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Abstract 

We give some higher dimensional analogues of the Durfee square formula and point out their relation to 
dissections of multipartitions. We apply the results to write certain affine Lie algebra characters in terms 
of Universal Chiral Partition Functions. 
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1. Introduction and background 

In this paper we will consider certain generalizations of an identity, due to Euler, 
known as the Durfee square identity (see [3] for an excellent introduction and historical 
account) 

where 
M 

(1.2) (z\q)M = Y\(l-zqk-1), (q)M = (qiq)M. 

There are various ways to prove this identity. For instance, it follows as a limiting 
case of the ^-analogue of Gauss' formula for the basic hypergeometric series 2</>i (see, 
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396 Peter Bouwknegt [2] 

FIGURE 1.1. The partition X. = (6,4,4,2) and its 3 x 3 Durfee square 

for example, [2]). The most lucid proof, however, employs the connection of (1.1) to 
partitions [10] (see also [8, 2]). Henceforth we identify partitions X = (kit A.2,.. • )> 
Xi > A.2 > . . . > 1, and their graphical presentation in terms of Young diagrams [2] 
(see, for example, Figure 1.1 for the partition X = (6,4,4,2)). 

Now, recall that 

(1.3) (zq)~M
l = J2 P*(m>n) *"*"' 

m,n>0 

where p\i{m, n) denotes the number of partitions of n into m parts in which no part 
exceeds M. In terms of Young diagrams, pu(m, n) is the number of diagrams with n 
boxes such that there are m rows and no more than M columns. 

Thus, the left-hand side of (1.1) is clearly the generating function for all partitions, 
while each summand on the right-hand side correspond to all partitions which fit at 
most an m x m 'Durfee square' in the upper left-hand corner of the Young diagram. 
(The 3 x 3 Durfee square for the partition X = (6,4,4,2) is indicated in Figure 1.1.) 
Summing over all m clearly generates the total set of partitions as well. This proves 
(1.1). In fact, by keeping track of the number of columns and rows in the above 
argument we have the following generalization of (1.1) due to Cauchy 

(1.4) 

where 

(1.5) 

1 
(zq)s 

_ y^ qm\m W~\ 

[:}-
(q)n 

(q)n(q)n 

for 0 < n < m (and zero otherwise), denotes the ^-binomial (Gaussian polynomial). 
Instead of dissecting partitions according to their maximal Durfee square, Andrews 

considered dissections by (maximal) rectangles whose base to height ratio is r : s and 
obtained the following generalization of (1.4) [1] 

(1.6) 
1 

(zq) M 

^ q(rm+i)(sm+j)zrm+i rM + r m + i S j s _ s m _ j 1 

U m?o (zq)sm+j-i+s,o+s,r I rm + iSj,s J ' 
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[3] Generalized Durfee squares 397 

where the sum over (i, j) is over all pairs 

(1.7) UJ) 6 {(i,j) = (0,0) or 1 < i < r, 1 < ; < s, (ij) * (r, *)}. 

In fact, the identity (1.6) is valid even if r and s are not relatively prime, as is 
obvious from Andrews' proof. For (r, s) = (1,1), (1.6) reduces to (1.4), while 
for (r, s) = (2,1) it gives an identity which appears explicitly in Ramanujan's lost 
notebook (see [3]). The proof of (1.6) was also sketched by Berkovich and McCoy in 
[6], and the M -> oo limit of (1.6) was discussed by van Elburg and Schoutens in [7]. 

In this paper we will consider further generalizations of (1.6) by considering simul
taneous dissections of multipartitions. The resulting formulas are useful in deriving 
expressions for the chiral characters of 2D conformal field theories (in particular the 
characters of modules of affine Lie algebras) in terms of so-called universal chiral 
partition functions (UCPF's). 

2. Durfee systems 

We will be concerned with identities of the form 

M rro-? £ (n*"i (m+a«>)-(n+ft<*>)_ 

ri/(z.<?)n, 
*-K-m-Qm 

j-r M, + m,-(n, + b)k)y] 

M L
 m' J' 

where K e GL[n, Q) is a symmetric matrix and the sum over k is over a (finite) set of 
sectors. In each sector k, the sum over m is over those m e (Z+)" (here 1+ denotes the 
set of non-negative integers) such that K • m + Q<*> g (!+)", while n = K • m + Q{k). 

DEFINITION 2.1. A Durfee system for K e GL(n,Q), of length L, is a collection of 
/j-dimensional vectors, (g(*\ a ( ' \ b(k)), k = 0 , . . . , L - 1, such that (2.1) is satisfied 
for all A/, e Z+and z, ( / = 1 n). 

Andrews' (r, ^-generalization of the classical Durfee formula, discussed in Sec
tion 1, can now be formulated as 

THEOREM 2.2. Letr,s &H. A Durfee system of length L = rs.for thelxl matrix 
K = s/r, is given by 

QUJ)=j - l + * / . 0 + */.r - - I'*,.,. 
(2.2) r 

aiiJ) = i(i-Sj,s), *<v> = i _a , i 0 _a / i r , 
where k = (i,j) runs over the rs sectors as in (1.7). 
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In the remainder of this paper we restrict ourselves to non-negative integer-valued, 
symmetric matrices K, that is, K e GL(n, Z+), and Durfee systems (Q(k), a(k), b{k)) 
of n-vectors with entries in Z+. In this case the sum in (2.1) is over all m, > 0 and 
tit e Z+ is determined by n = K • m + Q(k). 

Before giving examples, let us first explore some consequences of (2.1). By 
replacing Zi -*• Ziqp' in (2.1), for some p € Z", using the expansion (Note that (2.3) 
itself can be interpreted as a length-1 Durfee system for the trivial matrix K = 0 with 
(Q,a,b) = (0,0,1).) 

1 v-^, ,m\M + m-\~ (2.3) 7-^ = E(^) (zq)M ^ L rn J 

and shifting the summation variables, we find 

<2-4> n \MttNi]=E E ^ ^ n \Mi 

; L M < J k mel"+ i L 

n-Km=Qu>+p 

x r M + n / - ( m ) + a /
( i ) ) 1 

+ m, - (n, + b\k)P 
mi 

n-Km=Q">+p 

for arbitrary pel". Note that in this formula the summation variables (wi, n) appear 
on a more symmetrical footing. 

By taking the limit M, -> oo in (2.1) we find 

(2-5) r i c ^ r 5 lv* /nitau**).,' 
while by specializing (2.5) to z, = <7P\ we find a generalization of the classical Durfee 
formula (1.1) 

(2,6) ( 5 5 = : = ? , _ r ± L . n(«)-,(«)-i • 
for any constant vector pel". Of course, this equation can also be obtained from 
(2.4) by letting all Mt -> oo. Other interesting formulas are obtained by taking 
different specializations of (2.4). 

The search for identities of the type (2.1) in dimension n is greatly facilitated by 
using results in lower dimensions. Indeed, by putting z, = 0 for some i = j 0

 m 

(2.1), the right-hand side only receives contributions from the sectors it for which 
a(k) = 0. For those sectors only the term mk = 0 contributes in the summation, and 
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m +a »• 

399 

n + b 

FIGURE 2.1. Set of partitions with generating function (2.7) 

(2.1) reduces to a similar identity in dimension n — 1. Summarizing, if we know 
identities for a (n — 1) x (n - 1) sub-block of K, then we learn about the components 
(Qi*\ af\ bf), i £ k, for all sectors k for which al£ = 0. 

We now discuss the correspondence of Durfee systems with multipartitions. Sup
pose we have a Durfee system (Q(k),alk), b(k)) for K e GL(n,l+). Consider 
(2.6) for p = 0. The left-hand side is the generating series for all multipartitions 
(X(l), Xm X(n)). Each term in the summand on the right-hand side of (2.6) is a 
product (over /) of terms of the form 

(2.7) 
„(m+a)(n+t) 

By associating to (2.7) a set of partitions of the form indicated in Figure 2.1, each 
term in the summand on the right-hand side of (2.6) is in 1-1 correspondence with a 
set of multipartitions. 

One possible strategy for proving the existence of a Durfee system is therefore to 
show that the set of n-dimensional multipartitions corresponding to the right-hand 
side of (2.6) is non-overlapping and exhaustive. By keeping track of the number of 
rows and columns in each partition X.(,), the generalization (2.1) then easily follows. 

After discussing some examples of Durfee systems in the following sections we 
will explore some further consequences in the context of affine Lie algebra characters. 

3. Examples 

In this section we will consider some examples of Durfee systems. 

https://doi.org/10.1017/S1446788700150013 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700150013


400 Peter Bouwknegt [61 

• • 

m=(0,0) 

[7 

(1.0) 

D7 

V 
(0,1) 

1/ / 
V 

-. V 
/ V 

(1,1) (2,0) 

FIGURE 3.1. The k = 0 sector 

•7 

FIGURE 3.2. Some missing bipartitions 

THEOREM 3.1. Consider the matrix K € GL(2,1+) given by 

Wfe have a Durfee system (Q{k), a(i), bik))for K given by 

1(0) _ 

or 
,(0) _ 

or 
Qm = 0 -0-

*«» = 
0> 

or 

o> 

Let us illustrate, in some detail, how one might arrive at this result. The k = 0 term 
in (2.6) (for p = 0) is explicitly given by 

(3.2) £ 
-mm^+mmz 

B,-(m,+ m 2 )=0 teU^teUte)*, 
n2-(»i|+2m2)=0 

The set of bipartitions (X(1), X(2)) associated to (3.2), according to the prescription of 
Section 2, is depicted in Figure 3.1 for low values of m = (mi, mi). 
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[• D7] 
(0,0) 

V 

(l.i) 

G •] 
(0,0) 

/" 

7 
/ 

•"> 

/ 

r 

W 

V 
(1.0) (0,1) 

FIGURE 3.3. The * = 1 sector 

[7 C7 P 

(1,0) (0,1) 

[7 

(1,1) (2,0) 

FIGURE 3.4. The k = 0 sector 

G ^ 
C7 

(0,0) (1,0) 

FIGURE 3.5. The k = 1 sector 

(0,1) 
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\U7 [7] 

(0,0) (1,0) (0,1) 

FIGURE 3.6. The k = 2 sector 

Clearly these do not exhaust the set of all bipartitions. For instance, if X(1) = ^ 
(indicated by a • in Figure 3.1) and X(2) -£ 0, then k(2) necessarily has two or more 
rows. Thus, the set of bipartitions depicted in Figure 3.2 is missing in (3.2). 

If this set of bipartitions is to be included as the m = (0,0) term of another sector, 
say Jt = 1, then this immediately fixes all components of (Qm,am,bm) with the 
exception of b\u. (Note that this component is also unconstrained by consideration 
of the two l x l sub-blocks of K, as discussed in Section 2.) Consideration of the 
m = (1,0) term in the k = 1 sector, however, uniquely fixes b\l) as well and we arrive 
at the conclusion that (3.2) needs to be supplemented by 

nlni+l)mi+nzimi+\) 
(3.3) £ 

n\-(m\+mi)=0 (q)ni(g)m(g)ml(q)l, 

The set of bipartitions in the k = 1 sector, arising from (3.3) for low values of rn, is 

depicted in Fig. 3.3. 
Together, the sets of bipartitions of Figures 3.1 and 3.3 are seen to be non-

overlapping and to exhaust the set of all bipartitions, at least to low order, so it 
seems that no other sectors are required. The proof that this works to all orders 
requires a bit more work and will be omitted. 

A slightly more complicated Durfee system is given in 

THEOREM 3.2. Let 

(3.4) *-G 0-
The following constitutes a Durfee system for K 

(3.5) 

«-•©• 

'"' = ©' 
«-G> 

«<°> = 
a(,) = 

i « = 

0/ ' 

r 
or 

bm = 

bw = 

ba) = 

o> 
or 

: > 
o> 
0; 
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[9] Generalized Durfee squares 403 

The reasoning parallels that of Theorem 3.1. The first few sets of contributing 
bipartitions, for the sectors k = 0, 1,2, are depicted in Figures 3.4-3.6, respectively. 

Theorem 3.2 has the following higher dimensional generalization 

THEOREM 3.3. Let K e GL(n, 1+) be defined by 

(2 1 ••• 1\ 
1 2 ••• 1 

(3.6) K = 

\ l 1 . . . 2 / 

We have a Durfee system of length L = n + 1, given by the n-vectors 

e w = ( 0 , 0 , . . . , 0 , l , . . . ,1), 

(3.7) "~k * 
a(k) = (0 0, 1,0 0), b(k) = (0,0 0), 

* v ' > v ' l v ' 

n—it k— 1 n 

for k = 0 , . . . , n. 

REMARK. Note that the length of the Durfee system in Theorem 3.3 is given by 
L = n + 1 = det K. We believe this is a general feature of Durfee systems for which 
bik) = 0 for all k = 0 , . . . , L — 1 (see also the discussion in Section 6). 

4. Shift operation 

It turns out that, once a Durfee system for some K e GL(n, 2+) has been estab
lished, it is rather straightforward to obtain a Durfee system for a class of deformations 
of K. These deformations are given in terms of a 'charge vector' t = (t\ t„), 
ti e 2+, and a positive integer M e 1+ as (These deformations were motivated by the 
'shift operation' on Af-matrices describing fractional quantum Hall systems (see [5] 
and references therein).) 

(4.1) KMJ = K + MttT. 

For instance, consider the deformation KMil of the two-dimensional identity matrix 

, 4 „ _(t\M + \ hhM \ 
( 4 , 2 ) KM'-\nt2M t}M + \)' 

where we can assume that t\ < t2. Note that the matrix K of (3.4) is of this form with 
Af = l,f = (1,1). 
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THEOREM 4.1. The matrix KMJ of (4.2) admits a length L = (f ,2 + f|)M +1 £>«>/<?* 
system. There are t\M sectors given by 

(43) Q=(*M + l\ f?" + r\ (t'M + l) 

/ r?M \ A2M - 1\ / 0 \ 

;?M 

wM a — (o), * = (o). tfM sectors given by 

witha = (o), b = (g), and and the 'vacuum sector' Q = (JJ), a = ($), 6 = (<>)• 

For deformations (4.1), with K = 1, we have 

(4.5) detA*,,, = {tT-t)M + 1, 

which can be written as 

(4.6) del**,,, = T r ( t f „ . , - l ) + l. 

In fact, if H = 2, the matrix tfWi< = 1 + M ttT is the most general symmetric, non-
negative integer-valued matrix satisfying (4.6). Note that the length of the Durfee 
system in Theorem 4.1 is again given by det KUJ. 

5. The UCPF and character identities 

Consider the 'Universal Chiral Partition Function' (UCPF) (see [6] and references 
therein) 

(5.1) Z(K;Q,u\z;q)=Y: (ll*) 1>mKm+Qm U [^ " ^ ' "" + "H 
m6Z»+ \ • / i L mi J 

where K e GL(n, Z+), Qt e 1+ and H, e 1+ U {oo}, i = 1, . . . , n. (The consider
ations in this section can easily be generalized to triples (K; Q, u) with entries in G< 
provided appropriate restrictions on the summation variables m, in (5.1) are made.) 

The following theorem is derived by elementary algebra 
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THEOREM 5.1. Assume that (Qik), a(k), bik)) forms a Durfee system for a symmetric 
K € GL(n, 1+). Define 

(5.2) Q™ = -*" ' • fi<*\ z'^WzJ 
j 

Then we have the following identity 

(5.3) J2 ( rK G l " ) qW-'-^+^^ZiK; (?»+*», M-(fi»+*«)|z';9) 

x Z(K~l; g'«> + a(k\ N - (Q'ik) + a(*>)|z;q) 

-E(n«r)^-n['"+",+^;r'')']-
for all M, N eln

+. 

REMARK. Note that the polynomials P„\z\q) = Z(K; Q{k) + ba\ M - (Qik) + 
b*>)\z'\q) and Q$\z\q) = Z(K~l; Q'w + a<*>, N - ( g ' w + a(k))\z\q), entering 
(5.3), all arise as a solution to the same (that is, /t-independent) set of recursion 
relations (i = 1 n) [5] 

PM(z';q) = PU-ei(z';q) + z'iq^K"+M'PM-K.tl(z'\q^ 
(5.4) , 

QN(z;q) = QN-el(z;q) + ziq~iK" +N'QN-K->:,(z;q), 

where et denotes the unit vector in the /-direction and where we have used 

[tH^'H-i::,1} 
For the application of Theorem 5.1 to affine Lie algebra characters let us consider 

the limiting form of (5.1) as u -> oo, that is, 

( \ AmKm+Qm nc Sm—• 
V / n,(?u 

REMARK. The limiting UCPF's are not all independent. For instance, by using the 
simple relation (1 — qm)/(q)m = l/(q)m-\ we find 

(5.6) Zoo(ff; G) = ZX(K; Q + e,) + ziq^"K"+Q"Z00(K; Q + Ket). 

By taking M -> oo in (5.3) we obtain 
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COROLLARY 5.2. Let {Qm, aw, b(k)) be a Durfee system for K e GLin, 1+) of 
length L. Define Q'(k) andz\ by (5.2). We then have 

(5.7) J2 ( r K G ' ' ) ^e" , K" ' c < J , + a < J ) i ( J ,Z0 0(^; (2(*> + b"\z';q) 

x Z00(*:-1; G'<" +a"\z;q) = r ^ £ (U^) «*''*"''• 
^ ' ° ° pel" \ i ) 

Now suppose that the bilinear form p • K~l • p is chosen in such a way that it 
equals the standard bilinear form on the weight lattice Aw of a simple Lie algebra 0 of 
rank n and that the sum over pel" corresponds to the sum over the weight lattice. 
Then, provided g is simply-laced, the right-hand side of (5.7) can be recognized as 
the Frenkel-Kac character ofthe sum ofthe level-1 integrable highest weight modules 
ofthe affine Lie algebra "0 (see, for example, [9]). (The irreducible characters can be 
recovered by suitably restricting the sum over p.) Thus, in such cases, Corollary 5.2 
provides an expression for the level-1 characters of "g in terms of UCPF's based on 
the bilinear form constructed out of K © K~l. This has important applications in 
the study of quasiparticles in the conformal field theory descriptions of certain non-
Abelian fractional quantum Hall states [4,5]. In fact, these applications were the main 
motivation for the present study. 

As an example, consider g =sL,+1. The weights {eu . . . , (n+i), ofthe fundamental 
(n + 1)-dimensional representation L(A0 of sln+i satisfy «, • (j = <$,;,• - l/(n + 1)- A 
suitable basis ofthe weight lattice Aw is given by the ch i = 1 , . . . , n (see Figure 5.1 
fors[3). Now note that (E,iPifi)' (!£/ Pjfj) = P ' K~l ' P> where K~x is given by 

- 1 \ 
- 1 

••• n) 

which has an inverse K given by (3.6). The 'dual sector', defined by K, corresponds 
to a particular basis ofthe root lattice of s[n+1 (seeFigure5.1 fors!3). The weights of 
this basis are determined by (5.2). 

Thus, the sum over p e 1" is precisely over the weight lattice of sln+l and combining 
Theorem 3.3 and Corollary 5.2 gives us an expression for the character of the (sum 
over all) level-1 integrable highest weight modules of sln+i. As a consistency check, 
note that 

2Q K Q ~ 2(« + l) ' k~° " ' 

(5.8) /r' = « + i 

fn - 1 
- 1 n 

V - l - 1 
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^2 

-01) 
I, 

-<*2 

FIGURE S.l. si] weights and roots 

is indeed precisely the conformal dimension of the level-1 integrable highest weight 
module L(Ak) of BI„+\. 

6. Discussion and conclusions 

In this paper we have introduced higher dimensional analogues of the classical 
Durfee square formula (1.1) in the form of 'Durfee systems', we explained their 
correspondence to multipartitions, and gave a few examples. We have also remarked 
on the application of Durfee systems, in particular with regards to writing (chiral) 
characters of two-dimensional conformal field theories in UCPF form. 

A number of obvious questions come to mind. Firstly, for which symmetric 
K € GL{n, 2+) is it possible to find a Durfee system? It seems that this class 
of matrices is quite big. In fact, examples suggest that, provided det K > 0, a 
Durfee system always exists (see (2.3) for an example with det K = 0). Secondly, 
how unique are Durfee systems for a given matrix Kl Clearly they are not unique. 
For instance, in the case of K = s/r (see Theorem 2.2) we can construct Durfee 
systems of length L = m2rs for all m e N by taking (r, s) -*• (mr, ms) in (1.6) and 
(1.7). Similar constructions exist for the higher dimensional cases. Another source of 
non-uniqueness originates from possible symmetries of the matrix K. For example, 
interchanging the components of all vectors (Q(k), a(k), b(k)) in Theorem 3.2, provides 
another Durfee system due to the li permutation symmetry of the matrix K in (3.4). 
Thirdly, for a given K, what is the minimal length L^n of a Durfee system? It seems 
that a special role is played by matrices for which Lmin = det K, which seem to be 
closely related to matrices for which it is possible to choose a Durfee system for which 
bw — 0 for all k. A large class of such matrices is provided by the shift deformations 
KMJ of the identity (see (4.1)) and, at least in two dimensions, it appears that such 
deformations exhaust all matrices K for which Lmin = det K. Finally, is it possible 
to give a more 'geometric' construction of the vectors (Q{k), aik), ft(i))? Again, in the 
case of matrices K for which Lmin = det K it seems that the set of Q(k) is given by 
a set of coset representatives (with minimal non-negative components) of 1" modulo 
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the equivalences m ~ m + K • e,, (i = 1 n). Note that in the case of (3.6) the 
equivalence preserves the 2n + ! charge q = £ j'/n, (mod n + 1) of m ('n-ality') and 
that we find one coset representative for each q e Zn+1. 
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