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Abstract

We investigate the consequences of periodic, on–off glucose infusion on the
glucose–insulin regulatory system based on a system-level mathematical model with
two explicit time delays. Studying the effects of such infusion protocols is math-
ematically challenging yet a promising direction for probing the system response
to infusion. We pay special attention to the interplay of periodic infusion with
intermediate-time-scale, ultradian oscillations that arise as a result of the physiological
response of glucose uptake and back-release into the bloodstream. By using numerical
solvers and numerical continuation software, we investigate the response of the model to
different infusion patterns, explore how these patterns affect the overall levels of glucose
and insulin, and how this can lead to entrainment. By doing so, we provide a road-map
of system responses that can potentially help identify new, less-invasive, test strategies
for detecting abnormal responses to glucose uptake without falling into lockstep with
the infusion pattern.

2020 Mathematics subject classification: primary 34K18; secondary 92B25.

Keywords and phrases: glucose–insulin regulatory system, mathematical modelling,
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1. Introduction

Cyclic rhythms are widely recognized for their significant role in regulating the
function of biological and physiological systems [16, 28]. Endogenic oscillations are
typically encountered in healthy individuals, while a progressive lack of control of
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these rhythms is often associated with system stress (for example, sleep deprivation
[50, 51]) and disease evolution in humans [45].

A prominent example of such endocrine oscillations in the human body is the
self-regulation of blood glucose levels [19]. When blood glucose levels increase,
insulin is released from the pancreas. Insulin then causes blood glucose levels to
decrease by stimulating body cells to absorb glucose from the blood. Conversely,
when blood glucose levels fall, pancreatic α-cells release glucagon stimulating hepatic
glycogenolysis and neoglucogenesis. The level of blood glucose is then controlled by
the rates of insulin secretion (activation by glucose) and hepatic glucose production
(inhibition by insulin). Within the glucose–insulin regulatory system, both rapid
oscillations of insulin (period ∼ 6 to 15 minutes) and ultradian oscillation of glucose
and insulin (of similar period ∼ 100 to 150 minutes [42, 49, 52]) have been observed
during fasting, meal ingestion, continuous enteral and intravenous nutrition [38].

The most important pathway to understanding the underlying mechanisms of these
glucose–insulin oscillations is measuring the response to glucose infusions. A large
quantity of metrics and mathematical models have been devised for that purpose.
While the HBA1c metric remains an essential tool for the diagnosis, prevention and
control of Type 2 diabetes [2], clinical tests involving patterns of glucose intake
combined with mathematical models provide a mechanism for evaluating the efficacy
of internal regulation [1, 24, 34, 39]. The minimal model devised by Bergman and
Cobelli [4, 5] provides an effective method for estimating insulin sensitivity from
an intravenous or oral glucose tolerance test, although it can lead to underestimation
in individuals with a large acute insulin response [20]. With the wider availability
of continuous glucose monitors and automated insulin pumps, the ability to detect
diabetic deficiencies relies on the capacity of models to reproduce more complex
and realistic dynamics under various routine life conditions such as, for example,
sleep deprivation [50]. These new capabilities potentially allow for less-invasive test
strategies that do not require the detection of high-glucose levels in response to
a test.

The main goal of this article is to identify the types of behaviours in a suitable
mathematical model that can be expected as a response to periodic glucose uptake,
specifically periodic on–off glucose infusions, which can be implemented in practice
as repeated lower-dose intravenous injections (see, for example, [46, 53]).

We focus on the capacity of the system to fall into lockstep with the frequency
of a sufficiently strong glucose stimulus (so-called entrainment) which has been
observed in numerous contexts at the ultradian and circadian levels in endocrinology
[24, 54, 56], but especially in models of glucose–insulin oscillations with periodic
infusion [47]. In particular, we will keep track of the peak glucose values exhibited
by the model, allowing us to describe dynamical features which do not require high
glucose doses.

Many efforts have been made to replicate the nonlinear response of the glycolytic
system; in particular, the mathematical modelling of the delayed response of individual
parts of the system by explicit time delays has proven an effective means to explain
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FIGURE 1. (a) Diagrammatic overview of the glucose–insulin regulatory delayed-feedback model
(2.1)–(2.2). (b)–(e) Characteristic time series of system (2.1)–(2.2) (with positive constant history)
for different patterns of on–off glucose infusion. Intervals of fasting (infusion off) are indicated by
a white background while intervals of glucose infusion (on) with constant rate Gmax, period Tin and
duration tin are indicated by a light blue background. (b) and (e) Periodic oscillations; (c) damped
oscillations; (d) irregular oscillations. Units are [G] mg dl−1, [I] mU l−1 and [t] h. Infusion rates
when not fasting are Gmax = 1.35 mg dl−1min−1 in panels (c)–(d) and Gmax = 24.3 mg dl−1min−1 in
panel (e); period of infusion is Tin = 1 h in panel (d) and Tin = 3 h in panel (e); time of infusion is
tin = 30 min in panel (d) and tin = 5 min in panel (e). See Section 2 for the mathematical formulation and
implementation.

the onset of self-sustained, ultradian oscillations in the glycemic system [7, 8, 32].
A common approach to modelling oscillatory behaviour of complex biology is to
consider time delays [15]. In particular, models of endocrine regulation often incor-
porate explicit delays to account for the time required for the synthesis, release and
action of hormones or metabolites [54]. Various models of intrapancreatic rhythmic
activity have been proposed recently, see [24] for a review. For example, it was shown
that glucose oscillations can enhance the insulin secretory response at the β-cell level
when tweaked at a suitable amplitude and frequency [35]. Negative delayed feedback
has also been shown to provide a suitable explanatory mechanism for the coordinated
pancreatic islet activity [6].

In this paper, we investigate a two-component, system-level mathematical model
(see (2.1)–(2.2)) for blood glucose level G(t) and insulin level I(t) with two explicit
time delays τI and τG corresponding to pancreatic insulin and hepatic glucose
production pathways. The model incorporates the following physiological processes
and factors that influence glucose and insulin dynamics, see Figure 1(a) for a schematic
overview.

• Glucose uptake: Gin(t) represents the time-dependent glucose uptake into the
blood by meal ingestion, continuous enteral or intravenous nutrition.

• Insulin production: f1 represents the production of insulin. It is influenced by the
concentration of glucose with a delay τI to account for the time lag between high
glucose levels triggering insulin production in the pancreas and when it becomes
available for reducing glucose in the bloodstream.
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• Insulin-independent glucose utilization: f2 describes the utilization of glucose by
tissues, mainly the brain, in an insulin-independent manner. It does not rely on
the presence of insulin.

• Insulin-dependent glucose utilization: f3 · f4 represents the utilization of glucose
by muscle tissues in an insulin-dependent manner. It reflects the capacity of
tissues to use insulin for glucose uptake.

• Glucose production by the liver: f5 represents the production of glucose by the
liver. The delay τG represents the time between hepatic glucose production and
insulin stimulation.

• Insulin degradation: The rate d accounts for the degradation of insulin in the
body, primarily by the liver and kidneys. It combines both natural factors (for
example, exercise) and artificial factors (for example, medication) that influence
the rate of insulin degradation.

The nonlinear pathways f1, f2, f3, f4 and f5 are represented using Hill-type functions
(which are commonly used in biological modelling [14]), depending on the glucose
and/or insulin concentration in the blood stream at the current time point t and at two
specific lag values t − τI and t − τG. The delays τI and τG are important physiological
parameters encapsulating the responsitivity of the signalling and production pathways.
They are assumed to be constant for the purpose of this article, although in practice,
they can vary between individuals, as well as during the day and lifespan, and
especially in the presence of diabetes. The model originates from the work of Sturis
and collaborators who devised a model of glucose and insulin ultradian oscillations
which were observed experimentally under various conditions [48]. It has been
extensively analyzed by various authors (including authors of this paper) in the case of
constant rates of glucose infusion [22, 23, 31, 32]. We also remark here that the model
belongs to a larger class of models incorporating delays to capture secretion processes
[34, 43].

We extend these earlier efforts on the analysis of the model by studying its
response to periodic variations of the parameter Gin, that is, periodic variations of
glucose uptake, by using available software for numerical analysis of delay differential
equations (see Appendix B for details on numerical implementation). In particular,
we consider on–off infusion, a form of periodic infusion that is comparatively easy
to implement in practice, where the rate of glucose infusion periodically switches
between a positive constant value and zero. Figures 1(b)–(e) show prototypical exam-
ples for the response of system (2.1)–(2.2) for various types of glucose uptake during
fasting in panel (b), glucose infusion with a (relatively high) constant rate in panel (c)
and periodic on–off infusion in panels (d),(e). We first investigate the loss of ultradian
oscillations under sufficiently strong constant infusion, see Figures 1(b),(c). We then
aim to study the effects of different glucose infusion patterns Gin on glucose home-
ostasis, in particular, the transiton from quasi-periodicity to entrainment accompanied
by potentially large peak values of glucose, as shown in Figures 1(d),(e), a transition
which—as we will show—is governed by a Torus (or Neimark–Sacker) bifurcation.
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2. Glucose–insulin regulatory delayed-feedback model

We consider the system-level mathematical model

G′(t) = Gin(t) − f2(G(t)) − f3(G(t))f4(I(t)) + f5(I(t − τG)), (2.1)
I′(t) = f1(G(t − τI)) − dI(t), (2.2)

with variables I(t) and G(t) representing the quantities of glucose (mg) and insulin
(mU) in the plasma at time instant t. These are subsequently converted to concentra-
tions in standard units (that is, mg dl−1 and mU l−1 for glucose and insulin, respec-
tively) for all graphs in this paper by dividing by the corresponding compartmental
volume (more precisely Vg and Vp, see below).

The model has been proposed and studied by Li and collaborators [31, 32] as a
model with explicit time delays to study the ultradian oscillations of insulin secretion,
building on the original work of Sturis et al. [49]. Specifically, system (2.1)–(2.2)
explicitly depends on time delays τI and τG respectively representing the system’s
response time to insulin production as a result to glucose uptake and the production
of glucose by the liver as a result of low insulin levels. Glucose intake is modelled
by parameters Gmax, Tin and tin, which respectively represent the maximal value
of the infusion, the time between infusions and the duration of each infusion. The
physiological response of the body is modelled by the nonlinearities

f1(G) =
RmGh1

Gh1 + (Vgk1)h1
, f2(G) =

UbGh2

Gh2 + (Vgk2)h2
, f3(G) =

G
C3Vg

,

f4(I) = U0 +
(Um − U0)Ih4

Ih4 + (1/Vi + 1/(Eti))−h4 kh4
4

, f5(I) =
RgIh5

Ih5 + (Vpk5)h5
,

(2.3)

where typical parameter values [23, 32] are provided in Table 1 with corresponding
units.

Insulin degradation is modelled by a constant rate d. Throughout the paper, we fix
d = 0.06. The model has been considered before and has been analysed extensively
including some of the authors [22, 23, 31, 32]. In particular, it can be shown that,
for the parameter values considered and in the absence of infusion, there is a unique
equilibrium solution (G∗, I∗) [3, 31]. We fix delay parameters used for numerical
simulation to τI = 5 and τG = 20 if not stated otherwise. For the general theory
of delay differential equations, such as existence, uniqueness and the stability of
solutions, we refer the interested reader to classic textbooks on the topic [9, 21].

For the purposes of numerical bifurcation analysis, we choose to model the
(discontinuous) on–off periodic infusion by a smooth, periodic, quickly varying
function between Gin(t) = 0 in mg (dl·min)−1 (no infusion) and Gin(t) = Gmax (constant
glucose infusion), respectively. This continuity is also more compatible with the
physiological nature of the system, wherein glucose levels can only vary continuously
in response to a stimulus due to diffusion processes. We consider the specific form
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TABLE 1. Values and units for parameters appearing in model functions (2.3), (from [23, 49]).

Constant Value Units Constant Value Units

Rm 210 mUmin−1 Vi 11 l
Rg 180 mgmin−1 Vg 10 l
C3 1000 mg l−1 Vp 3 l
Ub 72 mgmin−1 U0 40 mgmin−1

Um 940 mgmin−1 E 0.2 lmin−1

ti 100 min d 0.06 min−1

h1 2 – k1 6000 mg l−1

h2 1.8 – k2 103.5 mg l−1

h4 1.5 – k4 80 mU l−1

h5 −8.54 – k5 26.7 mU l−1

FIGURE 2. Form of glucose infusion used to obtain Figures 1(d),(e). Parameters are: (a) Gmax = 1.35 mg
dl−1min−1, Tin = 1 h and tin = 30 min; and (b) Gmax = 24.3 mg dl−1min−1, Tin = 3 h, tin = 5 min.

Gin(t) = Gmax · s(t − σG),
s(t) = h(sin(2πt/Tin)) · h(sin(2π(t − tin)/Tin − π)),

(2.4)

where the sigmoidal function h(y) = (1 + exp(−ky))−1 can be considered as a smooth
version of the Heaviside step function H(y) = 0 if y < 0, and H(y) = 1 if y ≥ 0 for
sufficiently large k; see Appendix B for details about the numerical implementation.
The form of (2.4) was inspired by a model for auditory perception [12]. Here, Tin is
the time between consecutive shots of glucose/insulin with duration tin, and the lag
σG can be used to specify the timing of the infusion with respect to the underlying
oscillation. The parameter k models the initial and terminal variations at the beginning
and end of the shot application. We find k = 100 to be sufficiently large to generate
a well-enough approximation h to the Heaviside function; in particular, we do not
observe significant dynamical changes when choosing larger k. Figures 2(a) and (b)
show the specific shape of the infusion patterns used for numerical computation of
time series in Figure 1(d),(e).
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3. Results of numerical bifurcation analysis

3.1. Constant glucose infusion and ultradian oscillations It has been shown that
for a fixed constant glucose infusion Gin, sufficiently large values of the response
delays τ1 and τ2 lead to periodic oscillations in system (2.1)–(2.2) with periods in the
experimentally observed range for ultradian oscillations [22, 23, 32]. Mathematically
speaking, the onset of oscillations is mediated by a supercritical Hopf bifurcation that
leads to a local topological change in the solution space of system (2.1)–(2.2) from
a stable equilibrium to a situation of an unstable equilibrium surrounded by a small
stable limit cycle (to the right of the critical curve, that is, for larger values of the
delays) close to the bifurcation point [31]. For details on bifurcation theory and the
Hopf bifurcation, we refer the interested reader to [30]. To witness the bifurcation
point, it is necessary to vary at least one parameter of the system. Here, we focus on
the response delays τI and τG. Allowing these two parameters to vary simultaneously,
one obtains a weakly nonlinear one-parameter curve H(ω) = (τI(ω), τG(ω)) of Hopf
bifurcation in the (τI , τG)-plane in terms of the Hopf frequencies ω, (see Appendix A
for a detailed derivation). The curve H(ω) corresponds to the critical curve for
oscillations in system (2.1)–(2.2).

Figure 3(a) shows the curve H (black) during fasting, that is, for Gin(t) = 0,
computed with the software package DDE-Biftool for Matlab [10, 11, 44]. It has been
numerically verified that the curve H is indeed supercritical for the range of parameter
values considered. Figure 3(a) can be interpreted as follows. First, for value pairs
above the curve and for τI ≤ 20 min, τG ≤ 60 min, any solution of the model starting
in a physiological range of glucose and insulin develops periodic oscillations (see
Figure 1(b)). Second, for value pairs (τI , τG) below the curve H, oscillations in system
(2.1)–(2.2) decay and approach the equilibrium (G∗, I∗). This corresponds to a situation
where the delay coupling is not strong enough to deviate from the equilibrium and
produce detectable oscillations. In the nonfasting case, we also note that the constant
administration of glucose dose that is too high to be managed in an oscillatory manner
within physiological glucose and insulin ranges also leads to a loss of oscillations,
compare Figure 1(c).

Figure 3(a) also gives an overview of the resulting period of oscillation above the
critical curve H shown in the form of isocurves (blue) of limit cycles with constant
period. The physiological range of parameters (τI , τG) is highlighted by a light blue
square in the background for convenience. The range of expected periods for ultradian
oscillations as predicted by the model thus ranges from 2.2 to 4.2 hours during
fasting. More generally, we observe the period of the limit cycle oscillation grows
approximately linear with the sum of the two delay values τI + τG. We also observe
that away from the curve H, the limit cycle oscillation becomes increasingly less
sinusoidal, that is, the nonlinearity of system (2.1)–(2.2) has increasingly more of an
effect on the limit cycle. Figures 3(b),(c) illustrate this effect by plotting isocurves of
periodic orbit with constant minimum and maximum glucose within one period of
oscillation. We observe that, whereas the glucose minimum decreases approximately
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FIGURE 3. Characterization of fasting oscillations with respect to response delays. Panels show the (a)
period, (b) maximum glucose value and (c) minimum glucose value as a function of response delays τI

(min) and τG (min). Shown are the critical curve for oscillations (black, Hopf bifurcation) and iso-curves
(blue) with constant period in panel (a), glucose-maxima in panel (b) and minimum of G in panel (c).
The light blue rectangle indicates the physiologically amenable range of delay values for comparison. See
Section 2 for the model and choice of parameters.

FIGURE 4. Position of the critical curve (curve of Hopf bifurcation, supercritical) in the (τI , τG)-plane
for various values of constant glucose infusion Gin = Gmax ranging from (a) 0 to 0.5 and from (b) 0.6 to
1.6 mg dl−1 min−1 (all black). The light blue rectangle shows the physiological range of delay values for
comparison.

linearly with the sum of the delays τI + τG, the maximum G remains almost constant
for the range of parameter values considered. Note that this predicted effect of long
response delays is potentially harmful and is virtually undetectable by common testing
methods.

However, we observe that, for fixed values of the delays, gradually increasing the
glucose infusion leads to a loss of oscillations. This phenomenon has been observed
before and can be interpreted as an insufficient insulin secretion to accommodate
the infusion, forcing the system to lower glucose levels [31]. Figure 4 shows how
the location of the curve H changes for various levels of constant glucose infusion,
Gin(t) = Gmax. We observe two different types of change for values in the approximate
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ranges 0 ≤ Gmax ≤ 0.55 mg dl−1 min−1 and Gmax > 0.55 mg dl−1 min−1 shown in
Figures 4(a) and (b), respectively. Figure 4(a) suggests that low levels of Gin promote
oscillations in system (2.1)–(2.2) as compared with the fasting case. This trend reverses
at approximately Gmax = 0.55 mg dl−1 min−1, where the location of the curve H starts
moving to increasingly larger values of τI and τG, see Figure 4(b). Approximately at
Gmax = 1.2 mg dl−1 min−1, the position of H is comparable with the starting location
for Gmax = 0. Further increasing Gmax moves H inside the physiological range of
delay values (light blue) and finally beyond causing all oscillations to cease in the
physiological parameter regime. Compare also Figures 1(b),(c) for an illustration of
this transition and the loss of oscillations for (τI , τG) = (5, 20).

3.2. Amplitude response to on–off glucose infusion We now investigate the effect
of periodic glucose infusion on baseline fasting oscillations shown in Figure 1(b), that
is, we fix τI = 5 min, τG = 20 min and periodically adjust the level of Gin between 0
and a positive value Gmax to be specified. The natural frequency of ultradian oscillation
in this case is T0 ≈ 2.2 h. We show that the resulting glucose and insulin ranges depend
sensitively on the period of the on–off infusion.

3.2.1. Long infusion time compared with period Figures 1(d),(e) show two of the
possible outcomes with different maximal infusion strength Gmax, period of infusion
Tin and infusion duration tin. Figure 1(d) shows the result of periodic infusion with
Gin = 1.35 mg dl−1 min−1 for tin = 30 min every Tin = 60 min, resulting in so-called
quasi-periodic oscillations. Indeed, quasi-periodic oscillations are characterized by the
presence of an oscillating envelope of the oscillation that evolves on a much slower
time-scale. This is in sharp contrast with panels (b) (no infusion) and (c) (constant
infusion with the same maximum rate) of Figure 1, where we have either periodic
oscillations or a decay of oscillations towards the equilibrium state. Quasi-periodic
oscillations can be expected to occur in oscillatory systems which are externally
driven by an input with noncommensurable period, here Tin/T0 = 2.2. In this case,
the effect of infusion very much depends on its current state: when insulin is low,
glucose increases quickly; when insulin is high, glucose cannot increase further and
the infusion only delays the expected decrease in glucose levels.

Periodicity of the oscillations can be restored by adjusting Gmax and Tin. Figure 5
summarizes the response of system (2.1)–(2.2) to periodic forcing with different values
of Gmax and Tin. The locus in parameter space of the quasi-periodic oscillation shown
in Figure 1(d) is indicated by a green rectangle. Figure 5 shows the overall glucose
maximum (in colour code) observed over a time span of 100 · (Tin + τI + τG) minutes.
The various mechanisms generating periodic rhythms can be understood from the
numerically computed bifurcation curves shown in Figure 5. These correspond to
curves of torus bifurcations T (purple), curves F (red) of fold (or saddle-node) bifur-
cations of periodic orbits and curves PD (magenta) of period-doubling bifurcations
of periodic orbits. All these curves mark the transition to periodic solutions and thus
characterize the so-called entrainment of oscillations.
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FIGURE 5. Response of model (2.1)–(2.2) to glucose infusion protocol (2.4) with maximum infusion rate
Gmax (mg (dl min)−1) and length of infusion tin = Tin/2 (h). Shown is the maximum value of G (mg dl−1)
in colourcode (blue–white) obtained by integration for various Tin and Gmax over 100(τI + τG + Tin) time
units. The maximum data are overlaid by the curve of torus bifurcation (purple), curves of fold bifurcation
of periodic orbits (red) and curves of period doubling bifurcation (magenta) bounding regions of locking
to the infusion protocol. Other parameters are τI = 5 min and τG = 20 min. The green square indicates
the parameter values leading to the quasi-periodic behaviour plotted in figure 1(d).

The curves F respectively enclose deltoid-like regions—which can be viewed as
resonance or locking tongues—extending from the line Gmax = 0, inside of which
we observe periodic oscillations. The curves F emerge pairwise from resonant points
where the infusion period is a rational multiple of the natural period of the system
without infusion, that is, pTin = qT0 for integers p, q. Figure 5 shows the first three
principal resonances of system (2.1)–(2.2), where p = 1, 2, 3 and q = 1. It is expected
that such resonance tongues emanate from the line Gmax = 0 at every rational value
of T0/Tin. These higher order resonances (except p = 4 and q = 1 which is outside of
the considered range of parameter values) have been omitted from the computation as
they are typically very narrow and thus unlikely to be of physiological relevance.

This behaviour persists moving towards larger values of Gmax into the regions that
are bounded approximately by the curves T, where the underlying stable periodic orbit
destabilizes and gives rise to a torus that corresponds to quasi-periodic oscillations.
We find numerical evidence that the direction with which this torus emanates from
the curve T can change and gives rise to the discontinuous transition between the
observed maximum values in Figure 5. The curves T each emanate from either point
of intersection with a curve F or PD. Intersections with curves PD correspond to
higher order locking between the ultradian oscillations and the infusion. Overall,
we observe that the strength and period of the infusion have a crucial effect on the
resulting amplitude of the oscillations. For instance, forcing the system periodically
with T0 = Tin and relative amplitude Gmax = 1 mg dl−1 min−1 leads to a 40% increase
of the overall amplitude of the oscillation (which appears to be still in the physiological
range). In contrast, stimulating the system with a gradually increasing Gmax in the 2:1
regime first goes through a phase during which glucose amplitudes remain relatively
constant before slowly increasing.

More generally, we observe that, for the assumed values of the response delays,
periodic infusion with Tin = 2tin > T0 and Gmax is sufficient for the resulting period of
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FIGURE 6. Response of model (2.1)–(2.2) to glucose infusion protocol (2.4) with average infusion
rate Ḡ = Gmax · tin/Tin mg dl−1 min−1 over the length of infusion tin (min) with constant period
Tin = 180 (min). Shown is the maximum value of G (mg dl−1) in colourcode (blue–red) obtained by
integration for various tin and Ḡ. The maximum data are overlaid by the torus bifurcation curve (purple).
Other parameters are τI = 5 min and τG = 20 min.

the resulting glucose–insulin oscillation to be set by (locked to) the period of glucose
infusion.

3.2.2. Short infusion time compared with period We note here that locking can be
achieved when the same glucose dose is delivered in a shorter period of time, resulting
in a more concentrated and intense infusion. To further explore this phenomenon,
we conducted additional experiments using an on–off glucose infusion protocol with
a fixed infusion period of Tin = 180 min. Figure 6 showcases the results obtained
from these experiments, where we varied both the infusion time tin and the average
glucose dose per minute Ḡ, represented by Gmax · tin/Tin. We observe a locus in the
parameter space that corresponds to the quasi-periodic orbit illustrated in Figure 1(e).
This locus is denoted by a distinctive yellow diamond marker, which highlights the
specific combination of infusion time and glucose dose that leads to the observed
quasi-periodic behaviour. Additionally, we present a curve labelled as T, which
represents a torus bifurcation curve. This curve serves as an indicator of the critical
transition point between entrainment and quasi-periodic oscillation in response to the
infusion protocol.

4. Discussion

It is well documented that glucose rhythms stimulate pulsatile pancreatic
insulin secretion at various timescales [41, 48]. For example, the 1:1 entrainment
mode—namely one ultradian glucose oscillation per glucose infusion cycle—was
clinically shown to be present using a sinusoidal glucose infusion in individuals
without diabetes [38, 47]. Our analysis of periodically driven ultradian oscillations
highlights that a periodic on–off stimulus, closer to normal daily conditions, also
possesses the ability to entrain glucose rhythms. Furthermore, the duration of each
glucose input has a crucial impact on the generation of periodic rhythms, as well as
on attained glycemic levels. This theoretically provides a method for delivering a fixed
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glucose dose while minimizing the amplitude of the resulting rhythm. This can be
achieved by either altering the period of the infusion or the length of each pulse. This
is most observable in Figure 6, where stretching the infusion duration leads to lower
glucose amplitudes. For example, consider a scenario where glucose is infused every
180 minute over a 12-hour period. Infusing a dose with Gmax = 2.4 mg dl−1 min−1 over
tin = 30 minutes leads to a maximal glucose value around 150 mg dl−1. In contrast,
a dose with Gmax = 1.2 mg dl−1 min−1 over tin = 60 minutes reduces the maximal
glucose level to approximately 125 mg dl−1. In both cases, the average dose per minute
is Ḡ = 0.4 mg dl−1 min−1, and a total dose of 288 mg dl−1 is infused over the 12-hour
timespan.

Our study shows that the system’s response to glucose infusion patterns provides
multiple pathways for the production of stable oscillatory rhythms and entrainment,
which has also been shown for simpler models of glucose–insulin regulation featuring
delays, for example, [33, 40, 43]. However, it is clear from Figures 5–6 that only
measuring maximum glucose levels is not sufficient to characterize the response of the
system to periodic on–off infusion, and a more or less continuous-time measurement
of, at least, glucose is required. There are several other limitations that should be
mentioned here. First, let us note that while the exact location of bifurcation curves
would depend on model parameters, the bifurcation types are likely to remain the same
for parameter ranges representing nondiabetic individuals. Our model assumes fixed
values for the delays in insulin and glucose production pathways, represented by τI

and τG, respectively. In reality, these delays can vary between individuals and change
over short and long timescales due to daily-life factors such as exercise, aging and the
presence of insulin resistance. Future research could incorporate individual-specific
delays to account for this variability and investigate their impact on the system’s
dynamics.

It is worth noting that our model relies solely on plasma glucose and insulin
measurements for prediction, which highlights the importance of accurate and reliable
measurements in clinical settings. The nonlinear structure of the model allows for the
description of nontrivial dynamics and enhances parameter identifiability. This aspect
is crucial for developing robust and accurate models that can capture the complex
dynamics of the glucose–insulin regulatory system.

Moreover, the timing of the glucose infusion does not influence the bifurcation
structure (5), nor the glucose–insulin ranges of the periodic rhythms. In other words,
the long-term dynamics is not dependent on the starting time of the periodic on–off
glucose infusion. This is not to say that timing does not have a crucial importance.
While the investigated infusion ranges ensured the positivity of glucose and insulin
values, values below or above healthy physiological ranges may appear in the transient
path to the limit cycle. We emphasize that we exclusively consider here a continuous
glucose stimulus in this paper and that, in this context, no evidence of delay-induced
uncertainty could be observed [25, 26].

In turn, additional dynamics may emerge from interactions with other phys-
iological feedback loops or subsystems, such as the glucagon pathway or the
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hypothalamic-pituitary-adrenal axis, for which the alignment with glucose regulation
is essential for maintaining good health [18, 55]. The recent incorporation of glucagon
[8] in models of the glucose–insulin feedback system may help provide a more
complete and quantitative picture of dynamical interactions occurring within the
pancreas [17, 36], which can be used to improve quantitative tests for the detection and
measurement of insulin and glucagon resistance [37].

Another aspect to consider is the interaction between the glucose–insulin regu-
latory system and other physiological processes. Our model focuses solely on the
glucose–insulin loop, but in reality, there are complex interactions between various
metabolic pathways, hormones and organs. Integrating these interactions into a
comprehensive model could provide a more complete understanding of the system’s
behaviour and its response to different stimuli.

5. Conclusion

In this study, we employed a system-level mathematical model to investigate the
response of the glucose–insulin regulatory system to periodic glucose infusion. By
exploring different glucose infusion patterns and analyzing the resulting dynamics,
we gained insights into the system’s behaviour and identified key factors (such as the
infusion amplitude and period) influencing its response.

Our findings demonstrate that the glucose–insulin regulatory system exhibits a
range of behaviours depending on the glucose infusion pattern. When a constant
glucose infusion is applied, the system shows ultradian oscillations characterized by
periodic variations in glucose and insulin levels. However, as the glucose infusion
rate exceeds a certain threshold, these oscillations disappear and the system focuses
on reducing glucose levels without exhibiting oscillatory behaviour. This observation
suggests a physiological limit beyond which the system’s oscillatory capacity is
overwhelmed.

We further investigated the effects of periodic on–off pulses, mimicking repeated
intravenous glucose tolerance tests. Our analysis revealed that the period of the on–off
pulses plays a crucial role in determining the system’s dynamics and glucose–insulin
ranges. Different patterns of oscillations, including stable limit cycles and irregular
oscillations, were observed for varying infusion periods. This highlights the impor-
tance of considering the frequency and duration of glucose stimuli in understanding
the system’s response.

We identified the impact of different glucose infusion patterns on the system’s
dynamics and demonstrated the importance of various types of glucose stimuli. These
insights can potentially aid in the development of diagnostic and therapeutic strategies
for glucose regulation and motivate new strategies in the management of metabolic
disorders. Future research should aim to incorporate individual-specific delays, and
consider the broader physiological context to further refine our understanding of
glucose regulation and its implications for human health.
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Appendix A. Critical delay values for oscillatory behaviour
when infusion rate is constant

The critical curve for oscillations in the (τI , τG)-parameter plane can be computed
from the linearization of system (2.1)–(2.2) about the equilibrium solution (G∗, I∗)
and imposing the condition λ = iω, ω > 0 (Hopf bifurcation) on solutions of the
corresponding characteristic equation

0 = χ(λ) := λ2 + α1λ + α0 + β1e−λτ1 + β2e−λτ2 , (A.1)

where τ1 = τI , τ2 = τI + τG and α1 = f ′2(G∗) + f ′3(G∗)f4(I∗) + d, α0 = d(f ′2(G∗) +
f ′3(G∗)f4(I∗)), β1 = f ′1(G∗)f3(G∗)f ′4(I∗), β2 = −f ′1(G∗)f ′5(I∗). A detailed derivation of
(A.1) can be found in [22].

The equation 0 = χ(iω) can be solved parametrically for τ1 and τ2 to give

τ1,2(ω) =
1
ω

{
arctan

(
α1ω

ω2 − α0

)

+ arccos
(β2

2,1 − β
2
1,2 − (ω2 − α0)2 − α2

1ω
2

2β1,2

√
(ω2 − α0)2 + α2

1ω
2

)}
(A.2)

revealing the critical curve for oscillations H ⊂ R2 (curve of Hopf bifurcation)

H(ω) = (τI(ω), τG(ω)) = (τ1(ω), τ2(ω) − τ1(ω)). (A.3)

For the considered parameter values, we have that α1 > α0 and β2 > α0, ensuring the
existence of H. Indeed, the curve is a sharp threshold for oscillation, as it can been
shown numerically that for positive values (τI , τG) below H, the fixed point (G∗, I∗) is
stable for any physiological range of starting values G and I. It is worth noting here
that system (2.1)–(2.2) undergoes further Hopf bifurcations, respectively at

τI,k(ω) = τI(ω) + 2πk/ω, τG,l(ω) = τG(ω) + 2πl/ω

with integers k, l; however, for the parameter values considered, we can restrict
ourselves to the smallest positive such value pair to cover the physiological parameter
range. The range of relevant values of ω resulting in positive delays cannot be
computed explicitly; however, straightforward calculations show that the boundaries
ωI ,ωG satisfying τI(ωI) = 0 and τG(ωG) = 0 are given by

ωG =

√√√
α0 −

α2
1

2
+

√(
α0 −

α2
1

2

)2
+ (β1 + β2)2 − α2

0,

ωI =

√√√
α0 + β1 −

α2
1

2
+

√(
α0 + β1 −

α2
1

2

)2
+ β2

2 − α
2
0,
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with the corresponding delay values

τI(ωG) =
1
ωG

arctan
(
α1ωG

ω2
G − α0

)
+

2πk∗

ωG
,

τG(ωI) =
1
ωI

arctan
(

α1ωI

ω2
I − α0 − β1

)
+

2πl∗

ωI
,

where k∗, l∗ are the smallest integers such that τG and τI are positive.
We remark that the curve H vaguely resembles a straight line with slope −1

in the (τI , τG)-plane. This can be understood by exploiting the fact that param-
eter β1 is small of the order of 10−3. Imposing the regular perturbation ansatz
ω = ω0 + β1ω1 + O(β2

1) on the imaginary part of (A.1) and comparing at zeroth and
first order in β1, we formally obtain

ω0 =

√√√
α0 −

α2
1

2
+

√(
α0 −

α2
1

2

)2
+ β2

2 − α
2
0,

ω1 =
ω0

α1 − α0 + ω
2
0

τI ≤
1

2
√
α1 − α0

τI .

Thus, we can approximate H to first order in β1

H(ω0 + β1ω1(τI)) ≈ (τI , τ2(ω0 + β1ω1(τI)) − τI)

by using the expression τ2(ω) in (A.2). As a result, H approaches the graph of the
function τI 
→ τ2(ω0) − τI with slope −1 as β1 → 0, which can be considered as a
zero-order approximation of H.

Appendix B. Numerical bifurcation analysis of time-delay systems
with periodic infusion

Numerical simulations have been obtained using pydelay [13]. Numerical bifur-
cation analysis has been performed using the software package DDE-BIFTOOL for
Matlab/Octave [44]. For a general introduction to numerical continuation methods
available for delay differential equations and their application to physiological systems,
see [11, 29], respectively. Isocurves in Figure 3 have been computed using numerical
continuation of periodic orbits in two parameters with the additional condition fixed
period in panel (a), and fixed maximum value in panel (b) and fixed minimum value
in panel (c), where in cases (b) and (c), we also relaxed the phase condition. For bifur-
cation analysis in the presence of periodic infusion, we append the two-dimensional
ordinary differential equation

x′(t) = x − ωy(t) − x(t)(x(t)2 + y(t)2),

y′(t) = −ωx(t) + y − y(t)(x(t)2 + y(t)2),
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with known stable periodic solution (x(t), y(t)) = (cos(ωt), sin(ωt)) to system
(2.1)–(2.2). The method has been employed in several other works, (see, for example,
[27]). We achieve the specific form of infusion (2.4) by setting

Gin(t) = Gmaxh(y(t − σG))h
(
y
(
t − σG − tin −

π

ω

))
,

where ω = 2π/Tin.
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