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The linear programming relaxation permutation symmetry group
of an orthogonal array defining integer linear program

David M. Arquette and Dursun A. Bulutoglu

Abstract

There is always a natural embedding of Ss o Sk into the linear programming (LP) relaxation
permutation symmetry group of an orthogonal array integer linear programming (ILP)
formulation with equality constraints. The point of this paper is to prove that in the 2-level,
strength-1 case the LP relaxation permutation symmetry group of this formulation is isomorphic
to S2 oSk for all k, and in the 2-level, strength-2 case it is isomorphic to Sk

2 oSk+1 for k > 4. The
strength-2 result reveals previously unknown permutation symmetries that cannot be captured
by the natural embedding of S2 o Sk. We also conjecture a complete characterization of the LP
relaxation permutation symmetry group of the ILP formulation.

Supplementary materials are available with this article.

1. Introduction

An N -run, k-factor, s-level factorial design is an N × k array where each column takes values
from the set {0, 1, . . . , s − 1}. If one design can be obtained from another by permuting
runs (rows), factors (columns), or levels, then the two designs are said to be isomorphic. An
orthogonal array OA(N, k, s, t) is an N -run, k-factor, s-level design where every t-tuple appears
within each combination of t columns N/st = λ times. The values t and λ are respectively
called the strength and the index of OA(N, k, s, t). OA(N, k, s, t) can be enumerated up to
isomorphism by finding all non-isomorphic solutions of certain ILPs; see [1–3, 6, 13]. An ILP
searches for the solution vector x to the following problem:

min cTx : Ax = b, Bx 6 d, x ∈ Zn, (1)

where A and B are the equality and inequality constraint matrices, cTx is the objective
function, and x is the integer solution vector. The permutation symmetry group of an ILP is
the set of all permutations of its variables that do not change the feasibility and optimality of
its solutions. More formally, Margot [11] defined the permutation symmetry group, G, of an
ILP to be

G = {π ∈ Sn | cTx = cTπ(x) and π(x) ∈ F ∀ x ∈ F},

where F is the set of all feasible solutions. Symmetric ILPs can arise from a variety of
problem formulations; see [7]. In particular, ILPs for enumerating orthogonal arrays are highly
symmetric.

Optimal solutions to ILPs are commonly found with a branch-and-bound or a branch-and-
cut algorithm. In the case of symmetric ILPs, many of the subproblems in an enumeration
tree are isomorphic. As a result, a drastic amount of computational time is wasted on solving
identical problems. As a remedy, Margot [8–10] developed a solver that is able to decrease
and potentially eliminate such redundant computations by exploiting a subgroup of an ILP’s
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the lp relaxation permutation symmetry group 207

permutation symmetry group when pruning an enumeration tree. Exploiting larger subgroups
results in increased reductions in redundant computations, and the greatest reduction is
attained if the full permutation symmetry group of the ILP is exploited. Hence, it is desirable
to find larger subgroups of the permutation symmetry group of an ILP.

Let A(π, σ) be the matrix obtained from A by permuting its columns by π and its rows
by σ. Then for ILP (1),

G(A,b,B,d, c) =

{
π | π(c) = c,∃σ with A(π, σ) = A, B(π, σ) = B, σ

[
b

d

]
=

[
b

d

]}
is defined to be the formulation symmetry group. Clearly, G(A,b,B,d, c) ⊆ G, and
computational experiments suggest that solution times can be improved by several orders of
magnitude if Margot’s solver is used with G(A,b,B,d, c) on ILPs with large |G(A,b,B,d, c)|;
see [11].

The LP relaxation permutation symmetry group, GLP is the set of all permutations of
variables that send LP feasible points to LP feasible points with the same objective function
value. Clearly, GLP contains the formulation symmetry group. The formulation symmetry
groups of two different ILP formulations with the same set of variables, LP relaxation feasible
set and objective function can be different. Hence, the formulation symmetry group does
not always capture all the permutation symmetries in the LP relaxation of the ILP. On the
other hand, assuming that the set of variables in the ILP is fixed, GLP depends only on the
LP relaxation feasible set, and captures all the symmetries therein. For an LP relaxation
without equality constraints, where each constraint in Ax 6 b is a facet (non-redundant),
GLP = G(A,b, c).

Since the permutation symmetry group G is determined by the ILP’s feasible set, identifying
all symmetries in an ILP is difficult. Margot [11] proved that deciding if G = Sn is NP-
complete. Therefore, finding G for any given ILP is NP-hard. In order to find most of the
symmetries in an ILP, one can simply find the permutation symmetry group of the LP
relaxation. Let F and FLP be the sets of feasible solutions of an ILP and its LP relaxation,
respectively. Then F ⊆ FLP implies that

G(A,b,B,d, c) ⊆ GLP ⊆ G (2)

and there are examples where one or both of the containments in (2) are strict; see Geyer [5].
Let the OA(N, k, s, t) defining ILP (3) of Theorem 2 in Bulutoglu and Margot [2] be called

the Bulutoglu and Margot formulation. Geyer [5] developed an algorithm for finding GLP of a
generic LP with equality constraints. Furthermore, Geyer [5] observed that G(A,b,B,d, c) (
GLP for the Bulutoglu and Margot formulation for finding OA(N, k, 2, t) when t is even. Geyer
et al. [6] proved that G(A,b,B,d, c) is isomorphic to Ss o Sk for this formulation. They also
showed GLP ∼= S(s−1) o Sk for a formulation without equality constraints. For the strength-1
and strength-2 cases we prove the computational observations in [5] by explicitly finding the
GLP of a different ILP formulation with the same set of variables and inequality constraints,
but different equality constraints. The equality constraints of this ILP formulation are linear
combinations of those of the Bulutoglu and Margot formulation. Furthermore, both ILPs have
the same number of non-redundant equality constraints. Hence, one can go back and forth
between the two ILP formulations by applying a sequence of row operations to the equality
constraints of each. This implies that the feasible sets of the LP relaxations of these two ILP
formulations are the same, so their GLPs must also be the same. The new ILP formulation
makes it possible to find the GLP of the Bulutoglu and Margot formulation by drastically
simplifying this problem.

The new ILP formulation we use stems from the concept of J-characteristics. Let D be a
2-level, N -run (row), k-factor (column) design with levels from {1,−1}. Let the frequency
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208 d. m. arquette and d. a. bulutoglu

vector, f , of D have the frequency of each of the 2k possible factor–level combinations as its
entries. Hence, f determines D up to reordering of its runs. Then the J-characteristics of D
are given by

Jl =

N∑
i=1

∏
j∈l

dij

for l ⊆ Zk, where dij is the (i, j)th entry of D. It is well known that D is uniquely determined
by its J-characteristics up to reordering of its runs; furthermore, D is an orthogonal array of
strength t if and only if Jl = 0 for all l ⊆ Zk with |l| 6 t and l 6= ∅; see [15].

2. Preliminaries and the main results

Let 1 be the column vector of length 2k for which every entry is 1. For i = 1, . . . , k, let xi be
the ith column (ith main effect) of the k-factor, 2-level (±1) full factorial design (the design
that contains each of the 2k factor–level combinations exactly once). For distinct i1, . . . , ij ∈
{1, . . . , k} with j > 2, let xi1,...,ij represent the j-factor interaction term given by the Hadamard
product xi1 � . . .� xij , where the pth entry of xi1 � . . .� xij is the product of the entries on
the pth row of the matrix [xi1 , . . . ,xij ].

Equation (5) in [15] and the fact that D is an orthogonal array of strength t if and only if
Jl = 0 for all l ⊆ Zk with |l| 6 t and l 6= ∅ give us the following OA(N, k, 2, t) defining ILP:

min 0 : Mf = J, f > 0, f ∈ Z2k , (3)

where M is the
∑t
i=0

(
k
i

)
by 2k matrix

M =



1T

xT1
...
xTk
xT1,2

...
xTk−t+1,...,k


, (4)

J is the J-characteristic vector with entries Jl for |l| 6 t,

J =


N
0
...
0

 , (5)

0 is the all-zeros vector, and f is the frequency vector of a hypothetical OA(N, k, 2, t).
Our goal is to find the subgroup of the permutation group S2k that sends the LP relaxation

feasible solutions (f ∈ Q2k

>0) of ILP (3) to LP relaxation feasible solutions. The equality
constraints of this ILP are linear combinations of those of the Bulutoglu and Margot
formulation. Both ILPs have the same inequality constraints, and each ILP has

∑t
i=0

(
k
i

)
non-redundant equality constraints. Hence, both ILPs have the same LP relaxation feasible
set, and this implies that both have the same LP relaxation permutation symmetry group.
From this point on, we shall refer to this group as GLP. The main results of this paper are the
following theorems.
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Theorem 1. For an orthogonal array OA(N, k, 2, 1),

GLP ∼= S2 o Sk.

Theorem 2. For an orthogonal array OA(N, k, 2, 2) with k > 4,

GLP ∼= Sk2 o Sk+1.

The proof of Theorem 2 requires more work than the proof of Theorem 1. The following
definition and lemma are necessary to prove both theorems.

Definition 3. Let M be a matrix and Row(M) be the row space of M. Then the set of all
invertible linear transformations T such that T(v) ∈ Row(M) for all v ∈ Row(M) is called
the automorphism group of Row(M) and denoted by Aut(Row(M)).

Lemma 4. Let M and J be as in equations (4) and (5), respectively. Then

GLP = Aut(Row(M)) ∩ S2k .

Proof. Let LP (3) be the LP relaxation of ILP (3). Observe that

f∗ =


N
2k

...
N
2k


is a particular solution to LP (3). Hence, every solution f to the LP (3) can be written in the
form f∗ + f ′, where f ′ comes from the null space of M. Let g ∈ GLP be arbitrary. Then g(f)
is a solution to LP (3). That is,

Mg(f) = Mg(f∗ + f ′) = J.

Because g ∈ GLP 6 S2k ,

M[g(f∗) + g(f ′)] = M[f∗ + g(f ′)] = J,

and thus
Mf∗ + Mg(f ′) = J + Mg(f ′) = J.

Therefore,
Mg(f ′) = 0,

so we see that g(f ′) ∈ Null(M), which means g must preserve Null(M). Because g ∈ GLP is
arbitrary, GLP 6 Aut(Null(M)) ∩ S2k .

Now let h ∈ Aut(Null(M)) ∩ S2k be arbitrary. Then

Mh(f) = Mh(f∗ + f ′)

= Mf∗ + Mh(f ′)

= J.

Also,
f > 0 ⇒ h(f) > 0.

Hence, h ∈ GLP, and because h is arbitrary, Aut(Null(M)) ∩ S2k 6 GLP. As Aut(Null(M)) =
Aut(Row(M)), we conclude that GLP = Aut(Null(M)) ∩ S2k = Aut(Row(M)) ∩ S2k .
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3. The proof of the strength-1 case

Throughout this section we assume that t = 1 in ILP (3). Let B = {1,x1, . . . ,xk}. Then B is
an orthogonal basis for Row(M). For all g ∈ GLP, g(B) must also be an orthogonal basis for
Row(M) because g ∈ S2k and elements of S2k preserve angles. Furthermore, for every x ∈ B,
g(x) can be written uniquely as a linear combination of the elements of B. That is,

g(x) = λ01 + λ1x1 + . . .+ λkxk. (6)

The following three lemmas are needed to prove Theorem 1.

Lemma 5. Let x ∈ B. If x = 1 in (6), then λ0 = 1 and λi = 0 for i = 1, . . . , k. Otherwise
λ0 = 0.

Proof. Suppose x = 1. Because g ∈ GLP 6 S2k , g(1) = 1 which uniquely satisfies (6). For
i = 1, . . . , k, g(xi) must be orthogonal to g(1) = 1, so λ0 = 0 whenever x 6= 1.

Lemma 6. Let {x1, . . . ,xk} be the columns of a full factorial 2k design appearing in B. If
{x′1, . . . ,x′k} is obtained from {x1, . . . ,xk}, by permuting rows, then there exists a permutation
σ ∈ Sk such that for all i ∈ {1, . . . , k} satisfying x′i ∈ span(x1, . . . ,xk), x′i = ±xσ(i).

Proof. Suppose x′i ∈ span(x1, . . . ,xk). Then x′i = λ1x1+ . . .+λkxk, and we have the system
of equations

λ1 + . . . +λk = ±1

λ1 + . . . −λk = ±1

...
. . .

...
...

−λ1 − . . . −λk = ±1.

Subtracting the second equation from the first equation gives λk ∈ {0,±1}. Choosing other
pairs of equations similarly yields λj ∈ {0,±1} for j = 1, . . . , k. Because B is an orthogonal
set, the Pythagorean theorem gives

‖x′i‖2 =

k∑
j=1

‖λjxj‖2 =

k∑
j=1

λ2j‖xj‖2.

Since row permutations are norm-preserving, ‖x′i‖2 = 2k = ‖xj‖2 for j = 1, . . . , k. Thus,∑k
j=1 λ

2
j = 1. Since λj ∈ {0,±1} for j = 1, . . . , k, there is exactly one non-zero λj ∈ {±1}, and

x′i = ±xj . Row permutations also preserve orthogonality, so for every distinct i ∈ {1, . . . , k}
such that x′i ∈ span(x1, . . . ,xk), there is a unique j ∈ {1, . . . , k} satisfying x′i = ±xj . Thus,
there exists a permutation σ ∈ Sk such that x′i = ±xσ(i) for all i ∈ {1, . . . , k} such that
x′i ∈ span(x1, . . . ,xk).

Lemma 7. |GLP| 6 2kk!.

Proof. Let g ∈ GLP be arbitrary. From Lemma 5, we have that g(1) = 1, and g(xi) =
λ1x1 + . . .+ λkxk for i = 1, . . . , k. Now by Lemma 6, there exists a permutation σ ∈ Sk such
that x′i = ±xσ(i) for i = 1, . . . , k. That is, g is essentially a signed permutation of the k main

effects, so g is one of at most 2kk! elements in GLP.
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Next, by finding a subgroup of GLP that attains the upper bound on size, and using the
semidirect product and the wreath product, we determine the size and the structure of GLP.
For the definitions of the semidirect product, the wreath product, and the base of a wreath
product, see Rotman [14].

In the factorial design setting, Sk is the permutation group of k factors. The multiplicative
group {±1} that multiplies a column is isomorphic to S2. Naturally, Sk2 is the direct product
of k copies of S2. We now see that Sk2 is the base of S2 o Sk = Sk2 o Sk and Sk2 E S2 o Sk.

This wreath product is the set of all signed permutations of xi for i = 1, . . . , k from the full
factorial 2k design, where xT1 , . . . ,x

T
k constitute rows of M. We shall see that this group is a

subgroup of GLP. Hence, by Lemma 7, it is isomorphic to GLP.

Proof of Theorem 1. An arbitrary element of S2 o Sk can be written in the form φσ where
φ ∈ Sk2 and σ ∈ Sk. Clearly, permuting the k rows xT1 , . . . ,x

T
k of M or negating any subset

of these k rows will preserve the full factorial 2k design. Hence, φσ ∈ S2k . Furthermore, the
signed permutation φσ preserves Row(M), so φσ ∈ Aut(Row(M)). Because φσ ∈ S2 o Sk was
arbitrary, we get that an isomorphic copy of S2 oSk is contained in GLP = Aut(Row(M))∩S2k .
Finally, |S2 o Sk| = |Sk2 ||Sk| = 2kk! is the upper bound for |GLP|, so GLP must be isomorphic
to S2 o Sk.

4. The proof of the strength-2 case

Throughout this section, we assume that t = 2 in ILP (3). Let B = {1,x1, . . . ,xk,
x1,2, . . . ,xk−1,k}. Then B is an orthogonal basis for Row(M), and for all g ∈ GLP ⊆ S2k

the set g(B) must also be an orthogonal basis for Row(M). Also, for every x ∈ B, g(x) can be
written uniquely as a linear combination of the elements of B. In this case,

g(x) = λ01 + λ1x1 + . . .+ λkxk + λ1,2x1,2 + . . .+ λk−1,kxk−1,k. (7)

Similar to the strength-1 case above, we will arrive at the conclusion that for any x ∈ B, every
λ in (7) must be zero except for one, which must have an absolute value of 1. The following
several lemmas serve to lead us to this conclusion.

Lemma 8. Let x ∈ B. If x = 1 in (7), then λ0 = 1 and λi = 0 for i = 1, . . . , k, (1, 2), . . . ,
(k − 1, k). Otherwise λ0 = 0.

Proof. Suppose x = 1. Because g ∈ GLP 6 S2k , g(1) = 1, which uniquely satisfies (7). For
i = 1, . . . , k, (1, 2), . . . , (k − 1, k), g(xi) must be orthogonal to g(1) = 1, so λ0 = 0 whenever
x 6= 1.

Lemma 9. Let x ∈ B. If x 6= 1 in (7), then λi ∈ {0,±0.5,±1} for i = 1, . . . , k, (1, 2), . . . ,
(k − 1, k).

Proof. Suppose x 6= 1. Then (7) becomes g(x) = λ1x1 + . . . + λkxk + λ1,2x1,2 + . . . +
λk−1,kxk−1,k. Because these basis vectors are the columns of the full factorial 2k design and the
corresponding 2-factor interactions are obtained by taking the appropriate pairwise Hadamard
products of the individual columns (main effects), we have the system of equations
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λ1 + . . . +λk +λ1,2 + . . . +λ1,k + . . . +λk−1,k = ±1

...
. . .

...
...

. . .
...

. . .
...

...

λ1 − . . . −λk −λ1,2 − . . . −λ1,k + . . . +λk−1,k = ±1

−λ1 + . . . +λk −λ1,2 − . . . −λ1,k + . . . +λk−1,k = ±1

...
. . .

...
...

. . .
...

. . .
...

...

−λ1 − . . . −λk +λ1,2 + . . . +λ1,k + . . . +λk−1,k = ±1.

Subtracting the last equation from the first gives λ1+. . .+λk ∈ {0,±1}. Taking the difference of
the middle equations likewise provides λ1− . . .−λk ∈ {0,±1}. Summing these two expressions
results in the conclusion λ1 ∈ {0,±0.5,±1}. Choosing other sets of equations similarly yields
λi ∈ {0,±0.5,±1} for i = 1, . . . , k, (1, 2), . . . , (k − 1, k).

Lemma 10. Let x ∈ B and g ∈ GLP in (7) such that x 6= 1. Then either g(x) = ±xi for
some i ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)} or g(x) = ±0.5xa ± 0.5xb ± 0.5xc ± 0.5xd for some
distinct a, b, c, d ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)}.

Proof. Because B is an orthogonal set, the Pythagorean theorem gives

‖g(x)‖2 =
∑
i

‖λixi‖2 =
∑
i

λ2i ‖xi‖2.

Each g ∈ S2k is norm-preserving, so ‖g(x)‖2 = 2k = ‖xi‖2 for i = 1, . . . , k, (1, 2), . . . ,
(k − 1, k). Thus,

∑
i λ

2
i = 1. Clearly, not every λi can be zero. If λi ∈ {±1} for some

i ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)}, then λj = 0 for all j ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)}
such that i 6= j. Otherwise there must be distinct a, b, c, d ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)}
such that λa, λb, λc, λd ∈ {±0.5}, and every other λ is zero. That is, either g(x) = ±xi for
some i ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)} or g(x) = ±0.5xa ± 0.5xb ± 0.5xc ± 0.5xd for some
distinct a, b, c, d ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)}.

Lemma 11. Let x ∈ B and g ∈ GLP. If g(x) is of the second form given in Lemma 10, then
g(x) = ±0.5xa,b ± 0.5xa,c ± 0.5xb ± 0.5xc for some distinct a, b, c ∈ {1, . . . , k}.

Proof. Suppose g(x) = ±0.5xa ± 0.5xb ± 0.5xc ± 0.5xd for some distinct a, b, c, d ∈ {1, . . . ,
k, (1, 2), . . . , (k − 1, k)}. Clearly, xa, xb, xc, and xd cannot all be main effects, for the full
factorial design will ensure some entry of g(x) equals 2 /∈ {±1}. Therefore, at least one 2-
factor interaction must be present in the linear combination. Because there are more such linear
combinations than would be prudent to check manually, we took advantage of R software [12].
The code used for this step is contained in the appendix available as online supplementary
material from the publisher’s website. By creating every essentially unique linear combination
containing at least one 2-factor interaction term and checking whether each satisfies a basic
requirement, we ruled out all possibilities except those of one particular form. Specifically, by
ruling out each linear combination where the minimum and maximum entries in the resulting
vector are not −1 and 1, respectively, we eliminated all linear combinations except those of
the form ±0.5xa,b ± 0.5xa,c ± 0.5xb ± 0.5xc for some distinct a, b, c ∈ {1, . . . , k}.

It is clear that k > 3 in order for the form in Lemma 11 to be viable.
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Lemma 12. Let x ∈ B and g ∈ GLP. If for every i ∈ {1, . . . , k}, g(xi) 6= ±0.5xa,b ± 0.5xa,c
± 0.5xb ± 0.5xc for some distinct a, b, c ∈ {1, . . . , k}, then g(x) cannot be of the form in
Lemma 11.

Proof. Recall by Lemma 8 that g(1) = 1. Suppose that for every i ∈ {1, . . . , k}, we have
g(xi) 6= ±0.5xa,b ± 0.5xa,c ± 0.5xb ± 0.5xc for some distinct a, b, c ∈ {1, . . . , k}. Then by
Lemmas 10 and 11, for every i ∈ {1, . . . , k}, there exists some j ∈ {1, . . . , k, (1, 2), . . . , (k−1, k)}
such that g(xi) = ±xj . Because g preserves Hadamard products, for every i ∈ {(1, 2), . . . ,
(k − 1, k)}, there exists some j ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)} such that g(xi) = ±xj .
Hence, for every x ∈ B, g(x) 6= ±0.5xa,b ± 0.5xa,c ± 0.5xb ± 0.5xc for some distinct a, b, c ∈
{1, . . . , k}.

Lemma 13. Let g ∈ GLP. If for some i ∈ {1, . . . , k}, g(xi) = ±0.5xa,b±0.5xa,c±0.5xb±0.5xc
for some distinct a, b, c ∈ {1, . . . , k}, then there must exist some j ∈ {1, . . . , k} with i 6= j such
that g(xj) = ±0.5xa′,b′ ± 0.5xa′,c′ ± 0.5xb′ ± 0.5xc′ for some distinct a′, b′, c′ ∈ {1, . . . , k}.

Proof. Suppose there exists some i ∈ {1, . . . , k} such that g(xi) = ±0.5xa,b ± 0.5xa,c
± 0.5xb± 0.5xc for some distinct a, b, c ∈ {1, . . . , k}. By way of contradiction, suppose there is
no j ∈ {1, . . . , k} with i 6= j such that g(xj) = ±0.5xa′,b′ ± 0.5xa′,c′ ± 0.5xb′ ± 0.5xc′ for some
distinct a′, b′, c′ ∈ {1, . . . , k}. Then by Lemma 9 for every j ∈ {1, . . . , k} with i 6= j, there
exists some l ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)} such that g(xj) = ±xl. Because g preserves
Hadamard products, g(xi) � ±xl must also take on a viable form, and this implies that
xl ∈ {xa,xb,c}. There can only be one such xj because if there were more than one, their
Hadamard product would be sent to something in {±1,±xa,b,c}. But that means only two main
effects (xi and xj) get sent to viable forms, which contradicts Lemma 10. Thus, there must
exist some j ∈ {1, . . . , k} with i 6= j such that g(xj) = ±0.5xa′,b′ ± 0.5xa′,c′ ± 0.5xb′ ± 0.5xc′

for some distinct a′, b′, c′ ∈ {1, . . . , k}.

Lemma 14. Let g ∈ GLP. If there exist distinct i, j ∈ {1, . . . , k} such that g(xi) = ±0.5xa,b
± 0.5xa,c±0.5xb±0.5xc for some distinct a, b, c ∈ {1, . . . , k} and g(xj) = ±0.5xa′,b′±0.5xa′,c′

± 0.5xb′ ± 0.5xc′ for some distinct a′, b′, c′ ∈ {1, . . . , k}, then {a, b, c} = {a′, b′, c′}.

Proof. Suppose there exist distinct i, j ∈ {1, . . . , k} such that g(xi) = ±0.5xa,b± 0.5xa,c
± 0.5xb± 0.5xc for some distinct a, b, c ∈ {1, . . . , k} and g(xj) = ± 0.5xa′,b′ ± 0.5xa′,c′ ± 0.5xb′

± 0.5xc′ for some distinct a′, b′, c′ ∈ {1, . . . , k}. We proceed by way of contradiction and
suppose that {a, b, c} 6= {a′, b′, c′}. That is, |{a, b, c} ∩ {a′, b′, c′}| < 3. We observe that

g(xi,j) = ±0.25xa,b,a′,b′ ±0.25xa,b,a′,c′ ±0.25xa,b,b′ ±0.25xa,b,c′

±0.25xa,c,a′,b′ ±0.25xa,c,a′,c′ ±0.25xa,c,b′ ±0.25xa,c,c′

±0.25xb,a′,b′ ±0.25xb,a′,c′ ±0.25xb,b′ ±0.25xb,c′

±0.25xc,a′,b′ ±0.25xc,a′,c′ ±0.25xc,b′ ±0.25xc,c′ . (8)

Case 1: |{a, b, c} ∩ {a′, b′, c′}| = 0. Expression (8) clearly is not of a valid form.

Case 2: |{a, b, c} ∩ {a′, b′, c′}| = 1. If a 6= a′, 4-factor interaction terms will remain in (8), so
it will not be of a valid form. Suppose a = a′. Even if the 3-factor interaction terms were to
cancel, the remaining 2-factor interaction terms are insufficient for (8) to be of a valid form.

Case 3: |{a, b, c} ∩ {a′, b′, c′}| = 2. If a 6= a′, at least one 4-factor interaction term will
remain in (8), so it will not be of a valid form. Suppose a = a′. Without loss of generality,
also suppose b = b′. Even if the 3-factor interaction terms and the 1 terms were to cancel, the
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remaining 2-factor interaction terms and main effect terms are insufficient for (8) to be of a
valid form.

Lemma 15. If k > 4, and x 6= 1 in (7), then g(x) = ±xi for some i ∈ {1, . . . , k, (1, 2), . . . ,
(k − 1, k)}.

Proof. Let k > 4, and x 6= 1 in (7). By way of contradiction, suppose g(x) = ±0.5xa,b
± 0.5xa,c ± 0.5xb ± 0.5xc for some distinct a, b, c ∈ {1, . . . , k}. By Lemma 12, there exists
some i ∈ {1, . . . , k} such that g(xi) = ±0.5xa′,b′ ± 0.5xa′,c′ ± 0.5xb′ ± 0.5xc′ for some distinct
a′, b′, c′ ∈ {1, . . . , k}. Lemma 13 guarantees there will be another main effect sent to a similar
form by g, and Lemma 14 tells us it will be built from the same three distinct main effects and
their three distinct 2-factor interactions. At most one main effect could be sent by g to a form
other than that just described as noted in the proof of Lemma 13. Now we have at least one
more main effect to consider, and it must be sent to a form similar to that given above and also
built from the same three main effects and their three distinct 2-factor interactions. But now
we have four main effects that are sent to linear combinations of six orthogonal vectors, and
the six resulting 2-factor interactions will necessarily also be sent by g to linear combinations
of those same six orthogonal vectors (owing to the properties of the Hadamard product).
This means that the ten new vectors cannot all be orthogonal, which contradicts g ∈ GLP.
Hence, g(x) 6= ±0.5xa,b ± 0.5xa,c ± 0.5xb ± 0.5xc for some distinct a, b, c ∈ {1, . . . , k}. Now by
Lemmas 11 and 10, we have g(x) = ±xi for some i ∈ {1, . . . , k, (1, 2), . . . , (k − 1, k)}.

Lemma 16. Let k > 4. Then

|GLP| 6 2k(k + 1)!.

Proof. Let g ∈ GLP be arbitrary. Note that because g preserves Hadamard products,
knowing how it acts on the main effects will determine how it acts on all of B. By Lemma 15,
g(x1) = ±xi for i ∈ {1, . . . , k, (1, 2), . . . , (k− 1, k)}. Because g(x1,2) must be of a similar form,
the possibilities for g(x2) are restricted depending upon g(x1). If g(x1) = ±xi for i ∈ {1, . . . , k},
then g(x2) = ±xl for l ∈ {1, . . . , i − 1, i + 1, . . . , k, (1, i), . . . , (i − 1, i), (i, i + 1), . . . , (i, k)}.
Otherwise g(x1) = ±xi,j for i < j and i, j ∈ {1, . . . , k}, so g(x2) = ±xl for l ∈ {i, j, (1, i),
(1, j), . . . , (i − 1, i), (i − 1, j), (i, i + 1), (i + 1, j), . . . , (i, j − 1), (j − 1, j), (i, j + 1),
(j, j+1), . . . , (i, k), (j, k)}. To determine how many distinct possibilities exist, we shall consider
four cases, based on the forms of g(x1) and g(x2), respectively.

Case 1: main effect, main effect. Suppose g(x1) = ±xi for i ∈ {1, . . . , k} and g(x2) = ±xl
for l ∈ {1, . . . , i − 1, i + 1, . . . , k}. Then there are 2k possibilities for g(x1) and 2(k − 1) for
g(x2). All of the (k−2) remaining main effects must be sent to plus or minus the other (k−2)
main effects. That is, there are (2k)(2(k − 1))(2k−2(k − 2)!) = 2kk! distinct possibilities.

Case 2: main effect, 2-factor interaction. Suppose g(x1) = ±xi for i ∈ {1, . . . , k} and g(x2) =
±xl for l ∈ {(1, i), . . . , (i − 1, i), (i, i + 1), . . . , (i, k)}. Then there are 2k possibilities for g(x1)
and 2(k−1) for g(x2). All of the (k−2) remaining main effects must be sent to plus or minus the
other (k−2) viable 2-factor interactions. That is, there are (2k)(2(k−1))(2k−2(k−2)!) = 2kk!
distinct possibilities.

Case 3: 2-factor interaction, main effect. Suppose g(x1) = ±xi,j for i < j and i, j ∈ {1, . . . , k}
and g(x2) = ±xl for l ∈ {i, j}. Then there are 2

(
k
2

)
possibilities for g(x1) and 2(2) for g(x2).

All of the (k−2) remaining main effects must be sent to plus or minus the other (k−2) viable
2-factor interactions. That is, there are (2

(
k
2

)
)(2(2))(2k−2(k − 2)!) = 2k

(
k
2

)
(2)(k − 2)! distinct

possibilities.
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Case 4: 2-factor interaction, 2-factor interaction. Suppose g(x1) = ±xi,j for i < j and
i, j ∈ {1, . . . , k} and g(x2) = ±xl for l ∈ {(1, i), (1, j), . . . , (i − 1, i), (i − 1, j), (i, i + 1), (i +
1, j), . . . , (i, j−1), (j−1, j), (i, j+1), (j, j+1), . . . , (i, k), (j, k)}. Then there are 2

(
k
2

)
possibilities

for g(x1) and 2(2k−4) for g(x2). All of the (k−2) remaining main effects must be sent to plus
or minus the other (k− 3) viable 2-factor interactions and the lone viable main effect x{i,j}∩l.

That is, there are (2
(
k
2

)
)(2(2k− 4))(2k−2(k− 2)!) = 2k

(
k
2

)
(2k− 4)(k− 2)! distinct possibilities.

Therefore, the total number of possibilities for all cases is

2kk! + 2kk! + 2k
(
k

2

)
(2)(k − 2)! + 2k

(
k

2

)
(2k − 4)(k − 2)! = 2k(k + 1)!.

Thus, g is one of at most 2k(k + 1)! elements in GLP.

Proof of Theorem 2. Let R = 〈ρ1, . . . , ρk〉 where ρi acts on the full factorial design by
sending (x1, . . . ,xi, . . . ,xk) to (x1,i, . . . ,xi, . . . ,xi,k) for i = 1, . . . , k. Note that elements of R
preserve the full factorial design as well as Row(M), so R 6 GLP. Furthermore, for i = 1, . . . , k,
ρ−1i = ρi. For any distinct i, j ∈ {1, . . . , k}, ρiρjρi simply permutes xi and xj within the
full factorial design, so clearly Sk 6 R. Now we see that ρjρiSk = ρiSk for any distinct
i, j ∈ {1, . . . , k}, so there are exactly k + 1 left cosets of Sk within R, and together these
constitute R. Hence, R ∼= Sk+1. Letting φ ∈ Sk2 be arbitrary, we note that for any i = 1, . . . , k,
ρ−1i = ρi, ρ

−1
i φρi = φ′ where φ′ ∈ Sk2 , and ρ−1i φ′ρi = φ. Together with this information, the

fact that Sk2 E S2 oSk makes it clear that Sk2 E Sk2 oSk+1. Now an isomorphic copy of Sk2 oSk+1

is contained in GLP, and |Sk2 o Sk+1| = |Sk2 ||Sk+1| = 2k(k + 1)!. Hence by Lemma 16, GLP

must be isomorphic to Sk2 o Sk+1.

For k = 3, Theorem 2 does not hold. To see this, consider the permutation g ∈ GLP such
that

g(x1) = 0.5x1,2 + 0.5x1,3 + 0.5x2 − 0.5x3,

g(x2) = 0.5x1,2 + 0.5x1,3 − 0.5x2 + 0.5x3,

g(x3) = x1.

Because this permutation sends main effects to forms other than those which are viable for
k > 4, we conclude |GLP| > 23(3+1)! = 192. This observation is corroborated by the Geyer [5]
algorithm and GAP [4], which prove that in this case |GLP| = 1152, and GLP ∼= (S4×S4)oS2.

5. The significance of the results and future research

Firstly, the theoretical results of this paper confirm the computational observations of
Geyer [5]. This is a good check on the validity of the algorithm in Geyer [5] for finding
GLP. Also, the algorithm in Geyer [5] stalls as the problem size gets larger. Here, we have
solved this problem for any formulation that has the same set of variables and LP relaxation
feasible set as that of the Bulutoglu and Margot formulation of all strength-1 and strength-2
cases regardless of the problem size.

Exploiting the previously unknown symmetries in GLP ∼= Sk2 o Sk+1 for finding orthogonal
arrays has already made it possible to find OA(160, 9, 2, 4) and OA(176, 9, 2, 4) and prove
the non-existence of OA(160, 10, 2, 4) and OA(176, 10, 2, 4); see Bulutoglu and Ryan [3].
The concept of OD-equivalence rejection of OA(N, k, 2, t) introduced in [3] was necessary
in obtaining the results therein. OD-equivalence rejection is equivalent to exploiting Sk2 oSk+1

by keeping only one representative OA(N, k, 2, t) under the action of this group.
For s = 2 it is easy to see that an isomorphic copy of S2 o Sk is always a subgroup of GLP,

and an isomorphic copy Sk2 o Sk+1 is a subgroup when t is even. Based on the computational
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results in Geyer [5], we conjecture that GLP ∼= S2 o Sk when t is odd, and GLP ∼= S2 o Sk+1

otherwise. Also, for s > 2 it is easy to see that an isomorphic copy of Ss o Sk is a subgroup
of GLP. Computational results in Geyer [5] lead to the conjecture that GLP ∼= Ss o Sk for
s > 2. We propose settling these conjectures as open problems. All of our conjectures pertain
to the Bulutoglu and Margot formulation or any formulation obtained from the Bulutoglu and
Margot formulation by applying the elementary row operations to its equality constraints.
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