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Abstract In this paper spectral properties of non-selfadjoint Jacobi operators J which are compact
perturbations of the operator J0 = S + ρS∗, where ρ ∈ (0, 1) and S is the unilateral shift operator in �2,
are studied. In the case where J −J0 is in the trace class, Friedrichs’s ideas are used to prove similarity of
J to the rank one perturbation T of J0, i.e. T = J0 +(·, p)e1. Moreover, it is shown that the perturbation
is of ‘smooth type’, i.e. p ∈ �2 and

lim
n→∞

|p(n)|1/n � ρ1/2.

When J − J0 is not in the trace class, the Friedrichs method does not work and the transfer matrix
approach is used. Finally, the point spectrum of a special class of Jacobi matrices (introduced by Atzmon
and Sodin) is investigated.
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1. Introduction

Let �2 = �2(N) and {ej}j∈N be the standard orthonormal basis in �2 (N = {1, 2, . . . }).
Denote by S the unilateral shift operator in �2, i.e.

Sej = ej+1, j ∈ N.

In this paper we study spectral properties of non-selfadjoint Jacobi operators J which
are compact perturbations of the operator

J0 = S + ρS∗ (1.1)

where ρ ∈ (0, 1).
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In the case where J−J0 is in the trace class, Friedrichs’s approach [8,9] is used to prove
similarity of J to the rank one perturbation T of J0, i.e. T = J0 +(·, p)e1. Moreover, this
perturbation is of ‘smooth type’ (see Theorem 2.1). In this way spectral analysis of J is
somehow reduced to that of T . On the other hand, when J − J0 is not in the trace class,
the Friedrichs approach does not work and the idea of transfer matrix analysis is used.
This idea has been already used in studies of the point spectrum of selfadjoint Jacobi
operators [12].

A linear operator A : �2 → �2 is called diagonal, with the diagonal d(A) = a =
{a(j)}j∈N, if

Aej = a(j)ej , j ∈ N.

Let D be the set of all diagonal operators. Define Dc = D∩B∞(�2) and D1 = D ∩ B1(�2),
where B∞(�2) (respectively, B1(�2)) is the set of all compact (respectively, trace class)
operators in �2. We are going to study the eigenvalues of non-selfadjoint Jacobi matrices
of the following form:

J = SM1 + M2S
∗ + M3,

where M1, M2 ∈ D and M3 ∈ Dc, d(M1) = {αn}∞
n=1 ⊂ C \ {0}, d(M2) = {βn}∞

n=1 ⊂
C \ {0}, limn→∞ αn = a1, limn→∞ βn = a2 and a1, a2 ∈ C \ {0}.

Since operators M1 − a1I, M2 − a2I and M3 are compact, the essential spectrum
σess(J ) of the operator J coincides with the essential spectrum of the operator

J0 = a1S + a2S
∗.

In the case where |a1| = |a2| the operator J has properties similar to those of a non-
selfadjoint difference Schrödinger operator S + S∗ + Q (Q ∈ D1), which has been well
studied in numerous works. In this paper we only consider the case |a1| �= |a2|. We are
going to answer the question: when is the point spectrum σp(J ) empty or when does it
consist of only a finite number of eigenvalues of J ? In what follows we will denote by
σ0

p(J ) the set of all isolated eigenvalues of finite algebraic multiplicity. Additionally, we
will denote by σr(J ) the residual spectrum and by σc(J ) the continuous spectrum of J .
Because J is a compact perturbation of J0, it is natural to look at the differences between
spectra of these two operators. From general perturbation theory it follows that the set
σ(J ) \σ(J0) consists of isolated eigenvalues of finite algebraic multiplicity. However, the
condition Q ∈ D1 does not ensure finiteness of the point spectrum of the Schrödinger
operator [13].

Assume that |a1| > |a2|. Then there exists ρ ∈ (0, 1), b ∈ C, |b| = 1 and c ∈ C such that
ca1 = b, ca2 = ρb̄. Because σ(J0) = (1/c)σ(bS + (ρbS)∗), the structure of the spectra
are the same and we can consider J0 = bS + (ρbS)∗ without loss of generality. Next
notice that J0 given by the last formula is similar to J0 = S + ρS∗, because |b| = 1.
Indeed, the diagonal operator given by Den = bnen is bounded, boundedly invertible and
D−1J0D = J0.

Let

E =
{

ρz +
1
z

∈ C : |z| = 1
}
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and

Ω =
{

ρz +
1
z

∈ C : 1 < |z| < ρ−1
}

.

It is known that σ(J0) = Ω̄ = Ω ∪ E and its essential spectrum σess(J0) = E (see [6]).
Therefore, we have a slightly simpler operator J :

J = SM1 + M2S
∗ + M3 = J0 + B, (1.2)

where d(M1) = {αn}∞
n=1, d(M2) = {βn}∞

n=1, limn→∞ αn = 1, αn, βn ∈ C \ {0},
limn→∞ βn = ρ, M3 ∈ Dc, and B is a compact Jacobi operator, so that σ(J) ∩ (C \ Ω̄)
consists of a discrete set of eigenvalues only.

It seems that there are not many papers devoted to spectral analysis of non-selfadjoint
Jacobi matrices, but see [1], [2], [3], [4], [5] and [11]. Note that in the case αn = βn,
Jacobi operators have a close relation to the theory of formal orthogonal polynomials (in
particular in the study of their asymptotics) and continued fractions. Conversely, formal
orthogonal polynomials can be applied to spectral analysis of Jacobi operators (e.g. the
characterization of the essential spectrum of J in terms of the asymptotic behaviour of
formal orthogonal polynomials found by Beckermann in [3]). We also emphasize that
although the Jacobi operators we study in this paper are compact perturbations of
Toeplitz ones, the problem of similarity is rather subtle. This is clearly illustrated by
the example given in § 6.

The paper is organized as follows. Section 2 contains the main similarity result. Its
consequences are described in § 3. In turn, § 4 presents the transfer matrix method applied
to analyse σp(J) lying on σess(J). In § 5 the point spectrum of the special class of Jacobi
matrices (introduced by Atzmon and Sodin in [2]) is studied. Finally, § 6 contains an
example related to the main similarity result.

2. Similarity of perturbed Jacobi operators

Let I be the identity operator. Suppose that J is given by (1.2), where M1 − I, M2 − ρI,
M3 all belong to D1. Notice that we can assume without loss of generality that M1 = I.
Indeed, if M2 − ρI, M3 ∈ D1, d(M1) = {αn − 1} ∈ �1 and αn �= 0 for every n ∈ N,
then ΛJΛ−1 = S + (ρI + R)S∗ + Q, where R, Q are still in D1 and Λ is a bounded and
boundedly invertible in �2 diagonal operator with the diagonal

λn =
(n−1∏

k=1

αk

)−1

, λ1 = 1.

Therefore, in what follows we shall study the operator J : �2 → �2, which acts by the
formula

J = S + (ρI + R)S∗ + Q, (2.1)

where ρ ∈ (0, 1), R, Q ∈ D1.
Let (·, ·) denote the scalar product in �2. The main result of this section is the following

theorem.
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Theorem 2.1. Let the operator J be defined by (2.1) and J0 = S + ρS∗. Then J is
similar to the operator

T = J0 + (·, p)e1, (2.2)

where p ∈ �2 and
lim

n→∞
|p(n)|1/n � ρ1/2. (2.3)

The proof of Theorem 2.1 is divided into several lemmas.

Definition 2.2. Let α � 1. Denote by Aα (Aα,1) the set of all operators V ∈ B(�2)
such that

V =
∞∑

n=0

S∗nVn, Vn ∈ D (Vn ∈ D1), (2.4)

|V |α :=
∞∑

n=0

αn‖Vn‖ < ∞
(

|V |α,1 :=
∞∑

n=0

αn‖Vn‖B1 < ∞
)

. (2.5)

Let
A0

α = {S∗V : V ∈ Aα}.

The set A0
α coincides with the set of all operators from Aα which have a strictly upper

triangular matrix.

Remark 2.3. It is easy to see that operators V ∈ Aα can be uniquely written in the
form (2.4), and (2.5) determines the norm in Aα (Aα,1). Obviously, Aα (Aα,1) with the
norm | · |α (| · |α,1) is a Banach space.

Lemma 2.4. Aα is the Banach algebra, and A0
α is the two-sided closed ideal in Aα.

Proof. It suffices to check that for arbitrary V1, V2 ∈ Aα

|V1 · V2|α � |V1|α · |V2|α.

Let

Vj =
∞∑

k=0

S∗kVkj , j = 1, 2.

Then

V1V2 =
∞∑

r=0

S∗r
∑

k+p=r

SpVk1S
∗pVp2.

Since

αr

∥∥∥∥ ∑
k+p=r

SpVk1S
∗pVp2

∥∥∥∥ �
∑

k+p=r

(αk‖Vk1‖)(αp‖Vp2‖),

then

|V1V2|α �
∞∑

r=0

∑
k+p=r

(αk‖Vk1‖)(αp‖Vp2‖) = |V1|α · |V2|α.

The lemma is proved. �
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Denote by Pn (n ∈ N) the projection in �2, which acts by

Pnx =
n∑

j=1

x(j)ej , x = {x(j)}j∈N. (2.6)

Proposition 2.5. Let V ∈ A0
α and

lim
n→∞

|V − V Pn|α = 0.

Then the operator I + V is invertible in the algebra Aα.

Proof. Choose n ∈ N such that |V − V Pn|α < 1. Since V is strictly upper triangular
we have I + V = [I + V (I − Pn)](I + V Pn). The first term in the product is invertible
in Aα because |V − V Pn|α < 1 and the second term is also invertible in Aα as we notice
that (V Pn)n = 0. �

Denote by Γ the linear operator acting from A1,1 into A1 by the formula

Γ (V ) =
∞∑

n=1

(S∗)nV Sn.

By dint of simple calculations we obtain the following lemma.

Lemma 2.6.

(1) If A ∈ D1 and n ∈ N, then Γ (A) ∈ B∞(�2) and

‖Γ (A)‖ � ‖A‖B1 .

(2) For V ∈ A1,1,
Γ (V S∗) = S∗(V + Γ (V )). (2.7)

(3) The operator Γ continuously maps A1,1 into A1 and

|Γ (V )|1 � |V |1,1, V ∈ A1,1. (2.8)

(4) For arbitrary V ∈ A1,1,

(I − P1)(Γ (V )S − SΓ (V ) + V S) = 0. (2.9)

(5) If V ∈ A1, A ∈ D1 and n ∈ N, then V AS∗n ∈ A1,1 and

|V AS∗n|1,1 � |V |1 · ‖A‖B1 . (2.10)

Define the sequence {Un}∞
n=0 ⊂ B(�2) by the following recurrence relation:

Un+1 = ρS∗UnS∗ + Γ (Un(QS∗ + RS∗2)), n � 1, (2.11)

with the initial conditions

U0 = I, U1 = Γ (QS∗ + RS∗2). (2.12)
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Lemma 2.7.

(1) For each n ∈ N,

Un =
2n∑

j=n

S∗jUnj , Unj ∈ D ∩ B∞(�2) (2.13)

and

(I − P1)[Un+1S − SUn+1 + ρ(UnS∗ − S∗Un) + Un(Q + RS∗)] = 0. (2.14)

(2)
lim

n→∞
|Un|1/n

1 � ρ. (2.15)

Proof. Since SS∗ = I − P1, (2.14) follows from (2.9) and (2.11). Applying
Lemma 2.6 (1), (2) and induction we obtain the representation (2.13).

Now let us check (2.15). Using (2.11) and (2.8), we have

|Un+1|1 � ρ|Un|1 + |Un(QS∗ + RS∗2)|1,1.

From (2.13) it follows that

UnQS∗ = UnQnS∗, UnRS∗2 = UnRnS∗2,

where Qn = Q(I − Pn), Rn = R(I − Pn) (see (2.6)). Therefore, by (2.10), we have

|Un(QS∗ + RS∗2)|1,1 � Cn|Un|1,

where
Cn = ‖Qn‖B1 + ‖Rn‖B1 .

Consequently,
|Un+1|1 � (ρ + Cn)|Un|1. (2.16)

Since Q, R ∈ B1(H), we have limn→∞ Cn = 0. Hence using (2.16), we get (2.15). The
lemma is proved. �

Put

U =
∞∑

n=0

Un. (2.17)

Lemma 2.8. For each α ∈ [1, ρ−1/2) we have

(1) (U − I) ∈ A0
α;

(2) the operator U is invertible in the algebra Aα and

(I − P1)(UJU−1 − J0) = 0. (2.18)

https://doi.org/10.1017/S0013091502000925 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000925


Similarity and the point spectrum of Jacobi matrices 581

Proof. Let 1 � α < β < ρ−1/2. Since β−2 > ρ, from (2.13) and (2.15) it follows that

2n∑
j=n

‖Unj‖ = |Un|1 � cβ−2n, n ∈ N,

where c is a positive constant. Therefore,

‖Unj‖ � cβ−2n � cβ−j , n ∈ N, n � j � 2n. (2.19)

Using (2.13) and (2.17) we obtain

U = I +
∞∑

j=1

S∗j
∑

j/2�n�j

Unj .

Hence, taking into account (2.19), we have

|U |α = 1 +
∞∑

j=1

αj

∥∥∥∥ ∑
j/2�n�j

Unj

∥∥∥∥ � 1 + c

∞∑
j=1

j

(
α

β

)j

< ∞,

i.e. (U − I) ∈ A0
α.

Let V = U − I. We claim that

lim
n→∞

|V − V Pn|α = 0.

Indeed, we have

|V − V Pn|α =
∞∑

j=1

αj

∥∥∥∥ ∑
j/2�k�j

Ukj(I − Pn)
∥∥∥∥ � |U |α < +∞.

Define Vj =
∑

j/2�k�jUkj . Observe that the sequence Fn(j) := ‖Vj(I−Pn)‖ belongs to �1

(as a function of j) and |Fn(j)| � ‖Vj‖, j ∈ N. Since {αj‖Vj‖} ∈ �1 and limn→∞ Fn(j) = 0
(due to compactness of Vj) the Lebesgue-dominated convergence theorem proves the
claim. Therefore, according to Proposition 2.5 U is invertible in Aα. Equality (2.14)
evidently implies that

(I − P1)(UJ − J0U) = 0,

and (2.18) follows. The lemma is proved. �

Proof of Theorem 2.1. Fix an arbitrary α ∈ [1, ρ−1/2). Applying Lemma 2.8 we
have (U − I) ∈ A0

α, U−1 ∈ Aα. Therefore, (U−1 − I) ∈ A0
α and

V = UJU−1 − J0 = USU−1 − S + X,

where X belongs to Aα. But U = I + S∗Ṽ , for a certain Ṽ ∈ Aα, and so USU−1 − S =
(S∗Ṽ S − SS∗Ṽ )U−1 also belongs to Aα. Let

V :=
∞∑

n=0

S∗nVn, Vn ∈ D.
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Then
∑∞

n=0 αn‖Vn‖ = |V |α < ∞. Put p = V ∗e1. Using (2.18) we get

UJU−1 = J0 + (·, p)e1.

Since

V em =
∞∑

n=0

S∗nVnem =
∑
n<m

S∗nVnem,

p(m) = (V ∗e1, em) = (e1, V em) = (em, Vm−1em),

we have
|p(m)| � ‖Vm−1‖ � α−m+1|V |α, m ∈ N.

Hence (2.3) follows. Theorem 2.1 is proved. �

3. Consequences of similarity

In this section Theorem 2.1 is used to describe the structure of σ(J). In particular, we
shall prove that σ0

p(J) and σr(J) ∩ E are finite. Similarity of J to a one-dimensional
perturbation of J0 allows us to present a rather complete description of the spectral
picture of it.

Theorem 3.1. Let |a1| = 1, |a2| = ρ, ρ ∈ (0, 1), and J = SM1 + M2S
∗ + M3, where

M1 − a1I, M2 − a2I, M3 ∈ D1, then

(1) Ω̄ ⊂ σ(J), σp(J) = σ0
p(J) ⊂ C \ Ω̄;

(2) Ω ⊂ σr(J), σc(J) = E \ σr(J);

(3) the sets σ0
p(J), σr(J) ∩ E are finite.

Proof. Because we can simplify the formula for J according to the remarks made
above it suffices to prove the theorem for operators J of the form

J = S + (ρI + R)S∗ + Q,

where ρ ∈ (0, 1), Q, R ∈ D1.
According to Theorem 2.1 it is enough to study the spectrum of T , which is defined

by (2.2). Denote by h the function

h(ξ) = ζ−1 + ρζ, 0 < |ζ| < ρ−1.

By the above definitions it is easy to see that

Ω = {h(ζ) : 1 < |ζ| < ρ−1}, E = {h(ξ) : |ζ| = 1},

C \ Ω̄ = {h(ζ) : 0 < |ζ| < 1}

}
(3.1)

and
T − h(ζ)I = (I − ρζS∗)(S − ζ−1I + (·, p)e1). (3.2)
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Let Mζ = S − ζ−1I + (·, p)e1, then

ker Mζ = {0}, 1 � |ζ| < ρ−1. (3.3)

Indeed, if x ∈ �2 and Mζx = 0, then

(Mζx, ej+1) = ((S − ζ−1I)x, ej+1) = 0, j = 1, 2, . . . ,

and, consequently,
x(j + 1) = ζx(j), j = 1, 2, . . . .

Since x ∈ �2 and |ζ| � 1, we have x = 0. Thus ker(T − λ) = {0} if λ ∈ Ω ∪ E.
Additionally, if |ζ| > 1, then S − ζ−1I is Fredholm and ind(S − ζ−1I) = −1. Hence

Mζ is also Fredholm for |ζ| > 1 and

indMζ = −1.

Therefore, T − h(ζ) must be Fredholm as the product of invertible I − ρζS∗ and Mζ , for
1 < |ζ| < ρ−1. It follows that

Ω ⊂ σr(T ).

On the other hand, if 0 < |ζ| � 1, then

T −h(ζ)I = (I − ρζS∗)(S − ζ−1I +(·, p)e1) = (I − ρζS∗)(I +(·, pζ)e1)(S − ζ−1I), (3.4)

where

pζ = −
∞∑

n=0

ζ̄(n+1)S∗np. (3.5)

The convergence of the series (3.5) follows from (2.3). To verify (3.4) it is enough to note
that S∗pζ = p + (ζ̄)−1pζ , which is clear by definition of pζ . Observe that the operator

Nζ = I + (·, pζ)e1, |ζ| � 1,

is invertible in B(�2) if
ϕ(ζ) := 1 + (e1, pζ) �= 0. (3.6)

If ϕ(ζ) = 0, then
dim kerNζ = codim Im Nζ = 1.

Thus from (3.4) and (3.3), we obtain

σp(T ) = {h(ζ) : |ζ| < 1, ϕ(ζ) = 0} ⊂ C \ Ω̄,

σc(T ) = {h(ζ) : |ζ| = 1, ϕ(ζ) �= 0} ⊂ E,

σr(T ) ∩ E = {h(ζ) : |ζ| = 1, ϕ(ζ) = 0}.

From (3.5) and (3.6) it follows that

ϕ(ζ) = 1 −
∞∑

n=1

p(n)ζn.
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In view of (2.3), ϕ is analytic in the disc |ζ| < ρ−1/2. Therefore, the sets σp(T ) and
σr(T ) ∩ E are finite. Since σ(J0) = Ω̄ and (T − J0) ∈ B∞(�2), we obtain

σ(T ) \ Ω̄ ⊂ σ0
p(T ).

The above analysis and the similarity of T and J complete the proof. �

4. The transfer matrix approach

We do not have to assume that J is an �1-perturbation of J0 to prove the relation
σp(J) ∩ σess(J) = ∅. The transfer matrix point of view allows us to examine other
sufficient conditions on entries of the Jacobi matrix J which guarantee the absence of
eigenvalues of J on its essential spectrum.

In this section we follow the ideas from [12]. Consider

J = SM1 + M2S
∗ + Q, (4.1)

where M1 − I, M2 − ρI, Q ∈ Dc and d(M1) = {αn}∞
n=1, d(M2) = {βn}∞

n=1, d(Q) =
{qn}∞

n=1. Then the equality Jf = λf is equivalent to the system of equations

αn−1fn−1 + qnfn + βnfn+1 = λfn, n = 1, 2, 3, . . . , (4.2)

where α0 = 0.
Before we proceed to analyse when σp(J) ∩ σess(J) = ∅, observe that the relation

Ω ∩ σp(J) = ∅ is an easy consequence of the Perron Theorem. Indeed, if λ ∈ Ω, i.e. λ =
ρζ + 1/ζ, with 1 < |ζ| < ρ−1, then λ �∈ σp(J). Indeed, by the Poincaré Theorem (see [7,
Theorem 8.10] or [10, Theorem 2.3.b]) every solution {fn} of (4.2) satisfies

lim
n→∞

|fn|1/n = |z+| or lim
n→∞

|fn|1/n = |z−|,

where z+ = 1/ρζ and z− = ζ are the roots of the equation

ρt2 − λt + 1 = 0. (4.3)

Since |z±| > 1, there is no solution of (4.2) in �2.
If λ ∈ E, i.e. λ = ρζ + 1/ζ, where |ζ| = 1, then again by the Perron theorem (see [10,

Theorem 2.2]) there are solutions {f−
n } and {f+

n } of (4.2) such that limn→∞f±
n+1/f±

n =
z±, where z± are the solutions of (4.3) given by the same formulae as above. Of course,
{f+

n } �∈ �2, but it is possible that {f−
n } belongs to �2, so we shall concentrate on this

case.
For λ ∈ E let us define the transfer matrix:

Bn(λ) =

⎛
⎝ 0 1

−αn−1

βn

λ − qn

βn

⎞
⎠ . (4.4)
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Using Bn(λ) we can rewrite (4.2) as the system(
fn

fn+1

)
= Bn(λ) · · ·B1(λ)

(
f0

f1

)
, n = 1, 2, . . . . (4.5)

Notice that

lim
n→+∞

Bn(λ) = B∞(λ) :=

⎛
⎝ 0 1

−1
ρ

λ

ρ

⎞
⎠ ,

because of the assumed convergence of {αn}, {βn} and {qn}.
Since z+ and z− are the eigenvalues of B∞(λ) and z+ �= z−, we have

W

(
z+ 0
0 z−

)
= B∞(λ)W,

where

W =

(
1 1
z+ z−

)

is invertible and

W−1 =
1

z+ − z−

(
−z− 1
z+ −1

)
.

Put
Bn = W−1Bn(λ)W (4.6)

and define

εn =
αn−1

βn
− 1

ρ
, (4.7)

δn =
1
ρ

− 1
βn

. (4.8)

Define

A+
n =

1
z+ − z−

(
εn + δnz+λ +

qn

βn
z+

)
(4.9)

and

A−
n =

1
z+ − z−

(
εn + δnz−λ +

qn

βn
z−

)
. (4.10)

Then limn→∞ A+
n = limn→∞ A−

n = 0. After some calculations, we have

Bn =

(
z+ − A+

n −A−
n

A+
n z− + A−

n

)
. (4.11)
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Define

Cn = |z+ − A+
n |2 + |A−

n |2 − |z+|2, Dn = |z− + A−
n |2 + |A+

n |2 − 1

and
En = z̄+A+

n − z−Ā−
n − (|A+

n |2 + |A−
n |2).

It is trivial that limn→∞ Cn = limn→∞ Dn = limn→∞ En = 0 and

BnB∗
n =

(
|z+|2 + Cn Ēn

En 1 + Dn

)
.

The eigenvalues of BnB∗
n are given by

w±
n =

|z+|2 + 1 + Cn + Dn

2
±

√(
|z+|2 − 1 + Cn − Dn

2

)2

+ |En|2. (4.12)

Hence ‖Bnv‖2 � w−
n ‖v‖2 for every v ∈ C

2.
From (4.5) we obtain(

fn

fn+1

)
= WBn · · ·B2W

−1

(
f1

f2

)
, n = 2, 3, . . . ,

so that ∥∥∥∥∥
(

fn

fn+1

)∥∥∥∥∥
2

� const.w−
n · · ·w−

2 .

But if λ ∈ σp(J), then there exists f ∈ �2 such that (4.2) is fulfilled; therefore, for all
p > 0,

∞∑
n=p

n∏
k=p

w−
k < +∞.

Using (4.12) and the obvious inequality |z+|2 +Cn � 1+Dn (valid for sufficiently large
n) we have the following estimation from below for w−

n :

w−
n � 1 + Dn − |En|.

Due to the definitions of Dn and En we have (remember that |z−| = 1)

Dn � −2|A−
n | + |A+

n |2 + |A−
n |2 (4.13)

and
|En| � |z+| |A+

n | + |A−
n | + |A+

n |2 + |A−
n |2. (4.14)

Thus Dn − |En| � −3|A−
n | − |z+| |A+

n |. Again by the definitions of A+
n and A−

n one can
easily check that

|A+
n | � 1

|z+ − z−|

(
|εn| + |δn| |z+| |λ| +

∣∣∣∣ qn

βn

∣∣∣∣ |z+|
)

(4.15)
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and, similarly,

|A−
n | � 1

|z+ − z−|

(
|εn| + |δn| |λ| +

∣∣∣∣ qn

βn

∣∣∣∣
)

, (4.16)

so, finally,

w−
n � 1 −

(
C1(λ)|εn| + C2(λ)|δn| + C3(λ)

∣∣∣∣ qn

βn

∣∣∣∣
)

for n sufficiently large and the constants Ck(λ) are given by the formulae:

C1(λ) =
|z+| + 3
|z+ − z−| ,

C2(λ) = |λ| |z+|2 + 3
|z+ − z−| ,

C3(λ) =
|z+|2 + 3
|z+ − z−| .

The above reasoning has proved the following theorem.

Theorem 4.1. If J is given by (4.1), λ ∈ E, and

∞∑
n=p

n∏
k=p

(
1 −

(
C1(λ)|εk| + C2(λ)|δk| + C3(λ)

∣∣∣∣ qk

βk

∣∣∣∣
))

= +∞

for some p ∈ N, then λ �∈ σp(J).

Corollary 4.2. Let J be as in (4.1) and λ ∈ E.
If

∞∑
n=1

exp
(

−q

n∑
k=1

(
C1(λ)|εk| + C2(λ)|δk| + C3(λ)

∣∣∣∣ qk

βk

∣∣∣∣
))

= +∞

for some q > 1, then λ �∈ σp(J).

Proof. Let us fix λ ∈ C and let λ = (1/ζ)+ρζ. Because λ ∈ E we can assume |ζ| = 1,
z− = ζ, z+ = 1/ρζ.

Using Theorem 4.1 it is enough to check that

∞∑
n=p

n∏
k=p

(
1 −

(
C1(λ)|εk| + C2(λ)|δk| + C3(λ)

∣∣∣∣ qk

βk

∣∣∣∣
))

= +∞

for some p ∈ N.
The simple inequality 1 − x � e−qx is valid for any number q > 1 and x ∈ [0, x0] for

sufficiently small x0, and if there exists p ∈ N such that

C1(λ)|εk| + C2(λ)|δk| + C3(λ)
∣∣∣∣ qk

βk

∣∣∣∣ � x0
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for k � p, then

∞∑
n=p

n∏
k=p

(
1 −

(
C1(λ)|εk| + C2(λ)|δk| + C3(λ)

∣∣∣∣ qk

βk

∣∣∣∣
))

=
∞∑

n=p

exp
( n∑

k=p

ln
(

1 −
(

C1(λ)|εk| + C2(λ)|δk| + C3(λ)
∣∣∣∣ qk

βk

∣∣∣∣
)))

�
∞∑

n=p

exp
(

−q

n∑
k=p

(
C1(λ)|εk| + C2(λ)|δk| + C3(λ)

∣∣∣∣ qk

βk

∣∣∣∣
))

= M

∞∑
n=p

exp
(

−q

n∑
k=1

(
C1(λ)|εk| + C2(λ)|δk| + C3(λ)

∣∣∣∣ qk

βk

∣∣∣∣
))

= +∞.

This completes the proof. �

As a simple immediate consequence of Theorem 4.1 we have the following corollary.

Corollary 4.3. If {βn − ρ}n∈N ∈ �1, {αn − 1}n∈N ∈ �1 and {qn}n∈N ∈ �1, then
E ∩ σp(J) = ∅.

Surely the assumptions made in Corollary 4.3 are too strong; for example, one can
easily obtain the following corollary.

Corollary 4.4. If

{
exp

(
−

n∑
k=1

|δn|
)}∞

n=1
�∈ lp for any p ∈ (1, +∞) (4.17)

and {εn}∞
n=1, {qn}∞

n=1 ∈ �1, then E ∩ σp(J) = ∅.

Notice that if {βn − ρ}n∈N ∈ �1, then (4.17) is satisfied, but the condition (4.17) can
be satisfied by sequences {βn} for which {βn − ρ} is not necessarily in �1.

One can formulate other variants of Theorem 4.1. The next result is based on more
exact estimations of w−

n from below.

Theorem 4.5. Assume that {εn}∞
n=1 ∈ �2, {δn}∞

n=1 ∈ �2. Then E∩σp(J) = ∅ provided
that

(a) Re εn � 0, Re δn � 0 for large n ∈ N and both {Im εn + 2 Im δn}∞
n=1 and {qn}∞

n=1
are summable; or

(b)

sup
N

∣∣∣∣
N∑

n=1

δn

∣∣∣∣ < +∞, sup
N

∣∣∣∣
N∑

n=1

εn

∣∣∣∣ < +∞, sup
N

∣∣∣∣
N∑

n=1

(
qn

βn

)∣∣∣∣ < +∞

and {qn} ∈ �2.
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Proof. (a) Let λ = ρz+1/z ∈ E, where |z| = 1, then z− = z, z+ = (ρz)−1. According
to the formula (4.12) for w−

n we have

w−
n = 1

2 [|z+ − A+
n |2 + |A−

n |2 + |z− + A−
n |2 + |A+

n |2

−
√

(|z+ − A+
n |2 + |A−

n |2 − (|z− + A−
n |2 + |A+

n |2))2 + 4|En|2].

Because |z+| = ρ−1 > |z−| = 1 we have

w−
n = 1

2 [|z+ − A+
n |2 + |A−

n |2 + |z− + A−
n |2 + |A+

n |2

− (|z+ − A+
n |2 + |A−

n |2 − (|z− + A−
n |2 + |A+

n |2))
√

1 + O(|En|2)].

Since
√

1 + x � 1 + x/2 for x � 0, so

w−
n � |z− + A−

n |2 + |A+
n |2 − O(|En|2)

and

w−
n � 1 + 2 Re(z̄−A−

n ) + |A−
n |2 + |A+

n |2 − O(|En|2).

Because {εn}, {δn}, {qn} ∈ �2, by the estimates (4.14)–(4.16)

w−
n � 1 + 2 Re(z̄−A−

n ) + Rn,

where {Rn}∞
n=1 ∈ �1.

Computing the expression Re(z̄−A−
n ) in an equivalent form, we have

Re(z̄−A−
n ) = Re

[
ρ

1 − ρz2 εn +
ρ(1 + ρz2)
1 − ρz2 δn

]
+ Re

[
qn

βn

zρ

(1 − ρz2)

]

= Re
[
ρ(1 − ρz̄2)
|1 − ρz2|2 εn +

ρ(1 − ρ2)
|1 − ρz2|2 δn +

2ρ2i(Im z2)
|1 − ρz2|2 δn

]
+ Re

[
qn

βn

zρ

(1 − ρz2)

]
.

Because z = cos θ + i sin θ, for some θ ∈ [0, 2π] we obtain

Re(z̄−A−
n ) =

ρ(1 − ρ cos 2θ)
|1 − ρz2|2 Re εn +

ρ(1 − ρ2)
|1 − ρz2|2 Re δn

− ρ2 sin 2θ

|1 − ρz2|2 (Im εn + 2 Im δn) + Re
(

qn

βn

zρ

(1 − ρz2)

)
.

Therefore, by assumption (a),

Re(z̄−A−
n ) = τn + R′

n,

where τn � 0 and {R′
n} ∈ �1. Thus, w−

n � 1 + 2R′
n + Rn, and so

∞∑
n=p

n∏
k=p

w−
k = +∞
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(see the estimate of w−
n from two lines beneath (4.16)), which completes the proof of

case (a).
Case (b) is easier. Indeed, write

Re(z̄−A−
n ) = Re

[
ρ

1 − ρz2 εn

]
+ Re

[
ρ(1 + ρz2)
1 − ρz2 δn

]
+ Re

[
zρ

1 − ρz2

qn

βn

]

and notice that

sN :=
N∏

n=1

w−
n � exp

(
2

N∑
n=1

Re(z̄−A−
n ) + O((Re(z̄−A−

n ))2) + Rn

)

� C exp
(

2
N∑

n=1

Re(z̄−A−
n )

)

= C exp
(

2
(

Re
[

ρ

1 − ρz2

N∑
n=1

εn

]
+ Re

[
ρ(1 + ρz2)
1 − ρz2

N∑
n=1

δn

]

+ Re
[

zρ

1 − ρz2

N∑
n=1

qn

βn

]))
,

for some constant C > 0 because ln(1 + x) = x + O(x2). But |z| = 1 and the above
inequality implies that

sN � C exp
(

−2ρ

1 − ρ

(
(1 + ρ)

∣∣∣∣
N∑

n=1

δn

∣∣∣∣ +
∣∣∣∣

N∑
n=1

εn

∣∣∣∣ +
∣∣∣∣

N∑
n=1

qn

βn

∣∣∣∣
))

.

Theorem 4.1 concludes the proof of (b) and of the theorem as well. �

When ρ = 1, J is a compact perturbation of S +S∗ so σess(J) = [−2, 2]. If λ ∈ [−2, 2],
then λ = z+(1/z), where z ∈ C and |z| = 1 (for example, z = z+ = (λ/2) + i

√
1 − (λ2/4)

and so z− = z̄) and using Corollary 4.2 we obtain the following theorem.

Theorem 4.6. Let λ ∈ (−2, 2) and

∞∑
n=p

exp
(

−q

n∑
k=p

(
|εk| + |qk/βk|√

4 − λ2
+

|λ|√
4 − λ2

|δk|
))

= +∞

for some p � 1 and q > 1, then λ �∈ σp(J).

The case αn = βn ∈ R, qn ∈ R was investigated in [12] and the result obtained there
by Janas and Naboko is stronger than Theorem 4.6.

5. Jacobi operators of the Atzmon–Sodin type

In the present section we consider the Jacobi operator (given below by the formula (5.3))
of the Atzmon–Sodin type. It was extensively studied by Atzmon and Sodin because of
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the particular structure of its invariant subspaces (see [2]). They have found an analytic
model for it and the structure of the spectrum and the point spectrum in a more general
situation. Below we shall analyse the point spectrum of such operators in a special case
because it relates strongly to the context of this paper.

Let us fix {αn}∞
n=1, αn �= 0, and assume that limn→∞ αn = α, where α ∈ C, |α| � 1.

Define the operator L by

Len = αnen+1, n = 1, 2, . . . , (5.1)

and the operator L(−1) by

L(−1)e1 = 0, L(−1)en =
1

αn−1
en−1, n = 2, 3, . . . . (5.2)

Consider the operator
A = L + L(−1) (5.3)

associated with the sequence {αn}. The operator A is a compact perturbation of the
operator αS + (1/α)S∗ and

σ

(
αS +

1
α

S∗
)

=
{

λ = z +
1
z

: 1 � |z| � |α|
}

.

Because L(−1)L = I, then for λ = z + (1/z) we have

A − λ = L(−1)(L − z)
(

L − 1
z

)
.

Using ideas of [2] it is not difficult to prove that

σ(A) =
{

λ = z +
1
z

: 1 � |z| � |α|
}

.

Proposition 5.1. If

{
dn =

n∏
k=1

αα−1
k

}∞

n=1
and {d−1

n }∞
n=1

are bounded, then A is similar to αS + (1/α)S∗.

Proof. Let {
dn =

n∏
k=1

α

αk

}∞

n=1
.

Then the diagonal operator D with d(D) = {dn} is bounded and boundedly invertible;
moreover, DAD−1 = αS + (1/α)S∗ and the result holds. �
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Notice that both {dn}n and {1/dn}n are bounded, if for instance {αn − α}∞
n=1 ∈ �1,

and as a simple consequence of Proposition 5.1 we have that σp(A) = ∅. If |α| � 1, then
σp(αS + (1/α)S∗) = ∅. As we will see in the next proposition, we do not need any con-
ditions on the rate of convergence of {αn} to assure that σp(A) = ∅, if |α| > 1. Since

A − λ = −z

(
L(−1) − 1

z

)(
L − 1

z

)
; (5.4)

therefore, to decide when ker(A−λ) = {0} it is enough to show that ker(L−(1/z)) = {0}
and ker(L(−1) − (1/z)) = {0}.

Since L is the unilateral weighted shift, it is well known that ker(L − ω) = {0} for any
ω ∈ C.

Let us examine ker(L(−1) − ω). By direct computations one can prove the following
lemma.

Lemma 5.2.

(1) If f = {fn}∞
n=1 satisfies (L(−1) − ω)f = 0, then

fn = ωn−1αn−1 . . . α1f1, n = 2, 3, . . . , (5.5)

where f1 ∈ C is any number.

(2) If g = {gn}∞
n=1 satisfies (L − ω)g = f , where f is as in the previous point, then

g1 = −ω−1f1 (5.6)

and

gn = −αn−1 . . . α1f1ω
n−2(1 + ω−2 + · · · + (ω−2)n−1) (5.7)

= −αn−1 · · ·α1f1ω
n−2 1 − (ω−2)n

1 − ω−2 , n = 2, 3, . . . . (5.8)

(3) If f and g are given by (5.5), (5.6), (5.7) or (5.8), then they satisfy (L(−1) − ω)f = 0
and (L − ω)g = f .

Proposition 5.3. If |α| > 1, then σp(A) = ∅.

Proof. Let λ = z + (1/z) ∈ σp(A). There exists g ∈ �2 such that

0 = (A − λ)g = −z

(
L(−1) − 1

z

)(
L − 1

z

)
g.

Define f = (L − (1/z))g ∈ �2. Because f and g are as in Lemma 5.2, so

fn = z1−nα1 · · ·αn−1f1 and gn = −αn−1 · · ·α1f1z
2−n(1 − (z2)n)(1 − z2)−1.

If z �= ±1 and f1 �= 0, then

|gn| = |f1| |αn−1 · · ·α1| |z−n − zn|/|z−2 − 1|

does not converge to 0, this implies that g �∈ �2. Hence f = g = 0.
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If |z| = 1 and g ∈ �2, then f ∈ �2, and so

∞∑
n=1

|z−nα1 · · ·αn|2 < +∞

or f1 = 0.
Notice that

+∞ >

∞∑
n=1

|z−nα1 · · ·αn|2 =
∞∑

n=1

|α1 · · ·αn|2,

but this is impossible since αn → α, |α| > 1. Thus f1 = 0 implies f = g = 0 and the
proof is complete. �

In the case |α| = 1 the situation looks different and is described by the following
proposition.

Proposition 5.4. Assume that |α| = 1.

(1) If
∞∑

n=1

|α1 · · ·αn|2 = +∞, (5.9)

then σp(A) = ∅.

(2) If
∞∑

n=1

|α1 · · ·αn|2 < +∞, (5.10)

then (−2, 2) ⊂ σp(A).

(3)
∞∑

n=1

n2|α1 · · ·αn|2 < +∞ ⇐⇒ ±2 ∈ σp(A).

Proof. (1) Let λ = z + (1/z) ∈ σp(A) ⊂ [−2, 2], where |z| = 1 and ω = z−1. By
Lemma 5.2 we have (L−1 −ω)f = 0 and so fn = α1 · · ·αn−1ω

n−1f1. Because of (5.9) and
|ω| = 1, f ∈ �2 only if f1 = 0, which implies f = 0. Thus ker(L−1 − ω) = 0, combining
with ker(L − ω) = 0 we get that ker(A − λ) = 0, a contradiction.

(2) If λ = z + (1/z) ∈ (−2, 2), then z can be chosen with |z| = 1 and z2 �= 1. If
(A − λ)g = 0 and f = (L − (1/z))g, then by Lemma 5.2 we have relations for f and g.
Using them we see that f and g can be chosen from �2 and not equal to 0.

(3) Consider now λ = ±2, then z = ω−1 = ±1. Using Lemma 5.2 again the result
follows easily. �

The results included in Propositions 5.3 and 5.4 have also been proved by Atzmon and
Sodin in [2].

https://doi.org/10.1017/S0013091502000925 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000925


594 J. Janas, M. Malejki and Y. Mykytyuk

6. An example

We are going to construct an operator J such that it is still a ‘small’ perturbation of J0

but for which 1+ρ ∈ σp(J); therefore J is not similar to the operator T defined by (2.2).
Assume that qn = 0 and let us start to define βn and αn. Let β1 = 1 + ρ, ζ = 1 and

for the eigenvector f assume that f1 = f2 = 1 and so (4.2) for n = 1 is satisfied.
Using (4.4) and (4.6) we have(

fn

fn+1

)
= WBn · · ·B2

(
0
1

)
, n = 2, 3, . . . ,

because

W−1

(
1
1

)
=

(
0
1

)
.

Assume that A+
n = 0 (defined by (4.9)) for n � 2. Then

εn = −(1 + ρ)/ρδn (6.1)

and A−
n = −(1 + ρ)δn, where n � 2.

Define an = A−
n . Then the transfer matrix Bn has the form (see (4.11))

Bn =

(
1/ρ −an

0 1 + an

)
.

Hence

B2l+1B2l =

(
1/ρ2 −a2l/ρ − a2l+1(1 + a2l)

0 (1 + a2l+1)(1 + a2l)

)
, l = 1, 2, . . . .

If we assume that −a2l/ρ − a2l+1(1 + a2l) = 0, then

a2l+1 = − a2l

ρ(1 + a2l)
(6.2)

for all l � 1. Computing by pairs of Bn we have

(
f2k+1

f2(k+1)

)
= W

⎛
⎜⎝

1/ρ2k 0

0
k∏

l=1

(1 + a2l+1)(1 + a2l)

⎞
⎟⎠

(
0
1

)
, (6.3)

where k = 1, 2, . . . .
Due to (6.2) we have (1 + a2l+1)(1 + a2l) = 1 − [(1 − ρ)/ρ]a2l so

f2k+1 = f2(k+1) =
k∏

l=1

(1 − [(1 − ρ)/ρ]a2l),

where k � 1 and additionally f1 = f2 = 1. Therefore, it is not difficult to choose the
sequence {a2l}∞

l=1 to obtain {fn} ∈ �2 and {εn}, {δn} �∈ �1 but {εn}, {δn} ∈ �p for all
p > 1.
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For example, if

a2l = ρ/(1 − ρ)
1

l + 1
, l = 1, 2, . . . , (6.4)

then
a2l+1 = − 1

(1 − ρ)l + 1
(6.5)

for l = 1, 2, . . . , and

f2k+1 = f2(k+1) =
k∏

l=1

(
1 − 1

l + 1

)
=

1
1 + k

,

where k = 1, 2, . . . . It is obvious that {fn} ∈ �2 and we can calculate δn = −an/(1 + ρ)
and then βn for n � 2. Moreover, it is easy to check that {βn − ρ} ∈ �p \ �1, p > 1.
Finally, (by (6.1) and (4.7)) we obtain {εn} with similar properties.
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