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JEŚMANOWICZ’ CONJECTURE ON
PYTHAGOREAN TRIPLES

MI-MI MA and YONG-GAO CHEN�

(Received 21 November 2016; accepted 10 December 2016; first published online 13 March 2017)

Abstract

In 1956, Jeśmanowicz conjectured that, for any positive integers m and n with m > n, gcd(m, n) = 1
and 2 - m + n, the Diophantine equation (m2 − n2)x + (2mn)y = (m2 + n2)z has only the positive integer
solution (x, y, z) = (2, 2, 2). In this paper, we prove the conjecture if 4 - mn and y ≥ 2.
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1. Introduction

In 1956, Sierpiński [10] showed that the equation 3x + 4y = 5z has only the positive
integer solution (x, y, z) = (2, 2, 2). Jeśmanowicz [2] proved that each of the equations
5x + 12y = 13z, 7x + 24y = 25z, 9x + 40y = 41z, 11x + 60y = 61z has only the positive
integer solution (x, y, z) = (2, 2, 2), and conjectured that, for any positive integers a, b, c
with a2 + b2 = c2 and gcd(a, b) = 1, the equation

ax + by = cz (1.1)

has only the positive integer solution (x, y, z) = (2, 2, 2).
It is well known that, if a, b, c are positive integers with

a2 + b2 = c2, gcd(a, b) = 1, 2 | b,

then there exist two integers m, n with

m > n > 0, gcd(m, n) = 1, m + n ≡ 1 (mod 2)

such that
a = m2 − n2, b = 2mn, c = m2 + n2.
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Now Equation (1.1) becomes

(m2 − n2)x + (2mn)y = (m2 + n2)z. (1.2)

Jeśmanowicz’ conjecture has been proved for many special cases. In 1959, Lu [4]
proved that Jeśmanowicz’ conjecture is true for n = 1. In 1995, Le [3] showed that
if 2 ‖ mn and m2 + n2 is a power of an odd prime, then Jeśmanowicz’ conjecture
is true. In 2013, Miyazaki [7] showed that if a ≡ ±1 (mod b) or c ≡ 1 (mod b),
then Jeśmanowicz’ conjecture is true. Since m2 + n2 ≡ 1 (mod 2mn) for m = n + 1,
Jeśmanowicz’ conjecture is true for m = n + 1. In the following, we always assume
that

m > n + 1 > 1, gcd(m, n) = 1, m + n ≡ 1 (mod 2). (1.3)

In 2014, Terai [15] proved Jeśmanowicz’ conjecture is true for n = 2. In 2015,
Miyazaki and Terai [8] proved that Jeśmanowicz’ conjecture is true if m > 72n,
n ≡ 2 (mod 4) and n satisfies at least one of the following conditions:

(C1) n/2 is a power of an odd prime;
(C2) n/2 has no prime factors congruent to 1 modulo 8;
(C3) n/2 is a square.

For more results on the conjecture, see [1, 5, 9, 11–14].
In this paper, we obtain the following result.

Theorem 1.1. Suppose that 4 - mn. Then the equation

(m2 − n2)x + (2mn)y = (m2 + n2)z, y ≥ 2,

has only the positive integer solution (x, y, z) = (2, 2, 2).

In view of (1.3), it is clear that 4 - mn if and only if either m ≡ 2 (mod 4) or
n ≡ 2 (mod 4). This is equivalent to c = m2 + n2 ≡ 5 (mod 8).

2. Preliminary lemmas

Lemma 2.1 [6, Theorem 1.5]. Let (x, y, z) be a positive integer solution of Equation
(1.2). If x and z are even, then both x/2 and z/2 are odd.

Lemma 2.2. Let (x, y, z) be a positive integer solution of Equation (1.2). If y ≤ 2 and
x, z are even integers, then x = y = z = 2.

Proof. Let x = 2x1 and z = 2z1. By (1.2),

(2mn)y = ((m2 + n2)z1 + (m2 − n2)x1 )((m2 + n2)z1 − (m2 − n2)x1 )
≥ (m2 + n2)z1 + (m2 − n2)x1

> (m2 + n2)z1 > (2mn)z1 .

It follows from y ≤ 2 that z1 = 1 and y = 2. Thus z = 2. By (1.2), x = 2. �
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Lemma 2.3 [6, Lemma 2.1]. Let (x, y, z) be a positive integer solution of Equation (1.2).
Then x is even if one of the following holds:

(1) there exists a divisor d of m such that d . 1 (mod 4);
(2) n ≡ 2 (mod 4).

In particular, mn ≡ 2 (mod 4) implies that x is even.

Lemma 2.4. Let (x, y, z) be a positive integer solution of Equation (1.2) with y ≥ 2.
Suppose that mn ≡ 2 (mod 4). Then z is even.

Proof. Since mn ≡ 2 (mod 4), it follows that

c = m2 + n2 ≡ 5 (mod 8).

By Lemma 2.3, x is even. In view of y ≥ 2, (1.2) and 4 | b,

5z ≡ cz = ax + by ≡ 1 (mod 8).

It follows that z is even. �

3. Proof of Theorem 1.1

In this section, we assume that (x, y, z) is a positive integer solution of (1.2) with
y ≥ 2. Noting that 4 - mn, by Lemmas 2.3 and 2.4, 2 | x and 2 | z. Let u = m and v = n
if n ≡ 2 (mod 4) and let u = n and v = m if m ≡ 2 (mod 4). Then

u > 0, v > 0, gcd(u, v) = 1, u + v ≡ 1 (mod 2), v ≡ 2 (mod 4).

It is clear that u2 + v2 ≡ 5 (mod 8). Since 2 | x, it follows from (1.2) that

(u2 − v2)x + (2uv)y = (u2 + v2)z. (3.1)

Let x = 2x1 and z = 2z1. By Lemma 2.1, 2 - x1 and 2 - z1. By Lemma 2.2, we may
assume that y ≥ 3. Now Equation (3.1) can be rewritten as

(2uv)y = ((u2 + v2)z1 + (u2 − v2)x1 )((u2 + v2)z1 − (u2 − v2)x1 ). (3.2)

If u > v, then
(u2 + v2)z1 + (u2 − v2)x1 > 0.

It follows from (3.2) that

(u2 + v2)z1 − (u2 − v2)x1 > 0.

If u < v, then, since 2 - x1,

(u2 + v2)z1 − (u2 − v2)x1 > 0.

It follows from (3.2) that

(u2 + v2)z1 + (u2 − v2)x1 > 0.
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In both cases,

(u2 + v2)z1 + (u2 − v2)x1 > 0, (u2 + v2)z1 − (u2 − v2)x1 > 0.

Noting that

((u2 + v2)z1 + (u2 − v2)x1 , (u2 + v2)z1 − (u2 − v2)x1 ) = 2

and
(u2 + v2)z1 − (u2 − v2)x1 ≡ 0 (mod 4),

by (3.2), we see that

(u2 + v2)z1 + (u2 − v2)x1 = 2(u1v1)y, (3.3)
(u2 + v2)z1 − (u2 − v2)x1 = 22y−1(u2v2)y, (3.4)

where
u = u1u2, v = 2v1v2, (u1, u2) = 1, (v1, v2) = 1.

By (3.3) and (3.4),
(u2 + v2)z1 = (u1v1)y + 22y−2(u2v2)y. (3.5)

In view of (3.5), y ≥ 3 and 2 - z1,

(u1v1)y ≡ (u2 + v2)z1 ≡ 5z1 ≡ 5 (mod 8).

So
2 - y, u1v1 ≡ 5 (mod 8). (3.6)

For any prime factor p of v1, by (3.3),

u2z1 + u2x1 ≡ 0 (mod p).

Thus
u2|z1−x1 | ≡ −1 (mod p). (3.7)

Since x1 and z1 are odd, it follows that 4 | 2(z1 − x1). By (3.7), the multiplicative order
of u modulo p is divisible by 8 and so 8 | p − 1. Hence v1 ≡ 1 (mod 8) and by (3.6),
u1 ≡ 5 (mod 8).

By (3.3),
(u2 + v2)z1 ≡ 2(u1v1)y (mod u + v).

In the following, we use (∗/∗) to denote the Jacobi symbol. Noting that y (see (3.6))
and z1 are odd, (u2 + v2

u + v

)z1

=

( 2v2

u + v

)
=

( 2
u + v

)
,( 2

u + v

)( u1v1

u + v

)y
=

( 2
u + v

)( u1v1

u + v

)
.
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Hence ( u1v1

u + v

)
= 1. (3.8)

Since
u1 ≡ 5 (mod 8), v1 ≡ 1 (mod 8),

it follows from (3.8) that (u + v
u1

)(u + v
v1

)
= 1,

that is, ( v
u1

)( u
v1

)
= 1.

Hence (2v1v2

u1

)(u1u2

v1

)
= 1

and so ( 2
u1

)( v1

u1

)( v2

u1

)(u1

v1

)(u2

v1

)
= 1. (3.9)

Since u1 ≡ 5 (mod 8), it follows that( 2
u1

)
= −1,

( v1

u1

)(u1

v1

)
= 1. (3.10)

By (3.9) and (3.10), ( v2

u1

)
= −

(u2

v1

)
. (3.11)

Since y is odd, it follows from (3.5) that(u2v2

u1

)
= 1,

(u1v1

u2

)
= 1

and so (u2

u1

)
=

( v2

u1

)
,
(u1

u2

)
=

( v1

u2

)
. (3.12)

Noting that
u1 ≡ 5 (mod 8), v1 ≡ 1 (mod 8),

by (3.11) and (3.12),( v2

u1

)
= −

(u2

v1

)
= −

( v1

u2

)
= −

(u1

u2

)
= −

(u2

u1

)
= −

( v2

u1

)
,

a contradiction. This completes the proof of Theorem 1.1.
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