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Szegö’s Theorem and Uniform Algebras

Takahiko Nakazi

Abstract. We study Szegö’s theorem for a uniform algebra. In particular, we do it for the disc algebra

or the bidisc algebra.

1 Introduction

Let A be a uniform algebra on a compact Hausdorff space X. Let τ be a complex

homomorphism of A and m the representing measure of τ on X. We have that

Lp(m) = Lp(X, m) denotes the usual Lebesgue space for 1 ≤ p ≤ ∞. For a nonneg-

ative function W in L1(m) = L1(X, m), put

S(W ) = inf
g∈Aτ

∫

X

|1 − g|2W dm

where Aτ is the kernel of τ . S(W ) is called a Szegö infimum.

Let D be the open unit disc in C. Suppose A is the disc algebra on X and X = ∂D.

When dm = dθ/2π, it is well known that

S(W ) = exp

∫

∂D

log W dθ/2π.

This is the celebrated theorem of G. Szegö [5]. In [3], the author studied a Szegö

infimum S(W ) when A is the bidisc algebra on ∂D × ∂D, and dm = dθ1dθ2/4π2.

In this paper, we study a Szegö infimum when A is the disc algebra on X, X = D̄

and dm = rdrdθ/π. Unfortunately we cannot choose the method used in the bidisc

algebra on ∂D × ∂D [3]. We need a new technique.

For p = 1, 2, H p(m) = H p(X, m) denotes the abstract Hardy space for A, that

is, the closure [A]m of A in Lp(X, m). For a nonnegative function W in L1(X, m),

H p(W ) = H p(X,W dm) denotes the closure [A]W dm of A in Lp(X,W dm). In this

paper, we will assume that m is a Jensen measure of τ , but also that Jensen’s inequality

is valid for any function in H p(X, m) (see [2]). If h is a function in H2(X, m) and

[hA]m = H2(X, m) then h is called a generator in H2(X, m).

In Sections 2 and 3, we study the Szegö infimum for an arbitrary uniform algebra.

In Section 2, we study when the Szegö infimum S(W ) is the arithmetric mean of the

weight W or the geometric mean of W . In Section 3, we study when S(W ) is the

mixed mean of the arithmetric mean and the geometric mean of W . In Section 4,

Received by the editors June 13, 2008; revised March 4, 2009.
Published electronically February 10, 2011.
This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education
AMS subject classification: 32A35, 46J15, 60G25.
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we apply the result in Section 3 when A is the bidisc algebra on X = ∂D × ∂D. In

Section 5, we apply the results in Section 2 and 3 when A is the disc algebra on X = D̄,

and we prove our main results in this paper, that is, Theorems 5.1 and 5.2.

2 Arithmetric and Geometric Means

For a nonnegative function W in L1(X, m),

∫

X

W dm and exp

∫

X

log W dm

are called an arithmetric mean and a geometric mean, respectively. Since m is a Jensen

measure of τ , it is easy to see that

∫

X

W dm ≥ S(W ) ≥ exp

∫

X

log W dm.

Theorem 2.1 Let W be a nonnegative function in L1(X, m), then S(W ) =

∫

X
W dm

if and only if
∫

X
f W dm = τ ( f )

∫

X
W dm ( f ∈ A).

Proof If S(W ) =

∫

X
W dm, then for any g ∈ Aτ ,

∫

X

W dm ≤
∫

X

W dm − 2Re

∫

X

gW dm +

∫

X

|g|2W dm,

and so

2Re

∫

X

gW dm ≤
∫

X

|g|2W dm.

Suppose
∫

X
gW dm 6= 0. For α = |

∫

X
gW dm|/

∫

X
gW dm, consider αg as g. Then

2
∣

∣

∣

∫

X

gW dm
∣

∣

∣
≤

∫

X

|g|2W dm.

Consider tg ∈ Aτ for 0 < t < 1. Then

2t
∣

∣

∣

∫

X

gW dm
∣

∣

∣
≤ t2

∫

X

|g|2W dm

and so
∫

X
gW dm = 0 as t → 0. This contradiction implies the “only if” part. The

“if” part is clear.

Theorem 2.2 Let W be a nonnegative function in L1(X, m). If W = |h|2 for some

generator h in H2(X, m), then S(W ) = exp
∫

X
log W dm > 0.

If S(W ) = exp
∫

X
log W dm > 0, then there exists a function h in H2(X, m) such

that |h|2W = c a.e.m for some positive constant c.
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Proof If W = |h|2 for some generator h, then S(|h|2) = |
∫

X
hdm|2 and

S(|h|2) ≥ exp

∫

X

log |h|2dm ≥
∣

∣

∣

∫

X

hdm
∣

∣

∣

2

.

Hence S(|h|2) = exp
∫

X
log |h|2dm.

Suppose S(W ) = exp
∫

X
log W dm > 0. Then τ is continuous on H2(W ), and so

there exists a function f in H2(W ) such that
∫

X

f dm = 1 and inf
g∈Aτ

∫

X

|1 − g|2W dm =

∫

X

| f |2W dm.

By Jensen’s inequality,
∫

X

| f |2W dm ≥ exp

∫

X

log W dm exp

∫

X

log | f |2dm ≥
∣

∣

∣

∫

X

f dm
∣

∣

∣

2

exp

∫

X

log W dm.

Thus
∫

X

| f |2W dm = exp

∫

X

log | f |2W dm,

and so | f |2W = c a.e.m for some positive constant c.

3 Intermediate Mean

Let W = W1W2 be in L1(X, m), where W j is a nonnegative function in L1(X, m) for

j = 1, 2. Then
∫

X

W1dm

∫

X

W2dm ≥
∫

X

W1dm exp

∫

X

log W2dm ≥ exp

∫

X

log W1W2dm.

It may happen that
∫

X

W1W2dm =

∫

X

W1dm

∫

X

W2dm.

Theorem 3.1 Let W1dm/
∫

X
W1dm be a representing measure for τ and W2 = |h|2

for some generator h in H2(X, m). If W = W1W2 is in L1(X, m), then

S(W ) ≥
∫

X

W1dm exp

∫

X

log W2dm.

If W1 is in L∞(X, m), then the equality is valid.

Proof Since W2 = |h|2 and h ∈ H2(m), by Schwarz’s inequality

S(W ) = inf
g∈Aτ

∫

X

|h − hg|2W1dm

≥ inf
g∈Aτ

∣

∣

∣

∫

X

hW1dm −
∫

X

hgW1dm
∣

∣

∣

2(
∫

X

W1dm
)−1

=

∣

∣

∣

∫

X

hW1dm
∣

∣

∣

2(
∫

X

W1dm
)−1

=

∣

∣

∣

∫

X

hdm
∣

∣

∣

2
∫

X

W1dm,
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because W1dm/
∫

X
W1dm is a representing measure of τ . If W1 ∈ L∞(m), the closure

of Aτ in L2(m) belongs to the closure of hAτ in L2(W1dm) and hence

S(W ) = inf
g∈Aτ

∫

X

|h − hg|2W1dm =

∣

∣

∣

∫

X

hdm
∣

∣

∣

2
∫

X

W1dm.

On the other hand, by Theorem 2.2

∣

∣

∣

∫

X

hdm
∣

∣

∣

2

= S(W2) = exp

∫

X

log W2dm.

This implies the theorem.

If W is a nonnegative function in L1(X, m), then H2(W ) denotes the closure of A

in L2(X,W dm). If W ≡ 1, then H2(W ) = H2(m) = H2(X, m) and

[
√

W A]m =

√
W H2(W ).

Lemma 3.2 Let W be a nonnegative function in L1(X, m). If [
√

W A]m ⊖ [
√

W Aτ ]m

contains a cyclic vector u, then [
√

W A]m = q
√

W1H2(W1), where q is a unimodular

function and W1dm/
∫

X
W1dm is a representing measure for τ .

Proof If u ∈ [
√

W A]m ⊖ [
√

W Aτ ]m, then u is orthogonal to uAτ , and so |u|2 is

orthogonal to Aτ . Put

q(x) =

{

u(x)/|u(x)| if u(x) 6= 0,

1 if u(x) = 0,

and W1 = |u|2, then u = q
√

W1 and W1dm/
∫

X
W1dm is a representing measure

of τ . If u is a cyclic vector, then [
√

W A]m = [uA]m = q
√

W1H2(W1).

Theorem 3.3 Let W be a nonnegative function in L1(X, m) and suppose [
√

W A]m ⊖
[
√

W Aτ ]m has a cyclic vector u. Then W = W1W2, where W1 = |u|2 and W2 = |h|2
for some h in H2(W1) such that hA is dense in H2(W1).

(i) S(W ) = |
∫

X
hW1dm|2(

∫

X
W1dm)−1.

(ii) If W−1
1 belongs to L∞(X, m), then

S(W ) =

∣

∣

∣

∫

X

hdm
∣

∣

∣

2
∫

X

W1dm =

∫

X

W1dm exp

∫

X

log W2dm.

Proof By Lemma 3.2,
√

W = q
√

W1h, [hA]W1dm = H2(W1), and W1dm/
∫

W1dm is

a representing measure for τ . Hence W = W1|h|2 and h− (
∫

X
hW1dm)(

∫

X
W1dm)−1

belongs to [Aτ ]W1dm. Since hA is dense in H2(W1) = [A]W1dm, hAτ is dense in

[Aτ ]W1dm. Hence

S(W ) =

∫

X

∣

∣

∣

(

∫

X

hW1dm
)(

∫

X

W1dm
)−1∣

∣

∣

2

W1dm.

This implies (i). If W−1
1 belongs to L∞(m), then H2(W1) ⊆ H2(m), and so h belongs

to H2(m). Hence h is a generator in H2(m). Thus
∫

X
hW1dm =

∫

X
hdm

∫

X
W1dm

and exp
∫

X
log |h|dm = |

∫

X
hdm| by the proof of Theorem 3.1. This implies (ii).
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4 Bidisc Algebra on ∂D × ∂D

In this section, A denotes the bidisc algebra on X = ∂D×∂D, τ ( f ) = f (0, 0) ( f ∈ A)

and dm = dθ1dθ2/4π2. Then m is a Jensen measure of τ . In [3], we gave a necessary

and sufficient condition for that S(W ) =

∫

X
W dm. The condition is equivalent to

that in Theorem 2.1. In [3], we also proved that S(W ) = exp
∫

X
log W dm if and only

if W = |h|2 for some generator h in H2(X, m). For the proof, the “if” part is the same

as the one in Theorem 2.2. We cannot use Theorem 2.2 for the “only if” part. In [3],

we proved it in a different way.

Let r be a rational number and Er denote a subset of Z. For −∞ < r < 0, suppose

W1r is a nonnegative function in L1(X, m) such that

W1r ∼
∑

t∈Er

atζ
tα,

where α = (α1, α2) with α1 = rα2 and ζα
= zα1

1 zα2

2 . For 0 < r < ∞, suppose W2r is

a nonnegative function in L1(X, dm) such that

log W2r ∼
∑

t∈Er

btζ
tα,

where α = (α1, α2) with α1 = rα2. Suppose W1 =

∑

r W1r is a finite sum for

−∞ < r < 0, and W2 =

∏

r W2r is a finite product for 0 < r < ∞, respectively.

Then W j belongs to L1(X, m) for j = 1, 2, W1/
∫

X
W1dm is a representing measure

of the origin, and it is easy to see that there exists a generator h in H2(X, m) with

W2 = |h|2 when E − r = Z, for 0 < r < ∞.

In fact, if F and G are in L1(X, m), and

F ∼
∑

t∈Er

atζ
αt and G ∼

∑

t∈Eℓ

btζ
βt

where α1 = rα2, β1 = ℓβ2 and r 6= ℓ, then

∫

X

FGdm =

∫

X

Fdm

∫

X

Gdm.

This implies that W2 belongs to L1(X, m). By one variable theory, for each 0 < r < ∞
there exists a generator hr in H2(X, m) such that

hr =

∑

t∈Er∩Z+

ctζ
βt and W2r = |hr|2.

Then it is easy to see that W2 = |∏r hr|2 and
∏

r hr is a generator in H2(X, m). For if

hr and hs are generators and r 6= s then there exist sequences hrn and hsn such that

∫

X

|hrhrn − 1|2dm → 0 and

∫

X

|hshsn − 1|2dm → 0,
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where hrn and hsn are polynomials. Then

(

∫

X

|hrhshrnhsn − 1|2dm
) 1/2

≦
(

∫

X

|(hrhrn − 1)hshsn|2dm
) 1/2

+
(

∫

X

|hshsn − 1|2dm
) 1/2

=

(

∫

X

|hrhrn − 1|2dm
) 1/2(

∫

X

|hshsn|2dm
) 1/2

+
(

∫

X

|hshsn − 1|2dm
) 1/2

.

Hence the product hrhs is also a generator. Hence if W1 is in L∞(X, m) applying

Theorem 3.1 to W = W1W2, S(W ) =

∫

X
W1dm exp

∫

X
log W2dm. On the other

hand, if W2 = W2r for some 0 < r < ∞ without assuming W1 in L∞(X, m), then

we can show that S(W ) =

∫

X
W1dm exp

∫

X
log W2dm. In fact, if gr =

∑

t∈Er∩Z+
ctζ

βt

with c0 = 0, then

∫

X

|1 − gr|2W1W2dm =

∫

X

W1dm

∫

X

|1 − gr|2W2dm ≥ S(W1W2).

Now Theorem 3.1 implies that S(W ) =

∫

X
W1dm exp

∫

X
log W2dm.

5 Disc Algebra on D̄

In this section, A denotes the disc algebra on X = D̄, τ ( f ) = f (0) ( f ∈ A), and

dm = rdrdθ/π. Then m is a Jensen measure of τ . In this situation, S(W ) has not been

studied. H(D) denotes the set of all holomorphic functions on D. In the following

theorem, the “if” part is just a corollary of Theorem 2.2. For the “only if” part we

can use Theorem 2.2 unlike in the case of the bidisc algebra (see §4 or [3]).

Theorem 5.1 Let X = D̄, A = the disc algebra on D̄ and dm = rdrdθ/π. Suppose

W is a nonnegative function in L1(D̄, m) and log W is in L1(D̄, m). Then S(W ) =

exp
∫

X
log W dm if and only if W = |h|2 for some generator h in H2(D̄, m).

Proof By Theorem 2.2, if W = |h|2 for some generator h in H2(m), then S(W ) =

exp
∫

D̄
log W dm > 0.

If S(W ) = exp
∫

D̄
log W dm > 0, then τ is continuous on H2(W ) and so there

exists a function f in H2(W ) such that

f (0) =

∫

D̄

f dm = 1 and S(W ) =

∫

D̄

| f |2W dm.

Since
∫

D̄
log W dm > −∞, H2(W ) ⊂ H(D) by [4] and so f is analytic on D. Since

∫

D̄

| f |2W dm ≥ exp

∫

D̄

log W dm exp

∫

D̄

log | f |2dm ≥ exp

∫

D̄

log W dm

because exp
∫

D̄
log | f |2dm ≥ | f (0)|2 = 1, | f |2W = c > 0 a.e.m. If f (a) = 0 for

some a ∈ D, then there exists a positive integer ℓ such that f = (z − a)ℓg, g 6= 0 on
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D(a, 2ε) for some ε > 0 and g ∈ H(D). Hence

∫

D̄

W dm = c

∫

D̄

| f −1|2dm = c

∫

D

1

|z − a|2ℓ
|g−1|2dm

≥ cδ

∫

D(a,ε)

1

|z − a|2ℓ
dm

where δ−1
= inf{|g(z)|2 : z ∈ D(a, ε)}. While

∫

D(a,ε)

1

|z − a|2ℓ
dm =

∫

D(0,ε)

1

|z|2ℓ

(1 − |a|2)2

|1 − āz|4 dm

≥
( 1 − |a|

1 + |a|
) 2

∫

D(0,ε)

1

|z|2ℓ
dm = ∞.

This contradiction implies that f has no zeros on D. Hence f −1 belongs to H(D) ∩
L2(m). Since it is known that H(D)∩L2(m) = H2(m), f −1 belongs to H2(m). Hence
∫

D̄
log | f |dm = log | f (0)| because

∫

D̄
log | f |dm ≥ log | f (0)|. Put h =

√
c f −1, then

W = |h|2 and

S(W ) = exp

∫

D̄

log W dm = |h(0)|2

and so h− h(0) belongs to [hAτ ]m. This implies that h(0) belongs to [hA]m, and so h

is a generator in H2(m).

If W = | f |2 for some f ∈ H2(D̄, m), then W = W1W2, where W1 = |Q|2 for

some inner function in H2(D̄, m), W1dm/
∫

D̄
W1dm is a representing measure of the

origin and W2 = |h|2 for some generator h in H2(D̄, m). This is a deep result of

a factorization theorem for a function in the Bergman space [1]. Hence if W1 is in

L∞(D̄, m), then H2(D̄, m) ⊆ H2(D̄,W1dm), and so hA is dense in H2(D̄,W1dm).

Hence

S(W ) =

∣

∣

∣

∫

D̄

hW1dm
∣

∣

∣

2(
∫

D̄

W1dm
)−1

.

Moreover, if W−1
1 is in L∞(D̄, m), then

S(W ) =

∣

∣

∣

∫

D̄

hdm
∣

∣

∣

2
∫

D̄

W1dm

=

∫

D̄

W1dm exp

∫

D̄

log W2dm.

In general, it is easy to see that

S(W ) ≥
∫ 1

0

2rdr exp

∫ 2π

0

log W (reiθ)dθ/2π

≥ exp

∫

D̄

log W dm.
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Theorem 5.2 Let X = D̄, A = the disc algebra on D̄ and dm = rdrdθ/π. Suppose W

is a positive function in L1(D̄, m) and log W is in L1(D̄, m). If

S(W ) =

∫ 1

0

2rdr exp

∫ 2π

0

log W (reiθ)dθ/2π,

then W (reiθ) = φ(r)|h(reiθ)|2, where

h ∈ H(D), exp

∫ 2π

0

log |h(reiθ)|dθ/2π = |h(0)| > 0

and φ is a positive function in L1([0, 1], dr). Conversely if W (reiθ) = φ(r)|h(reiθ)|2 and

h is a generator in H2(D̄, φdm), then

S(W ) =

∫ 1

0

2rdr exp

∫ 2π

0

log W (reiθ)dθ/2π.

Proof Since log W ∈ L1(m), by the proof of Theorem 5.1 there exists f in H(D) with

f (0) = 1 such that

inf
g∈Aτ

∫

D̄

|1 − g|2W dm =

∫

D̄

| f |2W dm =

∫ 1

0

2rdr

∫ 2π

0

| f (reiθ)|2W (reiθ)dθ/2π

≥
∫ 1

0

2rdr exp

∫ 2π

0

log | f (reiθ)|2W (reiθ)dθ/2π

≥
∫ 1

0

2rdr exp

∫ 2π

0

log W (reiθ)dθ/2π.

If S(W ) =

∫ 1

0
2rdr exp

∫ 2π

0
log W (reiθ)dθ/2π, then

∫ 1

0

2rdr

∫ 2π

0

| f (reiθ)|2W (reiθ)dθ/2π =

∫ 1

0

2rdr exp

∫ 2π

0

log | f (reiθ)|2W (reiθ)dθ/2π.

Hence for a.e.r ∈ [0, 1]

∫ 2π

0

| f (reiθ)|2W (reiθ)dθ/2π = exp

∫ 2π

0

log | f (reiθ)|2W (reiθ)dθ/2π

and
∫ 2π

0
log | f (reiθ)|dθ/2π = log | f (0)|. Therefore | f (reiθ)|2W (reiθ) = φ(r) for

a.e.θ ∈ [0, 2π]. If f (a) = 0 for some a ∈ D, then φ(r) = 0 for r = |a|. Since

W (reiθ) > 0, f (reiθ) = 0 for r = |a|. This contradiction implies that | f (z)| > 0 for
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z ∈ D. Put h(reiθ) = 1/ f (reiθ), then W (reiθ) = φ(r)|h(reiθ)|2, where h ∈ H(D) and

exp
∫ 2π

0
log |h(reiθ)|dθ/2π = log |h(0)|.

Conversely, if W (reiθ) = φ(r)|h(reiθ)|2 and h is a generator in H2(D̄, φdm), then

inf
g∈Aτ

∫

D̄

|1 − g|2W dm =

∣

∣

∣

∫

D̄

hφdm
∣

∣

∣

2

= |h(0)|2
∫

D̄

φdm

=

∫ 1

0

2rφ(r)dr exp

∫ 2π

0

log |h(reiθ)|2dθ/2π

=

∫ 1

0

2rdr exp

∫ 2π

0

log W (reiθ)dθ/2π.

Here we used that φdm/
∫

D̄
φdm is a representing measure of τ .

Suppose W = | f |2 for some f in the Hardy space H2(∂D, dθ/2π) and f = qh,

where q is inner and h is outer. Then

exp

∫

D̄

log |h|2dm ≥ S(W ) ≥ exp

∫

D̄

log |q|2dm exp

∫

D̄

log |h|2dm.

In fact, |h|2 ≥ W and S(|h|2) = exp
∫

D̄
log |h|2dm by Theorem 5.1.

Suppose W = χE|h|2, where χE is the characteristic function of E = {z ∈ D̄ : r0 ≤
|z| < 1}, and h is a generator. Put W1 = χE then W1dm/(1 − r2

0) is a representing

measure of τ . By the proof of Theorem 3.1,

S(W ) = |
∫

D̄

hW1dm|2(

∫

D̄

W1dm)−1
= |h(0)|2(1 − r2

0).

Hence

S(W ) =

∫ 1

r0

2rdr exp

∫ 2π

0

log W (reiθ)dθ/2π.

Suppose E is a simply connected domain in D whose boundary contains the origin.

Then S(χE) = 0, since

inf
g∈Aτ

∫

E

|1 − g|2dm = inf
f∈A

∫

D̄

|1 − (z − 1) f |2dm = 0.
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