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Abstract. The advanced thin flux tube approximation for force-free 
thin magnetic flux tubes is used to derive a dispersion relation for linear 
waves. All wave modes appear to be coupled in a twisted flux tube. In the 
case of a weakly twisted flux tube, it has been found that torsional Alfven 
waves have dispersion and produce pressure and temperature fluctuations. 
The effect of tube rotation is pointed out. These properties of linear waves 
have an impact on prominence oscillations. 

1. Introduction 

Theoretical treatments of oscillations of solar quiescent prominences are based on 
the well-developed theory of linear waves in current-free flux tubes and magnetic 
sheets. But the magnetic field of the prominences is not likely potential, because 
the helicity of filaments is observed. Thus, there is a need to examine the models 
of force-free magnetic filaments. The theory of linear waves in force-free flux 
tubes has not been developed up to the present time. The advanced thin flux 
tube approximation for force-free magnetic flux tubes, derived by Zhugzhda 
(1996) made it possible to obtain the dispersion equation for torsional, fast and 
slow body waves in twisted flux tubes. The distinctions of the linear waves 
in twisted and untwisted magnetic filaments are outlined. The effects of the 
twisting on the oscillations of the prominence filaments are discussed. 

2. Basic Equations 

The governing set of equations is the thin tube approximation for a straight, 
vertical, axisymmetric, force-free magnetic flux tube, which allows us to consider 
axisymmetric perturbations of the tube, and has been derived by Zhugzhda 
(1996). The dependent variables of the problem are the longitudinal component 
of the plasma velocity, u, the longitudinal component of the magnetic field, B, 
plasma density, p, and pressure, p, tube cross section, A = irR2, (^-components 
of the magnetic field, B$ = Jr and velocity, v$ = fir, and the radial component 
of velocity, vr = vr, where the radius coordinate, r, varies within the tube, 
0 < r < R. The set of the governing equations in these variables is 

fdu du\ dp 
p{m+ud-z)

 + d-z = 0' (1) 
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(8) 
where the condition of the constant external pressure, pext, is imposed. The 
consideration is restricted by the case of uniform atmospheres without gravity. 
The set of equations is valid for thin flux tubes of finite diameter. In the limit 
of the infinitely thin flux tube, the variables of the problem, Bj, and v,/,, tend 
to zero and the equations (3) and (4) for them are dropped out of the set, as 
well as the terms in the boundary conditions (8), which are proportional to 
the cross section of the tube. If equations (6) and (7) are written as a flux 
conservation condition, BA = const, the set of equations ( l ) - (8 ) is reduced to 
the well-known thin-flux-tube approximation of Roberts and Webb (1978). The 
treatment of linear and nonlinear waves in force-free flux tubes is not possible 
in the framework of this approximation. 

3. Linear Waves in Force-Free Flux Tubes 

After linearization and introducing the exponential dependence of perturbations 
on time and coordinate, B ~ exp(iwf — ikz), the equations ( l ) - (8 ) are reduced 
to a dispersion equation, 
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We restrict our consideration to a nonrotating tube (fio = 0) when the dispersion 
equation (9) reads 

_JJA*C\ (u2-C2
Ak2)(u2-C2

sk
2) + 2u2k2C2

s 

The first term in the dispersion equation corresponds to the wave propagation 
in the infinitely thin, untwisted tube (Jo = 0, A0 = 0). The second term shows 
the influence of the finite cross-section. The third term shows the effect of the 
twisting. It is simple to show that dispersion appears only due to the second 
term. The dispersion equation (11) can be rewritten as 

{C\+Cl-KC\){^-Clk2)^2-Clk2)+^2-C\k2)2{uj2-Clk2) = 0, (12) 

where 

<-± - CA 2(C\+Cl)-2C$K ' W 

S = C\ + IK (3C2 C | + 4 C | - C\) + K\C% - 6C2C2
A + C\). (14) 

The parameter K is 
JgA0 _ A0a

2 a2R2
0 

K ~ 2^Bl " " 8 T " ~ 8 ~ ' ( 1 5 ) 

where a is the well-known parameter of force-free magnetic fields and Ro is the 
radius of the flux tube. If the parameter K tends to zero, the fast speed C+ 
tends to the Alfven speed CA, and the slow speed C_ tends to the tube speed 
CT- Alfven torsional and slow magnetosonic sausage waves are modified by the 
twisting of the tube. The speeds C+ and C_ may be considered as the modified 
Alfven speed and modified tube speed respectively. 

In the case of a weak dispersion, when u> « C±k the dispersion equation (12) 
reduces to an approximate one 

,2 .. r2h2 (, | Ao(c±-CA)2(Cl-C2
s) 2\ 

u, ~ c±k yi ± — ^= k j , (16) 
The case of weak dispersion has a long wavelength limit, when the wave­

length is large in comparison with the tube diameter, fc2Ao < 1. A weak 
dispersion limit for torsional Alfven waves appears also for the case of weakly 
twisted flux tubes, when K < 1 and the phase velocity is approximately 

C\ « C\ ( l + £ £ ) . (17) 

In this case the approximate dispersion relation reads 

»2*C2
+k2(l+

A°KZ{1-P)k2) (18) 

which is valid for any values of k2A, if the twisting is small enough. 
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4. Discussion 

Eq. (11) cannot be subdivided into the dispersion equations for Alfven, tube, 
and other waves. This means that Alfven, tube, and sausage body wave modes 
are coupled and pure simple wave modes do not exist. Each of the wave modes 
is a mixture of Alfven, tube, and sausage modes. For the case of KB < 1 the 
wave modes appear to be weakly coupled and they do not differ significantly 
from the pure Alfven, tube, or sausage modes in untwisted tubes. But the 
dispersion equation cannot be subdivided into the dispersion equations for pure 
MHD modes, as happens in a uniform atmosphere. Slow waves in the force-
free magnetic field are accompanied by torsional disturbances, whereas torsional 
Alfven oscillations in force-free magnetic fields are accompanied by pressure, 
density and temperature fluctuations. 

The effect of a coupling of linear wave modes in force-free magnetic fields 
is essential for the dynamics of solar prominences. There has to be coupling 
between torsional and pressure oscillations of prominences. This makes possible 
the excitation of torsional oscillations by arbitrary shaking of the prominence 
legs. Even pure pressure fluctuations in the legs of prominences produce torsional 
oscillations as well if there are currents in the prominence. This easily makes 
the excitation of torsional oscillations of prominences. 

The Alfven torsional waves could be considered as an alternative current. 
If an alternative current exists along with a constant current, it produces fluc­
tuations of optical emission, which is proportional to product of the strengths 
of those currents. Consequently, direct observations of alternative currents in 
prominences are possible. 

The general dispersion relation (9) shows that the effect of tube rotation is 
similar to the influence of tube twisting on linear waves. The wave modes appear 
to be coupled in the rotating tube. The production of currents in prominences 
is the result of the twisting, which appears due to rotation of the flux tubes. 
Consequently, both twisting and rotation couple different modes of prominence 
oscillations. 

The dispersion of Alfven torsional waves is essential for nonlinear waves (see 
Zhugzhda and Nakariakov (1998, these proceedings)). 
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