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1. Introduction

Let l - > / ? - > . F £ » G - + l be a non-cyclic free presentation of a group G,
R = R1 > R2 > R2 > ••• > Rn > ••• the lower central series of R. Then Rn/Rn+1,
n ^ 1, can be regarded as a right G-module by denning the action of G via con-
jugation in F. We wish to investigate the annihilators of these modules which we
call higher relation modules.

Our main result is that if knnRjR2 = (0), then, for all n ^ 1,

AnnRnIRn+1 = (0) (Ann = annihilator).

We prove that there always exists an integer c k 1, independent of n, such that

AC
G • Ann RnjRn+1 ^ Am\RjR2,

where AG is the augmentation ideal of ZG, the integral group ring of G. If G is
periodic, then we prove that

Ann RnIRn+1 g Ann R/R2 for all n ^ 1.

2. Free dLTerential calculus

If F is a free group and Dx ,D2, •••,Dn: ZF -> ZF are right derivations, we

w r i t e Dn- D 2 D 1 ( M ) f o r Dn{Dn_,{ ••• D^D^u)) •••)) a n d D\u) f o r D(D(-(D{u))-)),

ueZF. For n = 0, the expression Dn---D1(u) is interpreted simply as M.
Let l - > i ? ^ F ^ G - v l b e a free presentation of a group G. We extend

a by linearity to a ring homomorphism a: ZF -*• ZG. Let £: ZF -» Z be the
unit augmentation.

LEMMA 2.1. Let n,i be integers with n > i 5 : 0 , ueAl
F, veA"f'~lAR,

£>! ,---,Dn: ZF -* ZF arbitrary derivations. Then
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PROOF. Extend a by linearity to a : ZF -> ZG. Let reRn, zeAnn Rn[Rn+u

a(u) = z, ueZF. Applying 0n to rRn+, • z = 0 gives (r - l)u e APA"R. Since
R g Fc, AR ^AC

F. Hence (/• - l)ueA?n~1)+1AR. Therefore, for arbitrary deri-
vations O i , c 2 , - , V

This gives

Since r - 1 e AR g ^ ,

zDkDk_1 •••Dl{r—\) = 0 for fc < en. Hence we get

THEOREM 3.2. Let \-*R-+F^G^>\bea non-cyclic free presentation of
a group G. If for every given partial derivation d : ZF -> ZF we can find an
element r of R and a partial derivation dt : ZF -» ZF such that a.d(f) = 0 and
sd^r) ^ 0, then

Ann RJRn+1 £ Ann R/R2.

PROOF. It is enough [4] to prove that for every z e A n n RnIRn+i , ssR and

partial derivation d : ZF -* ZF, <xd(s) • z = 0 . Let seR and d be a partial deri-

vation. By hypothesis we can find an element reR and a partial derivation dt

such that £</,(/•) # 0 , ad(r) = 0. If r = s, then ad(s) • z = 0 trivially. Suppose

that r i= s. Let i ^ 0 be the least integer such that

(3.3)

i
By Lemma 3.1 (case c = 1), this is certainly true for i = n — 1. This settles the
question of the existence of i. If i ^ 0, then applying Lemma 2.2, (3.3) gives

j - 1 j - 1

But ccdif) = 0, edx{r) ̂  0. Hence this implies that

. r ] , -

i - 1

contradicting the minimality of i. Hence the least integer i for which (3.3) holds
is 0 i.e. <xd(s) • z = 0.

COROLLARY 3.4. If G is periodic, then Ann RnjRn+1 g AnnK/R2-
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PROOF. Given d to be the partial derivation with respect to the free generator
Xj, say, of F, we take r = xf, where xt is a free generator # Xj and a(x,) is
of order m in G. For dl we take the partial derivation with respect to x(. This
choice of r and dt is possible since F is non-cyclic and G is periodic. Then ad(r) = 0
and ed^r) = m # 0. Hence by Theorem 3.2, Ann RnIRn+1 ^ Ann

COROLLARY 3.5. If G is finite, then AnnRjRn+1 = (0) for all n ̂  1.

PROOF. This follows form Corollary 3.4 and the result that Ann R/R2 = (0)
when G is finite [5].

LEMMA 3.6. Let R <; Fc, R $ Fc+1. Then for a given n ̂  2

eif/ier (a) Ann Rn/Rn+1 ^ Ann i? / R2

or (b) </iere exists an integer i ^ 2 SMC/J

(i) /?,_! £ Fc(

(ii) adc(j_i) + 1 •••rf1(s) • z = 0 for every seRi; zeAnn RnjRn+1 and all par-
tial derivations dl,d2,---,dc{i_l)+1 .

PROOF. Let K be the set of natural numbers i which satisfy (b(ii)), By Lemma
3.1, K is not empty. Let / be the least member of K. If i = 1, then ad(s) • z = 0
for every seR, zeAnnRnjRn+1 and every partial derivation d. Therefore
zeAnnRIR2 [4].

Suppose i ^ 2 . We assert that i satisfies (b(i)). For , let Rt^t ^ F c ( i _ i ) + 1 .

Since R $ F c + 1 and R ^ F c , we can find an element reR,r$ Fc+1, r e F c . By

([1], 4.6) it is possible to choose partial derivations dltd2,---,dc such that

Let f be an arbitrary element of i?;_! and <ic+1, ^c+2»---,^C(i-i)+i be arbitrary
partial derivations. Then [r,t] e Rt and, since i satisfies the requirement (b(ii)) of
the Lemma, we have

adc(i-i)+i-<*i(|>,f])- z = 0

for all zeAnn RnjRn+1. By Lemma 2.2 this gives

)} • z = 0.

1. Hence by ([l],4.6)8dc((-i)-di(0=0. Also 8dc--d1(r)#0.
Hence adc(,_n+1---dc+1(0 • z- 0 for every teRi_l, zeAnn RnjRn+1 and arbi-
trary partial derivations c/c+1,---,rfc(i_1)+1 i.e. i—1 satisfies the condition (b(ii)).
This contradicts the choice of i. Hence it must satisfy (b(i)).

LEMMA 3.7. Let R^FC,R$, Fe+1. Then xd(r)-z = OforallzeAnnRnjRn+u

reR r\Fc+l and all partial derivations d.
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PROOF. By Lemma 3.6 either 3.6(a) or 3.6(b) holds. If 3.6(a) holds, then there
is nothing to prove [4]. Suppose 3.6(b) holds. Choose s in Ri_l which is not
in F c ( l _ 1 ) + 1 . By ([1], 4.6) we can find partial derivations dt .•••,rfc(,_1) such that
edc(,_i)---d1(s) # 0. Let reR O F C + 1 . Then [>,s]eKf and therefore

for all ze AnnRnIRn+1 and arbitrary partial derivations d. Hence by Lemma 2.2

{edc--- d^r) <xddcit-iy dc+i(s) - Edc(i_iy-- dx(s) <xd(r)} • z = 0 .

But reFc+l and therefore edc--dl{r) = 0 . Also ed^^.^---dx{s) =£ 0. Hence
<xd(r) • z = 0 for reR C\Fc+l and arbitrary partial derivations d.

We can now prove

THEOREM 3.8. There exists an integer c, independent of n, such that

A%- Ann RJRn+1 ^ Ann RIR2.

PROOF. Let z e Ann Rn/ Rn+l. Since F is residually nilpotent, we can find an
integer c ^ 1 such that R ^ Fc, R $ F c + 1 . By Lemma 3.7 <xd(s) • z = 0 for all
seR n f t t l and all partial derivations d. Let reR and f1J2,---,fceF. Then
[• • • [ [ r / i ] , / 2 ] , - , / J ^ n F c + 1 . Hence

(3.9) « d ( [ - [

It is easy to check that

«*([- [[^i] , /2],- , /c]) = «d(rX«C/i) - 1 ) - W e ) - 1).

Hence (3.9) gives

where a(/f) = gt,i = l,2,---,c. Since this is true for all r e R and all partial deri-
vations d, it follows that (#, - l)(fif2 - l ) - " ( 0 c - !) ' zeAnnR/R2 [4]. Hence
^C

G • Ann Rn / Rn+1 ^ Ann i ? / R 2 .

COROLLARY 3.10. / /Ann R/R2=(0), then Ann RJRn+1 = (0)foralln ^ 1.

PROOF. By Corollary 3.5 we can assume that G is infinite. Since the integral
group ring of an infinite group does not have any non-zero element which annihi-
lates its augmentation ideal, the corollary follows from Theorem 3.8.

REMARK 3.11. For a non-cyclic free presentation l - > i ? - > F i > G - » l o f a
group G, the annihilator of the relation module R/ R2 is known ([4],[5]) to be
trivial in the following cases:
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(i) ZG is without zero-divisors;

(ii) the free presentation under consideration is the standard free presenta-

tion;

(iii) G is finite;

(iv) G is residually finite and centre of G is infinite;

(v) G is nilpotent;

(vi) the rank of F is infinite.
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