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Abstract

We investigate the expressive power of Higher-Order Datalog¬ under both the well-founded and
the stable model semantics, establishing tight connections with complexity classes. We prove
that under the well-founded semantics, for all k≥ 1, (k+ 1)-Order Datalog¬ captures k− EXP,
a result that holds without explicit ordering of the input database. The proof of this fact can
be performed either by using the powerful existential predicate variables of the language or by
using partially applied relations and relation enumeration. Furthermore, we demonstrate that
this expressive power is retained within a stratified fragment of the language. Under the stable
model semantics, we show that (k+ 1)-OrderDatalog¬ captures co− (k−NEXP) using cautious
reasoning and k−NEXP using brave reasoning, again with analogous results for the stratified
fragment augmented with choice rules. Our results establish a hierarchy of expressive power,
highlighting an interesting trade-off between order and non-determinism in the context of higher-
order logic programing: increasing the order of programs under the well-founded semantics can
surpass the expressive power of lower-order programs under the stable model semantics.

KEYWORDS: Higher-Order Datalog, descriptive complexity, well-founded semantics, stable
model semantics

1 Introduction

The superior expressive power of higher-order functional programing languages with

respect to their first-order counterparts has been thoroughly demonstrated by Jones

(2001). In logic programing, the first result of this type was established by Charalambidis

et al . (2019), where it was demonstrated that positive Higher-Order Datalog programs

can capture broader complexity classes as their order increases. In particular, it was

demonstrated that for all k≥ 1, (k+ 1)-Order Datalog captures k− EXP, under the
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assumption that the input database is ordered . The aforementioned result generalized a

classical expressibility theorem which states that (first-order) Datalog captures P (Vardi

1982; Papadimitriou 1985; Immerman 1986; Leivant 1989; Grädel 1992), again under

the assumption that the input database is ordered. Notice that the ordering assumption

underlying the above results, is actually a rather strong one because it allows (even weak)

declarative query languages to simulate the ordering of the tape of a Turing machine.

Recently, Bogaerts et al . (2024) defined the well-founded and the stable model seman-

tics of Higher-Order Datalog with negation and illustrated its expressive power with

non-trivial examples. Remarkably, one such example was the Generalized Geography

two-player game, which is a well-known (Lichtenstein and Sipser 1980) PSPACE-complete

problem. The examples given in Bogaerts et al . (2024) do not seem to require any order-

ing of the input and solve the corresponding problems declaratively. As noted by Bogaerts

et al . (2024), such examples indicate “that higher-order logic programming under the sta-

ble model semantics is a powerful and versatile formalism, which can potentially form the

basis of novel ASP systems.” Such systems may be able to cope with demanding prob-

lems that arise in combinatorial optimization, game theory, machine learning theory, and

so on (see, e.g.,, the discussion in Bogaerts et al . (2016); Amendola et al . (2019)). The

results of Bogaerts et al . (2024) trigger the natural question of the exact characterization

of the expressive power of Higher-Order Datalog with negation and of whether we can

obtain expressibility results that do not rely on the ordering assumption.

In this paper we undertake the formal study of the expressive power of Higher-Order

Datalog with negation – which in the rest of the paper is denoted by Higher-Order

Datalog¬. The results we obtain indeed demonstrate that negation is a very powerful

construct of the language, justifying the increased expressiveness which was conjectured

by Bogaerts et al . (2024). Our results, which will be explained in detail in the rest of the

paper, are presented in Table 1. All the results in the table are new, with the exception

of those results concerning programs of order 1 (which are well-known, see e.g., Dantsin

et al . (2001); Niemelä (2008)). In particular, the main contributions of the paper can be

summarized as follows:

• We establish that (k+ 1)-Order Datalog¬ captures k− EXP under the well-founded

semantics. Notably, this result holds without requiring a predefined ordering of

the input database: the use of existential predicate variables, facilitates the con-

struction of such an ordering. Furthermore, we show that even in the fragment of

the language without existential predicate variables (denoted by HO-Datalog¬, �∃ in

Table 1), the same result can be achieved through partial applications and an enu-

meration procedure. Perhaps even more strikingly, the k− EXP expressibility result

also holds for a stratified fragment of (k+ 1)-Order Datalog¬, �∃. This last result is

especially unexpected, considering that the stratified fragment of classical (first-

order) Datalog¬ exhibits strictly lower expressive power than Datalog¬ under the

well-founded semantics (Kolaitis 1991).

• We demonstrate that (k+ 1)-Order Datalog¬ captures co− (k−NEXP) under the

stable model semantics using cautious reasoning and k−NEXP under brave reason-

ing. As before, these two results hold with or without the presence of existential

predicate variables. Additionally, the two results hold within a fragment of (k+ 1)-

Order Datalog¬ that consists of programs that have a stratified part together with
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Table 1. Expressive power of Higher-Order Datalog¬ (with no ordering assumption)

Order of the program

Fragment Semantics 1 2 · · · k+ 1

HO-Datalog¬ HO-Datalog¬, �∃

Stratified HO-Datalog¬, �∃

⎫⎪⎪⎬
⎪⎪⎭

Well-Founded � P EXP · · · k-EXP

HO-Datalog¬ HO-Datalog¬, �∃

Stratified+Choices
HO-Datalog¬, �∃

⎫⎪⎪⎬
⎪⎪⎭

Stable (cautious) co-NP co-NEXP · · · co-(k-NEXP)

HO-Datalog¬ HO-Datalog¬, �∃

Stratified+Choices
HO-Datalog¬, �∃

⎫⎪⎪⎬
⎪⎪⎭

Stable (brave) NP NEXP · · · k-NEXP

a simple unstratified part of a very specific form (choice rules). In other words, we

prove that the expressive power, under the stable model semantics, of (k+ 1)-Order

Datalog¬ is equivalent to the power of the aforementioned restricted fragment.

• Since it is well-known that (k− 1)− EXP⊆ (k− 1)−NEXP⊆ k− EXP and (k−
1)− EXP⊆ co− ((k− 1)−NEXP)⊆ k− EXP, k-Order Datalog¬ programs under

the well-founded semantics are at most as powerful as k-Order Datalog¬ programs

under the stable model semantics, which, in turn, are at most as powerful as (k+ 1)-

Order Datalog¬ programs under the well-founded semantics (under both the brave

and cautious reasoning schemes). This observation illustrates an interesting trade-off

between order and non-determinism in the context of higher-order logic programing:

by increasing the order of our programs while using well-founded semantics, we can

surpass the expressive power provided by non-determinism in lower-order programs

under the stable model semantics.

The rest of the paper is structured as follows: Section 2 introduces the language we

will be studying. Section 3 derives the expressive power of Higher-Order Datalog¬ under

the well-founded semantics and Section 4 the power under the stable model semantics.

Section 5 presents a semantics-preserving transformation that eliminates existential pred-

icate variables from clause bodies; this transformation implies that our results hold even

without the presence of existential predicate variables. Finally, Section 6 concludes the

paper giving pointers for future work.

2 Higher-Order Datalog with negation: preliminaries

In this section we define the syntax of Higher-Order Datalog¬. The language uses two

base types: o, the Boolean domain, and ι, the domain of data objects. The composite
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types are partitioned into predicate ones (assigned to predicate symbols) and argument

ones (assigned to parameters of predicates).

Definition 2.1.

Types are either predicate or argument, denoted by π and ρ respectively, and defined as:

π := o | (ρ→ π)

ρ := ι | π
As usual, the binary operator → is right-associative. It can be easily seen that every

predicate type π can be written in the form ρ1→ · · ·→ ρn→ o, n≥ 0 (for n= 0 we assume

that π= o).

Definition 2.2.

The alphabet of Higher-OrderDatalog¬ consists of: predicate variables of every predicate

type π (denoted by capital letters such as P, Q, . . .); predicate constants of every predicate

type π (denoted by lowercase letters such as p, q, . . .); individual variables of type ι

(denoted by capital letters such as X, Y, . . .); individual constants of type ι (denoted

by lowercase letters such as a, b, . . .); the equality constant ≈ of type ι→ ι→ o; the

conjunction constant ∧ of type o→ o→ o; the inverse implication constant ← of type

o→ o→ o; and the negation constant not of type o→ o.

Arbitrary variables (either predicate or individual ones) will be denoted by R.

Definition 2.3.

The expressions and literals of Higher-Order Datalog¬ are defined as follows. Every

predicate variable/constant and every individual variable/constant is an expression of

the corresponding type; if E1 is an expression of type ρ→ π and E2 an expression of type

ρ then (E1 E2) is an expression of type π. Every expression of type o is called an atom.

If E is an atom, then E and ( not E) are literals of type o; if E1 and E2 are expressions

of type ι, then (E1 ≈ E2) and not (E1 ≈ E2) are literals of type o.

We will omit parentheses when no confusion arises.

Definition 2.4.

A rule of Higher-Order Datalog¬ is a formula p R1 · · · Rn← L1 ∧ . . .∧ Lm, where p is a

predicate constant of type ρ1→ · · ·→ ρn→ o, R1, . . . , Rn are distinct variables of types

ρ1, . . . , ρn respectively and the Li are literals. The literal p R1 · · · Rn is the head of the

rule and L1 ∧ . . .∧ Lm is the body of the rule. A program P of Higher-Order Datalog¬

is a finite set of rules.

We will follow the common logic programing practice and write L1, . . . , Lm instead of

L1 ∧ · · · ∧ Lm for the body of a rule. For brevity reasons, we will often denote a rule as

p R←B, where R is a shorthand for a sequence of variables R1 · · · Rn and B represents

the body of the rule. By abuse of notation, in the programs that we will write, we will

avoid using currying as much as possible and will use tuples instead, a syntax that is

more familiar to logic programmers. The tuple syntax can be directly transformed to

the curried one by a simple preprocessing. So, for example, instead of succ Ord X Y

we will write succ(Ord,X,Y), instead of the partial application succ Ord we will write
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succ(Ord), and so on. More generally, the partial application p E1 · · · En will be written

as p(E1, . . . , En).

The well-founded and the stable model semantics of Higher-Order Datalog¬, were
defined in Bogaerts et al . (2024). The main idea of the semantics is to interpret higher-

order user-defined predicate constants as three-valued relations over two-valued objects,

that is as functions that take classical relations as arguments and return true, false, or

undef . This interpretation of predicate constants, apart from giving a simple denotation

of the various constructs of the language, also allows one to use Approximation Fixpoint

Theory (Denecker et al. 2000, 2004), in order to define a variety of semantics for the

language (such as well-founded, stable, Kripke-Kleene, and so on). For the reader of the

main part of the present paper, a deep understanding of this semantics is not necessary:

the programs that we give can be understood purely declaratively, without resorting

to the help of the semantics (in the same way that a logic programmer does not need

to master its model-theoretic semantics in order to write or understand a program).

Programs of our language simply define extensional higher-order relations. For example,

in the well-founded semantics a unary second-order predicate simply denotes a relation

that takes a classical set as an argument and returns true, false, or undef as the result;

actually, most of our programs will be stratified (see the forthcoming Definition 2.7),

which means that they actually denote classical higher-order relations (i.e., they never

return undef as the result). Moreover, in the stable model semantics all the predicates

denote two-valued relations. The only points where the reader will have to delve deeper

into the semantics, is in order to understand the proofs of certain theorems provided in an

appendix as supplementary material. For this reason (and also due to space restrictions)

the full presentation of the semantics is also given as supplementary material.

The notion of order of a predicate, is formally defined as follows:

Definition 2.5.

The order of a type is recursively defined as follows:

order(ι) = 0

order(o) = 1

order(ρ→ π) = max{order(ρ) + 1, order(π)}
The order of a predicate constant (or variable) is the order of its type.

Definition 2.6.

For all k≥ 1, k-Order Datalog¬ is the fragment of Higher-Order Datalog¬ in which all

variables have order less than or equal to k− 1 and all predicate constants in the program

have order less than or equal to k.

The following example showcases many aspects of the language and additionally

introduces some useful predicates that will be needed in our subsequent simulations.

Example 1.

We define the relation hamilton(X,Y) which is true if there exists a Hamilton path from

vertex X to vertex Y in a graph represented by a binary predicate e which specifies the

edges of the graph. The first rule in the definition of hamilton is the following:
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hamilton(X,Y) ordering(Ord),first(Ord ,X),last(Ord ,Y),subset(succ(Ord),e).

The above rule states that there exists a Hamilton path from vertex X to vertex Y if

there exists a relation Ord that is a strict total ordering with first element X and last

element Y and for every two consecutive elements in Ord the corresponding edge exists in

e. Notice the use of Ord in the above rule: it is a predicate variable that does not appear

in the head of the rule and therefore it is an existentially quantified variable of the body

(i.e., the body can be read as “there exists a relation Ord such that . . .”). To be a strict

total ordering, Ord must be irreflexive, transitive, and every two different elements must

be related. This can be expressed with the following rules:

ordering(Ord) connected(Ord),transitive(Ord),irreflexive(Ord).

connected(Ord) not disconnected(Ord).
disconnected(Ord) not Ord(X,Y),not Ord(Y,X),not(X ≈ Y).
transitive(Ord) not non_transitive(Ord).
non_transitive(Ord) Ord(X,Y),Ord(Y,Z),not Ord(X,Z).
irreflexive(Ord) not non_irreflexive(Ord).
non_irreflexive(Ord) Ord(X,X).

It is interesting to note above how we can implement universal quantification in the

body of a rule: for example, to express the fact that Ord is connected, that is that for all

X, Y either X is related to Y or vice-versa, we just require that Ord is not disconnected,

that is it is not the case that there exist X, Y that are not related. This is a common

trick that we will use throughout the paper in order to represent universal quantification.

We now define the predicates first, last and succ. Predicate first(Ord,X) is true for

X being the individual constant that is the first element with respect to the ordering

specified by Ord. Likewise, last(Ord,X) is true if X is the last element in Ord. The predicate

succ(Ord,X,Y) is true for X and Y that are sequential in Ord.

first(Ord ,X) not nfirst(Ord ,X).
nfirst(Ord ,X) Ord(Z,X).
last(Ord ,X) not nlast(Ord ,X).
nlast(Ord ,X) Ord(X,Y).
succ(Ord ,X,Y) Ord(X,Y),not nsequential(Ord ,X,Y).
nsequential(Ord ,X,Y) Ord(X,Z),Ord(Z,Y).

Finally, we have the rules for subset:

subset(P,Q) not nonsubset(P,Q).
nonsubset(P,Q) P(X),not Q(X).
nonsubset(P,Q) not P(X), Q(X).

The above two rules use again the trick for implementing universal quantification.

As in the case of first-order logic programs with negation, there exists a simple notion

of stratification for higher-order logic programs with negation (Bogaerts et al . 2024).

Definition 2.7.

A program P is called stratified if there exists a function S mapping predicate constants

to natural numbers, such that for each rule p R← L1, . . . , Lm and any i∈ {1, . . . , m}:
• S(q)≤ S(p) for every predicate constant q occurring in Li.

• If Li is of the form ( not E), then S(q)<S(p) for each predicate constant q occurring

in E.
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• For any subexpression of Li of the form (E1 E2), S(q)<S(p) for every predicate

constant q occurring in E2.

A possibly unexpected aspect of the above definition, is the last item, which says that

the stratification function should not only increase because of negation, but also because

of higher-order predicate application. The intuitive reason for this is that in Higher-

Order Datalog¬ one can define a higher-order predicate which is identical to negation,

for example, by writing neg P← not P. As a consequence, it is reasonable to assume that

predicates occurring inside an application of neg should be treated similarly to predicates

appearing inside the negation symbol.

One can easily verify that the Hamiltonian Path program of Example 1, is stratified.

As we are going to see, the expressive power of stratified programs is the same as that

of the non-stratified ones for orders k≥ 2 under the well-founded semantics.

Languages such as Higher-Order Datalog¬, are usually referred as formal query lan-

guages . A program in our language can be considered to compute a query in the following

sense: a first-order predicate, like e in Example 1, will be called an input predicate and

its denotation (as a set of ground atoms) constitutes what is called the input database,

usually denoted by Din; a first-order predicate like Hamilton in Example 1, will be an

output one and its denotation constitutes the output database, usually denoted by Dout.

More formally, a database schema σ is a finite set of first-order predicate symbols

with associated arities. A database over a schema σ is a finite set of ground atoms

whose predicate symbols belong to σ. A query is a mapping from databases over a

schema σ1 to databases over a schema σ2. A program P can be seen as a query QP

such that Dout =QP(Din). We are interested in queries that are generic (Immerman

1986), that is queries that do not depend on the names of the individual constants in the

input database. Given a fragment of our language, we are interested in the expressive

power of the fragment under a given semantics, namely the set of queries that can be

defined by programs of the fragment. In particular, we want to demonstrate that such a

fragment captures a complexity class C, that is it can express exactly all the queries whose

evaluation complexity belongs to C. By evaluation complexity we mean the complexity

of checking whether a given atom belongs to the output database. Notice that different

semantics of the fragments we study may lead to different evaluation complexities and

therefore to capturing different complexity classes. Therefore, our results will be of the

form “the fragment X of Higher-Order Datalog¬, under the Y semantics, captures the

complexity class Z.”

In this work we consider the well-founded semantics, the stable model semantics with

cautions reasoning and the stable model semantics with brave reasoning. In particular,

under the well-founded semantics, a given atom belongs to the output database if and

only if it is true in the well-founded model. Moreover, under the stable model semantics

with cautious (resp. brave) reasoning, a given atom belongs to the output database if

and only if it is true in all stable models (resp. in at least one stable model).

3 Expressive power under the well-founded semantics

The purpose of this section is to demonstrate that for all k≥ 1, (k+ 1)-Order Datalog¬,
under the well-founded semantics, captures k− EXP. Proofs of such results usually
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consist of two parts; in our case these two parts can be intuitively described as

follows:

• We show that every Turing machine that takes as input an encoding of an input

database and computes a query over this relation that belongs to k− EXP, can

be simulated by a (k+ 1)-Order Datalog¬ program (whose meaning is understood

under the well-founded semantics).

• We show that computing the well-founded semantics of every (k+ 1)-Order

Datalog¬ program over an input database, can be done in k-exponential time with

respect to the number n of individual constants in the input database.

In the main part of the paper, we focus on the proof of the first result. The proof of

the second result is given in an appendix as supplementary material. The proof of the

first result has two important points that have to receive special attention, on which we

briefly comment below.

Ordering of the input database: A Turing machine encodes an input database as

a string on its tape. Such an encoding provides an implicit strict total ordering of the

input. On the other hand, Higher-Order Datalog¬ does not have a notion of tape, and

therefore the input database is, at first sight, unordered. In less powerful languages,

such as for example the language of Charalambidis et al . (2019), this mismatch is solved

by imposing an explicit strict total ordering on the individual constants of the input

database. However, it turns out that in Higher-Order Datalog¬ we do not need this

ordering trick (usually referred in the literature as the ordering assumption): we can

generate an ordering Ord of the constants of the input database and then use it to

perform the Turing machine simulation.

Representing numbers: Since we want to simulate the operation of a Turing machine,

we need to have a numbering scheme in our language in order to count the steps of

the Turing machine and the positions on its tape. At first, we need some base-numbers;

actually, it is sufficient to use the n individual constants in the input database. The

trick here is to use these constants directly as numbers: we generate an ordering Ord on

these constants and require that it is a strict total order. We then show how to simulate

bigger numbers, namely numbers polynomially related to n. Finally, since we simulate

the operation of a Turing machine that runs in k-exponential time, we must be able to

represent bigger numbers. The trick here is to use higher-order relations: as the order of

our programs increases, the more numbers we can represent. Actually, as we demonstrate,

(k+ 1)-Order Datalog¬ is sufficient to represent k-exponential numbers.

Regarding the ordering of the input database, we already have all the required machin-

ery ready from Example 1. We can use the predicate ordering to generate a strict total

order Ord, over the constant symbols of the input database, which we will then use in

all our simulations. In other words, the constants of our input database play, under this

ordering, the role of base-numbers in our simulation (i.e., “small” numbers that can get

up to n− 1). Given an individual constant c of the input database, we will say it repre-

sents the natural number m, or more formally num(c) =m, if and only if in the strict

total order Ord the constant c is the (m+ 1)-th element. In the following, we see how we

can use these base-numbers to represent even bigger ones.
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3.1 Representing numbers

Representing polynomially-big numbers: To represent natural numbers up to

nd+1 − 1, where d is any arbitrary but fixed natural number, we use tuples of individual

constants with fixed length of size d+ 1. The following predicates define the “first” and

“last” of such numbers (denoted by first0 and last0) and the “less-than” and “succes-

sor” relations on them (denoted by lt0 and succ0). Notice that the following definitions

use the first and last predicates defined in Example 1.

first0(Ord ,X0,. . .,Xd) first(Ord ,X0),. . .,first(Ord ,Xd).
last0(Ord ,X0,. . .,Xd) last(Ord ,X0),. . .,last(Ord ,Xd).
lt0(Ord ,X0,. . .,Xd,Y0,. . .,Yd) Ord(Xd,Yd).
lt0(Ord ,X0,. . .,Xd,Y0,. . .,Yd) Ord(Xd−1,Yd−1),(Xd ≈ Yd).
. . .
lt0(Ord ,X0,. . .,Xd,Y0,. . .,Yd) Ord(X0,Y0),(X1 ≈ Y1),. . .,(Xd ≈ Yd).
succ0(Ord ,X̄,Ȳ) lt0(Ord ,X̄,Ȳ),not nsequential0(Ord ,X̄,Ȳ).
nsequential0(Ord ,X̄,Ȳ) lt0(Ord ,X̄,Z̄),lt0(Ord ,Z̄,Ȳ).

In the tuple-representation of numbers, tuple ( X0, . . . , Xd) of base-elements represents

the number num( X0, . . . , Xd) = num( X0) + num( X1) · n+ · · ·+ num( Xd) · nd.

Representing exponentially-big numbers: We now demonstrate how we can repre-

sent “exponentially-big” numbers as higher-order relations. In the foregoing discussion

we will need the following notation: exp0(x) = x and expn+1(x) = 2expn(x). Let N0 =

nd+1 − 1 be the largest number that can be represented by (d+ 1)-tuples of individ-

ual constants and for k≥ 1, let Nk be the largest number that can be represented by

using k-order relations. We can exponentially increase the numbers up to the num-

ber Nk+1 = exp1(Nk + 1)− 1 by using (k+ 1)-order relations. One can easily see that

Nk = expk(n
d+1)− 1.

If the k-order relations representing numbers up to Nk are of type ρ, then it suffices

to use higher-order relations of type ρ→ o in order to represent numbers up to Nk+1.

This is essentially a binary representation where the lower order numbers denote bit

positions. Formally, let Z be a (k+ 1)-order element and R0, . . . , RNk
be the ordering of the

elements that represent numbers in the previous counting module. Let f be the function

mapping true to 1 and false to 0. Then we have num(Z) = f(Z(R0)) + f(Z(R1)) · 2 + · · ·+
f(Z(RNk

)) · 2Nk . We begin with predicates testing for the first and the last number.

firstk+1(Ord ,N) not nfirstk+1(Ord ,N).
nfirstk+1(Ord ,N) N(X).
lastk+1(Ord ,N) not nlastk+1(Ord ,N).
nlastk+1(Ord ,N) not N(X).

The following definitions describe the “less than” relation between two elements that

represent numbers. We examine if a number N is less than M by comparing the two

numbers bit by bit in their binary representation. The successor of a number is defined

with the use of less-than.

ltk+1(Ord ,N,M) lastk(Ord ,X),bitk+1(Ord ,N,M,X).
bitk+1(Ord ,N,M,X) not N(X),M(X).
bitk+1(Ord ,N,M,X) N(X),M(X),succk(Ord ,Y,X),bitk+1(Ord ,N,M,Y).
bitk+1(Ord ,N,M,X) not N(X),not M(X),succk(Ord ,Y,X),bitk+1(Ord ,N,M,Y).
succk+1(Ord ,N,M) ltk+1(Ord ,N,M), not nsequentialk+1(Ord ,N,M).
nsequentialk+1(Ord ,N,M) ltk+1(Ord ,N,Z),ltk+1(Ord ,Z,M).

For k= 0 the above code is slightly different: variables X and Y should be replaced

with X̄ and Ȳ.
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3.2 Turing machine simulation

We now demonstrate how any query that belongs to k− EXP (k≥ 1), can be expressed

by a (k+ 1)-Order Datalog¬ program under the well-founded semantics. It suffices to

assume that the output schema of the query consists of a single output predicate, since

every query can be decomposed into multiple queries of this form. Since the query belongs

to k− EXP, there exists a Turing machine that given on its tape an input database under

some sensible encoding, decides whether a tuple belongs to the output relation of the

query in at most expk(n
d) steps, where n is the number of constant symbols in the input

database and d is some constant. We simulate this Turing machine with a (k+ 1)-Order

Datalog¬ program.

Encoding the input: Before presenting the simulation of the Turing machine M ,

we mention certain simplifying assumptions, which do not affect the generality of the

subsequent results.

• The input database consists of a single binary relation in and the output database

is also a single binary relation out. In the following, the number of constants in the

input database is denoted by n.

• The alphabet of M that will be simulated is Σ= {0, 1,�}. M expects the input

relation in as the standard binary encoding of a graph, which is based on the ordering

of the individual constants, in the first n2 cells of its tape. For example, if the pair

(x, y) belongs to in, then the tape of M contains a “1” at cell position num(x) +

num(y) · n, otherwise it contains “0.”

• M decides whether a tuple (a, b) belongs to the output relation out. The next n2

cells of its tape are used to encode (a, b). All these cells contain the symbol “0,”

except for the cell at position num(a) + num(b) · n+ n2 which contains “1.”

• M reaches its accepting state yes if and only if the tuple (a, b) belongs to the output

relation out.

The following two predicates encode the binary input relation in and the tuple (a, b)

as a binary string.

input1(A,B,Ord ,X,Y,Z2,. . .,Zd) first(Ord ,Z2),. . .,first(Ord ,Zd),in(X,Y).
input0(A,B,Ord ,X,Y,Z2,. . .,Zd) first(Ord ,Z2),. . .,first(Ord ,Zd),not in(X,Y).
input1(A,B,Ord ,Z0,Z1,Z2,. . .,Zd) (Z0 ≈ A),(Z1 ≈ B),first(Ord ,Z),succ(Ord ,Z,Z2),

first(Ord ,Z3),. . .,first(Ord ,Zd).
input0(A,B,Ord ,Z0,Z1,Z2,. . .,Zd) not(Z0 ≈ A),first(Ord ,Z),succ(Ord ,Z,Z2),

first(Ord ,Z3),. . .,first(Ord ,Zd).
input0(A,B,Ord ,Z0,Z1,Z2,. . .,Zd) not(Z1 ≈ B),first(Ord ,Z),succ(Ord ,Z,Z2),

first(Ord ,Z3),. . .,first(Ord ,Zd).

The predicate input1(A,B,Ord,Z0,. . .,Zd) is true if the symbol 1 will be written during

the initialization of M in the cell of the tape represented by the number (Z0,. . .,Zd).

Similarly, input0(A,B,Ord,Z0,. . .,Zd) is true if the symbol 0 will be written in that

position.

Initial configuration of the TuringMachine: In order to represent the configurations

of the Turing machine we use a higher-order predicate for each state and symbol, and a

higher-order predicate for the cursor position. The predicate states(A,B,Ord,T) is true

if at time T the Turing machine is in state s. The predicate symbolσ(A,B,Ord,T,P),
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where σ ∈ {0, 1,�}, is true if at time T the tape has symbol σ written in position P. The

predicate cursor(A,B,Ord,T,P) is true if at time T the cursor is in position P.

We also need a higher-order predicate to lift the tuple representation of numbers to the

k-order numbering notation. Predicate liftk(Ord,X̄,M) transforms the number represented

by the tuple X̄ in the zero-order notation to the same number M in the k-order notation.

liftk(Ord ,X̄,M) first0(Ord ,X̄),firstk(Ord ,M).
liftk(Ord ,X̄,M) succ0(Ord ,Z̄,X̄),succk(Ord ,M ,M),liftk(Ord ,Z̄,M ).

We proceed to describe the initial configuration of the Turing machine. At time 0, the

machine is in its initial state s0, the tape contains only the binary string of the encoded

input and all the other positions are filled with the symbol �, and the cursor is in position

0. This is described by the following rules:

states0 (A,B,Ord ,T) firstk(Ord ,T).
cursor(A,B,Ord ,T,P) firstk(Ord ,T),firstk(Ord ,P).
symbol0(A,B,Ord ,T,P) firstk(Ord ,T),input0(A,B,Ord ,X̄),liftk(Ord ,X̄,P).
symbol1(A,B,Ord ,T,P) firstk(Ord ,T),input1(A,B,Ord ,X̄),liftk(Ord ,X̄,P).
symbol (A,B,Ord ,T,P) firstk(Ord ,T),not symbol0(A,B,Ord ,T,P),

not symbol1(A,B,Ord ,T,P).

We now specify how the execution of the Turing machine is simulated.

Simulating transitions: To describe the transitions of the machine, we create rules

which assert the next configuration of the machine, based on the current one and the

transition function. Let (s, σ)→ (s′, σ′, right) be a transition, indicating that if the cur-

rent state of the machine is s and its cursor reads the symbol σ, then the machine changes

its state to s′, it writes σ′ on the current cursor position and then moves the cursor to the

right. In our simulation we use an auxiliary predicate current(s,σ)(A,B,Ord,T,P) which is

true if at the moment T the state of the machine is s, the cursor position is P and the

cursor reads the symbol σ.

current(s,σ)(A,B,Ord ,T,P) states(A,B,Ord ,T),cursor(A,B,Ord ,T,P),

symbolσ(A,B,Ord ,T,P).

Now, the transition can be simulated by the following rules:

states (A,B,Ord ,T ) current(s,σ)(A,B,Ord ,T,P),succk(Ord ,T,T ).

symbolσ (A,B,Ord ,T ,P) current(s,σ)(A,B,Ord ,T,P),succk(Ord ,T,T ).

cursor(A,B,Ord ,T ,P ) current(s,σ)(A,B,Ord ,T,P),

succk(Ord ,P,P ),succk(Ord ,T,T ).

Other types of transitions can be expressed in a similar way. We also add what is

commonly called “inertia rules.” They ensure that every position of the tape except for

the position of the cursor, retains its content. For any symbol σ we include the following:

symbolσ(A,B,Ord ,T ,P ) succk(Ord ,T,T ),symbolσ(A,B,Ord ,T,P ),
cursor(A,B,Ord ,T,P),ltk(Ord ,P,P ).

symbolσ(A,B,Ord ,T ,P ) succk(Ord ,T,T ),symbolσ(A,B,Ord ,T,P ),
cursor(A,B,Ord ,T,P),ltk(Ord ,P ,P).

Finally, in order to produce the output relation, we use the following:

out(A,B) ordering(Ord),stateyes(A,B,Ord ,T).

The out predicate is the one that “initiates the simulation”: it produces, using an

existential predicate variable, the ordering Ord that is used throughout the simulation

and it verifies that there exists a value T that represents a time point (within the range
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of representable numbers) such that the machine reaches an accepting state. The above

simulation leads to the following theorem:

Theorem 1.

Every query in k− EXP (k≥ 1) can be expressed by a (k+ 1)-Order Datalog¬ program.

The opposite direction of the above theorem also holds, as stated by the following

theorem.

Theorem 2.

Let P be a (k+ 1)-Order Datalog¬ program that defines a query QP under the well-

founded semantics. Then, there exists a deterministic Turing machine that takes as input

an encoding of a database D that uses n individual constant symbols and a ground atom

p(ā), where p is a predicate constant of P and ā is a tuple of those individual constants,

and decides whether p(ā)∈QP(D), in at most expk(n
d) steps for some constant d.

By inspecting the simulation program, one easily sees that it is stratified. Therefore,

we get the following result:

Corollary 3.1.

(k+ 1)-Order Datalog¬ and Stratified (k+ 1)-Order Datalog¬ capture k− EXP under

the well-founded semantics.

As a consequence, Higher-Order Datalog¬ and Stratified Higher-Order Datalog¬ both

capture ELEMENTARY (i.e., the union of k− EXP for all k).

4 Expressive power under the stable model semantics

In this section, we study the expressiveness of Higher-Order Datalog¬ under the sta-

ble model semantics. We demonstrate how any query that belongs to co− (k−NEXP)

(k≥ 1), can be expressed by a (k+ 1)-Order Datalog¬ program under the stable model

semantics with cautious reasoning. Since the query belongs to co− (k−NEXP), there

exists a non-deterministic Turing machine M that decides whether a tuple belongs to

the complement of the output relation of the query in at most expk(n
d) steps, where

n is the number of constants in the input database and d is a constant. Without loss

of generality, we assume that each computational path of M terminates after at most

expk(n
d) steps at a state in {yes, no}. We simulate M with a (k+ 1)-Order Datalog¬

program.

For the most part, the simulation is the same as that of Section 3. It is intuitively helpful

to consider each stable model of the following simulation as a possible computation path

the machine could have taken. We will add some additional “choice” rules to simulate

those non-deterministic transitions at any possible time step.

Let (σ, s) be a pair of a symbol and a state of the Turing machine and assume there

exist m possible transitions from this pair. Since the machine is non-deterministic, m can

be greater than 1. We add the following predicates and rules to our program.
bσ,s,m(T) not bσ,s,1(T),. . .,not bσ,s,m−1(T).
bσ,s,m−1(T) not bσ,s,1(T),. . .,not bσ,s,m−2(T),not bσ,s,m(T).
. . .
bσ,s,1(T) not bσ,s,2(T),. . .,not bσ,s,m(T).
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This ensures that in every stable model and for every time point T, exactly one of

bσ,s,i(T), i∈ {1, . . . , m}, is true.
Let also the transition table be (σ, s)→ (σ′

i, s
′
i,movei) for i= 1, . . . , m. Like in the

deterministic case we create rules for each one such transition but we also add the previous

branching predicates so that only exactly one rule can be “active” in a stable model.
statesi

(A,B,Ord ,T ) bσ,s,i(T),current(s,σ)(A,B,Ord ,T,P),succk(Ord ,T,T ).

symbolσi
(A,B,Ord ,T ,P) bσ,s,i(T),current(s,σ)(A,B,Ord ,T,P),succk(Ord ,T,T ).

Assuming, for example, that movei is “right” (and likewise for “left” and “stay”):
cursor(A,B,T ,P ) bσ,s,i(T),current(s,σ)(A,B,Ord ,T,P),

succk(Ord ,T,T ),succk(Ord ,P,P ).

If every computational path of the Turing machine reaches state “no,” then for every

stable model there exists a time point T such that stateno(A,B,Ord,T) is true. Therefore,

the following rule defines the output relation under cautious reasoning:
out(A,B) ordering(Ord),stateno(A,B,Ord ,T).

The above discussion leads to the following theorem:

Theorem 3.

Every query in co− (k−NEXP) can be expressed by a (k+ 1)-Order Datalog¬ program

under the stable model semantics and cautious reasoning.

The following theorem is the converse of the previous one and its proof can be found

in the supplementary material.

Theorem 4.

Let P be a (k+ 1)-Order Datalog¬ program that defines a query QP under the stable

model semantics and cautious reasoning. Then, there exists a non-deterministic Turing

machine that takes as input an encoding of a database D that uses n individual constant

symbols and a ground atom p(ā), where p is a predicate constant of P and ā is a tuple of

those individual constants, and decides whether p(ā) 
∈ QP(D), in at most expk(n
d) steps

for some constant d.

Notice that our simulation consists of a stratified program together with the rules that

define the bσ,s,m. We call this fragment of Higher-Order Datalog¬ “Stratified+Choices

Higher-Order Datalog¬.” We therefore have the following result.

Corollary 4.1.

(k+ 1)-Order Datalog¬ and Stratified+Choices (k+ 1)-Order Datalog¬ capture co−
(k−NEXP) under the stable model semantics and cautious reasoning.

By a similar kind of analysis we can derive a result for the stable model semantics

under brave reasoning. The arguments are very similar and omitted.

Corollary 4.2.

(k+ 1)-Order Datalog¬ and Stratified+Choices (k+ 1)-Order Datalog¬ capture k−
NEXP under the stable model semantics and brave reasoning.

Since (k− 1)− EXP⊆ (k− 1)−NEXP⊆ k− EXP and (k− 1)− EXP⊆ co− ((k− 1)−
NEXP)⊆ k− EXP it follows that Higher-order Datalog¬ has the same expressive power

(namely ELEMENTARY) under both the well-founded and the stable model semantics,

in both reasoning schemes.
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5 Removing higher-order existential predicate variables

The Turing machine simulations discussed in the previous sections rely extensively on

existential predicate variables. Actually, the simulations do not need the full fragment of

Higher-Order Datalog¬. In this section, we explore whether the same expressive power

can be achieved without the use of such variables but utilizing other powerful con-

structs of the language, namely partially applied predicates. To this end, we introduce

a semantics-preserving transformation that converts every (k+ 1)-Order Datalog¬ pro-

gram containing existential predicate variables of order k≥ 1 into an equivalent program

of the same order that does not contain existential predicate variables. This result implies

that (k+ 1)-Order Datalog¬ without existential predicate variables has the same expres-

sive power as the full language. Furthermore, the transformation we propose preserves

stratification: if the original program is stratified, then the transformed program is strat-

ified as well. In other words, stratified programs without existential predicate variables

can be as expressive as unstratified programs with existential predicate variables. We

first illustrate the proposed transformation with our Hamilton example.

Example 2.

Consider our initial rule for the Hamilton query:
hamilton(X,Y) ordering(Ord),first(Ord ,X),last(Ord ,Y),subset(succ(Ord),e).

The key idea of the transformation is that instead of using an existential predicate

variable for finding an appropriate relation Ord that is a strict total order, we can use

an iterative procedure that starts from the empty relation and successively adds to it

pairs of individual constants until we get a relation that is indeed a strict total order.

In other words, we construct ourselves, in a bottom-up way, the strict total order. The

corresponding transformed program is the following:

hamilton(X,Y) test(X,Y,empty ).
test(X,Y,Ord) ordering(Ord),first(Ord ,X),last(Ord ,Y),subset(succ(Ord),e).
test(X,Y,Ord) test(X,Y,add(Ord ,Z1,Z2)).

Notice that in the last rule above, we add a new pair (Z1,Z2) to the Ord relation;

the definition of add is quite simple and will be given later in the section. The variables

Z1 and Z2 are existential but of lower order than the relation Ord. In other words, our

transformation decreases by one the order of the existential predicate variables that

the program contains. Thus, if we repeat this process successively, at the end we get a

program that only contains existential variables of type ι. In the Hamilton program, one

step suffices to complete the transformation (the variables Z1 and Z2 are of type ι).

We can now provide a more general description of the aforementioned transformation.

Let P be a program and assume it contains the following rule:
p(X̄) B[X̄, R].

where B[X̄, R] is an expression containing the variables X̄= X1, . . . , Xm that occur in the

head of the rule and also a predicate variable R of order k≥ 1 that does not occur in

the head and thus is existentially quantified. Let ρR be the type of R. We replace the

aforementioned rule with the following set of rules:
p(X̄) testB(X̄,emptyρR ).
testB(X̄,R) B[X̄, R].
testB(X̄,R) testB(X̄,addρR (R,Z̄)).

https://doi.org/10.1017/S1471068425100227 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100227


The Power of Negation in Higher-Order Datalog 15

The predicate emptyρR defines the empty relation of objects of type ρR and the predicate

addρR adds an element to a relation of type ρR. The predicate eqρZ̄ is a higher-order

equality predicate.
emptyρR (Ȳ) false.
addρR (R,Z̄,Ȳ) R(Ȳ).
addρR (R,Z̄,Ȳ) eqρZ̄

(Z̄,Ȳ).

Note that addρR(R,Z̄) denotes a relation that contains every element Ȳ of R and also

Z̄. The process introduces only the existential variables Z̄, which are of order at most

k− 1.

We have the following theorem, whose proof is given in the supplementary material.

Theorem 5.

Let P be a Higher-Order Datalog¬ program that defines a query Q under the well-

founded semantics (resp. stable model semantics with cautious reasoning, stable model

semantics with brave reasoning). Let P′ be the program that results by applying the

aforementioned transformation to some rule of P. Then, P′ defines the same query Q
under the well-founded semantics (resp. stable model semantics with cautious reasoning,

stable model semantics with brave reasoning).

By applying the transformation described above to each rule and every existential

variable of order k, we obtain a program without such variables. Repeating this process

iteratively for variables of order k− 1, k− 2, and so on, we can eventually eliminate all

existential predicate variables from the initial program.

If we denote with Higher-Order Datalog¬, �∃ the fragment of Higher-Order Datalog¬ that

does not contain existential predicate variables, then the following corollary is immediate:

Corollary 5.1.

(k+ 1)-Order Datalog¬, �∃ and Stratified (k+ 1)-Order Datalog¬, �∃ capture k− EXP under

the well-founded semantics. (k+ 1)-Order Datalog¬, �∃ and Stratified+Choices (k+ 1)-

Order Datalog¬, �∃ under the stable model semantics capture co− (k−NEXP) with

cautious reasoning and k−NEXP with brave reasoning.

Obviously, Higher-Order Datalog¬, �∃ under any of the aforementioned semantics captures

ELEMENTARY.

6 Conclusions and future work

We have presented an exploration of the expressive power of Higher-Order Datalog¬

under the well-founded and the stable model semantics. Our results identify fragments

of the language that, despite being syntactically restricted, possess the same expressive

power as the full language. Moreover, our results indicate that by increasing the order

of programs under the well-founded semantics we can surpass the expressive power of

lower-order programs under the stable model semantics.

There are several challenging directions for future work. First, although our results

indicate that by increasing the order of the programs the well-founded semantics can

match the power of stable model semantics, it is still unclear to us if there exists a formal

transformation from a k-order program P to a (k+ 1)-order program P′ such that the
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well-founded semantics of P′ captures, in some sense, the stable model semantics of P.

Another direction that would be very interesting and certainly quite challenging, would

be the implementation of Higher-Order Datalog¬. In general, implementing efficiently

non-monotonic extensions of Datalog is already non-trivial even at the first-order case.

Probably, a promising direction would be to identify interesting subclasses of Higher-

Order Datalog¬ that lend themselves to efficient implementation while at the same time

retaining some strong expressibility features of the language. For example, as observed by

one of the reviewers, it would be interesting to investigate the notion of safety in Higher-

Order Datalog¬ and whether this notion affects the expressiveness and the potential for

efficient implementation of the language.

Supplementary material

The supplementary material for this article can be found at http://dx.doi.org/10.1017/

S1471068425100227.

Acknowledgments

This work was supported by a research project which is implemented in the framework

of H.F.R.I call “Basic research Financing (Horizontal support of all Sciences)” under the

National Recovery and Resilience Plan “Greece 2.0” funded by the European Union -

NextGenerationEU (H.F.R.I. Project Number: 16116).

References

Amendola, G., Ricca, F. and Truszczynski, M. 2019. Beyond NP: Quantifying over answer
sets. Theory and Practice of Logic Programming 19, 5-6, 705–721.

Bogaerts, B., Charalambidis, A., Chatziagapis, G., Kostopoulos, B., Pollaci, S. and
Rondogiannis, P. 2024. The stable model semantics for higher-order logic programming.
Theory and Practice of Logic Programming 24, 4, 737–754.

Bogaerts, B., Janhunen, T. and Tasharrofi, S. 2016. Stable-unstable semantics: Beyond
NP with normal logic programs. Theory and Practice of Logic Programming 16, 5-6, 570–586.

Charalambidis, A., Nomikos, C. and Rondogiannis, P. 2019. The expressive power of higher-
order datalog. Theory and Practice of Logic Programming 19, 5-6, 925–940.

Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. 2001. Complexity and expressive
power of logic programming. ACM Computing Surveys 33, 3, 374–425.
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GrÄdel, E. 1992. Capturing complexity classes by fragments of second-order logic. Theoretical
Computer Science 101, 1, 35–57.

https://doi.org/10.1017/S1471068425100227 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100227


The Power of Negation in Higher-Order Datalog 17

Immerman, N. 1986. Relational queries computable in polynomial time. Information and Control
68, 1-3, 86–104.

Jones, N. D. 2001. The expressive power of higher-order types or, life without CONS. Journal
of Functional Programming 11, 1, 5–94.

Kolaitis, P. G. 1991. The expressive power of stratified programs. Information and
Computation 90, 1, 50–66.

Leivant, D. 1989. Descriptive characterizations of computational complexity. Journal of
Computer and System Science 39, 1, 51–83.

Lichtenstein, D. and Sipser, M. 1980. GO is polynomial-space hard. Journal of the ACM 27,
2, 393–401.
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