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1. Introduction

let 1 > R—F3% G — 1 be a non-cyclic free presentation of a group G,
R =R, >R, >R3> >R, > - the lower central series of R. Then R,/R,,;,
n = 1, can be regarded as a right G-module by defining the action of G via con-
jugation in F. We wish to investigate the annihilators of these modules which we
call higher relation modules.

Our main result is that if Ann R/R, = (0), then, for all n = 1,

Ann R,/R,.; = (0) (Ann = annihilator).
We prove that there always exists an integer ¢ = 1, independent of n, such that
A% *AnnR,/R,,; £ AnnR/R,,

where Ag is the augmentation ideal of ZG, the integral group ring of G. If G is
periodic, then we prove that

Ann R,/R,.; S AnnR/R, for all n = 1.

2. Free di”erential calculus

If F is a free group and D,,D,,---,D,: ZF — ZF are right derivations, we
write D, -+ DyDy(u) for Dy(D,-1(++- D;(D1(w)) +-)) and D(w) for D(D(-+(Dw))---)),
——

ueZF. For n = 0, the expression D, --- D,(u) is interpreted simplynas u.

Let 1 = R > F % G — 1 be a free presentation of a group G. We extend
o by linearity to a ring homomorphism «:ZF — ZG. Let ¢:ZF — Z be the
unit augmentation.

LEMMA 2.1. Let n,i be integers with n>i2 0, ue AL, ve AV "1 Ag,
D,,-,D,:ZF — ZF arbitrary derivations. Then
228
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ProoF. Extend o by linearity to & : ZF - ZG. Let reR,, zeAnn R,[R, 1,
a(u) = z, ue ZF. Applying 0, to rR,,, *z = 0 gives (r — D)ue ApAy. Since
R < F., Ag £ AL. Hence (r — Due AZ" V¥4, Therefore, for arbitrary deri-
vations D;,D;, ", Dyuoty+1>

o‘Dc(n—1)+1 «Dy((r—1u) =0 [1]
This gives

*(Degr1y+1 -+ Dolr = 1)) (u) + eDq—1) -+ Dy(r — 1) aD o1y 1 () +--
+ &(r — D)aD y-1y+1 -+ Dy(w) = 0.
Since r — 1e A} £ A7,
eDD,_;---D(r—1) =0 for k < cn. Hence we get
D n-1y+1° Dy(r) - z = 0.

THEOREM 3.2, Let 1 - R —» F % G — 1 be a non-cyclic free presentation of
a group G. If for every given partial derivation d : ZF — ZF we can find an
element r of R and a partial derivation d, : ZF — ZF such that ad(r) = 0 and
ed(r) # 0, then

AnnR,/R,.; S Ann R/R,.

PRrOOF. It is enough [4] to prove that for every zeAnn R,/R,;, s€ R and
partial derivation d : ZF — ZF, ad(s) - z = 0. Let se R and d be a partial deri-
vation. By hypothesis we can find an element re R and a partial derivation d;
such that ed,(r) # 0, ad(r) = 0. If r = s, then «ad(s) - z = O trivially. Suppose
that r # s. Let i = 0 be the least integer such that

33 add([---[[s,r],r],-, 7D -z =0.
(3.3) ([ [[sr] ]- D

i
By Lemma 3.1 (case ¢ = 1), this is certainly true for i = n — 1. This settles the
question of the existence of i. If i # 0, then applying Lemma 2.2, (3.3) gives

{edy([ - [[sr], ri]_,"l'_,}r]) ad(r) — edy(raddy ([ [S,r]i,:,l rh-z=0.
But ad(r) = 0, ed,(r) # 0. Hence this implies that
addll_l([ [[s’r];ri"l",r]) cZ = 0:

contradicting the minimality of i. Hence the least integer i for which (3.3) holds
isOie.ad(s)-z=0.

CoRrOLLARY 3.4. If G is periodic, then Ann R, /R, ., < Ann R/R,;.
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PROOF. Given d to be the partial derivation with respect to the free generator
x;, say, of F, we take r = x|, where x; is a free generator # x; and a(x,) is
of order m in G. For d; we take the partial derivation with respect to x;. This
choice of r and d, is possible since F is non-cyclic and G is periodic. Then ad(r) = 0
and ed,(r) = m # 0. Hence by Theorem 3.2, AnnR,/R,,, < AnnR/R,.

COROLLARY 3.5. If G is finite, then Ann R, /R,,.; = (0) for all n =2 1.

ProoF. This follows form Corollary 3.4 and the result that Ann R/ R, = (0)
when G is finite [5].

LemMMA 36. Let RS F,, R£ F.iy. Then for a given n =z 2

either (a) AnnR,/R,,; £ AnnR/R,
or (b) there exists an integer i = 2 such that

() Ri—y £ Fe-1y+1 and
(i) od.;-1y+1°+di(s) - z = O for every se R;, zeAnn R, /R, | and all par-
tial derivations dy,d;, -, d.;—1y+1 -

PROOF. Let K be the set of natural numbers i which satisfy (b(ii)), By Lemma
3.1, K is not empty. Let i be the least member of K. If i = 1, then ad(s) - z = 0
for every seR, zeAnn R,/R,,; and every partial derivation d. Therefore
zeAnn R/R, [4].

Suppose i = 2. We assert that i satisfies (b(i)). For, let R;_; < Fo-1y+1 -
SinceR £ F,,;and R < F,, wecan find an eclementreR,r¢F, ., reF,.. By
([1], 4.6) it is possible to choose partial derivations d, ,d,,---,d, such that

edd,_y - dy(r) £ 0.

Let ¢ be an arbitrary element of R;_; and d_,y, d.y5, -, d 1)+ bE arbitrary

partial derivations. Then [r,t] € R; and, since i satisfies the requirement (b(ii)) of
the Lemma, we have

ade_ryerd([rt]) -z =0
for all ze Ann R, /R, ,,. By Lemma 2.2 this gives
{ed, - dy(Nod o 1ysr o dos (1) — ed.qy - dy(Dad,_ 1y« (N} -z =0.

ButteR;_y < F.g_y1y+;. Hence by ([1],4.6) ed ;- 1)-+dy(£)=0. Also ed,-+-d, (r) #0.
Hence ad,;_1y4+1-+d.41() - z=0 for every teR;,_,, ze Ann R,/ R, and arbi-
trary partial derivations d,,. 1, -, d.;~1y+1 1.6. i—1 satisfies the condition (b(ii)).
This contradicts the choice of i. Hence it must satisfy (b(i)).

LemMA 3.7. Let RS F,R£ F,.y.Then ad(r)-z =0 for allze Ann R, /R, 1,
reRNF, . and all partial derivations d.
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ProoF. By Lemma 3.6 either 3.6(a) or 3.6(b) holds. If 3.6(a) holds, then there
is nothing to prove [4]. Suppose 3.6(b) holds. Choose s in R;_; which is not
in F.q_1y+1. By ([1], 4.6) we can find partial derivations d, ,---,d.;_, such that
edyi-1y-di(s) #0. Let re RN F ;. Then [r;s]eR; and therefore

addc(i—l) dl([r,s]) czZ = 0
for all ze AnnR, /R, , and arbitrary partial derivations d. Hence by Lemma 2.2
{adc"' dy(r) “ddc(i-l) o doq(s) — Sdc(i—l) - dy(s) “d(")} rz=0.

But reF,.,, and therefore ed ---d,(r) = 0. Also ed ;- d,(s) # 0. Hence
od(r) - z = 0 for re RN F,_,, and arbitrary partial derivations d.

We can now prove

THEOREM 3.8. There exists an integer c, independent of n, such that

A% -Ann R, /R,,; S AnnR/R,.

PROOF. Let ze Ann R,/ R, ., . Since F is residually nilpotent, we can find an
integer ¢ = 1 such that R < F,, R £ F_, . By Lemma 3.7 ad(s) - z = 0 for all
se RN F,,, and all partial derivations d. Let reR and f,,f,,,f.€ F. Then

- [[rf1).f21, ./ ]eROF, ;. Hence
(3.9 ad([ - [[rfilfo) s f D - 2 = 0.
It is easy to check that
ad([ -~ [[rfi)f2do 0 fe D) = ad(r)(o(fy) — D+ (f) — D).
Hence (3.9) gives
ad(rlgy — 1)(g2 — (9.~ 1)z =0

where a(f;)) = g;, i = 1,2,---,¢. Since this is true for all r e R and all partial deri-
vations d, it follows that (g, — 1)(g, — 1)+ (9. — 1) - z€ Ann R/ R, [4]. Hence
AG -AnnR,/R,,; < AnnR/R,.

CoOROLLARY 3.10. If Ann R/ R,=(0), then Ann R,/R,. = (0)foralln = 1.

ProoF. By Corollary 3.5 we can assume that G is infinite. Since the integral
group ring of an infinite group does not have any non-zero element which annihi-
lates its augmentation ideal, the corollary follows from Theorem 3.8.

ReMARK 3.11. For a non-cyclic free presentation 1 > R - F % G —» 1 of a
group G, the annihilator of the relation module R/ R, is known ([4],[5]) to be
trivial in the following cases:
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(i) ZG is without zero-divisors;

(ii) the free presentation under consideration is the standard free presenta-
tion;

(iii) G is finite;

(iv) G is residually finite and centre of G is infinite;

(v) G is nilpotent;

(vi) the rank of F is infinite.
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