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Abstract

The Moore-Penrose inverse of a general bordered matrix is found under various conditions. The
Moore-Penrose inverses obtained by Hall and Hartwig (1976) are shown to be special cases of
these more general results.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 15 A 09; secondary 15 A 21.

1. Introduction

In this paper we consider the general bordered matrix

(1.1) M =
VA B~

[C D

and find the Moore-Penrose inverse Aff of M under various conditions. These
conditions involve A/A/f and M\-M being block diagonal, and the forms for A/f
obtained by Hall and Hartwig (1976) when D = 0 are special cases of the present
results. We again make use of some of the techniques given by Ben-Israel and
Greville (1974).

All matrices of this paper are over the complex field. If A is a complex matrix,
R(A) denotes the range of A, A* the conjugate transpose of A, N(A) the null space
of A and PN(A) the orthogonal projection onto N(A). The Moore-Penrose inverse
Af of A is the unique matrix X which satisfies the Penrose equations:

(1) AXA = A, (2) XAX = X, (3) {AX)* = AX, (4) (XA)* = XA.
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In general, if a matrix X satisfies equations (/), (j) and (k), then X is called an
(i,j, A:)-inverse of A. For properties of these various inverses the reader can see
Ben-Israel and Greville (1974).

2. Results

We first prove the following lemma.

LEMMA 2.1. Suppose that

'A'

C

\ (M/ \
~B~

D
= {0} and (ii) R(B*)r\R(D*) = {0}.

Then

(2.1) N(A)nN(C) =

PROOF. Letting B and D have m columns, condition (ii) is equivalent to

{R(B*)nR(D*)}x = Cm or N(B) + N(D) = Cm.

Using Lemma 2, Chapter 5, in Ben-Israel and Greville (1974), we then have

Hence, condition (ii) implies that

(2.2) i

Here and subsequently Px, where X is some expression, is to be interpreted as P
with subscript X.

Now, let xeN((I-BBt)A)nN((I-DDt)C). Then Ax = BB\Ax, Cx = DD-f
Cx, and from (2.2) it follows that

(Z>f Cx+PmD)(PN{B)+PmD)MBf A-m Qx).

But then from condition (i) we have Ax = 0 and Cx = 0, and so

I- BB-\) A)nN((I- DDt) C) <= N(A)r\N(C).

'A'

C
x =

' B~

D

Clearly, the opposite inclusion is always the case, and (2.1) is now proved.
We now give one of the forms for A/t-
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THEOREM 2.2. Under the assumptions that

(0
A'

C

\ /

1 \
B

D
= {0} and (ii) R(B*)nR(D*) = {0},

the matrix

Y =

/ - DD\) C]f -

is a (1,2,4)-inverse for M, where

P

-Q(P+Q)W-

'jv(U-BDt)C)' H =

If we further assume

then Y = Jiff.

(iii)
A*'

B* £>*
= {0},

PROOF. Since

= [(/-Z)Dt)C]t(/-Di)t)

[(I-DDft CMI-DDt) C+ Q(P+
x (/- BB\) A - [(/- Dm) C\\{I-
K-K((l, 1) position of YM)

and

we have by direct multiplication

YM =

As in the proof of Theorem 6, Chapter 5, in Ben-Israel and Greville (1974), the
(1,1) and (2,2) positions of YM become

'~°N((I-BBUA)nN(,U-DDf)C) anC" ' *N(B

respectively.

0

https://doi.org/10.1017/S144678870001346X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001346X


470 Frank J. Hall [4]

Now, assuming conditions (I)—(ii) we have (2.1) from the lemma, and hence

It then follows that the (2,1) position of YM is zero and that

(2.4) rMR^'^o 0

Thus, MYM = M and (YM)* = YM.
As in the proof of the Theorem 6 in Ben-Israel and Greville (1974),

and

Using (2.3H2.4) it can then be verified that F M 7 = Y.
Finally, using (2.2) we have by direct multiplication

MY =

We now assume condition (iii), from which it follows that

R(A*(I-BBf))r\R(C*(I-DDt)) = {0}.

Hence, as in the proof of Lemma 2.1,

(2.5) (P +Q)(P+ 0 t = /,

and therefore ( / - BB"\) A Q(P + 0 | = ( / - BB-f) A. Thus

and (MY)* = MY. The proof of the theorem is now complete.
It can be seen from the proof of the theorem that we need only assume (2.1) in

order for Y to be a (1,2,4)-inverse for M. And, under this assumption YM is block
diagonal. Consequently, from the results in Hall and Hartwig (1976) we have

N(A)nN(C) = N((I- BBf) A)nN((I- DDf) C) => R[ \nR = {0}

o Mf M is block diagonal o the blocks in the (1,3)-inverses of M are independent
of each other.

https://doi.org/10.1017/S144678870001346X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001346X


[5] Moore-Penrose inverses of bordered matrices 471

From Lemma 2.1 the first implication goes both ways if we assume

R(B*)nR(D*) = {0}.

In the same way, the blocks in the (l,4)-inverses for M are independent of each
othero MMf is block diagonal

•R

'A*'

B*

\ 1M/ \
~c*~
D*

= {0} => R(A*(I-BBt))r\R(C*(I-DD-f)) = {0}.

If we assume R(B*)f~\R(D*) = {0}, the last implication goes both ways.
If D = 0 the conditions in Theorem 2.2 are the same as the conditions in Theorem

4.1 in Hall and Hartwig (1976). Furthermore, when D = 0,

and thus the matrix given in Theorem 4.1 in Hall and Hartwig is a special case of
the matrix given in Theorem 2.2. It is also possible to give generalizations of the
other forms in Hall and Hartwig.

In the particular case where R(B*) £ N(D) we have

from (2.2) and hence

But R(B*)^N(D) oR(D*)^N(B) and so we also get

In this case the matrix Y of Theorem 2.2 simplifies and we have the following
corollary.

COROLLARY 2.3. Under the assumptions that

(0
'A'

C

\ 1

/ \

B~

D
( = {0} and (ii) R(B*)^N(D)

the matrix

?-(Dtc+BU)Q(P+Q)W-
>-Q(P+

D\ - (Z)f C+BU) ([(/- DD\) C]f - Q(P+ 0 f [ ( / -
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is a (l,2,4)-inverse for M where P
further assume

(iii) R[

Q=PN«I-N«I-DD»O-

A*

B*

\ 1w/ \
c*~
D*

= {0},

then Yt = Aff.
When we replace the condition

R(B*)nR(D*) = {0}

by the condition

R(A*)nR(C*) = {0},

we obtain an analogous theorem, which we state without proof.

THEOREM 2.4. Under the assumptions that

(0
A

C

\ /w/ \
B

D
= {0} and (ii) R(A*)nR(C*) = {0},

HA\ - KQ(P+ 0f [ ( / -

the matrix

w=

[(I-CCt)D)t-Q(P+

is a (1,2,4)-inverse for M, where

P = PN({I~AA\)B)' Q — PN((I-CCWD)> H = PN(t

and

A = l^J U + I1(AJ o — CJ U).

If we further assume

rA*~\\ /re*"

- CCt) D]t

(iii) R{ \nR
B* D*

= {0}

then W=Mf.
As in Theorem 2.2 we have in this case

N(B)nN(D) = N((I-AAf>B)r\N((I-CCf)D)=>R[\ I InR(
B

D
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and

A*'

B*

\ IM/ \
c*~
D*

Moore-Penrose inverses of bordered matrices

= {0}=> R(B*(I-AAt))nR(D*(I- CCW = {0},

473

R

and these implications go both ways if we assume R(A*)r\R(C*) = {0}.
In the particular case where R(A*)^N(C) we have the following simplification.

COROLLARY 2.5. Under the assumptions that

0)
'A'

C

\ 1w/ \
' B~

D
= {0} and (ii) R(A*)^N(C)

the matrix

=T-
Cf - (Cf D + A\ B) ([(/- CCt) D\\ - Q(P+ Q)W~

[ ( / - CCf) £>]| - Q(P+ 0 f [ ( / - j

is a (l,2,4)-inverse for M, where P = Pmi-AAt)B) and Q=Pmi-ccnDy V we

further assume

(iii) R[
A*'

B*

C*~

D*
= {0},

then W^ = Mt .
We now combine the conditions of the above two theorems and obtain another

simple form for M1[.

COROLLARY 2.6. Under the assumptions that

(i) R(A*)r\R(C*) = {0}, (ii) R(B*)nR(D*) = {0}

and

(iii) R[ \nR
~B~\

D\
\ = {0},

where

> Ql ~ Q2 ~
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PROOF. It is easy to see that conditions (i)—(ii) imply that

R
A*

B*
\nR

~C*~

D*\
\ = {0},

so that we have the conditions of both of the above theorems. Now, from (2.5) we
obtain

[ ( / - DDft C]f - Q^P, + e x ) t [ ( / -

Similarly, (P2 + Q2) (P2 + g2)f = / and hence

[( / - CCf) D]t - Q2(P2 + fi2)t[(/- CCf) D]f = Pi(P2 +

Then, from the uniqueness of Mf, the result follows from the above theorems.
We will now present a form for Mf where we assume N(B) c JV(D)—a condition

opposite to the condition R(B*)nR(D*) = {0}. We first establish the following
lemma.

LEMMA 2.7. Suppose that

R = {0}.

Then

(2.6) N(A)nN(C) = N(iI-BB-f)A)nN(C-DB-\A).

PROOF. Let x e # ( ( / - .RBf) A)c\N(C - £>5| ^) . Then /lx =
and hence

, Cx = D£f -4

[:H:B^Ax.

But then from our assumption it follows that Ax = 0 and Cx = 0; thus

N((I- BBi) A)r\N(C - DBi A) <= N(A)nN(C).

Clearly the opposite inclusion always holds and (2.6) is now proved.

THEOREM 2.8. Under the assumptions that

(i)J!| | | ln*[ ) = {0} and (ii) N(B)sN(D),
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the matrix

[[(I- fiflt) Atf-P(P+ 0t([(/~

fit - HB\ - K([(I- BBV A\\-P(P+ e)t([(/-fifit) A\\

- KP(P + 0 f (C - DB-f A)-f

is a (1,2,4)-inverse for M, where

P ~ PNUI-BBDA)' Q ~ PN(C-DB1 A)' H ~ -PjV(B)(̂ 'iV(B)

and

K = BfA + H(Dt C- fit A).

If we further assume

(iii) R(A*(I-BBi))nR((C-DBfA)*) = {0}

and

(iv) ( C -

then X = Mf.

PROOF. The details of the proof are similar to the proofs of the above two
theorems. Since [ ( / - f i f i tM]t = [(I-BBf)AY{{I- BBt) and Kfit B = D assuming
condition (ii), we have by direct multiplication

XM =

'[(/- BBf) AMI- BBf) A +P(P+ Q)U(C-DBt Aft
(C-gfit A)- [(I-BBt) AMI-BBfj A)

K-K ((1,1) position of XM)

As in the proof of Theorem 2.2, the (1,1) and (2,2) positions of XM become

respectively.

Now, assuming condition (i) we have (2.6) from the lemma, and hence

(2-7) I~PN(U
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It then follows that the (2,1) position of XM is zero and that

(2.8) XM =

[10]

« _ 1
I~PN(.B)nN(D)J

Thus, MXM = M and (XM)* = XM.
As in the proof of Theorem 2.2,

and

I-BBftA)r\N(C-

N(B)r\N(D)

C?)t — '

N(.B)nN(.D)-

Using (2.7-2.8) it can then be verified that XMX = X.
Finally, using condition (ii) we have by direct multiplication

MX =
BB-f + (I- BBt) A [(I- BBt) A]\

(C-DBtA)[(I-BBt)A]t-(C-DBtA)P(P+Q)t

We now assume condition (iii); as in the proof of Lemma 2.1, we then have
(P+ Q)(P+ 0 t = /and so (C-DBtA)P(P+ 0 f = C-DB^A. Thus

MX
|_Di?t

BBT + ( / - BBV A [ ( / -

- (C - £>5t A) (C -

0

Condition (iv) then guarantees that (MX)* = MX. The proof of the theorem is now
complete.

It can be seen that the first matrix given after Theorem 4.1 in Hall and Hartwig
(1976) is a special case of the matrix given in Theorem 2.8.

If we consider the condition N(A)zN(C) we have the following analogous
theorem, which we state without proof.

THEOREM 2.9. Under the assumptions that

(i) R\ )nR = {0} and (ii) N(A)^N(C),

the matrix
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Z =

Moore-Penrose inverses of bordered matrices

\-HAt- K([(I- AAt) B]t -P(P+ Q)t((D - CAt B)t CAt

477

[(/- A At) B]t -P(P + QMD - CAt B)t CAt + [(/- AAt)B]t)

HC\ -

is a (l,2,4)-inverse for M, where

P ~ ^N((l-AAt)B)> Q — PN(.

and

K = At B+H{C\ D-At B).

If we further assume

(iii) R(B*{I-AAt))r\R((D-CAtB)*) = {0}

and

(iv) (D - CAt S) (D-CAt B)t CAt = CAt,

then Z = Mt.
For the previous two theorems we have

R = {0}->N(iI-BBt)A)nN(C-DBtA) = N(A)nN(C)

and

- AAt) B)nN(D - = N(B)nN(D),

and the two implications go both ways if we assume N(B) s N(D) and N(A) s N(C),
respectively. Furthermore, under the assumptions of these two theorems, both
Mt M and MMt are again block diagonal in each case.

There are analogous forms for Mt when we assume N(D)^N(B) and
N(C)SN(A), instead of N(B)^N(D) and N(A)^N(C), respectively.

We should note that various other forms for the Moore-Penrose inverse of
bordered matrices have also been given in Burns et al. (1974), Hung and Markham
(1975a, 1975b) and Hartwig (1976), using techniques different than those in the
present paper.
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