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SYMMETRIES OF THE SELF-DUAL YANG-MILLS EQUATIONS

Rop HALBURD

It has been conjectured by R. S. Ward that the self-dual Yang-Mills Equations
(SDYMESs) form a “master system” in the sense that most known integrable ordi-
nary and partial differential equations are obtainable as reductions. We systemat-
ically construct the group of symmetries of the SDYMEs on R* with semisimple
gauge group of finite dimension and show that this yields only the well known
gauge and conformal symmetries.

1. INTRODUCTION

The self-dual Yang-Mills equations are of central importance to the theory of in-
tegrable equations and have found a remarkable number of applications in physics and
mathematics. These equations arise in the context of gauge theory {12], in classical gen-
eral relativity [14, 5] and can be used as a powerful tool in the analysis of 4-manifolds
2]

In 1985 Ward [13] conjectured that

. many (and perhaps all?) of the ordinary or partial differential equa-
tions that are regarded as being integrable or solvable may be obtained
from the self-duality equations (or its generalisations) by reduction.

Naturally one would like to explore reductions of the self-dual Yang-Mills equations
as a means of discovering interesting integrable systems. One can systematically pro-
duce a large class of reductions of a system such as the self-dual Yang-Mills equations
by exploiting the system’s symmetries.

The Lie-point symmetries of a system of equations are transformations of the in-
dependent and dependent variables which do not contain derivatives and which leave
the form of the system invariant. In the present note we employ the method of pro-
longation [6] to find the identity component of the group of Lie-point symmetries of
the SDYM system over R* with semi-simple gauge group of finite dimension. It will
be seen that, in essence, this group contains only the well known gauge and conformal
transformations [1], a result already known for SU(2) [3].
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Quite early in the history of the subject, it was realised that the SDYMEs have a
natural geometric interpretation in terms of the curvature of a principal fibre bundle.
Let G be a Lie group with Lie algebra LG and let {z"},=,...,s be coordinates on R*.
Given A,(x) € LG, p=0, ..., 3 we introduce the covariant derivatives

and their commutators
(2) Fu = [V,‘, VV] =08,A, -0, A, + [A,,,A,,].

The self-dual Yang-Mills equations (on R*) are simply
(3) Fq\ = F33, Fg, = Fy,, Fgy = FY;.

In [4], La finds those Lie-point symmetries of (3) which do not depend explicitly
on the independent variables {z*}. In the present article we explicitly produce the
conformal symmetries of the SDYMEs and show that spontaneous symmetry breaking
cannot occur in this system, even at the PDE level. In other words, the only non-gauge
symmetries are those of the underlying manifold R*.

A very compact way of writing the self-dual Yang-Mills equations was introduced
by Pohlmeyer [11]. In terms of the null coordinates

(4) a=2z"+iz®, a=2"—iz}, B =2 +iz?, B =2 —iz?,
the SDYMEs take the form

(5) Ox(J 7 8ad) +85(J185J) =0,

where J € G.

In [8], Papachristou and Harrison calculate the Lie-point symmetries of Pohlmeyer’s
form of the self-dual Yang-Mills equations (5). However, as Ward [13] has noted, (5)
does not possess the same symmetries as (3). In particular, it no longer exhibits the
SO(4) invariance which is present in the original system.

2. THE SYMMETRIES OF THE SDYM EQUATIONS

In this section we shall apply the prolongation method outlined in Olver [6] to
find a Lie group of symmetries of the self-dual Yang-Mills equations. This procedure
will only exhibit the component of the full symmetry group which is connected to the
identity.

Let {Xm}m=1,..,a be a basis for the d-dimensional Lie algebra LG. (In general,
Roman indices will take the values 1,... ,d while Greek indices will range over 0,...,3.)
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With respect to this basis we write 4, = AZ‘X,,, and introduce structure constants
{f&} such that [X,,X3) = f&,X.. (Throughout this paper we shall be employing the
Einstein summation convention.) Thus

Fap = FSgX., where Fig:=8aA§ — 8pAC + fS,ALAD.

Let v be an arbitrary generator for the Lie algebra of our symmetry group. In the
present paper we shall only be concerned with the so called Lie-point symmetries for
which v has the form

/]
(6) v = £"(x, A)F + qSL"(x, A)%.
m

In the more general case of Lie-Bicklund symmetries, ¢ and ¢ may also depend on vari-
ous derivatives of A [6]. Some interesting non-local and Lie-Backlund symmetries of the
SDYMEs have recently been reported in Papachristou and Harrison [9], Papachristou
[10]) and La {4].

The symmetry transformation corresponding to v is given by
(x,A) > exp(ev)(x,A).

Now v generates a transformation which acts on the space X x U of the inde-
pendent and dependent variables only, however, the self-dual Yang-Mills equations also
contain first order derivatives of the connection components. Thus we need to prolong
v to a vector field which acts on X x U(1), the space of independent and dependent
variables together with their first derivatives. Hence we introduce the prolongation (see
[6]) of v given by

pl‘(l)(v) :=£ o +¢“ BAL" +7""’6A},“.,’ Ay,v = a—zyAy ’

where
7 =D, {¢7 — 2 A7} + €2 AT,y (D, is the total derivative with respect to z°)

A p
=@, AL mdl R — &L AD A — 104D LA

(We shall be using the notation Q% = (8Q)/(8 A7), Ql%° = (8Q)/(8 A2 ,) et cetera.)

Consider

() (prO) [Fep]) 127 = 85 {95l — }1im A5 2 + 65 (€5 + €243, )}
— 85 {deli —EMLAS A + 85, (80 + € AA% &)} (no sumon ),
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where 8], is the Kronecker delta. From
(pr(l)(v) [F§ — F{,]) |::v =0 (no sum on v),

we find that £p|] =0 for all p, 7, 0. Hence £ = £¥#(x).
Also, on noting that the three self-dual Yang-Mills equations (3) are related to each
other by cyclic permutations of the indices (1,2,3), we discover that

(8) $uln=-8380 n#v

So now the prolongation of v acting on the first Yang-Mills equation has the simpler
form

0 = pr)(v) [F3} - Fj3
= @Tr0 — dor1 — B3z + D5y + AR 87 |n — A3 203 1n — 43,1601 + AR, 3971
— ENAT A + EHAT ) + ENAT - EXAT
+ fm{A5o1 — Ajds + $5 AL — $3A3}

(9)

Once we have used (3) to eliminate terms of the form Af,, ¢ = 1,2,3 in (9), the

coefficients of the remaining functions A}, A§, and A} ; must be zero. Hence we

have
(10)
0=9¢"0— 01— 5.2 + s + AT 1 {87 n — 401 + 67 (€11 — €00) }
+ AT {87 n — o310 + 67 (€2 — €3)} + AT s {871 + 4710 + 67 (€02 + €4) }
+ AT {87 — 855 — 67 (00 + €0)} + AT s {8711 + 7% — 67 (€0 +£0)}
+ A7 {471 - 48 1n + 87 (€2 — €3)} + 455 {47 n + 6715 + 87 (€1 — €4)}
+ A;.,l {_¢;n|31 - ¢1’)n|3; + 6::‘ (f,lz + E?s)} + A?,z {‘ﬂnli - ¢;n|3| + 61? (f,zz - f?o)}
+ fr (6715 — 67°€0) (A7 43 — ATA])
+ (715 — 67€05) (ASA] — AJAD) + (715 + 67°€7,) (ATAS — AGA3)
+ 67 (Ag1 — A793 + $1 A7 — $343)}
Equating the coefficients of the first derivatives of the connection components to
zero and cyclically permuting indices (1,2,3), yields

6,“y=“’ ,vp B#v, f?o=£,11=£,22=€,33 =3X(x)
and $5'ln = ¢T 5 = #7132 = ¢33 = 67 (x) — 67 x(x)
for some 9. Hence
(10) ¢ =07 Ap — £ AT +$(x) for some Y.
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Substituting equation (11) into (10) and equating the coefficients of the A terms
to zero yields

0:,0 = f :b¢z'
From the compatibility conditions for these equations (that is, 0z s = 95 g0 )and using

the assumption that G is semisimple we conclude that there is a collection of functions
{h™(x)} such that

(12) Yo =h7.
So
(13) 85 = fouh® + k<

for constants {k}.

Equating the coefficients of the A%-type terms to zero (and using the Jacobi iden-
tity) tells us that

(14) ik + f5 ke + fiokg =0.

Multiplying (14) by f%., summing over b, ¢ and using the Jacobi identity, we obtain
(15) gedk: = f:c :ak:’

where &mn ‘T f;uf:w

are the components of the Killing form (or “Cartan metric”, see [7]).
Since G is semisimple, [g,,,] is non-singular. If we let [g™"] = [g,,,]”?, then we

have
(16) ko = 8" facfeki = fa.K*
where K®:=g=fl k¢

and we have used the fact that
fabc = gcdf:b = f:afn;rf:b = _f:l(ft;b :'ia + f;afl?r)

is totally antisymmetric in all indices. For k. of the form (16), (14) is satisfied as a
result of the Jacobi identity. Hence, without loss of generality, we can take the k] s to
be zero in (13) by absorbing them into the A®s.

Hence
(17) oy = finh A, — £ AT + AT,
(18) &,=—t4, ptv; =8,=,=6,
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Using the compatibility equations for (17) we find that

(19) ¢* = d* + bz" + a,(2*) + E {2a,z"z“ —a, (=)} + c‘,::c"} ,
v#u
(no sum on p), where a%, b, cg = —cf and d® are constants.

From (17), (19) and (6) we can construct a basis for the Lie Algebra of the gener-
ators of all the Lie-point symmetries of the self-dual Yang-Mills equations.

SUMMARY OF GENERATORS AND CORRESPONDING TRANSFORMATIONS

GAUGE TRANSFORMATIONS.
(20) {frah* A, + BT

d o
.u} m, h? € C(l)(R‘i)’

corresponding to
A H'dH+ H AR where H = exp (eh’X,).

TRANSLATIONS.

(21) 53_#’ ¥ - z* +e.

SCALINGS.

(22) s + am_9_ x—Ax, A-2TlA
m° ] .

Oz» # AT
ROTATIONS.
(23)

xv_a__—z“_a..+Al 8 _ Al i) (z“ A,.)H(cose sine) (z“ A,,).

8zH dzv YAl kAL’ z¥ A, —sine cose ¥ A,
“INVERSIONS”.

Writing yo = z*, {y1, 2, ¥s} = {2”}v#,, the four remaining generators may be
expressed as

1 i ] 9 o
(24) 2 {y§ -y -y ~—y§} v +yoy15;; +yoyza—y; +yoys$g

< 8
—{wAl + Al + 24, +ys AL} s + Y {4l —wAl} 55
gAL " 2 oAl
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If we set [[y||* = 43 + 4 + 9} + 33 and y.A = yoAo +y141 + 3242 + ysAs, then the
corresponding transformations take the form

” vo —elly|l*/2 ,
1—eyo +€lylI*/4
Yo Ye 259
(25) 1 —eyo +€*|lyll"/4

1
Ay Ap —ey. A + Zez {2y0 Y.A- !IYIleO} ’

1
A A+ e(ydo — 20A) + 36 {IyI*4. - 20, y.A}.
The only conformal symmetries which we have yet to find are the proper inversions,
which have the form
1
Iyl

These are discrete symmetries however and will not be produced explicitly by the pro-

I(yo’ylsyZ’yS) = (!Ioa—yl»—yz,-ys)-

longation method employed above because this procedure only yields continuous groups
of transformations near the identity. If, on the other hand, we consider an inversion
followed by a transformation near the identity, followed by another inversion, then the
composition of these transformations will be a transformation near the identity. In
particular we note that the action of (25) on the space X of independent variables is
simply I o T o I, where T is the translation 3y — yo — €/2. Hence we have recovered
only the well known gauge and conformal symmetries of the SDYMEs.

It should be noted that if G is not semisimple then in general there will be further
symmetries which are not mentioned above. For example, if G is Abelian then the
SDYMEs are linear and we must add the symmetry transformations

A7 - A7 +eAy, and A, A, +ey,,

where {%,}.=0,..,s is any other solution of the SDYMEs. If we take G = E,, the
Euclidean group in the plane whose Lie algebra is given by

[X1, Xa] = X5, [Xs, Xa]= X2, [X2, X5]=0,

which is neither semisimple nor Abelian, then the ‘near linearity’ of the SDYMEs is
apparent through the symmetry

Aiv—u\Ai, A:HXA:‘, foral p=0,...,3.
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