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Drews R (2025) Simulation-based inference of
surface accumulation and basal melt rates of
an Antarctic ice shelf from isochronal layers.
Journal of Glaciology 71, e44, 1–21. https://
doi.org/10.1017/jog.2025.13

Received: 18 November 2024
Revised: 27 January 2025
Accepted: 11 February 2025

Keywords:
Bayesian inference; Ice shelves; Melt - basal;
Mass-balance reconstruction; Machine
learning; Simulation-based inference

Corresponding author: Guy Moss;
Email: guy.moss@uni-tuebingen.de

†Joint supervision

© The Author(s), 2025. Published by
Cambridge University Press on behalf of
International Glaciological Society. This is an
Open Access article, distributed under the
terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/
by/4.0), which permits unrestricted re-use,
distribution and reproduction, provided the
original article is properly cited.

cambridge.org/jog

Simulation-based inference of surface
accumulation and basal melt rates of an
Antarctic ice shelf from isochronal layers

Guy Moss1 , Vjeran Vi ̌snjevi ́c2 , Olaf Eisen3,4 , Falk M. Oraschewski2 ,
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Abstract
The ice shelves buttressing the Antarctic ice sheet determine the rate of ice-discharge into
the surrounding oceans. Their geometry and buttressing strength are influenced by the local
surface accumulation and basal melt rates, governed by atmospheric and oceanic conditions.
Contemporary methods quantify one of these rates, but typically not both. Moreover, informa-
tion about these rates is only available for recent time periods, reaching at most a few decades
back since measurements are available. We present a new method to simultaneously infer the sur-
face accumulation and basal melt rates averaged over decadal and centennial timescales. We infer
the spatial dependence of these rates along flow line transects using internal stratigraphy observed
by radars, using a kinematic forward model of internal stratigraphy. We solve the inverse problem
using simulation-based inference (SBI). SBI performs Bayesian inference by training neural net-
works on simulations of the forward model to approximate the posterior distribution, therefore
also quantifying uncertainties over the inferred parameters.We validate ourmethod on a synthetic
example, and apply it to Ekstr ̈om Ice Shelf, Antarctica, for which independent validation data are
available.We obtain posterior distributions of surface accumulation and basal melt averaging over
up to 200 years before 2022.

1. Introduction

The majority of the Antarctic ice sheet is buttressed by floating ice shelves (Bindschadler and
others, 2011) which provide large contact areas for ice–ocean interactions. Approximately
half of the ice shelves’ total mass loss is attributed to ocean-induced melting at the under-
side of ice shelves (Depoorter and others, 2013), and its spatiotemporal variability imprints
ice flow dynamics farther upstream (Reese and others, 2017; Gudmundsson and others, 2019).
Consequently, ice flow and oceanmodels need to be coupled for future projections; frameworks
(Goldberg and others, 2019; Gladstone and others, 2021), parameterizations (Burgard and oth-
ers, 2022; Goldberg and Holland, 2022) and benchmarks (Asay-Davis and others, 2016) for this
task have been developed. Similarly, the local snow accumulation is influenced by atmospheric
conditions and is crucial in determining ice shelf thickness (Winkelmann and others, 2012). As
a result, ice flow models are also coupled to climate models for future projections (Goelzer and
others, 2016; Pattyn and others, 2017). It is crucial to confront ice flowmodels with observations
to validate them and investigate their ability to explain observed phenomena. Here, we present
a new method that infers surface accumulation (also known as ‘surface mass balance’ (Lenaerts
and others, 2019)) and basal melt rates (collectively, the mass-balance parameters) from the ice
shelves’ internal stratigraphy, which can be routinely mapped by radio-echo sounding.

Typically, surface accumulation is the more accessible mass-balance parameter (Eisen and
others, 2008); it can bemeasured in situ using stake farms and can also be derived frommultiple
firn cores (Lenaerts and others, 2019). Many of these observations validate atmospheric models
such as RACMO (van Wessem and others, 2018) and MAR (Gallée and Schayes, 1994; Agosta
and others, 2019), which estimate surface accumulation on 35 km grids (Lenaerts and others,
2019) (with few locations being estimated at a higher resolution of 5.5 km). Estimating the basal
melt is more challenging and is typically dependent on knowledge of surface accumulation.
For example, estimates of surface accumulation have been used along with mass conservation
arguments to estimate basal melt (Neckel and others, 2012; Depoorter and others, 2013; Berger
and others, 2017; Adusumilli and others, 2020).These approaches have providedAntarctic-wide
time series of the last few decades of basal melt rates (Adusumilli and others, 2020). The spatial
resolution is currently limited to the kilometer scale, which may miss fine grained processes
occurringwithin ice shelf channels (Drews, 2015;Marsh and others, 2016) or near basal terraces
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Figure 1. Estimation of mass-balance parameters from a steady-state ice shelf with two methods. The Eulerian Mass Budget method (left) detects the difference of surface

accumulation and basal melt within two flux gates (blue vertical lines) by considering flux divergence ∇ ⋅ (vh). Often, the basal melt rates
.
b are inferred assuming that the

surface accumulation ( .aobs) is known. In the internal reflection horizon (IRH) method, we are given information on the internal stratigraphy of the shelf. This information is

used to separate the known total mass balance into individual estimates of surface accumulation and basal melt ( .aavg,
.
bavg respectively). These estimates correspond to the

time-averaged value over the age of the IRH to the present. The inset plots show different surface accumulation and basal melt parameterizations which give rise to the same
total mass balance and overall shape of the ice shelf, but different internal stratigraphy.

(Dutrieux and others, 2014).Measurements of basalmelt which are
independent of the surface accumulation are also available, but typ-
ically only on short temporal scales, for example, with time-lapse
radar measurements of ice thickness change (Zeising and others,
2022). Using phase-coherent data acquisition, thesemeasurements
can disentangle the observed thickness change into strain thinning
and basalmelt (Nicholls and others, 2015).This has providedmuch
insights, e.g., in terms of relevant tidal (Sun and others, 2019) and
seasonal timescales (Vankova and Nicholls, 2022).

Here, we investigate to what extent the radar-imaged isochronal
ice stratigraphy (Eisen and others, 2004) can provide additional
information for inferring mass-balance parameters. On grounded
ice, radar-imaged internal reflection horizons (IRHs) have been
used in multiple ways, for example, to infer the surface accumula-
tion history (Waddington and others, 2007;MacGregor and others,
2009; Catania and others, 2010; Steen-Larsen and others, 2010;
Wolovick and others, 2021;Theofilopoulos and Born, 2023), veloc-
ity patterns of the ice flow (Eisen, 2008; Holschuh and others,
2017), ice-rise evolution (Drews and others, 2015; Henry and oth-
ers, 2023) or large-scale model calibration (Leysinger Vieli and
others, 2011; Sutter and others, 2021). On ice shelves, surface accu-
mulation rate can also be derived from the radar-measured shallow
stratigraphy (Pratap and others, 2022), but not from intermedi-
ate depths and below where the stratigraphy is also influenced
by basal melt and ice flow. The stratigraphy of ice shelves dif-
fers for various combinations of surface accumulation and basal
melt rates (Visnjevic and others, 2022). This suggests that given an
ice flow model of the internal stratigraphy that accounts for the
surface accumulation and basal melt rates, we can use observed
IRHs to recover the surface accumulation and basal melt rate his-
tories (Fig. 1). Thus, our goal is to solve the inverse problem of
inferring the surface accumulation and basal melt rates that can
explain the observed IRHs under the physical constraints of the
ice flow model.

Inverse problems, also known as inversion, data assimilation or
inference problems in the literature, denote the task of finding the

model parameters that are compatible both with empirical obser-
vations and prior knowledge. This problem is widespread in the
geosciences, e.g., in hydrogeology (Linde and others, 2015), seis-
mology (Symes, 2009) or in climate science (Tebaldi and Sansó,
2008). Bayesian inference provides a powerful framework for solv-
ing inference problems, but conventional Bayesian approaches are
restricted to models for which the so-called ‘likelihood function’
is tractable. A tractable likelihood function is one that can be
efficiently evaluated (see Appendix C.1 for examples of tractable
and intractable likelihood functions). However, this is not the case
in our setup. We therefore use simulation-based inference (SBI,
Papamakarios and Murray (2016); Lueckmann and others (2017);
Cranmer and others (2020)) to solve the inverse problempresented
in this work. In SBI, we evaluate the forward model under differ-
ent values of the model’s parameters from a prior distribution. We
use the resulting simulated dataset to train a neural network that
performs conditional density estimation. In the neural posterior
estimation (NPE) variant, the network approximates the Bayesian
posterior distribution. A key advantage of NPE is the amortization
of simulation cost. An amortized inference framework is one that,
once trained, can be instantly applied to find the posterior distribu-
tion for any new observation without requiring more simulations
or training. Importantly, SBI does not require the forward model
to be differentiable and can also work with ‘blackbox’ models.
Therefore, our approach can be extended to a variety of preexist-
ing forward models. To the authors’ knowledge, this work is the
first application of SBI in glaciology, but we note that it has already
been applied in other geoscientific disciplines such as geothermics
(Omagbon and others, 2021), hydrogeology (Allgeier and Cirpka,
2023), hydrology (Hull and others, 2022) and molecular ecology
(Overcast and others, 2021).

In this study, we consider steady-state ice shelves and IRHs in
the local meteoric ice (LMI) body of ice shelves (Das and oth-
ers, 2020). This work is a test case for inferring atmospheric and
oceanographic boundary conditions from the ice stratigraphy with
a novel inference technique that provides uncertainty estimates.
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Our approach can be transferred to other ice flow regimes (e.g.
flank flow on grounded ice) where similar scientific questions can
be explored. Our approach can similarly be adapted to ice shelves
exhibiting marine ice formation. Moreover, the isochronal stratig-
raphy of ice shelves and ice sheets (including the neighboring ice
rises) is currently the only archive of surface accumulation and
basal melt over the past hundreds of years. Our approach is capable
of testing this archive. Thus, this study provides one link between
observational initiatives (such as AntArchitecture, Bingham and
others, 2024) for Antarctica-wide internal stratigraphy datasets
and the modeling community.

The paper is structured as follows: In Section 2, we describe
our forward model of the internal stratigraphy of an ice shelf
and introduce our inference approach. In Section 3, we detail the
synthetic ice shelf construction.We also present the results of infer-
ring the mass-balance parameters from this synthetic stratigraphy
and compare the posterior distribution to a known ground truth.
In Section 4, we describe the setting of the Ekstr ̈om Ice Shelf (EIS)
and the dataset of observed IRHs along the central flow line tran-
sect. We then provide the results of our inference framework and
compare them to independentmeasurements of surface accumula-
tion uniquely available in this location for the periods 1996–2005
and 2014–23. In Section 5, we interpret our results and evaluate
our approach. We finally conclude and discuss future perspective
in Section 6.

2. Methodology

2.1. Forwardmodel

We denote spatially varying parameters as functions, e.g. .a(x)
or at times .a for brevity, while bold-faced characters denote the
discretized values of this function on a specified grid, e.g. .a =
[ .a(x1), … , .a(xn)]⊤.

2.1.1. Ice flow model
We model ice shelves using the shallow shelf approximation (SSA)
(Morland, 1984). Throughout this study, we consider ice shelves
in steady state. Consequently, the ice surface s, base f, thickness
h = s − f and velocity v are all fixed throughout our simulations.
We assume plug flow for the ice shelf regime,meaning that the hor-
izontal velocity profile does not change in the vertical direction z.
These assumptions results in the mass-balance condition

∇ ⋅ (hv) = .m, (1)

where hv is the total mass flux, ∇⋅ is the divergence operator and
.m = .a −

.
b is the total mass-balance rate. Here we use the conven-

tion that the surface accumulation rate .a is positive for mass gain
of the ice shelf and the basal melt rate

.
b is positive for mass loss.

In this exploratory study, we focus on flow lines. We parameterize
our domain such that x denotes the distance along the flow line,
and vx now denotes the velocity parallel to the flow line. The two-
dimensional (2-D) geometry is only valid for observations located
on flow lines and in the absence of lateral compression and exten-
sion. While the former is approximately true in our case, the latter
is unrealistic for most Antarctic ice shelves. To account for ice flux
into or out of our modeling domain, we, therefore, include the
ice flux component normal to the flow line as an additional, spa-
tially variable term to the total mass-balance rate .m (Appendix A).
We test the validity of this approach in a 2-D synthetic exam-
ple (Section 3) that includes a spatially variable total mass balance

and lateral compression. For the real-world scenario, we estimate
the the normal ice flux component from satellite velocities.

We seek to predict the steady-state internal stratigraphy for a
given flow line and possible surface accumulation and basal melt-
ing rate profiles. We define the internal stratigraphy to be a set of
isochronal layer elevations {e1(x), … eL(x)}, with f (x) ≤ e1(x) ≤
e2(x) ≤ ⋯ ≤ eL(x) ≤ s(x). One approach to calculate the internal
stratigraphy uses the SSA expression for the vertical component of
the velocity (Greve andBlatter, 2009) to have a fully specified veloc-
ity field. This can then be used to calculate the age field 𝒜(x, z)
of the shelf. Contours of constant age (isochrones) then define the
internal stratigraphy. However, these methods suffer from numeri-
cal diffusion and can be computationally expensive (Visnjevic and
others, 2022).

The computational efficiency of the forwardmodel is crucial for
our inference method, as we need to evaluate the forward model
many times. As a result, we opt instead to use an implementation
of the tracer method (Born, 2017; Born and Robinson, 2021). The
model is seeded with vertical segments each with a thickness pro-
file {h1(x), … , hL(x)}, such that the summatches the ice geometry
∑L

l=1 hl(x) = h(x). The horizontal velocity vx(x) is used to advect
mass within segments and to thin or thicken the segments as a
function of the prescribed strain rates. The accumulation .a(x) and
melt

.
b(x) rates are used to add new segments or take away mass

from the two boundary segments at the top and bottom of the shelf
respectively. The (isochronal) layer elevations are then the bound-
aries between ourmodeled segments.We use the convention that el
corresponds to the top of segment l, which can be calculated using
the cumulative thicknesses of the segments below,

el(x) = f (x) +
l

∑
l′=1

hl′(x). (2)

In our simulations, we used a high temporal resolution of one
isochronal layer per year. Despite the high resolution, the layer
tracing method allows for determining the internal stratigra-
phy in a computationally efficient manner. For the domains and
timescales considered in our study, the complete forward model
can be evaluated on the order of 60 s on a single CPU core, enabling
the application of SBI methods (see Appendix E for details).

To uniquely determine the layer thicknesses in such a scheme,
we need to specify the boundary conditions on the layer thick-
nesses hl at the inflow boundary x = 0 (here corresponding to the
grounding line). The true boundary conditions are typically not
known. However, the stratigraphy in a large part of the domain
is still independent of the boundary conditions. This zone cor-
responds to the LMI body of ice shelves (Das and others, 2020).
When inferring from observed stratigraphy data, we use only data
within the LMI body. We detail our model of the LMI body in
Appendix A.

2.1.2. Noise model
The ice flow model predicts isochronal layers with varying depth
over spatial scales of kilometers. Observed IRHs, however, also
show variability on sub-kilometer scales. This systematic model-
data misfit is caused by errors in input datasets (such as surface
velocity, geometry), coarse resolution of the forward model and
omission of higher order processes that are not included in the
forward model, such as the effect of rheology. For inference, it
is important that the predicted isochrones have consistent statis-
tical properties with the observed IRHs. This is achieved by the
definition of an appropriate noise model.
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The ice flow model predicts isochronal layer elevations
{e1(x), … , eL(x)} on a fixed grid x ∈ ℝN where N is the num-
ber of grid points. Guided by empirical observations, the noise
model should have the property that the errors of different between
modeled layers l at different depths are spatially correlated and
amplified for deeper layers. We, therefore, define a layer-wise noise
model as the product of an x-dependent baseline noise function
and a z-dependent vertical amplification factor. More precisely, the
additive noise 𝜹l ∈ ℝN of layer l is defined as

𝜹l = 𝝐 ⊙ T(el), (3)

where 𝝐 = [𝜖1, ..., 𝜖N ]⊤ is a x-dependent noise profile, which is
shared for all layers,T(el) = [T(el,1), … ,T(el,N)]⊤ is a determinis-
tic function of elevation (increasing with depth), and ⊙ denotes an
element-wise product. The vertical scaling T(⋅) mimics uncertain-
ties in the travel time-to-depth conversion which depend on the
density 𝜌(z). Here, this is done using 𝜌(z) as in Drews and others
(2016) and an empirical density-permittivity relation (Looyenga,
1965) to calculate the radio-wave speed c(z). This results in the
factor

T(z) = ∫
s

z

dz′

c(z′) , (4)

which we then discretize on the set of layer elevations.
The sub-kilometer variability of the observed IRHs aremodeled

with power spectral densities 𝝐:

𝝐 = A𝝐

N

∑
n=1

√exp𝛽n cos(2𝜋𝜔n + 𝜒n), (5)

where the log power spectral densities 𝛽n and offsets 𝜒n are ran-
domly sampled from normal and uniform distributions respec-
tively: 𝛽n ∼ 𝒩(𝜇𝛽n

, 𝜎2
𝛽n

) and 𝜒n ∼ U([−𝜋, 𝜋)). The frequencies
𝜔n are the corresponding Fourier frequencies of the simulation grid
x and A𝝐 is a global scale factor (set to 4 × 10−10). In the synthetic
ice shelf (Section 3), we define the distribution of the log power
densities using 𝜎2

𝛽n
= 0.5 and

𝜇𝛽n
= −8 (1 − exp−200𝜔n) . (6)

For EIS, the distribution means 𝜇𝛽n
and variances 𝜎2

𝛽n
were cal-

ibrated given the observed IRHs on a separate set of calibration
simulations (full details in Appendix B). We emphasize that this
representation of the noise model is a choice—we define a mathe-
matical model of the mismatch, rather than model a physical effect
directly. Thus, other choices are possible. We choose this represen-
tation of the noise model for its flexibility and interpretability.

By combining the ice flow model with the empirically guided
noise model, we have arrived at a physically motivated forward
model to sample a plausible observed internal stratigraphy of an
ice shelf from the mass-balance rate parameters .a and

.
b.

2.2. Inference

Having established the forward model, we arrive at the inverse
problem of finding the surface accumulation and basal melt rates
that best explain the observed internal stratigraphy. We use Bayes
theorem with model parameters 𝜃 and outcomes X:

p(𝜃|X) =
p(X|𝜃)p(𝜃)

p(X) . (7)

Here, p(𝜃|X) is the posterior distribution of the parameters given
a particular outcome X, p(X|𝜃) is the likelihood function of the

model, p(𝜃) is the prior distribution encoding our existing knowl-
edge on the plausible values of 𝜃 and p(X) is the model evidence.
The goal of Bayesian inference is to find the posterior p(𝜃|Xo),
where Xo is observed data which has the same form as X, but is
measured, instead of simulated.

2.2.1. Simulation-based inference
It is generally not possible to analytically solve for the Bayesian
posterior distribution (Eqn (7)), as the evidence term p(X) cannot
be computed. Approximate methods exist to solve Eqn (7) using
knowledge of only the likelihood function and prior distribution.
In this work, we deploy SBI, an approximate Bayesian inference
and likelihood-free approach, using only samples from our forward
model. In SBI, we use artificial neural networks to approximate
conditional probability distributions. While there exist different
variants of SBI which target either the likelihood p(X|𝜃) or the
likelihood ratio (see Cranmer and others (2020) for an overview),
we focus on NPE, which approximates the posterior distribution
directly (Papamakarios and Murray, 2016; Greenberg and others,
2019).

In NPE, we generate a training dataset {(𝜃k,Xk)}Kk=1 (Fig. 2) by
sampling parameters from the prior 𝜃k ∼ p(𝜃) and sampling from
the forward model Xk ∼ p(X|𝜃k). To approximate the posterior
distribution, a variational family of distributions q𝜙(𝜃|X) is typi-
cally defined in terms of a neural network with learnable weights
𝜙. We represent q𝜙 as a normalizing flow (Durkan and others,
2019; Kobyzev and others, 2019; Papamakarios and others, 2019a).
Normalizing flows are flexible generative models, which, once
trained, can be used either to sample or evaluate the (log-) proba-
bility density function of the conditional distribution q𝜙(𝜃|X), for
any outcome X in the support of the training dataset. We provide
a brief description of normalizing flows in Appendix C.2 and refer
the reader to Papamakarios and others (2019a) for a review.

In NPE, the neural network is trained by minimizing the
expected negative log-probability

ℒ(𝜙) = 𝔼𝜃k∼p(𝜃),Xk∼p(X|𝜃k)[− log q𝜙(𝜃k|Xk)] (8)

on the training dataset. More intuitively, this loss seeks to maxi-
mize the probability assigned to the training data. It can be trivially
shown that minimizing this loss is equivalent to minimizing the
(forward) Kullback–Leibler (KL) divergence between the varia-
tional distribution and the true posterior distribution (see C.3).

It has been shown that, if there exists a set of weights 𝜙 such that
q𝜙(𝜃|X) is the true posterior distribution, and in the limit of infi-
nite training samples K → ∞, the minimum of the loss in Eqn (8)
is reached when q𝜙(𝜃|X) = p(𝜃|X) for all X—i.e. when our esti-
mated distributionmatches the true posterior (see Proposition 1 of
Papamakarios and Murray 2016 for full statement and proof).

We additionally make use of an embedding network, which
are commonly used in SBI workflows to improve performance.
Embedding networks learn summary statistics Y(X), which are
lower-dimensional representations of the outcomes X. Using the
embedding Y(X) as an input to the normalizing flow instead of
X itself reduces the model complexity. The embedding network is
trained jointly with the normalizing flow. In our setting,Xk are spa-
tially varying IRH elevations, and so we choose a 1-dimensional
(1-D) convolutional neural network as our embedding net, result-
ing in 50-dimensional embeddings onwhich the posterior network
is conditioned (full details in Appendix D). Throughout this work,
we use the sbi package for Python (Tejero-Cantero and others,
2020) to perform inference.
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Figure 2. Simulation-based inference workflow. SBI has two primary phases: training and evaluation. In the training phase, accumulation rates are randomly sampled from
a prior distribution, the corresponding basal melt rates are obtained using total mass balance, and the resulting internal stratigraphy is calculated using the forward model.
These simulations from the prior are used to train a neural network which parameterizes conditional distributions. In the evaluation phase, the trained network is conditioned
on the observed IRH and outputs the Bayesian posterior distribution over the parameters (without any additional calls to the forward model).

2.2.2. Definitions of model parameters, outputs and
observations
We define 𝜃 = .ainf = [ .ai1, … , .aiJ ]

⊤, the values of the surface
accumulation rate on a discretized grid ̃x. In our experiment, we
choose the number of inference grid points J = 50 as a compromise
between computational complexity of the inference problem while
still inferring accumulation rate at a high resolution of ∼2.5 km.
This is smaller than the discretized grid x we use for our simula-
tions, which has 500 gridpoints in our experiments. In practice, we
take ̃x to be a regularly spaced subset of x, so that .ainf can also be
taken as a subset of a. However, ̃x can be any discretization of the
flow line and need not be a subset of x. Furthermore, despite defin-
ing 𝜃 to only represent the surface accumulation, any inference of
the surface accumulation rate automatically extends to inference
of the basal melt rates. This is because for any probability distribu-
tion q( .ainf), the total mass-balance relationship implies that

.
binf ∼

q( .ainf − .minf), where
.
binf,

.minf are the respective discretizations of
.
b, .m onto ̃x.

We now turn to describing the observation, Xo, and forward
model outcomes Xk. The observed data are a set of different IRHs,
{em(x)}Mm=1, where em(xi) is the elevation of the mth IRH in our
dataset at grid position i.The IRH elevations need not and typically
are not observed at the same locations as the simulation gridpoints;
and so we first interpolate the IRH elevations onto the simulation
grid x using linear spline interpolation (as implemented in Scipy
(Virtanen and others, 2020)). Therefore, we assume {em(x)}Mm=1 is
already defined on x. One reasonable choice is to define the obser-
vationXo as the entire set of all measured IRH elevations. However,
in our work, we choose to separately infer the mass balance from
each IRH in our observed dataset. This choice has two advantages:
first, ordering IRHs by depth also corresponds to their reverse age
order, with the oldest IRHs being the deepest. Thus, inferring the
surface accumulation and basal melt rates for deeper IRHs corre-
sponds to inferring the average rates over longer periods of time.
By comparing the inferredmass-balance parameters obtained with
different IRHs, we can reason whether or not our steady-state
assumption is valid. The second advantage is practical—we seek

a consistent representation of the observations that can be applied
across ice shelves. Given a different ice shelf, there will be a differ-
ent number of IRHs at different depths. Therefore, the embedding
net for these data will have to have a different architecture for each
ice shelf. In our representation, the embedding net can always be a
1-D convolutional net, as the observations are always 1-D vectors.

Thus, given a dataset ofM observed IRHs, we haveM inference
problems to solve, where each observation corresponds to one IRH.
It is, therefore, reasonable to take one isochronal layer of the simu-
lated stratigraphy as the output of the forward model. For the mth
inference problem, we define the outcome of the forward model
as the isochronal layer el that is closest to IRH m (in the mean
square sense). More precisely, for inference problem m and sim-
ulation k, we define the observation of the forward model to be
Xm
k = el*(xi⩾i(m)), where

l* = argminl ||el(xi⩾i(m)) − em(xi⩾i(m))||22. (9)

Here, i(m) is the index of the boundary of the LMI body for IRH
em(x). For i < i(m), the IRH em(xi) is outside the LMI body and for
i ⩾ i(m) within the LMI body (see Appendix B for details).We fur-
ther define xi⩾i(m) = [xi(m), xi(m)+1, ..., xN ]⊤ as the restriction of the
gridpoints x to within the LMI body of em(x). We correspondingly
set the observation for IRH m to Xm

o = em(xi⩾i(m)). Our choice
to select the simulated isochronal layer that most closely matches
the IRH is due to the true age of the IRH being unknown. This
introduces degeneracy into the forward model—two simulations
with different surface accumulation and basal melt rate parame-
terizations can produce isochronal layers with a similar geometry
but different ages. It is, therefore, important to define the prior
distribution appropriately, which we do in the following section.

2.2.3. Choice of prior distribution
We aim to approximate the posterior distribution

p( .a|Xm
o ) ∝ p(Xm

o | .a)p( .a). (10)

The likelihood p(Xm
o | .a) is not tractable but can be sampled from

using the forward model. To specify the prior, we use the long-
term snow accumulation observations of the Neumayer stations
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Figure 3. Two-dimensional flow tube domain setup for the synthetic example. Map view of the simulated ice shelf’s surface. Flow lines (gray lines) converge to the central
flow line (red). Color indicates ice thickness. The input variables for the internal stratigraphy model are evaluated on the central flow line.

(Wesche and others, 2016; Wesche and Regnery, 2022) over more
than 30 years to define an empirically motivated prior for EIS,
which we also use for the synthetic ice shelf. We first assume that
localized surface melt ( .a < 0) is possible, but rare.We also observe
that average rate of accumulation is ∼0.5ma−1, and that the accu-
mulation rate is almost everywhere under 2ma−1. Finally, we take
the accumulation rate to vary smoothly in space. We define a prior
distribution that satisfies these criteria, while still allowing for a
broad range of surface accumulation rate profiles. We define the
following generative process for .a: first, we draw a sample 𝜶 =
[𝛼1, … , 𝛼N ]⊤ from a Gaussian process with mean function 𝜇 = 0
and a Matérn kernel with a Matérn-𝜈 of 2.5 and a length scale of
2500m (Rasmussen and Williams, 2005). We then independently
sample an offset 𝜇off ∼ 𝒩(0.5, 0.252) and scale 𝜎sc ∼ U(0.1, 0.3)
parameter. Finally, we set .a = 𝜎sc

.𝜶+𝜇off1. We inspect the implicit
prior this defines over the basal melt rates in Section 4.3.

Defining the prior in this way is sufficiently expressive to cap-
ture numerous accumulation rate profiles, while also restricting the
samples to conform to empirical knowledge. Additionally, the prior
is shared for all M inference problems we have defined, and one
evaluation of the forward model provides an observation Xm

k for
each of the inference problems.Thus, the same training dataset can
be used for all posterior networks in our SBI approach, significantly
reducing the computational costs.

3. Synthetic test case

Before we apply the presented workflow to EIS, we showcase its
applicability in a synthetic test case in which all parameters are
known.

3.1. Configuration of shelf and flow line

We test our workflow on a 2-D flow tube geometry from which we
extract a flow line to infer the prescribed surface and basal accu-
mulation rates as done later in the case of EIS. The flow tube is
modeled using icepack (Shapero and others, 2021) on a grid
Lx = 125 km × Ly = 10 km, with the along-flow direction x and
across-flow direction y. We prescribe a Dirichlet boundary condi-
tion at the inflow and lateral boundaries, with a constant thickness
of h0, and a constant along-flow velocity of v0x.The outflow bound-
ary is set to be a static calving front. We initialize with a zero
centered, longitudinally symmetric across-flow velocity v0y on the
lateral boundaries, resulting in a flow field that has convergence

(i.e. mass input) on the center flow line. We prescribe a spatially
variable total mass balance .m: In our experiments, we set vox =
100ma−1, v0y = ±20ma−1 at y= 0 and y = Ly, respectively,

.m = −0.6 − 0.05 x
Lx

+ 0.3 exp(− (x − 0.7Lx
0.1Lx

)
2
) . (11)

We let the geometry evolve under the SSA approximation until
steady state is reached. From the steady-state ice shelf, we choose a
discretization of the central flow line, x, and extract the relevant
variables along this flow line to define the internal stratigraphy
model (Fig. 3). The numerical values for additional parameters for
the spin-up are given in Appendix D. The variables we need are
the surface s and base f elevations, the along-flow velocities vx, and
the along- and across-flow flux divergences d(vxh)/dx, d(vyh)/dy.
These define the total mass balance, since:

.a −
.
b =

d(vxh)
dx +

d(vyh)
dy . (12)

We then solve the inverse problem which accounts in this case
for mass gain through lateral compression. We choose a random
sample from the prior distribution as the ground truth, .aGT, from
which

.
bGT follows accordingly.The forwardmodel is then sampled

to obtain a set of ground truth layer elevations, eo(x). From these
layer elevations, we choose to perform inference for four layers of
ages 50, 100 and 150, and 300 years (labeled 1–4 in ascending order
of age). These ages roughly correspond to the range of ages of the
IRHs that we expect to observe on ice shelves.

3.2. Inference results

We evaluate the trained neural posterior network on the ground
truth isochronal layer of age 50 years. The inferred posterior mean
for the surface accumulation rate parameter is close to the ground
truth accumulation rate (Fig. 4a,c) with the ground truth lying
within the 95% confidence intervals of the posterior distribution.

Next, we evaluate the forward model on samples from the
posterior (and prior) distribution to get the respective predictive
distributions. The prior predictive distribution (Fig. 4b, green) is
the distribution over the internal layers generated by simulating
the forward model with mass-balance parameters drawn from the
prior distribution. The posterior predictive distribution (Fig. 4b,
blue) is defined similarly by simulating with mass-balance param-
eters from the posterior distribution. The posterior predictive
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Figure 4. Prior and posterior (predictive) for the synthetic dataset. (a and c) Prior and posterior over surface accumulation and basal melt rates respectively for layer 1 of
the synthetic ice shelf, of age 50 years. Solid line is the distribution mean, the shaded region represents the 5th and 95th percentiles. The ground truth (GT) parameters used
to generate the reference isochronoal layer are shown in red. (b) Cross section of the ice shelf. Prior and posterior predictive distributions for the layer closest matching the
ground truth isochronal layer. The vertical dashed line represents the LMI boundary for this isochronal layer. The posterior predictive reconstructs the observed layer with
higher accuracy and lower uncertainty. The posterior predictive distribution of the age of the isochronal layer is 60+9

−12 years (meaning a median of 60 years, and 16th and 84th
percentiles of 48 and 69 years, respectively). The average root-mean-square error (RMSE) relative to the GT isochronal layer is 3.9m for the posterior predictive distribution
and 11.5m for the prior predictive distribution.

matches the ground truth isochronal layer with high fidelity. We
calculate the RMSE of the predictive simulations relative to the
ground truth layer elevations for 1000 simulations using prior and
posterior samples. The average RMSE for the posterior predictive
distribution is 3.9m, compared to 11.5m for the prior predic-
tive distribution. Uncertainties in the layer elevations are much
smaller than those of the prior predictive distribution. This is in
contrast to the posterior uncertainty over the mass-balance rates,
which is still considerable. This showcases the importance of our
uncertainty-aware approach: there is more than one parameteriza-
tion of accumulation and basal melt rates that can lead to similar
isochronal layers.

The posterior uncertainty is also reflected in the inferred age of
the isochronal layer. We infer an age of 60+9

−12 years for this layer
(meaning a median of 60 years, and 16th and 84th percentiles of
48 and 69 years, respectively). This value closely matches the age
of the ground truth isochronal layer, which was not used during
inference. Thus, we have produced an estimate of the age of the
layer without requiring time intensive measurements such as ice
cores. We report the posterior distributions for deeper synthetic
layers in Appendix F.

Finally, while we do not use the isochronal layer elevations
outside the LMI boundary for inference, we can still infer the sur-
face accumulation and basal melt rates at these locations. This is
because the values of surface accumulation rate and basal melt
rate still affect the downstream isochronal layer elevations, and so
the observed elevations in the LMI body still contain information
about themass-balance rates upstream of the LMI boundary.Thus,
we are still able to infer the mass-balance rates for x < 15 km.

4. Ekström Ice Shelf

EIS is a medium-sized ice shelf located between the S ̈orasen and
Halvfarryggen Ice Rises in Dronning Maud Land, East Antarctica

(Fig. 5c). EIS makes for an appropriate study site since the
steady-state assumption likely holds (Drews and others, 2013;
Schannwell and others, 2019). Moreover, because of the proximity
of the Neumayer station III, numerous observations are available,
e.g. ice thickness, surface velocities and most importantly surface
accumulation rates, which we will use later for validation.

4.1. Data preprocessing

First, we usedAntarctic Mapping Tools (Greene and oth-
ers, 2017), BedMachine Antarctica (Morlighem and others, 2017)
and ITS_LIVE (Gardner and others, 2018; 2022) to obtain
the surface elevation s, thickness h and velocity v for EIS. In
order to define the flow tube domain for EIS, we also used the
itslive_flowline tool to find two flow lines which formed
the side-boundaries of the domain. The other two boundaries of
the domain were the grounding line, and a straight line connect-
ing the two flow lines. The straight line was chosen to ensure that
the radar transect where data were measured is wholly contained
within the flow tube domain.

We preprocessed the raw ice shelf geometry and velocity data
prior to evaluating the model. This ensured numerical stability
of the forward model. Using the icepack package for Python
(Shapero and others, 2021), we first smoothed the raw thickness
data by solving a regularized minimization problem. We then
solved for the best-fitting velocity by fitting a fluidity parameter
in an SSA model to the observed velocity and smoothed thick-
ness. The hyperparameters used for preprocessing are given in
Appendix D.

4.2. Radar measurements of internal stratigraphy

Internal stratigraphy data along the central flow line of EIS (Fig. 5a)
were acquired using a ground-based ground-penetrating radar
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Figure 5. Overview of the Ekström Ice Shelf. (a) Satellite view of Ekström Ice Shelf along with location of the radar transect along the central flow line (red line) and the
Kottas traverse (blue line). An independent estimate of surface accumulation via stake arrays is available on Kottas traverse, which we use to validate our results. In our
model, we use the velocity data from ITS_LIVE (Gardner and others, 2018; 2022). (b) Vertical cross-section view of the radar transect, along with ice surface and base take
from BedMachine Antarctica (Morlighem and others, 2017), starting at the grounding line (GL). Red lines indicate four picked internal reflection horizons (IRHs). (c) Zoom in
on box in B. The IRHs are numbered 1–4 in order of increasing depth. This plot is shown with the radar data used to label the IRHs in Figure I1.

with a center frequency of 50MHz (pulseEKKOTM from Sensors &
Software) in two consecutive field seasons (2021/22 and 2022/23)
with logistic support from the Neumayer III station (Wesche and
others, 2016; Wesche and Regnery, 2022). Radar processing was
done with ImpDAR (Lilien and others, 2020) and included trace
averaging to equidistant spacing (10m), bandpass filtering (with
cutoff frequencies of 20 and 75MHz), and a topographic correction
using the REMA surface elevation (Howat and others, 2019). The
latter provides observations consistent with the modeling setup.
The radar detects the ice–ocean interface and continuous IRHs
down to ∼200m depth (Fig. 5b and c). Four IRHs were digi-
tized along the entire 130 km long profile using a semi-automatic
maximum tracking scheme. The vertical offset off IRHs at the
profile junction in the mid-shelf region between both years is
much smaller than the radar system’s wavelength in ice (∼3.4m).
Consequently, IRHs were connected without adjustments. For the
travel time-to-depth conversion, we used a depth-density profile
representative for ice shelves of the Dronning Maud Land Coast
(Hubbard and others (2013), eqn (1)).

4.3. Inference results

We inspect the prior over the basal melt rates as a validation of
our modeling choices. The implicit prior is the same as the prior
defined for the surface accumulation, with the mean shifted by the
total mass balance on the flow line, .m. The basal melt rate is larger
(up to 4ma−1) near the grounding line and gradually stabilizes in
the along-flow direction to values between 0 and 1ma−1 down-
stream. This is in agreement with previous estimates for basal melt
profiles on this particular ice shelf (Neckel and others, 2012).

We infer the surface accumulation and basal melt rates from
IRH 2 in our dataset, which has an average (ice equivalent) depth
of 30m (Fig. 6). The posterior over the surface accumulation rate
has uncertainty comparable to that of the prior. However, there
is a shift in the overall spatial trend of the accumulation rate;
particularly, there is higher surface accumulation rate at ∼20 km
from the grounding line. Accumulation rate also increases steadily

downstream the flow line. As in the synthetic case, the posterior
predictive distribution reproduces the observed IRH with much
higher fidelity and confidence than the prior predictive distribu-
tion. The average RMSE relative to the observed IRH is 4.6m for
1000 posterior predictive simulations, compared to 11.8m for 1000
prior predictive simulations. The posterior predictive produces an
independent estimate of the unknown age of the IRHof 84+52

−30 years
(meaning amedian of 84 years, and 16th and 84th percentiles of 54
and 136 years, respectively).

Our method can use much deeper IRHs for the inference of
accumulation and basal melt rates. For IRH 4 of the observed
dataset (of average depth 131m), the proportion of the IRH that is
within the LMI body is smaller.This is due to the unknown bound-
ary condition influencing the IRH elevation atmuch further points
along the flow line. This discarding of data has visible effects on the
posteriors over the mass-balance parameters (Fig. 7). These rates
are now more similar to the priors for the first 60 km of the tran-
sect and only diverge at points further down the ice shelf, where the
values of accumulation and basal melt rates affect the dynamics of
the IRH. Regardless, the posterior predictive distribution resem-
bles the observed IRH at higher fidelity and precision than the
prior predictive. The average RMSE relative to the observed IRH
is 10.0m for the posterior predictive distribution and 16.4m for
the prior predictive distribution. The estimated age of this IRH by
our method is 188+96

−49 years. The uncertainty of the age estimates
reasonably increases for deeper IRHs.

5. Discussion

5.1. Posterior mass-balance rates are consistent between IRHs

We compare the four posteriors over the surface accumulation
obtained from the Ekstr ̈om IRH dataset (Fig. 8). The posteriors
for the shallower IRHs 1–3 all show a similar qualitative rela-
tionship: a local maximum of the accumulation at a distance of
∼20 km from the grounding line, followed by a steady increase
in the accumulation downstream. The increase in accumulation
at ∼20 km is even identified in the posterior for IRH 3, despite
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Figure 6. Prior and posterior (predictive) for the Ekström dataset, IRH 2, of average depth 30m. (a and c) Prior and posterior over surface accumulation and basal melt rates
respectively, starting at the grounding line (GL). Solid line is the distribution mean, the shaded region represents the 5th and 95th percentiles. (b) Cross section of the ice shelf.
Prior and posterior predictive distributions for the layer closest matching the observed IRH. The vertical dashed line represents the LMI boundary for this IRH. The posterior
predictive reconstructs the observed IRH with higher accuracy and lower uncertainty. The posterior predictive distribution of the age of the IRH is 84+52

−30 years (meaning a
median of 84 years, and 16th and 84th percentiles of 54 and 136 years, respectively). The average RMSE relative to the observed IRH is 4.6m for the posterior predictive
distribution and 11.8m for the prior predictive distribution.

Figure 7. Prior and posterior (predictive) for the Ekström dataset, IRH 4, of average depth 113m. Same as Figure 6 for the deeper IRH. The posterior predictive distribution
of the age of the IRH is 188+96

−49 years. The average root-mean-square error relative to the observed IRH is 10.0m for the posterior predictive distribution and 16.4m for the
prior predictive distribution.

the LMI boundary being downstream of it, at ∼30 km from the
grounding line. This is reasonable, as the mass-balance parame-
ters at a given location affect the flow field downstream of this
location, and consequently, the formation of isochronal layers. For
IRH 4, the LMI boundary is much further downstream at ∼60 km.
Thus, the local surface accumulation maximum at ∼20 km is not
found; however, the overall trend of increasing surface accumula-
tion downstream is still identified. There is a corresponding trend
in the basalmelt rate, as the local basalmelt rate still exhibits amax-
imum at ∼20 km. The reason for this is unknown, but the location

corresponds both with the seaward limit of the tidal flexure zone
and with the confluence region of ice originating from the eastern
tributary. One or both of these factors could alter the basal melt
rates inferred at this location. As we will show later (Section 5.3),
this local maximum also appears in independent remote-sensing
estimates.

The inferred posteriors also allow us to estimate the age of the
IRHs. By sampling from the posterior distribution, and evaluat-
ing the forward model with the resulting mass-balance parameter
samples, we obtain a distribution of isochronal layers similar to
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Figure 8. Ekström Ice Shelf—dependence of posterior surface accumulation rate on depth of IRH used for inference. The posteriors are compared to the shallow layer
approximation (SLA) and local layer approximation (LLA) (Waddington and others, 2007), and an estimate of the distribution of the accumulation rate based on measurements
along the Kottas traverse. See Figure G1 for yearly Kottas measurements. As the real age of the IRHs is not known, the SBI-derived median age is used for the SLA and LLA
approximations. Median ages for IRH 1–4 are 42+32

−12, 84
+52
−30, 146

+52
−38 and 188+96

−49 years. The LMI boundary, representing where the IRH data were masked, is shown with the brown
dashed lines.

the observed IRH, with known ages. Thus, we estimate the ages
of the four IRHs as 42+32

−12, 84
+52
−30, 146

+52
−38 and 188+96

−49 years. This is
an important finding because IRH age is otherwise only accessi-
ble through ice coring. Our results, however, depend on a realistic
prior for the surface accumulation and basal melt rates, as defined
in Section 2.2.3. Given a miscalibrated prior, the estimated ages
would not be reliable (see Fig. H1 for an example). We hypothe-
size that, given an independent measurement of the IRH age, our
approach could further constrain the posterior distributions over
the mass-balance parameters.

The consistent spatial patterns of magnitudes of accumulation
rates inferred from IRHs 1–4 are supportive of EIS being in steady
state over the last hundreds of years but given that steady-state
is one of our model assumptions this interpretation needs to be
considered with care.

5.2. Comparison to shallow and local layer approximations

Tovalidate our approach,we compare the inferred surface accumu-
lation rate of our experiments with estimates from other methods.
First, we computed the shallow layer approximation (SLA) and
local layer approximation (LLA) as described in Waddington and
others (2007). Given the depth and age of IRHm, the SLA and LLA
approximations for the accumulation rate .a are defined as

.a
m
SLA = 1

𝒜m
(s − em(x)),

.a
m
LLA = − ln(1 −

s − em(x)
h ) h

𝒜m
,

(13)

where 𝒜m is the age of IRH m. Intuitively, the SLA takes the ice
thickness above layer m and divides it by the layer age, whereas

LLA accounts for strain thinning assuming a linear vertical veloc-
ity profile (which is often the case for ice-shelf flow). Since the
age of the observed IRHs is not known, we use the median age
of the posterior predictive distribution results. As expected, we
observe that both SLA and LLA closely match the SBI posterior
mean accumulation rate for the shallow IRHs of median estimated
ages 42 and 84 years (Fig. 8). As the strain rates of the flow are
small, the relatively shallow IRHs (mean ice equivalent depth of
30m) have not notably deformed, and hence the assumptions of
SLA and LLA are appropriate. However, for the deeper IRHs 3 and
4 of estimated ages 146 and 188 years, we see that both SLA and
LLA estimates diverge from our posteriormean accumulation rate.
This shows thatmore involved approaches are required when using
deeper IRHs for inference. For deeper IRHs where the SLA and
LLAno longer applied, Steen-Larsen and others (2010) inferred the
surface accumulation rates on grounded ice using a Monte Carlo
approach. By treating the age of the IRH as an additional param-
eter to infer, they were able to identify the age of the IRH with
high confidence. Extensions of our approach could incorporate this
parameterization to reduce the uncertainty of the inferred IRH.

5.3. Comparison with independent estimates of surface
accumulation and basal melting

For the Ekstr ̈om transect comparison data are provided by repeat
readings of accumulation stakes in 500m spacing along the nearby
Kottas traverse (Fig. 8). Yearly readings are available in the period
1996–2005 and on a yearly to three-yearly interval between 2014
and 2023 (Mengert, 2018). We use this dataset to construct a
direct estimate of time-averaged surface accumulation rate along
the central flow line transect over these periods. For this, we project
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Figure 9. Basal melting rates comparison. (a) Map of basal melt rates for Ekström Ice Shelf, using data from Adusumilli and others (2020). (b) Comparison of inferred basal
melt rates from IRH 1 to independent estimates of basal melt rates, calculated on the flow line transect.

the measurements from the Kottas traverse to the flow line tran-
sect, taking into account an increased uncertainty for increasing
projection distance (see Appendix G for details).

The Kottas traverse accumulation measurements closely match
the posterior means of our approach (Fig. 8) for IRHs 1 and 2.
As the accumulation rate measurements on the Kottas traverse
span the past 26 years, it may not be a good validation for the
deeper IRHs. Regardless, the Kottas accumulation rate measure-
ments lie within the posterior uncertainty for IRHs 3 and 4. These
comparisons further corroborate our approach and highlight the
advantages of uncertainty-aware methods, especially as the mea-
sured accumulation rates also varied considerably year-to-year
(Appendix G).

We also compare our inferred basalmelt rates with independent
measurements of basal melt rates. In Fig. 9, we show the basal melt
rates inferred from IRH1 for the Ekstr ̈omdataset, in comparison to
independent estimates of basal melt rates through satellite altime-
try data (Adusumilli and others, 2020), and through airborne radar
measurements of the ice-shelf thickness (Neckel and others, 2012).
We observe a quantitative match between our posterior basal melt-
ing rate and the estimates from Adusumilli and others (2020). The
ice-shelf wide melt rate estimates show overall comparatively lit-
tle spatial variability. The most notable difference is that our basal
melt rates show more variability in the first 20 km of the profile,
and this could be due to the proximity of the grounding zonewhere
the SSA approximation does not hold. However, we note that also
the satellite-derived estimates show this oscillation in basal melt
rates albeit with a smaller magnitude. The estimates from Neckel
and others (2012) excluded the grounding zone area but otherwise
show a good match in magnitude but with much less spatial vari-
ability. This is because they decided to apply spatial smoothing the
degree of which could be revisited given the new results derived
here.

The good quantitative match with independently collected data
both for surface accumulation and basal melting increases our
confidence for our inferred surface accumulation and basal melt
rates. However, these results are limited by some of our modeling
assumptions, which we discuss next.

5.4. Limitations of modeling approach

The fidelity at which the posterior predictive distributions repro-
duce the observed IRHs of EIS (Figs. 6 and 7) supports our
modeling choices for this ice shelf, as the combination of the
forward model and accumulation rate prior distribution are suf-
ficiently expressive to reproduce the IRHs.

However, our inferred surface accumulation and basal melt
rates rely on the modeling assumption that the internal radar data
are collected on a flow-line transect. This assumption is required
to conclude that the ice observed in the internal stratigraphy is
indeed the accumulated ice modeled in our domain, as com-
monly assumed in the literature (Waddington and others, 2007;
Steen-Larsen and others, 2010; Theofilopoulos and Born, 2023).
Similarly, in the context of ice rises, it is often assumed that the
transverse velocity is negligible relative to the vertical velocity of
the ice, so that the surface accumulation rate can be inferred along
the same transect as the IRH data (Callens and others, 2016; Koch
and others, 2024). However, many of the available IRH measure-
ments do not align with flow lines of the ice sheet. In this case, our
assumption would not be valid.

Because our observations are on a flow line transect only, it
is difficult to judge to what extent unidentified three-dimensional
(3-D) effects overprint our analysis. Previous approaches (Pattyn
and others, 2012) have had similar limitations because ice-flow
divergence and/or convergence could not be predicted by their 2-
D forward model. They concluded that their inferred basal melt
rates which best matched the radar stratigraphy would be a lower
boundary because ice flow on the ice shelf was convergent. In our
case, we do correct for the observed convergence from observed
surface velocities along the flow tube. The normal component
of ice-flow is always < 20ma−1 and often < 1ma−1. This is
small compared to the along-flow velocities and also compared to
the total surface mass balance accumulated along the flow tube.
Together with the empirical validation with independently col-
lected surface accumulation and basal melt rates, this increases our
confidence that our modeling approach yields trustworthy results.
Yet, a more rigorous quantification of 3-D effects, for example, in a
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synthetic study using a 3-D forwardmodel can provide further val-
idation. Others have made progress in this direction, for example,
Wolovick and others (2021) consider a 3-D steady-state ice sheet
and jointly infer the temporally averaged accumulation rate and
geothermal heat flow.This is done by usingmore radar attributes in
addition to stratigraphy such as existence or absence of subglacial
water and/or basal freeze-on.

Common to most previous studies is the steady-state assump-
tion which is imposed because the inclusion of transient ice thick-
ness changes increases the model parameter space to a degree
which cannot easily be solved in the inverse problem, particularly
with quantified uncertainties over the inferred parameters. Ways
forward in this regard could be deterministic gradient descent
schemes with explicitly calculating sensitivity matrices as sug-
gested by Theofilopoulos (2022); Theofilopoulos and Born (2023)
and this will be an important step forward to better exploit the
growing IRH archive for ice-sheet modeling.

5.5. SBI as a tool for geoscientific inversion problems

The inverse problem tackled in this work typifies geoscientific
inverse problems, as the forward model is defined in terms of a
partial differential equation, and the parameters are high dimen-
sional and vary in space. Hence, it is valuable to compare the SBI
approach in this case to thewide variety ofmethods and algorithms
that have been developed to solve geoscientific inverse problems. In
the remainder of the section, we discuss NPE as used in our work.
However, there exist other variants of SBI with relative advantages
and disadvantages, depending on the problem setting (Cranmer
and others, 2020; Lueckmann and others, 2021). In particular,
we provide a brief discussion of the neural likelihood estimation
(NLE) variant in Appendix C.4.

The SBI approach as presented here has two key features. First,
we estimate the Bayesian posterior distribution, providing quan-
titative uncertainty estimates. Modeling uncertainty is important
as it can highly influence and propagate to future modeling pre-
dictions. Additionally, locations of high uncertainty show areas
requiring further study, helping to guide future work. This is in
contrast to deterministic inversionmethods, which do not estimate
uncertainty, or likelihood-based inference methods which are not
possiblewhen the likelihooddefined by the simulator is not known.
Thus, approximate Bayesian methods and SBI in particular can be
applied to a larger class of inference problems. Second, a unique
advantage of single round SBImethods (Cranmer and others, 2020)
such as NPE (as used in our study) is amortization. Our method as
presented here is not yet fully amortized, instead amortizing the
vast majority of the computational cost, as preprocessing relies on
the observed value of X. In order to train the density estimator
q𝜙( .a|Xm

k ), we first calculate Xm
k for each simulation dependent on

the value of Xm
o . Our method still amortizes the cost of simulating

the forward model many times, which is by far the largest com-
putational cost in the approach. In the Ekstr ̈om example, we have
evaluated the forward model a total of 190 000 times, accounting
for ∼99% of the total computation cost (Appendix E). This amor-
tization is specific to the geometry and velocity of the EIS; different
geometries and velocities change the dependence of the inter-
nal layers on the mass-balance parameters, which would require
simulating from a new model.

On the other hand, SBI faces some limitations as an inference
tool. Primarily, SBI methods are known to require a large number
of simulations to be trained (Lueckmann and others, 2021). This
problem suffers from the curse of dimensionality—the number

of simulations required scales exponentially with the number of
parameters we are trying to infer (in this work, we limited the
number of parameters to 50). This is particularly challenging for
geoscientific problems, where typically the parameters of interest
vary spatially (and temporally), and thus the number of parame-
ters can grow very large. The SBI approach needs to be adapted
to more efficiently represent high-dimensional, spatially varying
parameters 𝜃 at high resolutions. Some potential approaches are
polynomial or spectral representations. Future work should also
explore variants of SBI that are better suited to high-dimensional
or even continuous parameters (Ramesh and others, 2022; Geffner
and others, 2023). Finally, SBI works under the assumption that the
forward model is well-specified, meaning that given samples from
the prior, it can generate simulations closely resembling the obser-
vation.The posteriors obtained by SBI can be strongly biased when
this is not the case (Cannon and others, 2022). Work to address
this concern has been done, e.g. by incorporating the model mis-
match into the forward model (Ward and others, 2022), as done
in our work using the calibrated noise model. However, designing
and calibrating such noise models for each inference task are chal-
lenging, and a standard approach for addressing model mismatch
does not yet exist.

6. Conclusions

We presented a novel approach for inferring the spatially varying
surface accumulation and basal melt rates along ice-shelf flow lines
from radar measurements of their internal stratigraphy. We vali-
dated the method on a synthetic ice shelf example and inferred the
surface accumulation and basal melt rates along a flow line in EIS,
Antarctica. We separately inferred the mass-balance parameters
from four different IRHs. The inferred distributions were further
validated by independent stake array measurements of surface
accumulation rates uniquely available in Ekstr ̈om Ice Shelf. Using
our approach, we were able to estimate the otherwise unknown
age of the IRHs as 42+32

−12, 84
+52
−30, 146

+52
−38 and 188+96

−49 years. The pre-
sented approach can be transferred to other Antarctic ice shelves
and also to other flow regimes such as grounded ice. A strength of
our approach is the principled uncertainty estimates in the inferred
surface accumulation and basal melt rates. These uncertainty esti-
mates can be integrated in future projections of the Antarctic ice
sheet (Verjans and others, 2022; Ultee and others, 2024).We identi-
fied avenues for future work as more can be learned by relaxing the
steady-state assumption on the ice shelf. The forward model and
inference framework should be adapted to account for potential
transient signals in the mass-balance parameters.

This work was an example use case of SBI for a geoscien-
tific inverse problem. We showcased the strengths of SBI as a
likelihood-free approach to approximate the Bayesian posterior,
amortizing the cost of simulating the forward model many times.
SBI can become more applicable to such inverse problems involv-
ing spatially (and temporally) varying parameters if it can be
extended to deal with the challenge of high-dimensional parameter
inference.

Finally, our approach highlights the value of internal stratigra-
phy measurements. Initiatives to map the Antarctic-wide internal
stratigraphy (e.g. Bingham and others, 2024) can provide invalu-
able data toward uncovering the history of the Antarctic ice sheet.
Sophisticated inference methods could be combined with such a
dataset to provide a new, independent, Antarctica-wide parame-
terization of accumulation and basal melt rate histories.

https://doi.org/10.1017/jog.2025.13 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.13


Journal of Glaciology 13

Data availability statement. The extracted IRH elevations along the
Ekstr ̈om transect are available in Oraschewski and others (2024a). The pro-
cessed radar data are additionally available in Oraschewski and others (2024b).
Simulation data available in Moss and others (2023).

Software availability. Code for preprocessing Ekstr ̈om Ice Shelf data and
generating synthetic ice shelf data is available inMoss and others (2024a). Code
for layer tracing forward model and simulation-based inference workflow is
available in Moss and others (2024b).

Acknowledgements. The authors would like to thank Daniel Shapero for his
inputs on use of icepack.The authorswould also like to thankAndreas Born and
Therese Riekch for insightful discussions on the implementation of the layer
tracing solver for calculating internal stratigraphy. We acknowledge excellent
logistic support from staff atNeumayer Station III and theGrouZe teamon-site.

This work was funded by the German Research Foundation (DFG)
under Germany’s Excellence Strategy—EXC number 2064/1—390727645 and
SFB 1233 ‘Robust Vision’ (276693517) and the German Federal Ministry of
Education and Research (BMBF): Tübingen AI Center, FKZ: 01IS18039A.
Reinhard Drews and Vjeran Vi ̌snjevi ́c were supported by an Emmy Noether
grant of the Deutsche Forschungsgemeinschaft (DR 822/3-1). We acknowl-
edge the support by the German Academic Scholarship Foundation to Falk
M. Oraschewski. Field observations were supported by the Alfred Wegener
Institute through logistic grants AWI_ANT_23 (Drews) and AWI_ANT_8
(Eisen). We acknowledge support from the Open Access Publication Fund of
the University of Tübingen. Guy Moss is a member of the International Max
Planck Research School for Intelligent Systems (IMPRS-IS).

References
Adusumilli S, Fricker HA, Medley B, Padman L and Siegfried MR (2020)

Interannual variations in meltwater input to the Southern Ocean from
Antarctic ice shelves.Nature Geoscience 2020 13:9 13, 616–620. doi: 10.1038/
s41561-020-0616-z

Agosta C and 10 others (2019) Estimation of the Antarctic surface mass bal-
ance using the regional climate model MAR (1979–2015) and identification
of dominant processes.TheCryosphere 13, 281–296. doi: 10.5194/tc-13-281-
2019

Allgeier J and Cirpka OA (2023) Surrogate-model assisted plausibility-check,
calibration, andposterior-distribution evaluation of subsurface-flowmodels.
Water Resources Research 59, 1–18. doi: 10.1029/2023WR034453

Asay-Davis XS and 13 others (2016) Experimental design for three interre-
lated marine ice sheet and ocean model intercomparison projects: MISMIP
v. 3 (MISMIP+), ISOMIP v. 2 (ISOMIP+) andMISOMIP v. 1 (MISOMIP1).
Geoscientific Model Development 9, 2471–2497. doi: 10.5194/GMD-9-2471-
2016

Berger S, Drews R, Helm V, Sun S and Pattyn F (2017) Detecting high spatial
variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica.
The Cryosphere 11, 2675–2690. doi: 10.5194/tc-11-2675-2017

Bindschadler R and 17 others (2011) Getting around Antarctica: New high-
resolution mappings of the grounded and freely-floating boundaries of the
Antarctic ice sheet created for the International Polar Year. Cryosphere 5,
569–588. doi: 10.5194/TC-5-569-2011

Bingham RG and 53 others (2024) Review Article: Antarctica’s internal archi-
tecture: Towards a radiostratigraphically–informed age–depth model of
the Antarctic ice sheets. EGUsphere 2024, 1–66. doi: 10.5194/egusphere-
2024-2593

Blei DM, Kucukelbir A and McAuliffe JD (2017) Variational inference: A
review for statisticians. Journal of the American Statistical Association 112,
859–877. doi: 10.1080/01621459.2017.1285773

Born A (2017) Tracer transport in an isochronal ice-sheet model. Journal of
Glaciology 63(237), 22–38. doi: 10.1017/JOG.2016.111

BornA andRobinsonA (2021)Modeling the greenland englacial stratigraphy.
Cryosphere 15, 4539–4556. doi: 10.5194/TC-15-4539-2021

Brinkerhoff D, Aschwanden A and Fahnestock M (2021) Constraining sub-
glacial processes from surface velocity observations using surrogate-based

Bayesian inference. Journal of Glaciology 67(263), 385–403. doi: 10.1017/jog.
2020.112

BurgardC, JourdainNC, Reese R, JenkinsA andMathiot P (2022) An assess-
ment of basalmelt parameterisations forAntarctic ice shelves.Cryosphere 16,
4931–4975. doi: 10.5194/TC-16-4931-2022

Callens D, Drews R, Witrant E, Philipp M and Pattyn F (2016) Temporally
stable surface mass balance asymmetry across an ice rise derived from radar
internal reflection horizons through inverse modeling. Journal of Glaciology
62(233), 525–534. doi: 10.1017/jog.2016.41

Cannon P, Ward D and Schmon SM (2022) Investigating the impact of
model misspecification in neural simulation-based inference.ArXiv e-prints,
arXiv:2209.01845. doi: 10.48550/arXiv.2209.01845

Catania G, Hulbe C and Conway H (2010) Grounding-line basal melt rates
determined using radar-derived internal stratigraphy. Journal of Glaciology
56(197), 545–554. doi: 10.3189/002214310792447842

Cranmer K, Brehmer J and LouppeG (2020)The frontier of simulation-based
inference.Proceedings of theNational Academy of Sciences 117, 30055–30062.
doi: 10.1073/pnas.1912789117

Das I and 11 others (2020) Multidecadal basal melt rates and structure of
the Ross Ice Shelf, Antarctica, using airborne ice penetrating radar. Journal
of Geophysical Research: Earth Surface 125, e2019JF005241. doi: 10.1029/
2019JF005241

Depoorter MA and 6 others (2013) Calving fluxes and basal melt rates of
Antarctic ice shelves. Nature 502, 89–92. doi: 10.1038/nature12567

Drews R (2015) Evolution of ice-shelf channels in Antarctic ice shelves. The
Cryosphere 9, 1169–1181. doi: 10.5194/TC-9-1169-2015

Drews R and 6 others (2016) Constraining variable density of ice shelves using
wide-angle radar measurements. The Cryosphere 10, 811–823. doi: 10.5194/
tc-10-811-2016

Drews R, Martín C, Steinhage D and Eisen O (2013) Characterizing
the glaciological conditions at Halvfarryggen ice dome, Dronning Maud
Land, Antarctica. Journal of Glaciology 59(213), 9–20. doi: 10.3189/
2013JoG12J134

Drews R, Matsuoka K, Martín C, Callens D, Bergeot N and Pattyn F (2015)
Evolution of Derwael ice rise in Dronning Maud Land, Antarctica, over the
last millennia. Journal of Geophysical Research: Earth Surface 120, 564–579.
doi: 10.1002/2014JF003246

Durkan C, Bekasov A, Murray I and Papamakarios G (2019) Neural Spline
Flows. Advances in Neural Information Processing Systems. In. Curran
Associates Inc., Volume 32.

Dutrieux P and 6 others (2014) Basal terraces on melting ice shelves.
Geophysical Research Letters 41, 5506–5513. doi: 10.1002/2014GL060618

Eisen O and 15 others (2008) Ground-based measurements of spatial and
temporal variability of snow accumulation in East Antarctica. Reviews of
Geophysics 46, 2. doi: 10.1029/2006RG000218

Eisen O (2008) Inference of velocity pattern from isochronous layers in
firn, using an inverse method. Journal of Glaciology 54(187), 613–630.
doi: 10.3189/002214308786570818

Eisen O, Nixdorf U, Wilhelms F and Miller H (2004) Age estimates of
isochronous reflection horizons by combining ice core, survey, and synthetic
radar data. Journal of Geophysical Research: Solid Earth 109, B4. doi: 10.1029/
2003JB002858

Gallée H and Schayes G (1994) Development of a three-dimensional
meso-γ primitive equation model: Katabatic winds simulation in the
area of Terra Nova Bay, Antarctica. Monthly Weather Review 122,
671–685.

Gardner A and 6 others (2018) Increased West Antarctic and unchanged East
Antarctic ice discharge over the last 7 years.TheCryosphere 12, 521–547. doi:
10.5194/tc-12-521-2018

Gardner A, Fahnestock M and Scambos T (2022) MEaSUREs ITS_LIVE
Landsat Image-Pair Glacier and Ice Sheet Surface Velocities, version 1. doi:
10.5067/IMR9D3PEI28U

Geffner T, Papamakarios G and Mnih A (2023) Compositional score mod-
eling for simulation-based inference. Proceedings of Machine Learning
Research. PMLR, pp. 11098–11116, Volume 202.

Gladstone R and 12 others (2021) The framework for ice sheet-ocean
coupling (fisoc) v1.1. Geoscientific Model Development 14, 889–905.
doi: 10.5194/GMD-14-889-2021

https://doi.org/10.1017/jog.2025.13 Published online by Cambridge University Press

https://doi.org/10.1038/s41561-020-0616-z
https://doi.org/10.1038/s41561-020-0616-z
https://doi.org/10.5194/tc-13-281-2019
https://doi.org/10.5194/tc-13-281-2019
https://doi.org/10.1029/2023WR034453
https://doi.org/10.5194/GMD-9-2471-2016
https://doi.org/10.5194/GMD-9-2471-2016
https://doi.org/10.5194/tc-11-2675-2017
https://doi.org/10.5194/TC-5-569-2011
https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2593/
https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2593/
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1017/JOG.2016.111
https://doi.org/10.5194/TC-15-4539-2021
https://doi.org/10.1017/jog.2020.112
https://doi.org/10.1017/jog.2020.112
https://doi.org/10.5194/TC-16-4931-2022
https://doi.org/10.1017/jog.2016.41
https://doi.org/10.48550/arXiv.2209.01845
https://doi.org/10.3189/002214310792447842
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1029/2019JF005241
https://doi.org/10.1029/2019JF005241
https://doi.org/10.1038/nature12567
https://doi.org/10.5194/TC-9-1169-2015
https://doi.org/10.5194/tc-10-811-2016
https://doi.org/10.5194/tc-10-811-2016
https://doi.org/10.3189/2013JoG12J134
https://doi.org/10.3189/2013JoG12J134
https://doi.org/10.1002/2014JF003246
https://doi.org/10.1002/2014GL060618
https://doi.org/10.1029/2006RG000218
https://doi.org/10.3189/002214308786570818
https://doi.org/10.1029/2003JB002858
https://doi.org/10.1029/2003JB002858
https://doi.org/10.5194/tc-12-521-2018
https://doi.org/10.5067/IMR9D3PEI28U
https://doi.org/10.5194/GMD-14-889-2021
https://doi.org/10.1017/jog.2025.13


14 Guy Moss et al.

Goelzer H, Huybrechts P, Loutre MF and Fichefet T (2016) Last
interglacial climate and sea-level evolution from a coupled ice sheet–
climate model. Climate of the Past 12, 2195–2213. doi: 10.5194/cp-12-
2195-2016

Goldberg DN, Gourmelen N, Kimura S, Millan R and Snow K (2019) How
accurately should we model ice shelf melt rates?Geophysical Research Letters
46, 189–199. doi: 10.1029/2018GL080383

Goldberg DN and Holland PR (2022) The relative impacts of initial-
ization and climate forcing in coupled ice sheet-ocean modeling:
Application to Pope, Smith, and Kohler Glaciers. Journal of Geophysical
Research: Earth Surface 127, e2021JF006570. doi: 10.1029/2021JF0
06570

Greenberg D, Nonnenmacher M and Macke J (2019) Automatic poste-
rior transformation for likelihood-free inference. Proceedings of Machine
Learning Research. PMLR, pp. 2404–2414, Volume 97.

Greene CA, Gwyther DE and Blankenship DD (2017) Antarctic mapping
tools for MATLAB. Computers & Geosciences 104, 151–157. doi: 10.1016/
j.cageo.2016.08.003

Greve R and Blatter H (2009) Dynamics of Ice Sheets and Glaciers. Berlin
Heidelberg: Springer. doi: 10.1007/978-3-642-03415-2

Gudmundsson GH, Paolo FS, Adusumilli S and Fricker HA (2019)
Instantaneous Antarctic ice sheet mass loss driven by thinning ice
shelves. Geophysical Research Letters 46, 13903–13909. doi: 10.1029/
2019GL085027

Henry ACJ and 6 others (2023) Predicting the three-dimensional age-depth
field of an ice rise. Authorea. doi: 10.22541/essoar.169230234.44865946/v1

Holschuh N, Parizek BR, Alley RB and Anandakrishnan S (2017) Decoding
ice sheet behavior using englacial layer slopes. Geophysical Research Letters
44, 5561–5570. doi: 10.1002/2017GL073417

Howat IM, Porter C, Smith BE, Noh MJ and Morin P (2019) The reference
elevation model of Antarctica. The Cryosphere 13, 665–674. doi: 10.5194/tc-
13-665-2019

Hubbard B and 6 others (2013) Ice shelf density reconstructed from optical
televiewer borehole logging.Geophysical Research Letters 40, 5882–5887. doi:
10.1002/2013GL058023

Hull R and 7 others (2022) Using simulation-based inference to determine the
parameters of an integrated hydrologic model: A case study from the upper
ColoradoRiver basin.Hydrology andEarth SystemSciencesDiscussions 2022,
1–38. doi: 10.5194/hess-2022-345

Kingma DP and Ba J (2015) Adam: A method for stochastic optimization. In
International Conference on Learning Representations.

Kobyzev I, Prince SJ and Brubaker MA (2019) Normalizing flows: An intro-
duction and review of current methods. IEEE Transactions on Pattern
Analysis andMachine Intelligence 43, 3964–3979. doi: 10.1109/TPAMI.2020.
2992934

Koch I and 9 others (2024) Radar internal reflection horizons from multi-
system data reflect ice dynamic and surface accumulation history along the
Princess Ragnhild Coast, Dronning Maud Land, East Antarctica. Journal of
Glaciology 70, e18. doi: 10.1017/jog.2023.93

Lenaerts JTM, Medley B, van den Broeke MR and Wouters B (2019)
Observing and modeling ice sheet surface mass balance. Reviews of
Geophysics 57, 376–420. 10.1029/2018RG000622

Leysinger Vieli GJMC, Hindmarsh RCA, Siegert MJ and Bo S (2011)
Time-dependence of the spatial pattern of accumulation rate in East
Antarctica deduced from isochronic radar layers using a 3-D numerical
ice flow model. Journal of Geophysical Research: Earth Surface 116, F2.
doi: 10.1029/2010JF001785

LilienDA,Hills BH,Driscol J, JacobelR andChristiansonK (2020) ImpDAR:
An open-source impulse radar processor. Annals of Glaciology 61(81),
114–123. doi: 10.1017/aog.2020.44

LindeN, Renard P,Mukerji T andCaers J (2015) Geological realism in hydro-
geological and geophysical inverse modeling: A review. Advances in Water
Resources 86, 86–101. doi: 10.1016/j.advwatres.2015.09.019

LooyengaH (1965)Dielectric constants of heterogeneousmixtures. Physica 31,
401–406. doi: 10.1016/0031-8914(65)90045-5

Lueckmann JM, Boelts J, Greenberg D, Goncalves P and Macke J (2021)
Benchmarking simulation-based inference. Proceedings of Machine Learning
Research. PMLR, 130, 343–351.

Lueckmann JM, Goncalves PJ, Bassetto G, Öcal K, Nonnenmacher M and
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Appendix A. Forward model details
The layer tracing scheme described in Section 2.1 is equivalent to solving a set
of advection equations for a set of layers. Here, we explicitly write down the
advection equations solved and the boundary conditions defined. We correct
for 2-D effects in the advection equations by adding a term for the normal flow
into the flow line. We then account for the inflow boundary condition at the
grounding line x = 0.

A 1-D advection equation for a layer on a flow line reads

𝜕hl
𝜕t = vx

𝜕hl
𝜕x . (A1)

In practice, real flow lines have some incoming or outgoing (normal) flux, qy,
where y denotes the horizontal direction perpendicular to x. We account for
this normal ice flux and instead solve

𝜕hl
𝜕t = vx

𝜕hl
𝜕x + rl(x)

𝜕qy(x)
𝜕y , (A2)

where rl(x) = hl(x)/h(x) is the ratio of thickness of layer l to the total thickness
of the shelf. This equation holds due to the plug flow assumption, in which the
flux divergence 𝜕qy/𝜕y is independent of the depth z. The quantity 𝜕qy/𝜕y
is constant for all layers and independent of the layer thickness. This normal
flux component accounts for lateral compression or extension of the flowtube
centered on the flow line, and in our case we estimate it from satellite inferred
velocities. For EIS, the normal flow component is small compared to the total
mass balance along the flow lines, but for other cases this correction might be
much more significant.

In order to define the inflow boundary condition, we would need to know
the relative thickness of the incoming layers (or alternatively, the vertical
age distribution at x0). This is typically not available in radar measurements
of the stratigraphy. It is, therefore, important to use only the IRH eleva-
tion information within the LMI body of the flow line. This is the region of
our domain which is independent of the boundary condition we chose at
x0 (Fig. A1). This region can be found by tracking the trajectory traced by
a particle initially at (x = x0, z = s(x0)). The LMI body is the region
of the domain above this path. As a consequence of this consideration, we
need to discard more of the IRH elevation data for the deeper IRHs in the
dataset.

For a complete definition of the simulator, we still need to define some
boundary condition at x0. Since the true boundary condition is not known, we
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Figure A1. Local meteoric ice (LMI) body. The layer elevations in the LMI body (shaded region) are independent of the inflow boundary conditions. Outside the LMI body, the
layer elevations are dependent on this boundary condition, and so using IRH observations within this region would require assuming the internal stratigraphy of the incoming
ice.

choose an inflow boundary condition which improves the numerical stability
of the layer tracing model,

𝜕hi
𝜕t =

𝜕qx
𝜕x ∣

x=0
+ ri(x)

𝜕qy(x)
𝜕y . (A3)

This boundary condition makes the implicit assumption that near the inflow
boundary, the layer thickness profile is a scalar multiple of the total thickness,

h(x)
𝜕hi(x)

𝜕x = hi(x)
𝜕h(x)

𝜕x . (A4)

We define a similar boundary condition at x = Lx; however, this boundary
condition does not have a similar effect on the applicability of the IRH data.

Appendix B. Calibrating the simulator
Wecalibrate hyperparameters of the noisemodel using a set of 1000 simulations
for the same ice shelf geometry, velocity and mass-balance parameters prior.
This set of calibration simulations is not used again to train NPE (Section 2.2.1)
to avoid overfitting. We use the same set of calibration simulations to cali-
brate the per-layer LMI boundary mask (Section 2.2.2). Algorithm 1 defines
our calibration procedure for the parameters of the noise distribution for
EIS.

In Section 2.2.3, we used the LMI boundary i(m) for each IRH m in order
to define the domain xi⩾i(m) on which we compare the observed IRH data
to the simulated isochronal layers. The physical interpretation of the LMI
boundary is found in Appendix A, and here we specify the exact definition
of i(m).

For each simulation k in the calibration set, we define the trajectory of a
particle starting at the surface of the inflow boundary (x = 0, z = s(0)) by
pk(t) = (xk(t), zk(t)). In practice, since we are on a flow line, vx > 0 every-
where, and thus xk increases monotonically with t. Therefore, the trajectory
traces out a unique curve zk(x) in the domain.

Using this path, we define the LMI boundary i(m, k) for simulation k and
IRHm to be the first point in the x domain such that the path is below the IRH
elevation,

i(m, k) = min
i

{i : zk(xi) < em(xi)}. (B1)

In the case that the path stays above the IRH for the entire domain, we define
i(m, k) = Lx, meaning that the IRH is entirely outside the LMI body.

This definition gives a different LMI body for each simulation. In order to
perform inference, we require one a fixed LMI body boundary to use across all
simulations. We define i(m) ‘pessimistically’ as the 75th percentile of the calcu-
lated i(m, k) boundaries in the calibration set.Therefore, some of the simulated
layer elevations we use will be dependent on the unknown boundary conditions
but a small amount that should not affect the inferred results.

Appendix C. Additional information on simulation-based
inference

C.1. Tractable and intractable likelihood functions

Here, we provide intuition about the difference of forward models which have
intractable and tractable likelihood functions. Forward models which have
tractable likelihood functions are ones where the density p(X|𝜃) can be explic-
itly evaluated for a given (X, 𝜃) pair, where X refers to the observed data and 𝜃
are the parameters of the model. As an example, a common setting in glaciol-
ogy is a deterministic forward model with additive observational noise. Such
forward models are of the form

X = f (𝜃) + 𝜖, (C1)

where f (𝜃) is a deterministic function, and 𝜖 follows some distribution, 𝜖 ∼
p𝜖(𝜖). In such models, the likelihood p(X|𝜃) can be evaluated as

p(X|𝜃) = p𝜖(X − f (𝜃)). (C2)

A more general setting considers nondeterministic forward models, where
latent variables z are sampled, and then affect further computations in the
forward model. As a motivational example, consider a stochastic differen-
tial equation solved with an Euler–Maruyama scheme, that is, an iterative
update

Xt+1 = Xt + f (Xt, 𝜃, t)dt + g(Xt, 𝜃, t)zt
√
dt, (C3)

where f is now a deterministic function dependent on the state Xt and param-
eters 𝜃 and t, g is a deterministic function, and zt ∼ 𝒩(0, I) is random noise.
Suppose the outcome from this model is the state at the end of the simulation,
X = XT . In order to compute the likelihood of this model, we need to integrate
over all the noise samples z = [z1, … , zT−1],

p(X|𝜃) = ∫ p(X, z|𝜃)dz. (C4)

In general, approximating this integral is significantlymore expensive than gen-
erating a sample from p(X|𝜃) by simulating, and so we call this likelihood
intractable

For our forward model, the intractability of the likelihood follows from
the fact that we select the closest layer to the IRH after sampling the noise.
Therefore, the noise model cannot be efficiently calculated as in Eqn (C2). Note
that, even in the case of tractable likelihood functions, it might be beneficial to
use ‘likelihood-free’ inferencemethods, for example in the case that the forward
model is computationally expensive to compute.

C.2. Normalizing flows

While NPE can be performedwith any valid parameterization of the variational
distribution q𝜙(𝜃|X), in this work, we make the common choice to use a nor-
malizing flow model. In the following, we adapt the notation of Papamakarios
and others (2019a).
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Algorithm 1: Noise model calibration

The goal of normalizing flows is to learn a map from a distribution u ∼
pu(u) to a distribution of the same dimensionality x ∼ px(x). Here, px(x) is the
target distribution, and pu(u) is a simple distribution that can easily be evalu-
ated and sampled from (e.g. a multivariate Gaussian). If we can express x as a
differentiable, invertible transformation of u, i.e. x = T(u), then we can also
evaluate the probability

px(x) = pu(u)|detJT(u)|−1, (C5)

where u = T−1(x) and JT is the Jacobian matrix of the transformation T.
Normalizing flows are then defined by a sequence of transformations

T1, … ,TK which transform z0 = u to zK = TK ∘ ⋯ ∘ T1(u) = x. Each of
the transformations is learnable. The composition of differentiable, invertible
transformations is also invertible and differentiable, with the determinant of
the Jacobian satisfying

detJT2∘T1(u) = detJT2(T1(u)) ⋅ detJT1(u). (C6)

One common way to parameterize the individual transformations Ti is
through coupling transforms, where the input z is split into two parts, z =
[z1:d, zd+1:D], where D is the dimensionality of z ∈ ℝD. The first part,
z1:d, remains unchanged. The second part is transformed elementwise, z′

i =
𝜏(zi; hi), where 𝜏 is some monotonic function of zi conditioned on hi =
F(z1:d), for some learnable function F of the first d components of z. The vector
is permuted between each layer, so that not the same components are mapped
through the identity with each transformation. An advantage of this parameter-
ization is that the Jacobianmatrix can be calculated as the product of its diagonal
components, making the evaluation of the log-probabilities significantly faster.
In this work, we use neural spline flows (NSFs, Durkan and others 2019). In
NSFs, 𝜏 are monotonic spline functions, which are analytically invertible, yet
highly flexible.

C.3. Connection between NPE loss and Kullback-Leibler
divergence

We note that the expected forward KL divergence between the true posterior
p(𝜃|X) and the variational distribution q𝜙(𝜃|X) can be decomposed as

𝔼p(x)[DKL(p(𝜃|X||q𝜙(𝜃|X)))] = 𝔼p(X)p(𝜃|X) [log
p(𝜃|X)
q𝜙(𝜃|X)

]

= −𝔼p(X)p(𝜃|X)[log q𝜙(𝜃|X)] + 𝔼p(X)p(𝜃|X)[log p(𝜃|X)],
(C7)

where the first term on the right hand side is the negative of the loss in Eqn
(8), and the second term is independent of the variational parameters 𝜙 and
is thus a constant with respect to the variational parameters 𝜙 which we opti-
mize.Therefore,minimizing theNPE loss (Eqn (8)) is equivalent tominimizing
the expected forward KL divergence between the variational and true posterior
distributions.

C.4. Neural Likelihood Estimation

In our work, we use NPE to directly approximate the posterior distribu-
tion. However, other variants of SBI exist. In particular, a prominent method
of SBI is NLE (Wood, 2010; Papamakarios and others, 2019b). In NLE,
the goal is to approximate the likelihood function p(X|𝜃) from a dataset
of simulations {𝜃k,Xk}Kk=1. This likelihood can then be used to perform
Bayesian inference using the existing set of Bayesian inferencemethods, such as
Markov chain Monte Carlo (MCMC), or variational inference (Blei and others,
2017).

Similarly to NPE, we define a variational distribution (e.g. a normaliz-
ing flow), q𝜙(X|𝜃), which can be trained by minimizing the negative log-
probabilities of the model outcomes Xk given model parameters 𝜃k

ℒ(𝜙) = 𝔼𝜃k∼p(𝜃),Xk∼p(X|𝜃k)[− log q𝜙(Xk|𝜃k)]. (C8)

Notice that the conditioning of 𝜃k,Xk is reversed relative to Eqn (8).
The likelihood model learned in NLE can also be thought of as an emulator

of the forward model, as it allows us to draw samples X ∼ p(X|𝜃). This makes
NLEmethods advantageous also for problems where the likelihood is tractable,
as the learned emulators can typically be evaluated faster than the original for-
ward model. Related ideas have been explored for glaciological problems. For
example, Tarasov and others (2012) use Bayesian neural networks as a surro-
gate model for particular parameter-output pairs in a glacial systems model,
which they then use to perform inference with MCMC. Similarly, Brinkerhoff
and others (2021) use a deterministic residual neural network as a surrogate
model to predict a low-dimensional representation of outcomes from a sub-
glacial hydrology model. They then derive an approximation of the uncertainty
in this model to arrive at a nondeterministic likelihood which can then be used
for inference.

Appendix D. Further implementation details
For completeness, we give the values of the important hyperparameters
involved in the workflow. We provide the details of the spatial and temporal
resolutions of our various simulations, along with the regularization strengths
of the smoothing of the EIS data (Tables D1, D2 and D3).

During inference, we applied NPE as implemented in the sbi package
(Tejero-Cantero and others, 2020) to obtain the results for both the synthetic
(Section 3) and Ekstr ̈om (Section 4) ice shelves. We used the NSF (Durkan
and others, 2019) as implemented in Lueckmann and others (2021), and with
the same architecture of five flow transformations, two residual blocks of 50
hidden units each, ReLU nonlinearity and 10 bins. We also embedded the
500-dimensional observation of layer elevations to a 50-dimensional summary
statistic used as the condition for the NSF. The embedding network consisted
of two convolutional layers with kernel size 5, each followed by ReLU activa-
tions and max pooling with kernel size 2. The number of output channels for
the two convolutional layers were 6 and 12, respectively. The output channels
of the second convolutional layer were then concatenated and fed through two
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Table D1. Hyperparameters for synthetic ice shelf spin-up modeling

Parameter Value

Mesh resolution (x, y) (310m, 250m)
Spin-up duration 1000 years
Spin-up time step 1.0 years
Boundary conditions Dirichlet inflow and side boundaries

Table D2. Hyperparameters for the preprocessing of the data for Ekström Ice
Shelf

Parameter Value

Mesh resolution 300m
Thickness smoothness reg. penalty 1000
Log fluidity reg. penalty 1000
Boundary conditions Dirichlet inflow and side boundaries

Table D3. Layer tracer forward model simulation configuration

Parameter Value

Simulation time 1000 years
Time step 0.5 years

fully connected linear layers, each followed by ReLU activations. The number
of hidden units was set to 50. Training was done as in Lueckmann and others
(2021), with the exception that the batch size was set to 1000 (default is 50). For
each NPE run, we train five networks initialized with different random seeds
and report in our results the run with the best validation loss.

Following thework of Lueckmann andothers (2021), we split the simulation
dataset into training and validation datasets with a 90–10 split.We optimize the
loss in Eqn (8) using an Adam Optimizer (Kingma and Ba, 2015) with a batch
size of 50, a learning rate of 0.0005, with the maximum gradient norm clipped
to 5.0. For each training epoch, we calculate the validation loss on the entire
validation dataset. If the validation loss has not surpassed its best value for 20
training epochs, we assume convergence and stop training.

Appendix E. Computational costs
We provide a breakdown of the approximate computational costs of the dif-
ferent stages in our workflow for both synthetic and Ekstr ̈om Ice Shelves in
Tables E1 and E2, respectively.These are dependent the hardware used and vary
stochastically as a result of random number generators.This section is intended
to provide intuition into the relative scales of the different stages of theworkflow,
rather than exact measurements. We had access to 16-core Intel Xeon Gold 2.9
GHz CPU nodes and Nvidia RTX 2080ti GPU nodes. While the large number
evaluations of the forward layer tracing model were by far the most computa-
tionally intensive section of the workflow in both cases, these simulations were
trivially performed in parallel across CPU cores, thus reducing the wall-clock
time of the workflow.

This analysis highlights the advantages of our amortized approached to
inference. For EIS, the total computational time of the noiseless simulations
accounted for ≈ 99.8% of the total computational time of the workflow. The
simulations need not be repeated when we infer from other IRHs, greatly ben-
efiting the computational efficiency of inference as the number of IRHs in
the dataset increases. This advantage is slightly reduced when considering the
parallelizationwe have used (Table E2), as the training of the probability density

Table E1. Synthetic ice shelf approximate computational cost breakdown.
Some tasks are embarrassingly parallelizable—parallel resources and times are
shown in square brackets. All times reported in minutes

Task Node [parallel] Time [parallel]

Spin-up of ice shelf CPU 120
1000 calibration simulations CPU [100 cores] 1000 [10]
189 000 noiseless simulations CPU [100 cores] 2 × 105 [2000]
Noise and layer selection CPU [100 cores] 400 [20]
Training NPE for 1 IRH GPU 30

Note: Only the last two tasks need to be repeated for each IRH measurement.

Table E2. Ekström Ice Shelf approximate computational cost breakdown.
Some tasks are embarrassingly parallelizable—parallel resources and times are
shown in square brackets. All times reported in minutes

Task Node [parallel] Time [parallel]

Generating mesh CPU < 1
Data preprocessing CPU 10
1000 calibration simulations CPU [100 cores] 1000 [10]
189 000 noiseless simulations CPU [100 cores] 2 × 105 [2000]
Noise and layer selection CPU [100 cores] 400 [20]
Training NPE for 1 IRH GPU 30

Note: Only the last two tasks need to be repeated for each IRH measurement.

estimator is not easily parallelizable across GPU nodes. Accounting for this still
results in ≈ 97.6% of the computational cost being amortized.

Appendix F. Additional results
We show the posterior and posterior predictive distributions when inferring
from isochronal layer 3 in the synthetic ice shelf dataset, of age 150 years
(Fig. F1). This isochronal layer has average depth of 120m, comparable to the
deepest IRH in the Ekstr ̈om dataset. While the uncertainty is much higher
than for the shallow layer, the posterior over the surface accumulation still
shows a higher mean than the prior in the downstream section of the ice shelf.
Additionally, the posterior predictive reconstructs the ground truth isochronal
layer better than the prior predictive. The mean RMSE of the posterior predic-
tive layers relative to the ground truth is 13.6m, compared to 19.8m for the
prior. Therefore, we are still able to reconstruct additional information about
the mass balance parameters, even from much deeper layers.

We also explore the dependence of the inferred posterior over surface accu-
mulation rate on the depth of the layer used for inference in the synthetic case
(Fig. F2), similar to the analysis done in Section 5.2 for EIS. For the synthetic ice
shelf, the surface accumulation and basal melt rates were held constant for the
entire simulation time, and hence the increased uncertainty with depth seen in
Fig. F2 highlights that information about the mass balance parameters is grad-
ually lost with time as a result of the action of the simulator. Indeed, for the
deepest ground truth isochronal layer of average depth 183m, the posterior
distribution is almost identical to the prior distribution.

Finally, we report the RMSE in the predicted isochronal layer elevations,
relative to the true IRH (for EIS) or the ground truth isochronal layer (for the
synthetic ice shelf). This is done across simulations from 1000 simulations for
each of the prior and posterior distributions, for each IRH. The RMSE is con-
sistently lower for the posterior predictive distribution for all depths, for both
the synthetic ice shelf (Table F1) and EIS (Table F2).

Appendix G. Kottas traverse data
Here we describe the mapping of the surface accumulation measurements on
Kottas traverse to the flow line transect. For each measurement year, and each
location ̃xi on the Kottas traverse, we find the nearest point xi on the flow line
transect. We assume the accumulation rate at this point to be normally dis-
tributed, with mean ̃.ai (the Kottas traverse measurement at ̃xi), and variance
𝜎2.a|| ̃xi − xi||22/l .a. We set the length scale l .a = 2.5 km and the accumulation
rate variance 𝜎2.a = 0.252 m2 m−2. These values are chosen in accordance to the
definition of the surface accumulation rate prior distribution (Section 2.2.3).

The yearly variations of the estimated surface accumulation as measured
using the stake line along the Kottas traverse (Fig. G1) reasonably agree with
the posterior inferred using IRH 2. These show that there is a high year-to-
year variability in the surface accumulation (Mengert 2018, Fig. 13) even in
this steady-state region in East Antarctica. However, the mean of these yearly
measurements matches the inferred posterior mean closely.

Appendix H. Synthetic results with miscalibrated prior
Anadditional outcomeof our approach is the estimation of the age of isochronal
layers. However, the validity of this estimate depends on the prior distribution
containing the true mass-balance parameters. When the true mass-balance
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Figure F1. Prior and posterior (predictive) for the synthetic dataset. (a and c) Prior and posterior over surface accumulation and basal melt rates respectively for layer 3 of
the synthetic ice shelf, of age 150 years. Solid line is the distribution mean, the shaded region represents the 5th and 95th percentiles. The ground truth (GT) parameters used
to generate the reference isochronoal layer are also shown. (b) Cross section of the ice shelf. Prior and posterior predictive distributions for the layer closest matching the
ground truth isochronal layer. The vertical dashed line represents the LMI boundary for this isochronal layer. The posterior predictive reconstructs the observed layer with
higher accuracy and lower uncertainty. The posterior predictive distribution of the age of the isochronal layer is 224+139

−71 years.

Figure F2. Synthetic shelf: dependence of posterior surface accumulation rate on depth of layer used for inference.

parameters have low probability under the prior distribution, the resulting
estimate for the age of the isochronal layer can bewrong.We test this on the syn-
thetic ice shelf by choosing a ground truth surface accumulation .amis that has
low probability under the prior distribution. We calculate the isochronal layer
of age 100 years under this ground truth and obtain the posterior distribution
as before, using the same set of simulations as in the main text. The posterior

does not capture that themean surface accumulation rate should be higher than
what is defined in the prior (Fig. H1a). However, this is not a failure of the infer-
ence method, as we can see that the posterior predictive still reconstructs the
ground truth isochronal layer at higher fidelity than the prior (Fig. H1b). The
predicted age of the isochronal layer 164+101

−44 years, which greatly overestimates
the true age of 100 years.
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Table F1. Synthetic ice shelf—prior and posterior predictive distribution root-mean-square error (RMSE) relative to ground truth IRH, estimated from 1000 samples.
The mean and standard deviations (SDs) in the RMSE are reported. All values are in meters

Prior Posterior

IRH number RMSE mean RMSE SD RMSE mean RMSE SD

1 11.5 3.9 3.9 0.5
2 16.0 7.6 7.3 1.2
3 19.8 8.4 13.6 3.5
4 22.1 7.9 19.8 6.8

Table F2. Ekström Ice Shelf—prior and posterior predictive distribution root-mean-square error (RMSE) relative to ground truth IRH, estimated from 1000 samples.
The mean and standard deviations (SDs) in the RMSE are reported. All values are in meters

Prior Posterior

IRH number RMSE mean RMSE SD RMSE mean RMSE SD

1 6.8 2.1 3.0 0.9
2 11.8 3.4 4.6 1.3
3 17.0 6.6 6.8 1.4
4 16.4 7.6 10.0 2.1

40

Figure G1. Yearly variations of the Kottas surface accumulation stakes measurement dataset. Years shown are 1995–2005 and 2017–19. These are compared with the posterior
distribution inferred using IRH 1 of the Ekström IRH dataset.
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Figure H1. Prior and posterior (predictive) for the synthetic ice shelf with the low-probability ground truth. (a and c) Prior and posterior over surface accumulation and basal
melt rates respectively for an isochronal layer of age 100 years. Solid line is the distribution mean, the shaded region represents the 5th and 95th percentiles. The ground
truth (GT) parameters used to generate the reference isochronal layer are also shown. (b) Cross section of the ice shelf. Prior and posterior predictive distributions for the
layer closest matching the ground truth isochronal layer. The vertical dashed line represents the LMI boundary for this isochronal layer. The posterior predictive reconstructs
the observed layer with higher accuracy and lower uncertainty. The posterior predictive distribution of the age of the isochronal layer is 164+101

−44 years.

Appendix I. Radar data

Figure I1. Radargram along transect. Zoom in on section of vertical cross-section view of the radar transect (Figure 5c). Color gradient indicates radargram data from radar
survey of transect. The four labeled IRHs picked from this radargram are labeled in order of depth.
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