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Abstract

A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper we
show that there exists a one-regular cubic graph of order 2p or 2p? where p is a prime if and only if 3
is a divisor of p — 1 and the graph has order greater than 25. All of those one-regular cubic graphs are
Cayley graphs on dihedral groups and there is only one such graph for each fixed order. Surprisingly, it
can be shown that there is no one-regular cubic graph of order 4p or 4p2.
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1. Introduction

Throughout this paper a graph means an undirected finite one, without loops or
multiple edges. For a graph X, we denote by V(X), E(X) and Aut(X) its vertex
set, its edge set and its automorphism group, respectively. For further group- and
graph-theoretic notation and terminology, we refer the reader to [12] and [13].

Let G be a finite group and S a subset of G such that 1 ¢ S and S = S'. The
Cayley graph X = Cay(G, §) on G with respect to § is defined to have vertex set

ViX)=G
and edge set
E(X)={(s.58) 18 € G.s € §}.
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From the definition, Cay(G, §) is connected if and only if S generates the group G.

A permutation group G on a set $2 is said to be semiregular if for each ¢ € Q,
the stabilizer G, of @ in G is the identity group, and regular if it is semiregular and
transitive. Let X be a graph. A subgroup G of Aut(X) is said to be regular and
one-regular if it acts regularly on the vertex set and the arc set of X, respectively. A
graph X is said to be vertex-transitive, edge-transitive, arc-transitive and one-regular
(or arc-regular) if Aut(X) is vertex-transitive, edge-transitive, arc-transitive and one-
regular, respectively, and half-transitive if Aut(X) is vertex-transitive, edge-transitive,
but not arc-transitive.

Clearly, a one-regular graph of regular valency must be connected and a graph
of valency 2 is one-regular if and only if it is a cycle. MaruSi¢ [17] and Malni¢
et al. [15] constructed two different kinds of infinite families of one-regular graphs
of valency 4, and Xu [24] gave a classification of one-regular circulant graphs of
valency 4. One-regular cubic graphs have also received considerable attention. The
first example of one-regular cubic graph was constructed by Frucht [9} with 432
vertices, and lots of work has been done on one-regular cubic graphs as part of a
more general problem dealing with the investigation of a class of arc-transitive cubic
graphs (see [4, 6, 20]). In 1997, Marusi¢ and Xu [19] showed a way to construct a
one-regular cubic graph Y from a half-transitive graph X of valency 4 with girth 3
by letting the triangles of X be the vertices in Y with two triangles being adjacent
in Y when they share a common vertex in X. Thus, one can construct infinitely many
one-regular cubic graphs from the infinite family of half-transitive graphs of valency 4
with girth 3 constructed by Alspach ez al. in [1] and from another infinite family of
half-transitive graphs constructed by Maru8i¢ and Nedela in [18]. Recently, Feng et
al. [8] classified one-regular cubic Cayley graphs on abelian or dihedral groups. In
this paper, we classify one-regular cubic graphs of order 2p, 4p, 2p? or 4p?, where
p is a prime. A one-regular cubic graph of order 2p or 2p? is a Cayley graph on a
dihedral group. Such a graph exists only when 3 is a divisor of p — 1 and the graph
has order greater than 25, and it is unique for each fixed order. Thus there exists a
unique one-regular cubic Cayley graph on the dihedral group of order 26, which is the
least one-regular cubic graph by Conder and Dobcsanyi {3]. Surprisingly, there is no
one-regular cubic graph of order 4p or 4p?.

We know that Cheng and Oxley [2] classified arc-transitive graphs of order 2p.
Among the graphs in their classification, there is a unique one-regular cubic graph for
each prime p > 13 such that 3 is a divisor of p — 1. In this paper we show that a one-
regular cubic graph of order twice an odd integer is a Cayley graph (Corollary 3.3),
which implies that the unique one-regular cubic graph of a fixed order 2p in [2] must
be a Cayley graph on a dihedral group. By using Corollary 3.3 we classify one-regular
cubic graphs of order 2p? and the same method can be used to classify one-regular
cubic graphs of some orders, such as 6p, 6p%, 2p*, 6p>. Note that it is easy to
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classify one-regular cubic graphs of order 3p, 3p?, 5p, 5p?, etc. since the valency 3
forces p = 2.

2. Preliminaries

We start with introducing five propositions for later applications in this paper. The
first one has achieved a sort of folklore status, whereas the others are well known as
group-theoretic results.

PROPOSITION 2.1. A graph X is a Cayley graph if and only if Aut(X) contains a
regular subgroup.

PROPOSITION 2.2 ({23, Proposition 4.4]). Any abelian transitive permutation group
on a set is regular.

PROPOSITION 2.3 ([23, Theorem 3.4]). Let G be a permutation group on 2 and
a € Q. Denote by a© the orbit of a under G. Let p be a prime number and let p™ be
a divisor of |a®|. Then p™ is also a divisor of |a®| for any Sylow p-subgroup P of G.

Let m be a nonempty set of primes and n’ the set of primes which are not in 7. A
finite group G is called a w-group, if every prime factor of |G| is in the set . In this
case, we also say that |G| is a 7w -number.

Let G be a finite group. A m-subgroup H of G such that |G : H|is a w’-number is
called a Hall 7 -subgroup of G.

The following proposition is due to Hall [22].

PROPOSITION 2.4 ([22, Theorem 9.1.7]). If G is a finite solvable group, then every
n-subgroup is contained in a Hall w -subgroup of G. Moreover, all Hall 7 -subgroups
of G are conjugate.

Let p be a prime. A finite group Giscalleda p-group ifitisam-groupform = {p}.

PROPOSITION 2.5 ([13, Theorem 7.2]). Let N be a nontrivial normal subgroup of a
p-group G and Z(G) the center of G. Then N N Z(G) # 1.

The next two propositions give a classification of one-regular cubic Cayley graphs
on abelian or dihedral groups.

PROPOSITION 2.6 ([8, Theorem 3.1]). There is no one-regular cubic Cayley graph
on an abelian group.
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PROPOSITION 2.7 ({8, Theorem 4.1]). A cubic Cayley graph X on a dihedral group
is one-regular if and only if X is isomorphic to Cay(Da,, {a, ab, ab™*}) for n > 13,
3<k<nandk*+k+1=0 (mod n), where Dy, = {(a,b | a®> =b" = 1,aba =
b1,

By checking Conder and Dobcsényi’s list [3] of arc-transitive cubic graphs up
to 768 vertices, we have the following proposition.

PROPOSITION 2.8. For any one-regular cubic graph X, |V(X)| = 26 and | V(X)| #
4p or 4p? for a prime p < 13.

3. One-regular cubic graphs of order 2p or 2p?

In this section we classify one-regular cubic graphs of order 2p or 2p2, where
p is a prime. Let K35 be the bipartite graph of order 6. It is well-known that
Aut(K33) = (83 x $3) % Z, and so Aut(K; 3) has a normal Sylow 3-subgroup. From
this, one may easily show the following lemma.

LEMMA 3.1. Ler G be a vertex-transitive automorphism group of the graph Ks 5. If
|G| = 18 then G has a regular subgroup of order 6 and its Sylow 3-subgroup contains
a minimal normal subgroup of G isomorphic to Z,.

LEMMA 3.2. A solvable one-regular automorphism group of a connected cubic
graph contains a regular subgroup.

PROOF. Suppose to the contrary; let X be a counterexample of least order, that
is, X is of the smallest order with the following properties: X is a connected cubic
graph and its automorphism group Aut(X) contains a solvable one-regular subgroup
G, which has no regular subgroup.

Let N be a minimal normal subgroup of G. Since G is solvable N is elementary
abelian,say N = Z, X Z, x - - - x Z, = £}, for a prime p and a positive integer m. By
Proposition 2.2, N cannot be transitive on V(X). Denote by £ = {Bg, By, ..., By}
the set of orbits of N on V(X). Since N < G, X is a complete block system of G.
Consider the quotient graph X of X defined by V(X) = T and (B;, B)) € EX)
if and only if there exist v; € B; and v; € B; such that (v;, v;) € E(X). If N has
more than two orbits, Lorimer [14, Theorem 9] showed that X is a cubic graph and
G/N is a solvable one-regular subgroup of Aut(X) (also see [21]). The minimality
of X implies that G/N has a regular subgroup, say H/N on V(X) and so H acts
regularly on V(X), a contradiction. Thus we may assume that N has only two orbits;
Y = {By, B,}. Let K be the subgroup of G which fixes B, setwise and let u € By.
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It follows that G/K = Z, and the one-regularity of G implies G, = Z,, where G,
is the stabilizer of u in G. We also denote by K, and N, the stabilizers of u in K
and N, respectively. Then G, < K, G, = K,, and K = NK, = NG,. If N is
not semiregular, N, = Z;. Since N is abelian N, fixes By pointwise. This implies
X = Ki3, the complete bipartite graph of order 6, and consequently N = 75 x Zs,
which is impossible since N is not minimal in G by Lemma 3.1. If N is semiregular
then |K| = |[N||G,| = 3p™ and |G| = 6p™. Now we consider three cases: p = 2,
p=3orp #2,3.

Case I: p = 2. In this case |G| = 2™*! .3 and | V(X)| = 2™*'. By Proposition 2.3,
each Sylow 2-subgroup of G is transitive on V(X) and so is regular because both the
Sylow 2-subgroup and the graph X have the same order 2™*!. It is impossible.

CaseIl: p # 2,3. Inthiscase |G} =2-3-p™and |V(X)| =2p". Letr = {2, p}.
By Proposition 2.4, G has a Hall w-subgroup, say H. Then |H| = 2p™. Since
G, = Z5 and |H/| has no divisor 3, we have H, = 1, where H, is the stabilizer
of uin H. Thus H has an orbit of length 2p™ and so acts regularly on V(X), a
contradiction.

Case Il: p = 3. In this case |G| = 2 - 3™ and | V(X)| = 2 - 3™. Itis easy to see
that X is the unique Sylow 3-subgroup of G. Therefore Z(K') # 1 (a nilpotent group
has a non-trivial center) and Z(K) <1 K, that is Z(K) is a characteristic subgroup
of K. Thus Z(K) < G. By Proposition 2.5 we have NN Z(K) # 1,andsince N < G
and Z(K) < G, N N Z(K) < G. By the minimality of N, N N Z(K) = N, which
forces N < Z(K). Let u,v € Byp. Then N < Z(K) implies K, = K,. It follows
that K, fixes By pointwise and so X = K3 3. By Lemma 3.1 G has a regular subgroup,
a contradiction. 4

Assume that X is a one-regular cubic graph and let A = Aut(X). If X has order 2n
with n an odd integer, then |A| = 2 -3 . n. Since a group of order twice an odd integer
is solvable, A is solvable. By Lemma 3.2 and Proposition 2.1 we have the following
corollary.

COROLLARY 3.3. A one-regular cubic graph of order rwice an odd integer is a
Cayley graph.

REMARK. Fang et al. [7] proved that Lemma 3.2 is also true for a connected graph
of any prime valency.

LetZ, ={0,1,2,...,n— 1} be the cyclic group of order n written additively and
let Z¢ be the multiplication group of Z, consisting of numbers in Z, coprime to n.
Then Z;,. = Z,1)p~-1 for any odd prime p and any positive integer m. If 3 is a divisor
of p — 1 then Z;,. has a unique subgroup of order 3. The proof of the following lemma
is easy and we omit it.
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LEMMA 3.4. Let p > 3 be a prime and n = p or p®. Then there exists an integer
1 <k < nsuchthatk* + k + 1 =0 (mod n) if and only if k is an element of order 3
inZ;.

THEOREM 3.5. Let n = p or p? for a prime p. Then there exists a one-regular
cubic graph X of order 2n if and only if 3 is a divisor of p — 1 and |V(X)| = 26.
Furthermore, for each prime p with 3 being a divisor of p — 1 and n > 13, there
exists a unique one-regular cubic graph X of order 2n and X = Cay(G, S), where
G=(a,b|a®>="b"=1,aba = b™") is adihedral group and S = {a, ab, ab™*} with
k being an element of order 3 in Z,,.

PROOF. Let X be a one-regular cubic graph of order 2n where n = p or p?, and
let A = Aut(X). By Proposition 2.8, p > 3 and by Corollary 3.3 X is a Cayley
graph, say X = Cay(G, S), where G is a group of order 2n. Thus, Proposition 2.6
implies that G is nonabelian. Let A denote the stabilizer of 1 in A and Aut(G, S) =
{¢ € Aut(G) | §* = S}. Then A, = Z; and Aut(G, S) < A,. Since X is connected,
(S) = G. We claim that G is dihedral. But, it is obvious for |G| = 2p because G is
nonabelian.

Assume that |G| = 2p?. From an elementary group theory we know that up to
isomorphism there are three nonabelian groups of order 2p? defined as:

Gi(p) =(a,b|a* =" =1,aba = b"");
Gyp)=(a,bcla® =V =" =[a,bl=1,c'ac=a"",c'bc=b"");
G3(p) = (a, b,C | a* = b = Cz.: 1, [a, b] = [a’ C]: LC—le: b—l).

Suppose to the contrary that G # G,(p). Let x,y € G,(p) with o(x) = 2 and
o(y) = p. Itis easy to show that (x, y) has order 2p, and hence (x, y) # G,(p).
Thus if G = G,(p) then S consists of three involutions of G,(p) since G = G,(p)
has no element of order 2p. Let z € G,(p) be an element of order p which is not in
{v). Then x, y and z satisfy the same relations as do ¢, a and b, and hence there is
an automorphism of G,(p) mapping x, y and z to ¢, a and b, respectively. Thus we
may assume that S = {c, ca, cb} because (S) = G, and since the automorphism of
G,(p) induced by ¢ — ¢, a — b and b — a, interchanges ca and cb, and fixes c,
| Aut(G, S)| has a divisor 2. By Aut(G, §) < Ay, |A,| has a divisor 2, contrary to the
fact that A, = Z3. If G = Gi(p) then S consists of one involution, one element of
order p or 2p and its inverse because all involutions of G3(p) can’t generate G;(p).
Since the automorphism group of Gj(p) is transitive on the set of involutions of
G3(p), we may assume that S = {c, a't/, (a'¥/)~'} or {c, ca'V/, (ca’b/ )"}, where
a' # land & # 1 since (S) = G. The mapping ¢ — ¢, a — a' and b — b
induces an automorphism of G5(p), and so we may assume that S = {c, ab, a~'b~'}
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or {c, cab,ca'b}. For S = {c,ab,a 'b7'}, X has a cycle of length p passing
through 1 and ab but there exists no such cycle passing through 1 and ¢, contrary
to the arc-transitivity of X. For § = {c, cab, ca”'b}, let a be a permutation on
G = G;(p) defined by (a'b/ *)* = a~'b/ * where i, j and k are integers. Let
g € G and denote by N (g) the neighborhood of g in X. Now it is easy to check that
N (@'t *)*) = (N(a'¥ ¢*))*, implying that  is an automorphism of X. Since o
fixes 1, we have & € A, and so |A| has a divisor 2, a contradiction.

So far, we have proved that X is a Cayley graph on a dihedral group. By Lemma 3.4
and Proposition 2.7 we have | V(X)| > 26 and X = Cay(G, ), where G = {(a, b |
a* = b" = 1,aba = b™') and S = {a, ab, ab™*} with k being an element of order
3in Z;. Note that Z; has elements of order 3 if and only if 3 is a divisor of p — 1.
To prove Theorem 3.5, we only need to prove the uniqueness of one-regular cubic
graph of order 2n when p — 1 has a divisor 3 and n > 13. Since Z; has only two
elements of order 3, that is k and k2, it suffices to prove that Cay(G, {a, ab, ab™*}) =
Cay(G, {a, ab, ab"‘z}), which follows from the fact that the automorphism of G
induced by @ — a and b — b~ maps {a, ab, ab™*} to {a, ab, ab™'}. O

4. No one-regular cubic graphs of order 4p or 4 p?

To show the non-existence of one-regular cubic graphs of order 4p or 4p2, we need
to consider regular coverings of the complete graph K, of order 4.

A graph X is called a covering of X with projection p : X — X if there is a
surjection p : V(X) —> V(X) such that p |y : N(v) — N (v) is a bijection for any
vertexv € V(X)andv € p~!(v). The covermg X is said tobe regular (or K -covering)
if there is a semlregular subgroup K of Aut(X) such that the graph X is isomorphic to
the quotient graph X /K, say by h, and the quotient map XX /K is the composition
ph of p and h (in this paper all functions are composed from left to right). If the
regular covering X is connected, then K is called a covering transformation group.
The fibre of an edge or a vertex is its preimage under p. The graph X is called the
covering graph and X is the base graph. The group of automorphisms of X which
maps fibres to fibres is called the fibre-preserving subgroup of Aut()? ).

Every edge of a graph X gives rise to a pair of opposite arcs. By e~', we mean the
reverse arc to an arc e. Let K be a finite group and denote by A (X) the arc-set of X.
An ordinary voltage assignment (or, K-voltage assignment) of X is a function ¢ :
A(X) = K with the property that ¢ (e”!) = ¢ (e)”! foreach e € A(X). The values of
¢ are called voltages, and K is called the voltage group. The ordinary derived graph
X X4 K derived from an ordinary voltage assignment ¢ : A(X) — K has vertex set
V(X) x K and edge set E(X) x K, so that an edge (e, g) of X x, K joins a vertex
(u, g) to (v, p(e)g) for e = uv € A(X) and g € K. The first coordinate projection
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Po: X Xy K K — X is a regular covering since K is semiregular on V(X x4 K).

Letp : X > Xbea K-covering. Ifa € Aut(X) anda € Aut(X) satisfy &p = pa,
we call @ a lift of «, and « the projection of &. Concepts such as a lift of a subgroup
of Aut(X) and the projection of a subgroup of Aut(X) are self-explanatory. The lifts
and the projections of such subgroups are of course subgroups in Aut(X) and Aut(X),
respectively. In particular, if the covering graph X is connected, then the covering
transformation group K is the lift of the identity group. Gross and Tucker [11] showed
that every K-covering of a graph X can be derived from a K -voltage assignment which
assigns the identity voltage 1 to the arcs on an arbitrary fixed spanning tree of X.

Let X x4, K — X be a connected K-covering, where ¢ = 1 on the arcs of a
spanning tree T of X. Such ¢ is called a T-reduced voltage assignment. Then the
covering graph X X, K is connected if and only if the voltages on the cotree arcs
generate the voltage group K.

The problem whether an automorphism o of X lifts can be grasped in terms of
voltage as follows. Observe that a voltage assignment on arcs extends to a voltage
assignment on walks in a natural way. Define the mapping o from the set of voltages
of fundamental closed walks based at a vertex v of the base graph X to the voltage
group K as the following:

(P(O)* = ¢(C),

where C ranges over all fundamental closed walks at v, and ¢ (C) and ¢ (C*) are the
voltages of C and C*, respectively. Note that if K is abelian, « does not depend on
the choice of the base vertex, and the fundamental closed walks at v can be substituted
by the fundamental cycles generated by the cotree edges of X.

LEMMA 4.1 ([16]). Let X x4 K — X be a connected K -covering. Then an auto-
morphism a of X lifts if and only if @ extends to an automorphism of K.

LEMMA 4.2. Let X be a connected regular covering of the complete graph K,,
whose covering transformation group is cyclic or elementary abelian, and whose
fibre-preserving subgroup is arc-transitive. Then X is not one-regular.

PROOF. Let K be a cyclic or an elementary abelian group and let X =K, Xy K be
a connected regular covering of the graph K, satisfying the hypotheses in the theorem,
where ¢ is a T-reduced K -voltage assignment with the spanning tree T as illustrated
by dark lines in Figure 1. Identify the vertex set of K, with Z, = {0, 1, 2, 3} and we
assign voltages z;, z; and z3 in K to the cotree arcs as shown in Figure 1.

Suppose to the contrary that the covering graph K4 x4 K is one-regular. Since K,
is not one-regular, we get |K| > 1, and since the fibre-preserving subgroup, say L,
acts arc-transitively on K, x4 K and K4 %, K is one-regular, we have Aut(f ) = L.
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FIGURE 1. The complete graph K, with voltage assignment ¢

Hence, the projection of Z, say L, acts regularly on the arc set of Ky. Then |L| = 12.
Since K, x4 K is connected, {zi, z2, z3} generates the voltage group K, that is,
{z1, 22, z3) = K. Noting that Aut(K,;) = §; and |L} = 12, we have that L = A,. Let
a = (01)(23), 8 = (123) and y = (12). Clearly, a, 8 and y are automorphisms of
Kiand o, S € L.

By iji; - - - iy, we denote a cycle which has vertex set {ij, i, ... , i;}, and edge set
{(iy, 1), (g, B3), ..., (is_1, L), (i, i1)}. There are three fundamental cycles 012, 023
and 031 in K4, which are generated by the three cotree edges. Each cycle maps to a
cycle of same length under the actions of @, 8 and y. We list all these cycles and their
voltages in Table 1, in which C denotes a fundamental cycle of K, and ¢ (C) denotes
the voltage on the cycle C.

Consider the mapping o from the set of voltages of the three fundamental cycles
of K, to the voltage group K, defined by ¢(C)¥ = ¢(C*), where C ranges over all
these three fundamental cycles. Similarly, one can define 8 and ¥. Since L lifts,
by Lemma 4.1 @ and B can be extended to automorphisms of K, say a* and 8%,
respectively. However, ¥ can’t be extended to an automorphism of K because of the
one-regularity of K4 x4 K. From Table 1, zf’ T = Z, and z’; f= Z;. This implies that
21, 22 and z3 have the same order. Now we consider the cases according to K being
cyclic or elementary abelian.

Casel. K = Z,(n > 1). Since z;, z; and z; have the same order and (z;, 23, z3) = Z,,
each of them generates the cyclic group Z,. Thus we may assume that z; = 1. Let
1" = k. Then (k,n) = 1. By z/ = 2 zf' = z and zf' = z, (see Table 1), we
have that z, = k (mod n), z; = k* (mod n) and k> = 1 (mod n). Let 1*° = [. Then
¥ =z, and ¥ = z, implies that I = k* (mod n) and [k* = 1 (mod n). From the
latter equation and k> = 1 (mod n), we have k = I (mod n). Thus I = k? (mod n)
implies that k = 1 (mod n) because (k, n) = 1. It follows that z; = 2, (mod n) = z3
(mod n) = 1 (mod n) and so ¥ can be extended to an automorphism of Z, induced
by 1 +— —1, a contradiction.

Casell. K =Z, xZ, X --- x Z, = Z} (p prime, m > 2). By (21, 22, 23) = £}, we
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TABLE 1. Fundamental cycles and their images with corresponding voltages on K,

C 190 | ¢ (C*) CP | ¢(C) || €7 | $(C)
012 2 103 23 023 22 021 | -z
023 22 132 | -2y — 2z, —z3 || 031 23 013 | —xz,
031 23 120 2 012 2 032 | -z,

may assume that K = Z or Z,. If K = Z, then z,, z; and z; are linearly independent.
Similarly, —z;, —z, and —z; are also linearly independent. This implies that ¥ can be
extended to an automorphism of Z3, a contradiction.

Now suppose that K = Zf, = {(a) x (b). By zf' = 2, zf' = zz and zf' = 71, 2 and
z; must be linearly independent. We may assume that z; = aand z; = b. Let z3 =
ka+1b=zL . Thenz; =z, implies that [k = 1 (mod p) and k + > = 0 (mod p),
and by Ik = 1 (mod p) we have (I, p) = 1. Since zf =z andzf = —z1— 22— 23
means that a** = ka + Ib and b*° = —~(k + 1)a — (I + 1)b, we may deduce that
a = (k* = lk —lya+ I(k — | — 1)b from z¥ = z;, in which b has the coefficient
ltk—1—1). Since (I,p)=1,k—1~1=0 (mod p). Noting that Ik = 1 (mod p)
and k +[* =0 (mod p) wehave I’ + [+ 1=1*+1—1 (mod p) = 0 (mod p),
implying that p = 2. This is impossible because the equation I* +1+1 =0 (mod 2)
has no solution. O

THEOREM 4.3. Let p be a prime. Then there is no one-regular cubic graph of order
4p or 4p2.

PROOF. By Proposition 2.8 we may assume that p > 17 and suppose to the contrary
that X is a one-regular cubic graph of order 4p or 4p®. Since X is connected,
A = Aut(X) is transitive on V(X). By the one-regularity of X, |A| = 12p or 12p2.
By [10, pp. 12-14], a non-abelian simple {2, 3, p}-group is one of the following
groups: As, Ag, L2(7), L1(8), L,(17), L3(3), U(3), and U,(2). By Conway et al. {5},
the orders of these simple groups have divisor 8 or 9 except As. Since |A| has no
divisor § or 9 and p > 17, A is solvable. Let m = {2, p}. By Proposition 2.4, A has a
Hall rr-subgroup, say H.

We claim that A has a normal Sylow p-subgroup. Consider the conjugate action
of A on the set of cosets of H in A. Then A/H, is isomorphic to a subgroup of
the symmetric group S3 of degree 3, where Hy is the largest normal subgroup of A
contained in H. Since Hy < H and |A : H| = 3, we have |A/H,| =3 or 6. If
|A/Hyl =3then Hy = H,and if |[A/H,| = 6then |H : Hy| = 2. Thus [Hs| = 2p,
4p, 2p? or 4p>. By Sylow’s theorem, the Sylow p-subgroup of H, is normal in H,
and so is normal in A. Since Sylow p-subgroups of H, are also Sylow p-subgroups
of A, A has a normal Sylow p-subgroup.
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Let N be the normal Sylow p-subgroup of A. Since |N| has no divisor 3, N acts
semiregular on V(X). It follows that N has four orbits. Recall that X is the quotient
graph of X corresponding to the orbits of N, where X has the same definition as in the
proof of Lemma 3.2. Then X is isomorphic to K, and hence X is a regular covering of
K4 with the covering transformation group N and with the fibre-preserving subgroup
Aut(X). Since [N| = p or p%, N is cyclic or elementary abelian and by Lemma 4.2
X can’t be one-regular, a contradiction. O
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