AN INTEGRAL FOR CESARO SUMMABLE SERIES
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k+2
1. Introduction. The p - integral of James [2] is
strong enough to integrate a trigonometric series of the form

© )
(1.1) '1‘a + X (a cosnx+b sinnx)sia + Z a (x)
2 o n=1 n n 2 o n=1 n

which is summable (C,k) in [0,2n ], provided an extra condition
holds involving the conjugate series

0 [+ ¢]
(1.2) = (a sinnx-b cosnx)z Z b (x).
n n n
n=1 n=1

Considering series with coefficients o(n), Taylor [5] constructed

an integral (the AP-integral) which successfully integrates series
of the form (1.1) which are Abel summable provided an extra con-

dition holds involving the Abel means of the conjugate series (1.2).
In particular, James' result is ([3], Theorem 6.2) :

THEOREM A. Suppose that the series (1.1) is summable
(C,k) to a finite function f(x) for all xe¢[0,2n] - E, where E

is_at most countable, and let f(x) =0, xeE . If Ai‘i (x) = o(nk)

for x¢E and Bi-i (x) = o(nk) for xe[0,2m], then £(x),

f(x) cos px, f(x) sinpx, p=1,2,..., are each Pk.l-2 - integrable
and the coefficients of (1.41) are given in modified Fourier form

1 The resultsin this paper were obtained while the author was a
fellow of the Summer Research Institute (Kingston) of the
Canadian Mathematical Congress, 1965.
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. k+2 .
using the P - integral, while Taylor's result ([5], Theorem
11) may be stated as follows:

THEOREM B. Suppose that

0
f(r,x)=a /2+ Z a (x) "
o n
n=1

and an = o(n) , bn = o(n) . Let lim sup f(r,x), lim inf f(r,x)
r—>1- r—>-4-

be finite except at points of an enumerable set E ; and let
f(x) = lim f(r,x) exist and be finite p.p. At points of E let

r—>1-

lim (i-r) f(r,x) = O
r—>1-

Suppose further that

©
lim [(1-r) = b (x)r ] = 0 ,
n
r—-1- n=1
for all x. Then f(x), f(x) cos px, f(x) sinpx, p=1,2,...

are (AP)-integrable and the given series is the (AP)-Fourier
series of f(x) .

In his definition of major and minor functions, James [2]

used the generalized symmetric derivative p" F(x) and the
concept of n-convexity. The proof of Theorem A involves the
construction of major and minor functions from the sum function
F(x) of the series obtained by integrating (41.1) formally k + 2

times; and the fact that no derivative Dk+2~2r F(x) ,

1< r< (k+1)/2 , has an ordinary discontinuity is used. To obtain
his integral, Taylor [5] used known properties of Abel summable
trigonometric series with coefficients o(n) and constructed
"ypper-' and 'lower-approximating pairs' from the sum function
G(x) of the series obtained by integrating (1.1) formally twice.
His theory is stated in terms of ordinary convexity, continuity
and approximate continuity of G(x) .

It is the purpose of this paper to use the method of Taylor
and properties of (C, k) summable series with coefficients

o(n) to construct an integral which will successfully integrate
such series. This integral is less general than Taylor's but
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the conditions that must be imposed in Theorem 3.1 are very
similar to the conditions that James imposed and reveal to some
extent the connection between Theorems A and B.

2. Definition and Notation. All functions considered will
be real-valued or extended real-valued. As in the previous
section, the notation of Hardy ([1], Section 5.4) will be adopted.
For example, if

n
Ao(x) =A(x)=a /2+ £ (a cosrx+b sin rx)
n n o r r
r=1
n
(2.1) =a /2+ Z a (x),
o T
r=1
o n n
B(x)=B (x)= Z£ (b cosrx-a sinrx)z £ b (x)
n n r=1 T r r=1 r

then the Ces3aro means of order k, k=1,2,..., of series
(1.41) are defined by

A" (%)

n

k

K n
where A (x)= X A
n r

_1(x) and ES = (n+k)'/n'k!
n
r=0
Series (1.1) is said to be summable (C,k) to A at x if
k k
An (x)/ En - A as n-=o. Similar statements hold for series
(1.2) where

B 1x).
b o

1

(W

Bk(x) =
n

T

DEFINITION 2.4. Let F(x) be a Lebesgue integrable
function of period 2m defined on [0,2nr] with Fourier series

¢
(2.2) a /2+ Z (a cosnx+b sinnx).
o =1 B n
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Denote the Cesdro means of crder k for series (2.2) at the

point x by (Tk (F, n, xo) . Let

(o]
2
k. 0 k
HD F(xo) = lim inf {-—'z [e" (F,n,x)]}
n=+owo ox X=X
o
k 82 k
H'D F(xo)=lim sup {——2-[0' (F,n, x)]}
n->o0 ox X = X
o
k k

I HD F(xo) =HD F(xo) , the common value will be called

the kth Cesaro derivative of F(x) at the point x = X and will
be denoted by HkD Fix). I

F(x) = %Cx2 + $ (x)

where C is a finite constant and ¢ (x) is integrable and 2w -

periodic, then HkD F(x) , Hklz F(x) , Hk]—i) F(x) are defined as

C + HkD{; (x) , and so on.

It is clear that if the series

(2.3) -z n2 (a2 cos nx +b sinnx )
n o n o

n=1

k
is summable (C, k) to f(xo) , then HD F(xo) exists and equals
f(x ) . More generally, it is known ([8], p.80 and 353) that if
o
series (2.2) is summable (C,k) to F(x) then

k
QZ F(x) < lim sup f(r,x) < lim sup o (x) ,
r—>4- n=-o
(2.4)

k
D2 F(x) > lim inf f(r,x) > lim inf o (x) ,

r—-+1- n-—>-o

2 - .
where D F(x), D2 F(x) . denote the lower and upper Riemann
derivatives of order two, and the Abel and Cesaro means are
for series (2.3).
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DEFINITION 2.2. A function F(x) which is Lebesgue

k .
integrable and 2w - periodic will be said to be H - continuous
at the point % if

lim crk (F,n,x )=F(x ).
o o
n-+o

3. The Hk - integral. The procedure in this section
will be to give a general definition of an integral and then to show
that this definition is equivalent to a second definition. It will
then be shown that the integral is finite valued.

Let g(x) be defined in [0,27] and, by 2w - periodicity,
for all real x .

DEFINITION 3.1. The real number M and the real-

valued function F(x) will be called an Hk— upper approximating
pair [M, F(x)] for g(x) if

(i) $(x)=F(x) - Mx2/41r is 2w - periodic;

(ii) ¢ (x) is Lebesgue integrable and Hk - continuous
for all x;

* (iii) ¢ (x) is approximately continuous and has the property
R (seee.g. [5]);

(iv) F(-2w) = F(2w) = 0 ;

(v) HD F(x) > g(x)

ED F(x)> - «

except possibly on a countable set E;

2
0
(vi) 1irn'1 —_— crk(@,n,x)=0,er.
n 2
n=>oo’ ox

k .
An H - lower approximating pair [m,f(x)] is defined similarly.

DEFINITION 3.2. The function g(x) will be said to be

Hk— integrable over [O0,2w] if

inf M=supm =1,
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where the bounds are taken over the class of all approximating
pairs. The notation will be

K 2w
H - f g(x)dx =
o

LEMMA 3.4. Given ¢>0 and x_ ¢ [0,2r], there exists

k
an H - upper approximating pair [M, F(x)] for the function
J(x) = 0 such that

(i) F(x) is continuous for all x;

(i1) HkQ F(x)> 0, for all x;
k
(iii) H_QF(XO)=+°° )

2

e}
1.8 {e" (G, n,x)} >L>0,
n 2 X=X

ox o}

k

for all sufficiently large n, where

CG(x) = F“(x) - sz /4 ;

(iv) 0< M< e, |F(x)|<e, -2n<x<2m.
® 2. 2
Proof. Let C=2[ £ (4/n")+w +1]. Consider the
n=1
series
1 o0
(3.1) e/C [E- + = cos n(x—xo)]
n=1
and
0 cos n(x-xo)
(3.2) -e/C[ = ———-——2——-—-—]+)\,

n=1 n

and denote the sum of (3.2) by G(x), where )\ 1is chosen so
that G(-2n) = G(27) = (-TI'ZG)/C . Then G(x) is continuous for

all x, Hkg G(x) > - fc—: for all x, and Hkg Glx ) = + .
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Considering the series Zo where o« =1, n=0,1,2,..., it
n n

is clear that

k r+k 1

n n
A = Z | )>= Z r ,
n £=0 k k! rel

and the expression on the extreme right hand side reduces to a
polynomial in n of degree k + 1, whose leading coefficient is
1/(k+1)! . This shows that

_k+ e
1 & k e |y TGE T tG ¢
= {0 (G, n,x)} > = — —=———=>0.
n sz X=X C n (n+k)k C(k+1)

k!
Let the function ¥ be defined by
F(x) = G(x) + sz / 4n ,

where M = en/C . Then the pair [M, F(x)] satisfy the conditions
of the lemma.

LEMMA 3.2. Suppose [M, F(x)] is an upper approximating
pair for f(x) on [0, er] and let ¢ > 0. Then there exists an
upper approximating pair [M2 , FZ(X)] such that

0<M,-M<e, IFZ(X)—F(x)l<e,-21r <x<2m,

and

1D F,(x) > - @, H'D F,(x) > f(x)

for all x .

Proof. Let E be the set of points where either
k k
HD F(x)=- o, or HD F(x)< f(x)

Then E is countable and for x ¢E
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lim

n=>oo

B e

-‘22—2 {O’k (3,n,x)} =0.
ox

Let the points of E in [0,27w] be enumerated

Let [M., F . (x)] be the upper approximating pairs defined by
i i
Lemma 3.1, with €, X replaced by € xi . Write
o0

)
(3.3) G(x) = = Fi(x) , N= Z M
=1 i

n
.

i

Then G(x), as the sum of a uniformly convergent series of
continuous functions, is continuous and the function @ defined

by
® (x) = G(x) - (N/47) x°

is periodic and Lebesgue integrable. Moreover, since

) 2
o] k
—_— {Uk (Gn,x)} = Z —3 ¢ (F., nx)
2 . 2 i
ox i=1 ox

and since the Ces2ro means of the series of the form

—;— + Z cos n(xi-x) are non-negative, it follows that

2
1 '8—2 {Gk(@,n,x)} >L>0

ox

k
for xeE and sufficiently large n=n(x), and H D G(x)>0
for all . x. Now let

FZ(X) = F(x) + G(x), M2 = M+N.
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Then
HkQ FZ(X) > HkQ F(x) + Hkg G(x)
>f(x), xé E .
But at points of E

1 &k

a2 (@Z,n,x)=

n 0x
2 2
1 8 o’k (@,n,x)+'1' 2 Gk(®,n,x)>L >0
n 2 n 2 1
ox ox

for all sufficiently large n . This implies that

Hk_Q FZ(X): + 0, xeE ,

and the proof is complete.

LEMMA 3.3. I [M,F(x)] and [m,f(x)] are upper and

k
lower H - approximating pairs for a function g(x), then M>m
and [F(x) - f(x)] is convex for -2m< x< 2w .

Proof. Inview of Lemma 3.2, it may be assumed that
the exceptional set E in Definition 3.4 is empty. Then for all x

HD [F(x) - £(x)] > H'D F(x) - H'D f(x) > 0

and

N

k
HD [§(x)- ¢(x)] =-=7n {M-m} ,
which, in the light of (2.4) implies that

B [B(x) - ¢(x)]z-%v {M-m}
and

B’ [F(x) - 1] = = n(M-m) + D [3(x) - ()] 2 0 .
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Moreover, 52 [F(x) - £(x)] > - « for all x . Now since
F(x) - {(x) is approximately continuous and has the property R¥*
it follows ([5], Theorem 1] that F(x) - f(x) is convex. But then
F(0) < £(0) which implies that M > m .

The preceding sequence of lemmas shows that the

Hk~integra1 is always finite valued.

THEOREM 3.4. Suppose that series (1.1) is summable
(C,k) to a function f(x), except possibly on a countable set E ,

k-1
and suppose a_=o(n), b_=o(n) . Atpoints of E let A (x)
n n — 'n
Bk-’l

k
= o(nk) and let (x) = o(n ) for all x. Then

k 2
a = i H - fﬁ f(x) cosnxdx, n> 0,
n ™ -
o
1 k
b = — H -fZTFf(x) sinnxdx, n>1.
n T -
o
o A (x)
Proof. The series -z nz is a Fourier series
1 n

of a function G{x) ¢ L2 (0, 27) since the coefficients are o(i) .

By Lemma 21 of [6], this series is Abel-summable for all x to
a function with the property R . Since the coefficients are

1 .
o(;) , the series is convergent everywhere to G(x) . By Lemma

9 of [7], G(x) is approximately continuous. Let

F(x) = a x2 +G(x) + T,

1
4
where T is a finite constant chosen so that F(-2w) = 0 = F(27) .

k
Then the pair ['rrao , $(x)] forms both an upper and a lower H -

approximating pair for f(x) on [0,27]. (The condition

Ak (x )
ak-1 _ k. . . n_ o _
(x ) = o(n) implies ——— = o(n) ). We then have
n o Ek
n
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Let the given series be multiplied by cos px to give the
trigonometric series

[+ o]
(3.4) a + Z o (x)
[o) n
n=1
with constant term ao = % ap . Let the functions associated

with series (3.4) and its conjugate (i.e., the functions corres-

k
ponding to An (x) and Bi(x) for series (1.1) and (1.2)) be

k
denoted by Un(x) and Vz(x) respectively. By Theorem 2.1
of [3] the product series is summable (C,k) at points of [0, 27]-E
k- k
to f(x) cos px and for x e [0,27], Vn 1 (x) = o(n) . Itfollows

from equation 2.11 of [3] that at points of E

+
k-1 k- nrp -3 -
(3.5)  2(u t- Aty ¢, AT 4 0@,
n - r=n-p+2 tporor
where
n+1 0<n<p-1
c_ = ‘
n
2p-n-1 p<n<2p-2

Since (3.5) implies that Ul:l_1 (x) = o(nk) for xe¢E , the first

part of the proof may be used to prove the second part.

k
4, The Relationship Between the H - integral and Other

k
Integrals. That the H - integral is less general than the AP-
integral follows from Lemma 3.2 and inequalities 2.4. But it
is not possible to show that the Perron integral is less general

than the Hk— integral by the obvious method (Cf. [5], page 269),
since Fatou's theorem ([8], pp. 99-100) is not known to be true
for Cesaro means. The following theorem shows that under
suitable additional assumptions a Lebesgue integrable function

is Hk- integrable.

THEOREM 4.1. Let f(x) be finite-valued on [0,2m)
and defined by periodicity_elsewhere. If f(x) is L.ebesgue
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integrable an [0, 2w] and if there exists a continuous function

G(x) such that DZG(x) = f(x) everywhere, then f(x) is Hk-

integrabﬂe. k>3, and

Lo % f)ae = 0 - 27 gt .

(o} [0}

Proof. I

u
g(u) = [ £(t)dt,

o
and
b'd
h(x) = f g(u)du ,
o
then

Dzh(x) = DZG(x) = f(x) (4], p.37)

Let the Fourier series of f(x) be

(4.1) }'a + Z{a cosnx + b sin nx) .
2 o n n
Then
aox an sin nx - bn cos nx
(4.2) CO+T + = - ) = g(x),
a x an cosnx+bn sin nx

- = h R

(4.3) C1 +Cox+ =z nz (x)

where the series on the left hand side in both (4.2) and (4. 3)
are uniformly convergent. Then Dzh(x) = f(x) implies that

series (4.1) is summable (C,3) to f(x), i.e. H3D h(x) = f(x)
([9], p-60). Now defining

F(x) £ h(x) - C1 - Cox,

and
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2
ax
o

4 ’

3(x) = F(x) -

it is clear that [Trao , F(x)] form both an upper and lower

approximating pair and the theorem is proved.
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