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SUPER-REFLEXIVE BANACH SPACES

ROBERT C. JAMES

Introduction. A super-reflexive Banach space is defined to be a Banach
space B which has the property that no non-reflexive Banach space is finitely
representable in B. Super-reflexivity is invariant under isomorphisms; a
Banach space B is super-reflexive if and only if B* is super-reflexive. This
concept has many equivalent formulations, some of which have been studied
previously. For example, two necessary and sufficient conditions for super-
reflexivity are: (i) There exist positive numbers § < %, 4, and 7 such that
1 <7< and A[X |a V" £ ||X asel| for every normalized basic sequence
{e;} with char{e;} = 6 and all numbers {a;}; (ii) There exist positive numbers
8 < 1, B, and s such that 1 < s < 00 and ||> aei|| £ B[X |ai|]V" for every
normalized basic sequence {e;} with char{e;} = 6 and all numbers {a;}.

Definition 1. A normed linear space X being finitely representable in a normed
linear space Y means that, for each finite-dimensional subspace X, ol X and
each number X > 1, there is an isomorphism 7, of X, into ¥ for which

M el = T2l = Ml if x € X,

Definition 2. A normed linear space X being crudely finitely representable
in a normed linear space ¥ means that there is a number A > 1 such that,
for each finite-dimensional subspace X, of X, there is an isomorphism 77, of
X, into Y {for which

MUl = 1Ta@)]] = Ml i x € X

Definition 3. A super-reflexive Banach space is a Banach space B which has
the property that no non-reflexive Banach space is finitely representable in B.

It follows directly from known facts that a Banach space is super-reflexive
if it is isomorphic to a Banach space that is uniformly non-square [3, Lemma
C]. Clearly, all super-reflexive spaces are reflexive. The next theorem will
enable us to prove easily that super-reflexivity is isomorphically invariant.

THEOREM 1. A Banach space B is super-reflexive if and only if no non-reflexive
Banach space is crudely finitely representable in B.

Proof. Clearly, a Banach space B is super-reflexive if no non-reflexive
Banach space is crudely finitely representable in B. We must show that if
a non-reflexive space X is crudely finitely representable in B, then there is a

Received September 14, 1971 and in revised form, February 16, 1972. This research was
partially supported by NSF Grant GP-28578.

896

https://doi.org/10.4153/CJM-1972-089-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1972-089-7

BANACH SPACES 897
non-reflexive space Y that is finitely representable in B. Since X is non-
reflexive, there is an ¢ > 0 and a sequence {x,} in the unit ball of X such that

dist(conv{xy, ..., x:}, conv{xgis, ... }) > e

for every £ = 1 [2, Theorem 7, p. 114]. Let A > 1 be a number such that,
for each #, there is an isomorphism T3, of lin{xy, . .., x,} into B with

Nl = (17w @) = Mlal| if & € Tinfas, . .0, ).
Lety® = N1T,(x;) for i < n. Then ||y/|| £ 1and,if 1 £k < #,

dist(conv{ys*, ..., %"}, conv{y"i1, . . ., V"))
= N dist(convi{xy, . . ., ), convixgi, . ., %)),
so that
dist(conv{y/®, . .., yi*}, conv{y™i1, . . ., ¥u"}) = A\ 2e.

Now the procedure used in the proof of Lemma B in [3] gives a space Y that
is finitely representable in B and is non-reflexive by virtue of having a sequence
{n.} for which ||n,|| = 1 and, for every & = 1,

dist(conv{ni, . .., 7}, conv{ngs, . .. }) = A\ 2e.

THEOREM 2. Super-reflexivity is invariant under isomorphisms. A Banach
space B is super-reflexive if and only if B* is super-reflexive.

Proof. It follows from Theorem 1 that super-reflexivity is invariant under
isomorphisms. Now suppose that X is non-reflexive and finitely representable
in B. Since X* is non-reflexive, there is an ¢ > 0 and a sequence of linear
functionals {f,} in the unit ball of X* for which

dist(conv{fy, ..., fi}, conv{frs1, ... }) > e if k=1

For a positive integer # and a finite-dimensional subspace X, of X, let T
map X, into B as described in Definition 1. Define ¢;" for £ < n by letting

LT (x)] = fi(x) if x € X, and then extending ¢; to all of B. If X, is chosen
suitably and X is close enough to 1, then ||¢;|| < 2 and

€)) dist(conv{er, ..., ¢}, conv{e i1, . . ., B}) > €

if 1 £ %k < n. Again, the procedure of [3, Lemma B] gives a space Y that is
finitely representable in B* and is non-reflexive by virtue of containing a
bounded sequence {#,} for which

dist(conv{ni, ..., 7}, conv{ngi1, ... }) = e if k=1

Conversely, suppose Y is non-reflexive and finitely representable in B*. As
in the proof of Theorem 1, it then follows that there is an ¢ > 0 such that,
for every positive integer #, there is a subset {¢1", ..., ¢,”} of the unit ball
of B* for which (1) is satisfied. The procedure of [3, Lemma B] then gives a
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space X that is finitely representable in B and is non-reflexive by virtue of
there being a bounded sequence of linear functionals {f,} in X* for which

dist(conv{fy, ..., fz}, conv{fir1, ... }) = e if k=1

The next two lemmas are needed to develop some characterizations of
reflexivity that will be useful in establishing characterizations of super-
reflexivity. It is known that every non-reflexive Banach space has an infinite-
dimensional subspace with a non-shrinking basis and an infinite-dimensional
subspace with a basis that is not boundedly complete {5, p. 374; 6, p. 362].
We shall need quantitative measures of how ‘“good’ these bases can be, as
described by means of the characteristic of the basis. This is given by Lemmas 1
and 2. The proofs of Lemmas 1 and 2 are similar to the argument on pages
116-117 of [2], but these lemmas give more information. In fact, Lemma 2
is a combination of (31) and (35) in [2].

It is known that a sequence {x;} in a Banach space is a basis for its closed
linear span if and only if there is a positive number e such that

Il erﬂ a,-xill = €| 27{ aixiH

for all positive integers #z and p and all numbers {a,}. The largest such number
¢ is the characteristic of the basis.

The proofs of Lemmas 1 and 2 make repeated use of the following form of
Helly's condition. *‘Given linear functionals fi, ..., f, on a Banach space B
and numbers ¢y, . . ., ¢, and M, the following two statements are equivalent.

(1) | Xtawi| < M|| 2 taifs|| for all numbers {a,}.

(ii) For every € > 0, there is an x in B such that ||x|] < M + eand f;(x) =¢;
ifl1=1=n”

LeEmMA 1. Let B be a non-reflexive Banach space. If 0 <0 < 1 and 0 < ¢ < 1,
then there are sequences {z;} and {g,} in the interiors of the unit balls of B and B*
such that

2) gi(z;) =0 if i =7 gz)=0 if >3
and, for all positive integers n and p and all numbers {a,;},

3) 1200 e + 20 au(e — 200)|| 2 del| 2 aszil].
Proof. Let 6 and e satisfy 0 < § < 1 and 0 < ¢ < 1. Let F be a member of
B** for which [|F|| < 1 and
dist(F, B®) > max{0, ¢*},

where B¢ is the canonical image of B in B**. We shall show that a sequence
{ (24, gn» H,)} can be chosen inductively so that z, € B, g, € B*, {H,} is an
increasing sequence of finite sets of linear functionals with B as their domains,
and:
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@) [lzal] <1, [lgal] < 15

(b) F(g,) = 6 for all #;

(c) gi(z;) =0if7 =< jand g,(3;) = 0if 7 > 7,

(d) |||| < 3¢ % and F(h) = h(z,) il b € H, and i = n;

(e) if z € lin{z, . . ., 2,}, then there is an % in H, with |k(z)| = €3||2]|.
Since [|F|| > 6, we can choose g; so that ||gi|| < 1 and F(g;) = 6. Then
llei]] > 6 and we can choose 2; so that gi(21) = 6 and ||z1|| < 1. Let H; contain
a single member chosen by the procedure described below for determining
H,,. Suppose that (z; g4, H;) have been chosen to satisfy (a)-(e) when
1 < p, where p = 1. Then g,,; must satisfy

lgpnill <1, Flg) =6, gii(zy) = 2,°(ga) =0 if j = p.
For the last two of these three conditions, Helly’s condition (i) becomes
0 < M||2%agz’ + F|| forall {aj.

Since this is satisfied if M = 6/dist(F, B°) < 1, g,41 can be chosen to satisfy
llgo+1]] < 1. Now 2,41 must satisfy

il <1, gi(zper) =0 if 1=p+1, h(zn) =h(z) if hEH,
For the last two of these three conditions, Helly’s condition (i) becomes
0 28 ai+ k()| < M| age + B
for all {a;} and all % € lin(H,). Since
0 28 ai+ h(z)| = [P aga + 1) < [|FI | X0 aige + B

and ||F|| < 1, wecanlet M = ||F|| and choose 2,41 so that ||2,41]| < 1. Now let
G, be a finite set of linear functionals with unit norms and domains B which
contains suitable linear functionals so that, for each z in lin{zs, .. ., 2p11},
there is a g in G, with |g(z)| = €?||z||. Let us now show that, for each g in G,,
there is an % in B* such that

) ] <3¢t Fh) = g(zp1), 2:(h) =3°(g) if i <p+ L
For the last two of these conditions, Helly’s condition (i) becomes
(5) a-glep) + 21 ez (@)| £ M|jaF + 2% aiz’|| for all {a;} and a.
Since
la-g(zp1) + 20 aiz @] = gz + 25 az)| < oz + 20 aszd|
< |laF + 287 az || + |laF — az%unl]
< 1+ [IF = 25%all/IIF + 258 asd/alll)
X |laF + 2t ae/|
< (14 26N [[aF + X5 ass],
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we can satisfy (5) with M = 1+ 2% and choose / so that ||h|| < 3¢ *.
It follows from (4) that 2 = g on lin{zy, ..., 2,41}. Let each member of G,
be replaced in this way and then let H,,; be the union of H, and all such
replacements of members of G,. Clearly the sequence {(z;, g;)} satisfies (2).
It follows from (e) that, for any sum >_7 a.z;, there is an % in H, such that

|h(2'fazz¢)l = E%Han,-ziH.
Since ||k|| < 3¢ % and h(z; — 5-1) = 0if i > n, we have

Il Z'{aizi + Zﬁi’l’ ai(zs — Zi—l)H Z %E%lh[zqaizi + ZZﬂ ai(z: — 2:-1)]|
= %6%1}5(27{ ag:)| = %eHZ’iaiziH-

LEMMA 2. Let B be a non-reflexive Banach space. If 0 < 8 < 1and 0 < e < 1,

then there are sequences {2;} and {g;} in the interiors of the unit balls of B and
B* such that
g]_(Zj) =60 if 1< éj, gi(z,-) =0 if e > j,

and, for all positive integers n and p and all numbers {a;},

(6) 12207 asil| 2 gell 2t aidl.
Proof. Let 6 and e satisfy 0 < 8§ < 1 and 0 < ¢ < 1. Let F be a member of
B** for which ||F|| < 1 and

dist(F, B°) > max{9, ¢*},

where B¢ is the canonical image of B in B**. We shall show that a sequence
{ (24, gn, Ho)} can be chosen inductively so that g, € B, g, € B*, {H,} is an
increasing sequence of finite sets of linear functionals with B as their domains,
and:

@) llzall <1, flgall < 1;

(b) F(g,) = 6 {or all n;

(c) g.(25) = 0if 7 < jand gi(z;) = 01if 7 > 7;

(d) [|k]| < 2¢ % and F(h) = h(z;) = 0if h € H, and i > n;

(e) If 2 € lin{z, . . ., 2,}, then there is an & in H, with |[k(z)| = €¥||2]|.
Assuming that (z;, g;, H,) have been chosen to satisfy (a)-(e) for 7 < p,
the choice of g,41 is made exactly as in the proof of Lemma 1. Then z,,; must
satisfy

llzIH-lll < 1, gi(zp+1) =6 i < é P + ]., ]’L(Zp+1) =0 if & S H,.
For the last two of these conditions, Helly’s condition (i) becomes
6 27" ad] < M| 227 avg: + 2|
for all {a;} and all & € lin(H,). Since
lo 28 a = [F(EE ag+ )] < (IFI 28 age + |
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and [|F|| < 1, we can let M = ||F|| and choose 2,1 so that ||z,41|| < 1. The
remaining argument is similar to that for Lemma 1, with (4) replaced by

[[B]| < 2¢%, F(h) =0, z°0h) =z:°(@) if ¢ <p+1,
and (5) replaced by

|21 el (9)] = M||F+ Z€+laizic‘|‘

The coefficient 3 in (6) is the best possible. To see this, suppose 6 is a
positive number and {x"} is a normalized basic sequence in ¢, for which there
is a continuous linear functional g such that g(x") = 6 for every n. We shall
show that char{x"} =< 3. Let {y"} be a subsequence of {x"} {or which

lim 3" (2) = «a;

n->00
exists for each 4. Then |ay| £ 1 for every 7. Also g(x") = 8 for every n implies
sup{la;} > 0. For an arbitrary ¢ > 0, let {z"} be a subsequence of {y"}
such that, for every #,

[2°() —ail <e if 1Zpn) <pn—+1),

where p(n) is an integer for which |2*(7)] < e if 2 < # and 7 = p(n). Then,
for every k and 7,

D 2™ — o] <ke+1,
wherew(d) = ka;if 11 S p(r +1),0(0) = (k — j)a@)if p(r +j) <i=p(r +j+1),

and w(z) = 0if 2 > p(r + k). Choose 7 such that sup{la| : 7 < p(r)} > M — ¢,
where M = supf{|a,|}. Then choose s > & + 7. It follows that

[ 37%ae™ — 2 D512 < M + 2(ke + 1),
27502 > k(M — €) — ke.

Thus, char{x"} < char{z"} < [3M + 2(e + 1/k)]/[M — 2¢]. Since k and e
were arbitrary, char{x"} < 3.

THEOREM 3. Each of the following is a necessary and sufficient condition for a
Banach space B to be non-reflexive. (Equivalent conditions are obtained if the
introductory phrases for (1), (11) and (111) are replaced by ‘‘ For some positive
numbers 0 and €, or the introductory phrases for (IV) and (V) are replaced by
‘‘ For some positive number '’.)

(I) For all 0 and € such that 0 < 6 <1 and 0 < e < 1, there is a basic
sequence {x,} in B such that ||x,|| = 0 for every i, |21 x4|| < 1 for every k,
and char{e;} = %e.

(IT) For all 6 and € such that 0 < 0 < 1 and 0 < e < 1, there are sequences
{2,} and {g,} in the unit balls of B and B*, respectively, such that {z,}
1s a basic sequence with char{e;} = %e and

gi(z) =0 if i), gi(z) =0 if i>].
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(III) For all 6 and € such that 0 < 8 < 1 and 0 < € < 1, there is a basic
sequence {2,} in the unit ball of B such that char{z,} = %e and

llz2]] = 6 if 2 € conviz,}.

(IV) For all 0 such that 0 < 0 < 1, there is a sequence {2,} in the unit ball of
B such that, for every sequence of mumbers {a;} such that 33 az; is
convergent,

(7) 6-supl| 2% aif 1k S m} < || 2Faed|.
(V) For all 6 such that 0 < 0 < 1, there is a sequence {x,} 1n B such that, for
every sequence of numbers {a} for which YT ax,is convergent and a;— 0,

(8) 0 - sup{la,]} < || 2% asd| £ 229 las — aual.

Proof. Suppose first that B is not reflexive. Let {(z;, g;)} be as described
in Lemma 1. Let x; = 21 and x; = 2; — 2;_1 if ¢ > 1. Then, for every i1,
gi(x;) = 0 and therefore ||x,|| = 0. Also, Y 1x; = 2, so that ||« <1
for every k. Inequality (3) is equivalent to char{x;} = %e. Thus (I) is satisfied.
Clearly, (II) follows from Lemma 2 and (II) implies (IIT). Also, (IT) implies
(IV), since if {(z,, g:)} are as described in (II), then

0 - sup{| 2% a4} = sup{lg(2F az)|} £ || 227 e

Let us now show that (IV) implies (V). To do this, let {z,} and 6 be as de-
scribed in (IV). Let x; = 21 and x; = 2; — 2;,-1 if ¢ > 1. Then Y S ax; =
SF(as — aw1)zs, so that (7) and ||z,]| = 1 imply (8).

To complete the proof, it is sufficient to show that B is non-reflexive if (I),
(ITT) or (V) is satisfied (note that the following arguments use only the
existence of positive numbers 6 and e as described in (I)-(V), rather than
the possibility of using arbitrary 6 and e in the interval (0,1)). If (I) or (III)
is satisfied, then a subspace of B has a basis that is not boundedly complete
or is not shrinking, so that B is not reflexive [1, Theorem 3, p. 71]. Now
suppose 8 and {x,} are as described in (V). For each #, let

K,=c{d%ax;:pzZn and l=a1=... =g Z g1 = ... 2 a, = 0}.

Then K, is bounded, closed and convex, with K, D K,,1. Thus we can show B
is non-reflexive by showing that M K, is empty (1, Theorem 1, p. 48]. Suppose
x € N K,. Then there exist sequences {a;} and {8;} that decrease monoton-
ically to O for which

e — 2 Ras| <30, |lx— 298| < 36,
andB, = 1if7 < p + 1. Then ||XTawnx; — 21 84| < 6, butfrom (8) we have
[] anixi - I{ﬁixill = 00,41 = 0.

There are many properties of Banach spaces whose equivalence to non-
super-reflexivity follows easily from the definition of super-reflexivity, but
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which will not be discussed in this paper (see Lemmas B and C and Theorem 6
of [3]). The first five characterizations in the next theorem are closely related
to (I)-(V) of Theorem 3. Characterizations (vi) and (viii) are known [4,
Theorem 6], but are included here to show their relation to (vii).

THEOREM 4. Each of the following is a necessary and sufficient condition for
a Banach space B not to be super-reflexive. (Equivalent conditions are obtained
if the introductory phrases for (i), (ii) and (iii) are replaced by *‘ For some positive
numbers 0 and e, or the introductory phrases for (iv) and (v) are replaced by
“For some positive number 6".)

) IfO0<6<1and 0 < e <1, then for every positive integer n there is a
subset {x1,...,%,} of B such that ||x,|| = 6 for every i, ||[Z5 x| < 1

if k £ n, and, for every sequence of numbers {a;},

1221w = 4| Zhaw|| if k= n.

() If0 <60 <1and 0 < e <1, then for every positive integer n there are
subsets {z1,...,2,} and {gi, ..., g} of the unit balls of B and B¥,
respectively, such that

and, for every sequence of numbers {a;} and every k < n,
HZ’faz-sz = %GHZI{‘H&”-
(i) If 0 < 0 < 1l and 0 < e < 1, then for every positive integer n there is a

subset {z1, . .., 2,} of the unit ball of B such that ||z|| > 6 if z € conv
{21, ..., 2.}, and, for every sequence of numbers {a;} and every kb = n,

12 amd| 2 dell X ezl

(iv) If 0 < 6 < 1, then for every positive integer n thereis a subset {y1, . . . , Yu}
of the unit ball of B such that, for every sequence of numbers {a;},

0-sup{|2kail 1k = m} £ || 2Liawil.
(v) If 0 < 0 < 1, then for every positive integer n there is a subset {x1, . . . , %}
of B such that, for every sequence of numbers {a;} for which a,4, = 0,
6-supfla,] :1 4 S m) S || 2Taw]| £ 20 |es — aul.

(vi) For every A, 6 and B such that 0 < 24 < &6 =1 < B, there exust
numbers v and s for which 1 <r < 0,1 < s < o, and, if {e,} isany
normalized basic sequence in B with char{e,} = 9, then

ALY lad 17 = ||Z ael| = BIX |adf'],

for every sequence of numbers {a;} such that 3 a.e, is convergent.
(vii) There exist positive numbers 8, A and r such that§ < 1,1 < r < o0, and

) AT a1V £ |12 aedll,
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for every normalized basic sequence {e;} with char{e;} = 36 and every
sequence of numbers {a;} such that Y a.e; is convergent.
(viii) There exist positive numbers 8, B and s such that§ < 1,1 < s < 0, and

(10) |2 aied = B[X |ad*]V5,

for every normalized basic sequence {e;} with char{e;} = 18 and every

sequence of numbers {a;} such that Y ae; is convergent.

Proof. Observe first that if a Banach space B is not super-reflexive, then
there is a non-reflexive space X that is finitely representable in B. The fact
that X has each of properties (I1)-(V) of Theorem 3 implies that B has each of
properties (i)-(v). The proof that each of (i)-(v) implies there is a non-
reflexive space X that is finitely representable in B is essentially the same as a
known process that will not be repeated here (see the proof of Lemma B in
[3]). This completes the proof of (i)-(v). It is known that (vi) is implied by
super-reflexivity {4, Theorem 4]. Clearly (vi) implies both (vii) and (viii).
Let us suppose that B is not super-reflexive, but that (vii) is satisfied. For 4,
A and r as described in (vii), choose € and # so that § < ¢ < 1 and

n"54 > 1.
For this e¢ and for 6 = §, choose {xi,...,x,} as described in (i). Since
{x1, ..., %,} can be extended to a basic sequence with characteristic greater

than %4, (9) gives the contradiction:
n84 < ALTH [l S (| 20| < L

Similarly, if B is not super-reflexive, but (viii) is satisfied, choose e¢ and »
so that § < ¢ < 1 and

6n > Bn'/s,
For this e and for 6 = §, choose {z1,...,2,} as described in (iii). Since
{21, ..., 2,} can be extended to a basic sequence with characteristic greater

than %4, (10) gives the contradiction
on < || 21zl < BIX |[z]|']" < Bn'”’.
REFERENCES

1. M. M. Day, Normed linear spaces (Academic Press, New York, 1962).
2. R. C. James, Weak compactness and reflexivity, Israel J. Math. 2 (1964), 101-119.

3. Some self-dual properties of normed linear spaces, Symposium on Infinite Dimensional
Topology, Annals of Mathematics Studies 69 (1972),159-175.
4. Super-reflexive spaces with bases (to appear in Pacific J. Math.).

5. A Pelczyniski, A note on the paper of I. Singer “‘Basic sequences and reflexivity of Banach
spaces’’, Studia Math. 21 (1962), 371-374.

6. 1. Singer, Basic sequences and reflexivity of Banach spaces, Studia Math. 21 (1961-62),
351-369.

Claremont Graduate School,
Claremont, California

https://doi.org/10.4153/CJM-1972-089-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1972-089-7

