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SOME RESULTS IN THE CONNECTIVE ^-THEORY OF 
LIE GROUPS 

BY 

L. MAGALHÂES 

ABSTRACT. In this paper we give a description of: 
(1) the Hopf algebra structure of k*(G; L) when G is a compact, 
connected Lie group and L is a ring of type Q(P) so that H*(G; L) is 
torsion free; 
(2) the algebra structure of k*(G2', L) for L = Z2 or Z. 

Introduction. In this paper we study the connective AT-theory of compact 
connected Lie groups. We use mainly Borel's results in the ordinary co-
homology of Lie groups, L. Hodgkin's paper [6] about their AT-theory, the 
Atiyah-Hirzebruch spectral sequence [2] and L. Smith's exact sequence relating 
connective K-theory with integral cohomology [9]. 

In the first paragraph we give some results in the connective ^-theory that 
will be used later. In paragraph 2 we work out the Atiyah-Hirzebruch spectral 
sequence converging to k*(X) (connective AT-cohomology of a compact CW 
complex). In the other paragraphs, using the previous results, we obtain the 
Hopf algebra structure of k*(G; L), L a ring of type Q(P) (it will be defined 
in Section 2) so that H*(G; L) is torsion free, and the algebra structure of 
k*(G2; L), L = Z2 or Z. 

We work in the homotopy category of (compact when stated) CW 
complexes. 

I am grateful to Dr. Alan Robinson for his help and advice during the 
preparation of this work. 

1. Preliminaries. Let K = (Kn, on)nŒZ be the spectrum for AT-theory. We 
recall that K is a periodic, ring Œ-spectrum and K*(pt) = Z[/, /~ l], the Laurent 
polynomial ring generated by the class of the reduced Hopf bundle t~~l e 
K~2(pt) and its inverse [10]. 

The spectrum k = (kn, ôn)n(EZ for connective K-theory is obtained from the 
spectrum K by making it connective. Let j:k —> K be the associated map of 
spectra. We note that k is a commutative, associative, ring £2-spectrum, j is a 
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map of ring spectra and k*(pt) = Z[t~ ]. Also there is a map of ring spectra 
t]\k —> HZ (HZ denotes the Eilenberg-Maclane spectrum with integer co­
efficients) so that it induces the homomorphism r]*:k*(pt) —> H*(pt; Z) given 
by if = 0 if / > 0 and identity if i = 0 ( [8] pp. 35-37). 

We can consider Zp coefficients, p prime. We define kl(X; Z ) = 
kl+1(X A Mp), where Mp is the space obtained by attaching a 2-cell e2 to Sl 

by a map of degree p. There is a universal coefficient formula — kl(X; Z ) = 
k\X) 0 Zp 0 Tor(P+ 1 (X); Zp) - and an associative multiplication on 
k*(X; Zp) since k* satisfies the sufficient conditions for their existence [1]. If L 
is a free abelian group we define k*(X; L) = k*(X) 0 L. 

We note that if X is a CW-complex and L is a free abelian group or Z then 
k*(X; L) is a L[t'1] algebra. 

We will use the following generalization of L. Smith's theorem [9]: 

1.1 THEOREM. Let X be a CW complex. Then there is an exact sequence 

0 -> L ® k*(X; L) 4 H*(X; L) -» Torfi' \L; k*(X; L) ) -> 0, 

where -ql is induced by 1 ® T)*:L ® k*(X) —> L ® H*(X; Z) if L is a free abelian 
group or i)l is 1 0 TJ*:Z 0 k*(X) -^ Z 0 H*(X; Z) "reduced mod /?" (p > 1) i / 
L = Zp, the tensor products being taken over L[t~1]. 

PROOF. We consider the cofibration of spectra 

k^k-^HZ, 
m 7} 

where m is the morphism of spectra corresponding to multiplication by t~ in 
&-cohomology. It induces for every CW-complex X the long exact sequence 

. . . -> k\X) ™* kl~\X) ^ Hl~\X\ Z) -> kiJr\X) -> . . . (i â 2), 

that splits into short exact sequences: 

0 -> coker mz ^ Hl~\X\ Z) -» ker w / + 1 -> 0 

It is clear that tensoring by L or taking X A M instead of X does not affect 
exactness. Then the result follows as in [9]. • 

To simplify the notation we shall write 17* instead of TJ£. 

2. Spectral sequences. From now on we deal with compact spaces. Let X be 
a compact CJF-complex. We are going to consider the following Atiyah-
Hirzebruch spectral sequences: (E**(X)9 dr)r^2 converging to K*(X), 
(E;*(J0, dr\^i converging to k\X). Let F?(X) = ker[^m(X) -> Km(Xp~l) ] 
and T™(X) = ker[km(X) -> ^ m ( J ^ - 1 ) ] be the filtrations. The first spectral 
sequence is compatible with the Bott isomorphism. 
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To simplify the notation we omit X when there will be no confusion about the 
space concerned. 

We note that, since Kq(pt) = 0 = kq(pt) if q is odd and kq(pt) = 0 if q > 0, 
then Ep/q = 0 = Ep/q for all p e Z, r ^ 2, ? an odd integer, E ^ = 0 if 
q > 0 and all the differentials of even degree are zero. Moreover, we have for 
all /, n e Z:F'n_x = Fl

n and ' F ^ = Tl„ if n - i is even; El
n = i ^ + 1 and 

^ = n + i if » - '" is odd; m*(F\) = Fl~\ Tn
n(X) = kn(X). 

2.1 PROPOSITION. Let X be a compact CW-complex. Then: 
(i) JÎ*:'Fp

s
,q —> Ep

s'
q is an isomorphism for q â —dim X + 1; 

(ii) / / J r = 0 for r > s then j*\Tm is an isomorphism onto F™ for all m G Z, 
« = m + s — 1. 

PROOF. 

(i) One can easily show by induction on r â 2 a more general result: 
j**.'£P,q -r + 3 £ ^ is surjective if 
4 ^ - r + 2. 

This proof can be done by diagram chasing: 

'£p-s,q+s-\_ 

d: 
->>EP>q-

gp-s,-q+s-\_ 

d: 

0 and an isomorphism if 

->Ep+s,q~s + l 

J; J; 

p]7P+s,q-s + \ 

(ii) Now we consider the commutative diagram: 

0 

i * 
Jp+\ 

-»*?-
r jp 

>fpp,m-p_ -*0 

0< ->F" ->F" ->E^ 

Joo 

,m ~p_ ->0 lp+l -p 

Using (i), the 5-lemma and decreasing induction on p, supposing m + s — 
1 ^ p ^ dim X, we get the result. • 

We need to consider Q(P) coefficients, where P is a set of prime numbers and 
Q(P) the quotient ring of Z with respect to the multiplicative subset generated 
by P. The spectral sequence for k*( — ; Q(P)) = k*( — ) ® Q(P) is obtained 
from that one for k*( — ) by tensoring by Q(P). The idea of taking Q(P) is "to 
kill" the /7-torsion when suitable. 

2.2 PROPOSITION. Let X be a compact CW-complex, L a ring of type Q(P) or 
Zp. Then x e HP(X; L) lies in the image ofjj*:k*(X; L) -> H*(X; L) if and only 
if x, considered as an element of E% , is an infinite cycle in the spectral sequence 
'£** converging to k*(X; L). 
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PROOF. It follows immediately from the morphism of spectral sequences for 
the cohomology theories k*( — ; L) and H*(—; L) induced by the natural 
transformation t]*:k*( — ; L) —> H*( — ; L). D 

3. k*(G; L). Let G be a compact connected Lie group of rank r, dimension n. 
Borel proved [3] that H*(G; Q) is an exterior algebra over Q generated by 
elements of odd degree, H*(G; Q) = AQ(X1? . . . , x r), 2 j _ i degree (JC-) = n. 
Furthermore those elements are primitive, universally transgressive. 

Hodgkin [6] proved that: 
If irx(G) is torsion free, K*(G), graded by Z2, is (1) the exterior algebra 

over Z on the module of primitive elements of degree 1 ; (2) if G is semi-simple 
K*(G) = Az(fi(p\),..., /?(pr) ) where pl9..., pr are the "basic representa­
tions", fi:R(G) —» Kl(G) the homomorphism that takes a representation 
p.G —> U(n) into the class [inp] (in\U(n) —> U is the standard inclusion), and 
those generators yS(pj),. . . , fi(pr) are primitive. 

Using the above results we obtain the following theorem: 

3.1 THEOREM. Let L be a ring of type Q(P) (P any set of prime numbers) such 
that H*(G; L) is torsion free. Then: 

(i) k*(G; L) « ^L[t~l](y^ • • • >JV) where yj has odd degree ijfor all 1 ^ j ^ r, 

» = 2;_i '}; 
(ii) the y • can be chosen so that they are primitive in the Hopf algebra 

k*(G; L). 

PROOF. 

(i) The spectral sequence converging to k*(G; L) is trivial and as L[t~ ] 
modules k*(G; L) « H*(G; L) 0 L[t~1]. By 2.2 we can take generators 
yl9...,yr of the L[t~l] algebra k*(G; L) so that ri*(yj) = xp 1 ^ j ^ r, 
where x l9 . . . , x r are the primitive, universally transgressive generators of 
H*(G; L). They are unique modulo Im m*. Since every element in Kl(G; L) 
has zero square and j * is an injective ring homomorphism, y, = 0 if 

(ii) Now we take the universal G-bundle 

EG-+BG 
P 

and the induced exact sequences 

Em(G, L) -> Em+l(EG, G; L) <- Ëm+l(BG; L), 

where £* is one of the cohomology theories k*, K* or 7/*. 
Since the generators Xj are universally transgressive, the j> • in (i) can be taken 

in 8*~\p*(k*(BG; L) ) ). But 8*~\p*(K°(BG; L) ) ) is the module of primitive 
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elements in the Z2 graded ^C-cohomology [6] and j * is injective. Hence the yj are 
primitive. • 

3.2 REMARK. Let G be a simple connected Lie group such that H*(G, Z) is 
torsion free and suppose that p b . . . , pr are the basic representations of G. If p 
is odd and greater than 3, the primitive generators /?(p,) e Kl(G) do not lie in 
j*(kp(G) ), since on the one hand x GE KX(G) lies in Fp(K

l(G) ) if and only if 
chy(jc) = 0 for j < p [4] (chy denotes the 7-component of the Chern character) 
and on the other hand ch3(/?(pz) ) = H-JC3, where nt = 1 and x3 is a generator of 
H\G; Z) [5]. 

4. Calculation of k*(G2; Z2) and k*(G2). We now prove two theorems about 
the exceptional Lie group G2. 

4.1 THEOREM. The Z2[t~l] algebra k*(G2; Z2) is generated by yt e k\G2\ Z2) 
i = 5, 6, 9 wi/A r V6 = 0, ^ = 0, y] = 0. 

PROOF. H*(G2, Z2) is a Z2-algebra with a simple system of generators JC3, x5, 
x6, degree xz = / [3]. Let {£**, <ir} be the spectral sequence converging to 
K*(G2; Z2). The only non-zero differential is d3 = SqlSq2 + Sq2Sql ( [6], III, 
Proposition 1.2). Therefore, d3.x3 = JC6, ^/3(JC3X5) = x5x6 and d3 is zero otherwise. 
By 2.1 this result holds for the spectral sequence converging to k*(G2; Z2). Also 
all the extension exact sequence split. Thus kl(G2; Z2) is equal to: 0, if / > 14 or 
/ = 13; Z2, if i = 14, 12, 11, 10, 9, 8, 7, 4, 2; and Z2 0 Z2, otherwise. 

The Z2[t~ ] module structure can be obtained by using: 
(i) The short exact sequences 

0 -> coker m/ + 2 ^ H\X\ Z2) -> ker mz + 3 -> 0 

(ii) I f û G À:*(X; L) projects to â e £*,* and / - 1 â ^ 0 then /_1tf ^ 0. 
By 1.1 we can take elements yj e k*(G2; Z2)/Im m*, degree yj = j , 

j G {5, 6, 9, 11, 14}, such that TJ*(J^) = Xj for y = 5, 6, T?*(y9) = x3x6, 
T)*(>7ii) = *5*6 an(^ T?*(>7i4) = X3X5X6- Furthermore those elements are unique. 
We take a representative y- of each class yj, choosing y6 so that t~ly6 = 0. 

Let y0 denote the algebra unit of k°(G2; Z2). Then: >>•, t~lyk form a Z2 basis 
of kJ(G2; Z2) for 7 e {14, 11, 9, 6, 5, 0}, where i ^ 1, - 2 / + k = j and 
Â: e {0, 5, 9, 14}. Moreover, t~ly6 = 0 = ' " V u -

Now the algebra structure can be easily obtained. We just observe that 17* is a 
ring homomorphism, if is injective for / = 14, 11, all the elements of KX(G2\ Z2) 
have zero squares and j*:k —> K is injective. D 

4.2 THEOREM. The Z[t~l] algebra k*(G2) is generated by zt e &'(G2), 
i e {3, 6, 9, 11, 14} so that 

2z^ = t Z^ = Z3Z^ = 0, t Z | j = 2Zg, Z3Zg = t Zj4, 2 z ^ = Z 3 Z J J , Z- = (J 
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for all i and ztz- = 0 for i + j > 14. 

PROOF. H*(G2', Z) is an algebra generated by h3, hu of degree 3, 11 
respectively, subjected to the relations: 2h3 = h3 = hu = h3hu = 0 [3]. 
Using 4.1 and the universal coefficient theorem we get the Z-module structure 
of k*(G2). 

The same technique as in 4.1 applies here to obtain the Z[t ] module and 
algebra structure. • 
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