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Abstract

A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper we
show that there exists a one-regular cubic graph of order 2p or 2p2 where p is a prime if and only if 3
is a divisor of p - 1 and the graph has order greater than 25. All of those one-regular cubic graphs are
Cayley graphs on dihedral groups and there is only one such graph for each fixed order. Surprisingly, it
can be shown that there is no one-regular cubic graph of order 4p or 4p2.
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1. Introduction

Throughout this paper a graph means an undirected finite one, without loops or

multiple edges. For a graph X, we denote by V(X), E(X) and Aut(X) its vertex

set, its edge set and its automorphism group, respectively. For further group- and

graph-theoretic notation and terminology, we refer the reader to [12] and [13].

Let G be a finite group and S a subset of G such that 1 ^ S and S = S~l. The

Cayley graph X = Cay(G, 5) on G with respect to S is defined to have vertex set

V(X) = G

and edge set

= [(g,sg)\geG,seS}.
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346 Yan-Quan Feng and Jin Ho Kwak [2]

From the definition, Cay(G, 5) is connected if and only if 5 generates the group G.

A permutation group G on a set Q is said to be semiregular if for each a 6 Q,
the stabilizer Ga of a in G is the identity group, and regular if it is semiregular and
transitive. Let X be a graph. A subgroup G of Aut(X) is said to be regular and
one-regular if it acts regularly on the vertex set and the arc set of X, respectively. A
graph X is said to be vertex-transitive, edge-transitive, arc-transitive and one-regular
(or arc-regular) if Aut(X) is vertex-transitive, edge-transitive, arc-transitive and one-
regular, respectively, and half-transitive if Aut(X) is vertex-transitive, edge-transitive,
but not arc-transitive.

Clearly, a one-regular graph of regular valency must be connected and a graph
of valency 2 is one-regular if and only if it is a cycle. Marusic [17] and Malnic
et al. [15] constructed two different kinds of infinite families of one-regular graphs
of valency 4, and Xu [24] gave a classification of one-regular circulant graphs of
valency 4. One-regular cubic graphs have also received considerable attention. The
first example of one-regular cubic graph was constructed by Frucht [9] with 432
vertices, and lots of work has been done on one-regular cubic graphs as part of a
more general problem dealing with the investigation of a class of arc-transitive cubic
graphs (see [4, 6, 20]). In 1997, Marusic and Xu [19] showed a way to construct a
one-regular cubic graph Y from a half-transitive graph X of valency 4 with girth 3
by letting the triangles of X be the vertices in Y with two triangles being adjacent
in Y when they share a common vertex in X. Thus, one can construct infinitely many
one-regular cubic graphs from the infinite family of half-transitive graphs of valency 4
with girth 3 constructed by Alspach et al. in [1] and from another infinite family of
half-transitive graphs constructed by Marusic and Nedela in [18]. Recently, Feng et
al. [8] classified one-regular cubic Cayley graphs on abelian or dihedral groups. In
this paper, we classify one-regular cubic graphs of order 2p, 4p, 2p2 or 4p2, where
p is a prime. A one-regular cubic graph of order 2p or 2p2 is a Cayley graph on a
dihedral group. Such a graph exists only when 3 is a divisor of p — 1 and the graph
has order greater than 25, and it is unique for each fixed order. Thus there exists a
unique one-regular cubic Cayley graph on the dihedral group of order 26, which is the
least one-regular cubic graph by Conder and Dobcsanyi [3]. Surprisingly, there is no
one-regular cubic graph of order 4p or Ap2.

We know that Cheng and Oxley [2] classified arc-transitive graphs of order 2p.
Among the graphs in their classification, there is a unique one-regular cubic graph for
each prime p > 13 such that 3 is a divisor of p — 1. In this paper we show that a one-
regular cubic graph of order twice an odd integer is a Cayley graph (Corollary 3.3),
which implies that the unique one-regular cubic graph of a fixed order 2p in [2] must
be a Cayley graph on a dihedral group. By using Corollary 3.3 we classify one-regular
cubic graphs of order 2p2 and the same method can be used to classify one-regular
cubic graphs of some orders, such as dp, 6p2, 2/>3, 6p3. Note that it is easy to
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classify one-regular cubic graphs of order 3p, 3p2, 5p, 5p2, etc. since the valency 3
forces p — 2.

2. Preliminaries

We start with introducing five propositions for later applications in this paper. The
first one has achieved a sort of folklore status, whereas the others are well known as
group-theoretic results.

PROPOSITION 2.1. A graph X is a Cayley graph if and only if Aut(X) contains a
regular subgroup.

PROPOSITION 2.2 ([23, Proposition 4.4]). Any abelian transitive permutation group
on a set is regular.

PROPOSITION 2.3 ([23, Theorem 3.4]). Let G be a permutation group on Q and
a 6 Q. Denote by ctG the orbit of a under G. Let p be a prime number and let pm be
a divisor of \aG\. Then pm is also a divisor of \ap \ for any Sylow p-subgroup P of G.

Let n be a nonempty set of primes and n' the set of primes which are not in n. A
finite group G is called a n -group, if every prime factor of \G\ is in the set n. In this
case, we also say that \G\ is a n-number.

Let G be a finite group. A 7r-subgroup H of G such that \G : H| is a 7r'-number is
called a Hall n -subgroup of G.

The following proposition is due to Hall [22].

PROPOSITION 2.4 ([22, Theorem 9.1.7]). If G is a finite solvable group, then every
n -subgroup is contained in a Hall n -subgroup of G. Moreover, all Hall it -subgroups
of G are conjugate.

Let p be a prime. A finite group G is called a/?-grow/jif it is a 7r-group for 7r = {/?}.

PROPOSITION 2.5 ([13, Theorem 7.2]). Let N be a nontrivial normal subgroup of a
p-group G and Z(G) the center of G. Then N H Z(G) £ 1.

The next two propositions give a classification of one-regular cubic Cayley graphs
on abelian or dihedral groups.

PROPOSITION 2.6 ([8, Theorem 3.1]). There is no one-regular cubic Cayley graph
on an abelian group.
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PROPOSITION 2.7 ([8, Theorem 4.1]). A cubic Cayley graph X on a dihedral group
is one-regular if and only if X is isomorphic to Cay(D2n, {a, ab, ab~~k\) for n > 13,
3 < k < n, and k2 + k + 1 s 0 (mod n), where D2n = {a, b \ a2 = b" = 1, aba =

By checking Conder and Dobcsanyi's list [3] of arc-transitive cubic graphs up
to 768 vertices, we have the following proposition.

PROPOSITION 2.8. For any one-regular cubic graph X, |V(X)| > 26and\ V(X)| ^
4p or 4p2 for a prime p < 13.

3. One-regular cubic graphs of order 2p or 2p2

In this section we classify one-regular cubic graphs of order 2p or 2p2, where
p is a prime. Let K33 be the bipartite graph of order 6. It is well-known that
Aut(^3 3) = (S3 x S3) x> Z2 and so Aut(AT3 3) has a normal Sylow 3-subgroup. From
this, one may easily show the following lemma.

LEMMA 3.1. Let G be a vertex-transitive automorphism group of the graph ^33. If
\G\ = 18 then G has a regular subgroup of order 6 and its Sylow 3-subgroup contains
a minimal normal subgroup of G isomorphic to Z3.

LEMMA 3.2. A solvable one-regular automorphism group of a connected cubic
graph contains a regular subgroup.

PROOF. Suppose to the contrary; let X be a counterexample of least order, that
is, X is of the smallest order with the following properties: X is a connected cubic
graph and its automorphism group Aut(X) contains a solvable one-regular subgroup
G, which has no regular subgroup.

Let N be a minimal normal subgroup of G. Since G is solvable N is elementary
abelian, say N = Zp x Zp x • • • x Zp = Z™, for a prime p and a positive integer m. By
Proposition 2.2, N cannot be transitive on V(X). Denote by E = {Bo, B\, ... , 6/_i)
the set of orbits of N on V(X). Since N <l G, E is a complete block system of G.
Consider the quotient graph X of X defined by V(X) = E and (Bn fi7) e E(X)
if and only if there exist u, e B, and Vj e Bj such that (u,, Vj) e E(X). If N has
more than two orbits, Lorimer [14, Theorem 9] showed that X is a cubic graph and
G/N is a solvable one-regular subgroup of Aut(X) (also see [21]). The minimality
of X implies that G/N has a regular subgroup, say H/N on V(X) and so H acts
regularly on V(X), a contradiction. Thus we may assume that N has only two orbits;
E = {/?o» Bx}. Let K be the subgroup of G which fixes Bo setwise and let u e Bo.
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It follows that G/K = Z2 and the one-regularity of G implies G, = Z3, where Gu

is the stabilizer of u in G. We also denote by Ku and Nu the stabilizers of u in K
and A', respectively. Then Gu < K, Gu = Ku, and K = N Ku = NGU. If N is
not semiregular, Nu = Z3. Since N is abelian Nu fixes Bo pointwise. This implies
X = #3,3, the complete bipartite graph of order 6, and consequently A' = Z3 x Z3,
which is impossible since N is not minimal in G by Lemma 3.1. If A7 is semiregular
then \K\ — \N\\GU\ = 3pm and \G\ = 6pm. Now we consider three cases: p = 2,
p = 3 or p ^ 2, 3.

Case I: p = 2. In this case \G\ = 2m+1 • 3 and | V(X)\ = 2m+1. By Proposition 2.3,
each Sylow 2-subgroup of G is transitive on V(X) and so is regular because both the
Sylow 2-subgroup and the graph X have the same order 2m+1. It is impossible.

Case II: p ^ 2 , 3 . In this case |G| = 2-3-pm and | V(X)\ = 2pm. Letjr = {2,p}.
By Proposition 2.4, G has a Hall 7r-subgroup, say H. Then | / / | = 2pm. Since
Gu = Z3 and \H\ has no divisor 3, we have Hu — 1, where Hu is the stabilizer
of u in W. Thus H has an orbit of length 2pm and so acts regularly on V(X), a
contradiction.

Case ffl: p = 3. In this case |G| = 2 • 3m + 1 and | V(X)\ = 2 • 3m. It is easy to see
that K is the unique Sylow 3-subgroup of G. Therefore Z(K) 5̂  1 (a nilpotent group
has a non-trivial center) and Z{K) « # , that is Z(AT) is a characteristic subgroup
of K. Thus Z{K) < G. By Proposition 2.5 we have A7 n Z{K) £ 1, and since N < G
a n d Z(K) < G, N f\ Z(K) < G . B y t h e m i n i m a l i t y of N,N f\ Z(K) = N, w h i c h

forces A7 < Z(K). Let M, u e B0- Then N < Z{K) implies Ku = Kv. It follows
that Ku fixes Bo pointwise and so X = K^3. By Lemma 3.1 G has a regular subgroup,
a contradiction. •

Assume that X is a one-regular cubic graph and let A = Aut(X). If X has order 2n
with n an odd integer, then \A\ = 2 • 3 • n. Since a group of order twice an odd integer
is solvable, A is solvable. By Lemma 3.2 and Proposition 2.1 we have the following
corollary.

COROLLARY 3.3. A one-regular cubic graph of order twice an odd integer is a

Cayley graph.

REMARK. Fang et al. [7] proved that Lemma 3.2 is also true for a connected graph
of any prime valency.

Let Zn = {0, 1, 2 , . . . , n — 1} be the cyclic group of order n written additively and
let 1* be the multiplication group of Tn consisting of numbers in Zn coprime to n.
Then 2*m = Z^-up—i for any odd prime p and any positive integer m. If 3 is a divisor
of p — 1 then Z* has a unique subgroup of order 3. The proof of the following lemma
is easy and we omit it.

https://doi.org/10.1017/S1446788700009903 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009903


350 Yan-Quan Feng and Jin Ho Kwak [6]

LEMMA 3.4. Let p > 3 be a prime and n = p or p2. Then there exists an integer
1 < k < n such that k2 + k + 1 = 0 (mod n) if and only ifk is an element of order 3

in z;.

THEOREM 3.5. Let n = p or p2 for a prime p. Then there exists a one-regular
cubic graph X of order 2n if and only if 3 is a divisor of p — 1 and | V(X)| > 26.
Furthermore, for each prime p with 3 being a divisor of p — 1 and n > 13, there
exists a unique one-regular cubic graph X of order 2n and X = Cay(G, S), where
G = (a, b | a2 = b" = 1, aba = b~x) is a dihedral group and S = {a, ab, ab~k] with
k being an element of order 3 in 2*.

PROOF. Let X be a one-regular cubic graph of order 2n where n = p or p2, and
let A = Aut(X). By Proposition 2.8, p > 3 and by Corollary 3.3 X is a Cayley
graph, say X = Cay(G, 5), where G is a group of order 2n. Thus, Proposition 2.6
implies that G is nonabelian. Let A\ denote the stabilizer of 1 in A and Aut(G, S) =
[a € Aut(G) | 5° = 5}. Then A, = Z3 and Aut(G, S) < Ax. Since X is connected,
(5) = G. We claim that G is dihedral. But, it is obvious for \G\ = 2p because G is
nonabelian.

Assume that \G\ = 2p2. From an elementary group theory we know that up to
isomorphism there are three nonabelian groups of order 2p2 denned as:

dip) = (a, b | a2 = V2 = 1, aba = b~x);

G2(p) = (a,b,c\ap = W = c2 = [a, b] = 1, c^ac = a"1, c~xbc = b~x)\

G3(p) = (a, b, c | a" = W = c2 = 1, [a, b] = [a, c] = 1, c~'bc = b']).

Suppose to the contrary that G -^ G\{p). Let x, y e Giip) with o{x) — 2 and
°(y) = P- It is e a s y t 0 s n o w that {x, y) has order 2p, and hence (x,y) ^ G2(p).
Thus if G = Giip) then S consists of three involutions of G2(p) since G = G2(p)
has no element of order 2p. Let z e G2{p) be an element of order p which is not in
(y). Then x, y and z satisfy the same relations as do c, a and b, and hence there is
an automorphism of G2(p) mapping x, y and z to c, a and b, respectively. Thus we
may assume that 5 = {c, ca, cb) because (5) = G, and since the automorphism of
G2(p) induced by c —*• c, a —> b and b —>• a, interchanges ca and ci», and fixes c,
Aut(G, 5)| has a divisor 2. By Aut(G, 5) < A\, \A\\ has a divisor 2, contrary to the

fact that A\ = 23. If G = G3(p) then S consists of one involution, one element of
order p or 2p and its inverse because all involutions of G3(p) can't generate G3(p).
Since the automorphism group of G3(p) is transitive on the set of involutions of
G3(p), we may assume that S = {c, a'b1, (a'b'y1} or {c, ca'b>, (ca1^)""1}, where
a' ,£ 1 and # 5* 1 since (5) = G. The mapping c ->• c, a - • a; and i -^ ^
induces an automorphism of G3(p), and so we may assume that S = {c, ab, a~xb'x)
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or {c, cab, ca'^b}. For 5 = [c, ab, a^b"1}, X has a cycle of length p passing
through 1 and ab but there exists no such cycle passing through 1 and c, contrary
to the arc-transitivity of X. For 5 = {c, cab, ca~lb], let a be a permutation on
G = G}(p) defined by (a'b>ck)a = a~'ti d" where /, j and it are integers. Let
g € G and denote by N(g) the neighborhood of g in X. Now it is easy to check that
N((a'b> c*)°) = (N(a'ti c*))a, implying that a is an automorphism of X. Since a
fixes 1, we have a e A{ and so \At\ has a divisor 2, a contradiction.

So far, we have proved that X is a Cayley graph on a dihedral group. By Lemma 3.4
and Proposition 2.7 we have | V(X)\ > 26 and X = Cay(G, 5), where G = (a, b |
a2 = 6" = 1, aba = b'1) and 5 = {a, ab, ab~k] with k being an element of order
3 in Z*. Note that Z* has elements of order 3 if and only if 3 is a divisor of p — 1.
To prove Theorem 3.5, we only need to prove the uniqueness of one-regular cubic
graph of order 2n when p — \ has a divisor 3 and n > 13. Since Z* has only two
elements of order 3, that is k and k2, it suffices to prove that Cay(G, [a, ab, ab~k}) =
Cay(G, {a, ab, ab~k2}), which follows from the fact that the automorphism of G
induced by a —> a and b -> b~kl maps {a, ab, ab~k\ to {a, ab, ab~k2}. •

4. No one-regular cubic graphs of order Ap or Ap2

To show the non-existence of one-regular cubic graphs of order Ap or Ap2, we need
to consider regular coverings of the complete graph AT4 of order 4.

A graph X is called a covering of X with projection p : X —> X if there is a
surjection /? : V(X) -> V(X) such that /?U(C) : N(v) -*• N(v) is a bijection for any
vertex v e V(X)andt5 e p~l(v). The covering X is said to be regular (or K-covering)
if there is a semiregular subgroup AT of Aut(X) such that the graph X is isomorphic to
the quotient graph X/K, say by h, and the quotient map X -»• X/K is the composition
ph of p and /i (in this paper all functions are composed from left to right). If the
regular covering X is connected, then K is called a covering transformation group.
The fibre of an edge or a vertex is its preimage under p. The graph X is called the
covering graph and X is the base graph. The group of automorphisms of X which
maps fibres to fibres is called the fibre-preserving subgroup of Aut(X).

Every edge of a graph X gives rise to a pair of opposite arcs. By e~l, we mean the
reverse arc to an arc e. Let K be a finite group and denote by A(X) the arc-set of X.
An ordinary voltage assignment (or, K-voltage assignment) of X is a function </> :
A(X) -*• K with the property that0(€~') = <f>(e)~l for each e e A(X). The values of
</> are called voltages, and K is called the voltage group. The ordinary derived graph
X x,j, K derived from an ordinary voltage assignment (j> : A(X) —>• K has vertex set
V(X) x K and edge set E(X) x K, so that an edge (e, g) of X x^ K joins a vertex
(u, g) to (v, <p(e)g) for e = uv e A(X) and g e K. The first coordinate projection
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p^ : X x^, K -*• X is a regular covering since K is semiregular on V(X x^, K).
Letp : X —> X be a AT-covering. If a e Aut(X) and a 6 Aut(X) satisfy ap = pa,

we call a a lift of a, and a the projection of a. Concepts such as a lift of a subgroup
of Aut(X) and the projection of a subgroup of Aut(X) are self-explanatory. The lifts
and the projections of such subgroups are of course subgroups in Aut(X) and Aut(X),
respectively. In particular, if the covering graph X is connected, then the covering
transformation group K is the lift of the identity group. Gross and Tucker [11] showed
that every /^-covering of a graph X can be derived from a ^-voltage assignment which
assigns the identity voltage 1 to the arcs on an arbitrary fixed spanning tree of X.

Let X x 0 t f - * X b e a connected K -covering, where <j> = 1 on the arcs of a
spanning tree T of X. Such 4> is called a T-reduced voltage assignment. Then the
covering graph X x $ K is connected if and only if the voltages on the cotree arcs
generate the voltage group K.

The problem whether an automorphism a of X lifts can be grasped in terms of
voltage as follows. Observe that a voltage assignment on arcs extends to a voltage
assignment on walks in a natural way. Define the mapping a" from the set of voltages
of fundamental closed walks based at a vertex v of the base graph X to the voltage
group K as the following:

where C ranges over all fundamental closed walks at v, and <p(C) and 0(C") are the
voltages of C and C°, respectively. Note that if K is abelian, a" does not depend on
the choice of the base vertex, and the fundamental closed walks at v can be substituted
by the fundamental cycles generated by the cotree edges of X.

LEMMA 4.1 ([16]). Let X x^ K —> X be a connected K-covering. Then an auto-
morphism aofX lifts if and only if "a extends to an automorphism of K.

LEMMA 4.2. Let X be a connected regular covering of the complete graph Kit

whose covering transformation group is cyclic or elementary abelian, and whose
fibre-preserving subgroup is arc-transitive. Then X is not one-regular.

PROOF. Let K be a cyclic or an elementary abelian group and let X = K* x^ K be
a connected regular covering of the graph A"4 satisfying the hypotheses in the theorem,
where <p is a T-reduced £-voltage assignment with the spanning tree T as illustrated
by dark lines in Figure 1. Identify the vertex set of KA with 24 = {0, 1, 2, 3} and we
assign voltages z\, Z2 and Z3 in K to the cotree arcs as shown in Figure 1.

Suppose to the contrary that the covering graph Ki x$ K is one-regular. Since K4

is not one-regular, we get \K\ > 1, and since the fibre-preserving subgroup, say L,
acts arc-transitively on K* x^ K and K+ x 0 K is one-regular, we have Aut(X) = L.
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FIGURE 1. The complete graph A"4 with voltage assignment <j>

Hence, the projection of L, say L, acts regularly on the arc set of K4. Then \L\ = 12.
Since KA x^, K is connected, {z\,Z2,Zz} generates the voltage group K, that is,
{zi,Zi, Zi) = K. Noting that Aut(/^4) = 54 and \L\ = 12, we have that L = A4. Let
a = (01)(23), 0 = (123) and y = (12). Clearly, a, fl and y are automorphisms of
K4 and a, fl e L.

By /]i2 • • • is, we denote a cycle which has vertex set [iu i2, . •. , is}, and edge set
{('i. '2)- ( '2.h), • • • . (ij-i, i'i). (in i'i)}- There are three fundamental cycles 012, 023
and 031 in K4, which are generated by the three cotree edges. Each cycle maps to a
cycle of same length under the actions of a, fl and y. We list all these cycles and their
voltages in Table 1, in which C denotes a fundamental cycle of K4 and (j>(C) denotes
the voltage on the cycle C.

Consider the mapping ce from the set of voltages of the three fundamental cycles
of K4 to the voltage group K, defined by <p(C)a = <f>(C"), where C ranges over all
these three fundamental cycles. Similarly, one can define ft and y. Since L lifts,
by Lemma 4 . 1 a and ji can be extended to automorphisms of K, say a* and fl*,
respectively. However, j7 can't be extended to an automorphism of K because of the
one-regularity of K4 x # K. From Table 1, zf = z2 and z2 = z3. This implies that
Z\, Zi and zj have the same order. Now we consider the cases according to K being
cyclic or elementary abelian.

Case I. K = 1n(n > 1). Since z\,z2 and z3 have the same order and {z\, z2, Z3) = 2B,
each of them generates the cyclic group 1n. Thus we may assume that z\ — 1. Let
1"' = jfe. Then (k, n) = 1. By zf = z2, z f = z3 and zf = z, (see Table 1), we
have that z2 = k (mod «), z3 = k1 (mod n) and ^3 = 1 (mod n). Let 1°' = /. Then
zf = z3 and zf = z, implies that / s k2 (mod n) and Ik2 = 1 (mod n). From the
latter equation and k3 = 1 (mod «), we have ^ = / (mod n). Thus / = k1 (mod n)
implies that k = 1 (mod «) because (/:, n) = 1. It follows that z\ = z2 (mod n) = z3

(mod «) = 1 (mod n) and so y" can be extended to an automorphism of Zn induced
by 1 i-> —1, a contradiction.

Case II. K = lp x lp x • • • x lp = Z™ (p prime, m > 2). By (z,, z2, z3) = 2 ; , we
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TABLE 1. Fundamental cycles and their images with corresponding voltages on

[10]

c
012
023
031

</>(C)

Z\

Zl

Zi

C

103
132
120

4>{C)

Z-h

- z i - zi - zi
Z\

C
023
031
012

Zi

Zl

Z\

a
021
013
032

</>(C")

- Z i

-Zi

-Zi

may assume that K — Z2 or I?p. If K = I?, then Z\,Zi and z3 are linearly independent.
Similarly, —z\, —Zi and — zi are also linearly independent. This implies that y" can be
extended to an automorphism of I?p, a contradiction.

Now suppose that K = Z2 = (a) x {b). By zf = z2, z f = Z3 and zf = Z\, Z\ and
z2 must be linearly independent. We may assume that Zi = a and z2 = b. Let z3 =
ka + Ib = zf . Then z f = z, implies that Ik = 1 (mod p) andk + l2 = 0 (mod p) ,
and by Ik = 1 (mod p) we have (/, p ) = 1. Since zf = Z3 and z2' = —Zi — z2 — Z3
means that a"' = ka + Ib and £"' = ~(k + l)a - (I + l)fc, we may deduce that
a = (k2 — Ik — l)a + l(k — I — l)b from zf = Zi, in which b has the coefficient
l(k-l- 1). Since (I, p) = 1, k - I - 1 = 0 (mod p) . Noting that Ik = 1 (mod p)
and it + I2 = 0 (mod p) we have Z2 + / + 1 = I2 + I - 1 (mod p) = 0 (mod p) ,
implying that p = 2. This is impossible because the equation I2 + 1 + 1 s= 0 (mod 2)
has no solution. •

THEOREM 4.3. Let p be a prime. Then there is no one-regular cubic graph of order
Ap or4p2.

PROOF. By Proposition 2.8 we may assume that p > 17 and suppose to the contrary
that X is a one-regular cubic graph of order Ap or Ap2. Since X is connected,
A = Aut(X) is transitive on V(X). By the one-regularity of X, \A\ — Yip or 12p2.
By [10, pp. 12-14], a non-abelian simple {2, 3, p}-group is one of the following
groups: A5,A6, L2(7), L2(8), L2(17), L3(3), t/3(3),and f/4(2). By Conway et al. [5],
the orders of these simple groups have divisor 8 or 9 except A5. Since \A\ has no
divisor 8 or 9 and p > 17, A is solvable. Let n = {2, p} . By Proposition 2.4, A has a
Hall TV -subgroup, say H.

We claim that A has a normal Sylow p-subgroup. Consider the conjugate action
of A on the set of cosets of H in A. Then A/HA is isomorphic to a subgroup of
the symmetric group S3 of degree 3, where HA is the largest normal subgroup of A
contained in H. Since HA < H and \A : H\ = 3, we have \A/HA\ = 3 or 6. If
\A/HA\ = 3 then HA = H, and if \A/HA\ = 6 then \H : HA\ = 2 . Thus \HA\ =2p,
Ap, 2p2 or 4p2 . By Sylow's theorem, the Sylow p-subgroup of HA is normal in HA

and so is normal in A. Since Sylow p-subgroups of HA are also Sylow p-subgroups
of A, A has a normal Sylow p-subgroup.
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Let N be the normal Sylow p-subgroup of A. Since \N\ has no divisor 3, N acts

semiregular on V(X). It follows that TV has four orbits. Recall that X is the quotient

graph of X corresponding to the orbits of N, where X has the same definition as in the

proof of Lemma 3.2. Then X is isomorphic to K4, and hence X is a regular covering of

Kx with the covering transformation group TV and with the fibre-preserving subgroup

Aut(X). Since \N\ = p or p2, N is cyclic or elementary abelian and by Lemma 4.2

X can't be one-regular, a contradiction. •
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