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Abstract

In this article, a Blackburn group refers to a finite non-Dedekind group for which the intersection of all
nonnormal subgroups is not the trivial subgroup. By completing the arguments of M. Hertweck, we show
that all conjugacy class preserving automorphisms of Blackburn groups are inner automorphisms.

2000 Mathematics subject classification: primary 20D45; secondary 16S34.

1. Introduction

If every subgroup of a group is a normal subgroup, then it is called a Dedekind group.
For a group G that is not a Dedekind group, let R(G) denote the intersection of
all nonnormal subgroups of G. Finite non-Dedekind groups G with the property
that R(G) > 1 were classified by Blackburn in [1], and so we will refer to these
as Blackburn groups. Recent interest in Blackburn groups has arisen in the theory
of integral group rings because these groups were shown to satisfy the normalizer
property over the integers [5]. This means that the normalizer of G in the unit group
of ZG is as small as possible — the product of G with the central units of ZG. This
property, or the lack of it, has implications to some important questions for integral
group rings, including the isomorphism problem and the Zassenhaus conjectures.
The arguments in [5] left open the question of whether or not inner automorphisms
of Blackburn groups are the only ones that preserve conjugacy classes, from which the
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normalizer property (over any integral domain in which the group order is not invert-
ible) would follow. In light of well-known examples of finite metabelian groups that
possess non-inner class preserving automorphisms (see, for example, [4, page 250]),
the possibility that such a group could be a Blackburn group cannot be immediately
ruled out. Nevertheless, in this article we show in Theorem 3.2 that class preserving
automorphisms of Blackburn groups must be inner automorphisms. Our approach
is to complete the argument for this given in [2, Proposition 22.4], which is based
on an incomplete description of Blackburn groups. In the final section, we address
a similar issue in the argument for [2, Theorem 23.8], which gives an application of
Theorem 3.2 that characterizes a certain type of unit in a group ring of a torsion group.

2. Blackburn’s classification

A group G is a Q-group if G has an abelian subgroup A of index 2 which is not
elementary abelian, and G = (A, b) for some b € G \ A of order 4 with x® = x~!
for all x € A. If, in addition, there is an a € A with a? = b?, then G is said to be a
Q*-group. Fix the notation so that

O = (s,t 5P =1, 2=

, sl — S_l>
denotes the generalized quaternion group of order 2" for n > 3. Also, E; denotes a
finite elementary abelian 2-group.

We now give Blackburn’s classification [1]. If a Blackburn group G is a p-group
for some prime p, then p = 2 and one of the following holds:

(1) G=QgxCyxE,.

(2) G=Qgx Qs x E.

(3) Gisa Q-group.

If a Blackburn group G is not of prime power order, then one of the following
holds:

(a) G has an abelian subgroup B of exponent kp" where n > 1, p is a prime, and
(k, p) = 1. G/B is cyclic of order p” and if Bu generates G/ B, u can be chosen so
that u”" has order p". There exists an integer £ = 1 mod p” such that x* = x* for
all x in B.

(b) G is the direct product of an abelian group of odd order and a 2-group of type
(1) or (2) above.

(c) G has a subgroup H of the kind described in (a) with p = 2and r = 1. H is of
index 2 and if G is generated by H and ¢, t can be chosen so that u' = u~', 1* = u¥,
and there exists an n = ~1 mod 2" such that x’ = x" for all x in B.

(d) G has an abelian subgroup B of index 2. G is generated by B and ¢ where ¢ is
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an element of B of order 2. There exists a¢ = —1 mod 2" such that x' = x?* for all
x in B.

(e) G is the direct product of H, a quaternion group of order 8, and an elementary
abelian 2-group, where H is of odd order and is of the kind described in (a).

In [2, Theorem 22.2], Hertweck describes Blackburn groups in the same way,
except that types (a) and (c) are presented differently:

(@) G = N x (b) with a p-element b and an abelian p’-group N. There is (an)
m € N such that x® = x™ forall x € N, and 1 # C,(N) # (b).
(¢) G = N x Q@ with N abelian of odd order, and x* = x~!, x' = x forallx € N.

Unfortunately, this means that some Blackburn groups of types (a), (c), and (e)
are not covered by Hertweck’s condition. The omitted groups of type (a) and (e)
are not crucial because these have a normal abelian subgroup with cyclic quotient,
and therefore every class preserving automorphism of these groups is forced to be an
inner automorphism by [2, Proposition 14.4]. However, the following example of a
Blackburn group of type (c) cannot be handled using the arguments in [2]. Let

G'_l‘_(a,s,t:a“’= 1, " =a®, a =a", (s,1) = le)-

This group is a Blackburn group, satisfying the conditions of type (c) in Blackburn’s
classification, with R(G) = (s*) = C,. However, G does not satisfy Hertweck’s
conditions. This example can be generalized to many other such examples, all of the
form (N x B) % O, with N an abelian group of odd order not equal to a prime power,
and B an abelian 2-group with 4 < exp(B) < 2"~2. These do not satisfy Hertweck’s
description when s and ¢ neither fix nor invert all of N.

3. The main result

Let Aut(G) be the group of automorphisms of a group G, Inn(G) its subgroup of
inner automorphisms, and Aut.(G) the subgroup of class preserving automorphisms
which leave every conjugacy class of G invariant. Recall that a power automorphism
of a group G is an automorphism of G that leaves every subgroup invariant, and thus
maps every element of G to a power of itself. We denote the subgroup of power
automorphisms of G by P Aut(G). A universal automorphism of a group G is a
power automorphism that maps every element of G to the same power. The subgroup
of universal automorphisms of G is denoted U Aut(G). U Aut(G) is often trivial
when G is not abelian, however, when G is abelian, U Aut(G) is isomorphic to the
group of units modulo exp(G).

LEMMA 3.1. Let G be a finite group. Suppose A is an abelian normal subgroup
of G, and suppose the restriction of every inner automorphism of G to A is a power
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automorphism of A. Then the restriction of every class preserving automorphism
of G to A is a universal automorphism of A. In particular, if G is abelian, then
P Aut(G) = U Aut(G).

PROOF. Let 0 € Aut.(G). Let a be an element of A of maximal order. The
assumptions imply that there exists an n € N such that o(a) = a". Let B be a
complement to {(a) in A, sothat A = {a) x B and exp(B) divides o(a). Letm, £ € N
be suchthato (b) = b™ and o (ab) = (ab)‘. Thenab’ = o(ab) = o (a)o (b) = a"b™,
and hence a"~¢ = b*™™ = 1. Since o(b) divides o(a), n = £ mod o(a) implies that
n = { mod o(b), and so o(b) = b" = b". Therefore, o (x) = x", for all x € A.

It follows from the above argument that every power automorphism of A is a
universal automorphism of A, and thus the last assertion follows by taking G = A. O

This brings us to the main result.

THEOREM 3.2. Class preserving automorphisms of Blackburn groups are inner
automorphisms.

PROOE. If G is a Blackburn group of type (a) or (d), or if G is a 2-group that
is a Q-group, then the conclusion is immediate from (2, Proposition 14.4]. Since
Aut.(H x K) = Aut.(H) x Aut.(K) holds for all groups H and K, it follows from
the fact that Aut.(Qs) = Inn(Qj3) that Aut.(G) = Inn(G) holds for Blackburn groups
of type (b) or (e). Similar reasoning can be applied if G is a 2-group isomorphic to
either of the types Qs x Cy4 X E; or Qg x (g x E,. This leaves only Blackburn groups
of type (c) to be considered.

Let G be a Blackburn group of type (c). Write G = A X Qp1,withA = N x B, N
an abelian normal subgroup of G of odd order, and B an abelian normal 2-subgroup
of exponent dividing 2". Let

(u,t w ==, 0 = = u_l) = Qa1
andlet £ = 1 mod 2", n = —1 mod 2" be positive integers such that a* = af,
a” =a,and a' = a” for all a € A. Every element of G can be uniquely written in
the form au't’ fora € A,i € {0,...,2" — 1}, and j € {0, 1}. We may assume that
u and ¢ act differently and non-trivially on A, for otherwise G has a normal abelian
subgroup of index 2, and [2, Proposition 14.4] applies.

Let 0 € Aut.(G). By modifying ¢ by an inner automorphism, we may assume
o(t) =t,and o(u) = u* = ¢*"'u, for some ¢ € A. We may assume that ¢ has
odd order because u fixes the Sylow 2-subgroup of A. By Lemma 3.1, there exists a
8 € {1,&,n, &En} such that o (a) = a’ for all a € A. So o is defined by

olau't’y =a’(¢*'u)t! = a’ct 't
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By expanding and comparing both sides of
o((au't!)(bu*th)) = o (au't!)o (bu*t%)

fora, b € A, one can show that a necessary condition for any such map defined by the
parameters é and ¢ to be an automorphism of G is for the condition (n - 1)(§ -1) =0
mod o(c¢) to hold.

Since A is abelian, the map a — a®~! defines a group endomorphism on A, with
image [A, u] and kernel C, (). Since u centralizes B, we have that [A,u] C N. It
follows that a > a®~"®=" js a homomorphism from A to N, with image [[A, ], t].
Since u, t act coprimely on N, we have by Fitting’s Lemma [3, Chapter 111.13.4] that

A =B xCy(u) x [A u]l = B x Cy(u) x Cian(®) x [[A,ul,t].

Therefore, every element of odd order in the kernel of the map a +> a®~P@=D must lie
in Cy(u)Cx(t). Therefore, if c=bd for some b € Cy(u), d € Cy(t), we can replace
o by conj(d™') o o to ensure there exists a8 € {1, &, n, &£n} such that

o(au't’) = a’u't’,

foralla € A and u't/ € Q.. So it suffices to show that, in order for such an
automorphism to be class preserving, § must be 1.

To do this, we will show that whenever § # 1, there exists an a € A such that at
least one of the conjugacy classes of au, at, or aut is not preserved by o. For all
a,be A, u't’! € Qy, we have

i [ fojE Y
(au)?™" = gb' "t ET, D

(at)b“"j — aE’n’bE’n'(n—l)u(—l)J(—Zi)t’ and

(aur)?' = gt pE'Y €= =20y,

For a typical element (au)®"’ in the conjugacy class of au, b may be chosen from N
because B centralizes u. If § € {n, &n} and if there exists an a € A such that
a* = a and a’ # a, then o(au) = a"u. In order for this to be equal to (au)?"
for some b € N, we must have u = u™", so j has to be even. The equation

o(au) = (au)®" thus reduces to 1 # a"~' = b*~!. Conjugating both sides by u
results in b5~ = a""! = b'~¥, and thus b>¢~V = 1. Since b has odd order, this implies
b~ =1 =g""!, a contradiction.

Now suppose a* # a for alla € A. Thena* = a™' foralla € A, and B is
elementary abelian and central. If § = », then choose a € N so that a’ = a™', which
we can do because ¢ acts non-trivially on A. Then o (aut) = a™'ut would have to
equal (aur)®" for some b € N. This forces u = u="'"%)_ If j is even, then
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u~%¥ = 1,s0i is also even, and the equation reduces to 1 # a~? = b*7~!. Conjugating

both sides by ut results in a contradiction as before. If j is odd, then u? = u%,s0i is
odd, and the equation reduces to 1 # a~2 = b'~*7. We again reach a contradiction by
conjugating both sides by ut. If § = &n, then choose a € N so thata’ = a, which can
be done because « and ¢ act differently on A. In this case, o(at) = a~'t = (at)**"
implies u~"’-2) = 1,501 is even, and we are reduced to 1 # a=* = b" "~ for some
b € N. Since n has order 2 modulo the order of b, conjugating both sides by ¢ results
in a contradiction as before.

Finally, suppose § = £. Again, since u and ¢ act non-trivially and differently on A,
we can arrange that, by replacing ¢ by ut if necessary (that is, if @' = a~! for all
a € A), there exists an a € A such that a* # a and a' = a. Furthermore, since u
centralizes B, such an a has odd order. The equation

o(at) = a't = o(at) = (at)™"

thus implies that «=%’ = 1, so i must be even, and so we have | # a*~! = p7 -1,
Since a has odd order, there exists a solution to this equation for which b also has odd
order. Again by conjugating both sides by ¢, we obtain b7 "~V = g5~ = p7"'=" and
we reach a contradiction once again.

Therefore, the only way o can be class preserving is for § = 1. But this implies
that we can modify o by inner automorphisms and reach the identity, so ¢ is an inner
automorphism. O

It should be noted that the conclusion of [2, Proposition 22.4] is that for all Black-
burn groups G, R(G) < Z(G) and Aut.(G) = Inn(G). It is straightforward to see
that R(G) is central in G for all Blackburn groups G from Blackburn’s classification.

4. An application to units

Throughout this section, G denotes a (not necessarily finite) torsion group, R
denotes a G-adapted ring (an integral domain of characteristic zero in which the order
of any element of G is not invertible in R), and % denotes the group of units of RG.
We consider ZG as a subring of RG. An element y € RG is unipotent if y — 1 is
nilpotent, that is, (y — 1)" = O for some positive integer n. We seek a characterization
of the units of RG that commute with all unipotent elements of ZG. As we mentioned
earlier in the introduction, the following result appears as [2, Theorem 23.8], but the
proof given there is also based on the incomplete description of Blackburn groups.
We will complete Hertweck’s proof by accounting for the groups that were missing.

THEOREM 4.1. Assume that G is a non-Dedekind torsion group, and that some
u € Ny (G) commutes with all unipotent elements of ZG. Thenu € Z(%)G.
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PROOF. By [2, Proposition 23.5], we have [G, #] < R(G), so we may assume
R(G) # 1. If w € supp(u), then M = R(G){supp(uw~1))(w) is a finite normal
subgroup of G containing supp(«). By Hertweck’s results, it suffices to consider the
case where M is a Blackburn group of type (a) or (e).

Let M be a Blackburn group of type (a) or (e), with | R(M)| a power of the prime p.
Let b be an element of M of maximal p-power order such that R(M) = (b?"). Note
that R(G) < R(M) (see [1, Lemma 1(a)]), and R(M) < Z(M),so [G,u] < Z(M) <
Z(0,(M)). For every g € G there is a positive integer m such that (g, u] = b™".
If b* has order p*, then it follows that g~'u”' g = (b™" u)”" = u?", so u has p-power
order modulo Z(%). By [2, Lemma 19.4], there exists an x in the support of u and a
subgroup P of p’-index in G such that [P, ux~'] = 1. Since this implies a* = a* for
all a € P, by replacing u by some power equivalent to ¥ mod Z(%) if necessary, we
can find y € (x) of order a power of p such that [P, uy~'] = 1.

We claim that conj(uy~') has order a power of p. To see this, note that since
{u, vy] € R(G), u and y commute modulo R(G). If o(y) = p°, then modulo R(G)
we have (uy ") = u” (y~')*" = u”". Therefore, there exists a b, € R(G) such that
(uy™"? = u”'b,. Since R(G) < R(M) < Z(M), supp(u) < M and R(M) is a
p-group, u commutes with b; and o(b,) = p? for some d > 0, Thus (uy~ )™
u”" b = u”™. Since u has p-power order modulo Z(% ), we can choose a large
enough integer e > ¢ + d such that (uy=")?" € Z(%). It follows that conj(uy~') has
order a power of p, as claimed.

If S is a Sylow p-subgroup of M, then since P is of p’-index in G, there is a fixed
point in the action of S on the set of left cosets of P in G, and so there is a coset
gP of P such that sgP = gP for all s € S. Therefore, $¥ < P, and it follows
that [S#, uy™'] = 1. In particular, conj(uy~") acts as the identity on Z(0,(M)).
Therefore, we have that conj(uy~') is an automorphism of RG of p-power order,
which acts as the identity on G/Z(0,(M)) and Z(O,(M)), and fixes a subgroup
of p’ index elementwise. By the standard restriction-corestriction argument in 1-
cohomology (see [3, Chapter 1.16.18]), it follows that conj(uy~') = conj(k) for some
h € Z(0,(M)). Therefore, u = zhy for some z € Z(%), so we are done. O
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