the 5 linear maps in (9) has an
infinite dimensional kernel. No matter which one it is, this is tantamount to saying that

s(x=1)3,(r)+tr=0 (10)

where
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for infinitely many linearly independent r in K(x). For instance, if the second map in the
list had an infinite dimensional kernel then the restriction of that map to 0 ® K(x) would
still have an infinite dimensional kernei, thereby giving (10) for infinitely many linearly
independent r.

Hence X is purely simple if and only if for every non-zero choice of rational functions
s, t, equation (10) is satisfied only on a finite dimensional space of rational functions r.
According to [3, Theorem 2.5], this is equivalent to having the following conditions hold:

(a) for every 6 in K the power series Y. f((x — 8) ¥)x* is not the expansion of a
k=1

. o
rational function, nor is the series ¥ f(x*)x*,
k=0

(b) for any rational function r the set {0 € K:f((x — 8)™") =r(6)} is finite.

The algebraic closure of K was needed to have these conditions. In particular it is
necessary to know that the functions (x — 8)™%, k=1,2,..., and x*, k=0, 1,..., form
a basis of K(x) over K.

For an example of such a functional f, let (n,, n,, ns, . . .) be the sequence (1, 0, 1, 0,
0,1,0,0,0,1,0,0,0,0,1,...) and let V6 be a square root of @ for each 8 in K. Then
define f on the basis of K(x) by: f(x*)=n,, k=0,1,2,..., and, for 6 in K,
f((x—6)")=V6, f((x—6))=n,, k=2,3,.... This f, and many other like it, satisfy
both (a) and (b) yielding a purely simple representation of X of D,.

The above construction of a rank 2 example can also be imitated to create examples
of purely simple R;-modules of any finite rank.

Finally we observe that rank 2, purely simple R;-modules exist in abundance.

ProrosiTioN 3.1. Every infinite dimensional, torsion free, rank 1 R,module is a
quotient of a purely simple rank 2 module.

Proof. Let F be an infinite dimensional, torsion free, rank 1 R,-module and let X be
the purely simple rank 2 module constructed just above. Let o: F— Q be the embedding
with torsion regular quotient. We construct the pullback N as in the following diagram.

0 P---- >N---=->F 0
R
v
0 P X 0 0

The module N is an infinite dimensional rank 2 module. The cokernel of 7 is isomorphic
to the cokernel of o and hence is torsion regular. If N is not purely simple then, by
Theorem 2.6, there exists a non-zero homomorphism N— Q with infinite dimensional
kernel. By [11, 4.7 Corollary], this homomorphhism would extend to X. Again by
Theorem 2.6,this implies that X is not purely simple. This is a contradiction and so N is
purely simple.
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