ON ALGEBRAIC GROUPS DEFINED BY NORM
FORMS OF SEPARABLE EXTENSIONS

TAKASHI ONO

Let K be any field, and L a separable extension of K of finite degree. L
has a structure of vector space over K, and we shall denote this space by V.
The space of endomorphisms of V will be denoted by €(V). Let x be any
element of L, and N(x) the norm of x relative to the extension L/K. N is
then a function defined on V with values in K. We shall call N the norm
form on V. The multiplicative groups of non-zero elements of K and L will
be denoted by K* and L* respectively. Let H be any subgroup of K*. Then
the elements z of L™ such that N(z)&H form a subgroup of L*, which we
shall denote by Gy. On the other hand the elements s of €(V) such that
N(sx) = A(s)N(x) with A (s)eH for all x €V, form obviously a subgroup of
GL(V), which we shall denote by Gy. Gg becomes an algebraic group if
H=K* or {1}. In case H=K%* Ggu= G« will mean the group of linear
transformations of V leaving semi-invariant the norm form of L/K and in case
H={1}, Gu= G will mean the group of linear transformations of V leaving
invariant the norm form of L/K.

The object of this paper is to investigate the structure of these groups
Gu, particularly in the cases H= K™ and H={1}. Our result in most general
form reads in Proposition 2, which is obtained under a sole hypothesis that X
contains infinitely many elements. Theorems 1 and 2 correspond respectively
to the cases H=K" and H={1}). Theorem 2 will show in particular that
G is the algebraic component of G, and if L/K is normal, Gy, may be
considered as a semi-direct product” of Gy, and the Galois group of L/K.
Theorem 3 gives the center of Gu.

The significance of the group Gy as an algebraic group was indicated by

Chevalley.” The groups Gy, and Gy, may be regarded as analogues of special

Received August 18, 1956.

1) For definition, see p. 127, footnote 3).

2) Théorie des groupes de Lie: Vol. 2, Hermann, Paris, 1951, p. 170. We shall quote
this book as C. II. We shall also quote Vol. 3 (1955) of the series as C. III
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orthogonal and orthogonal groups respectively. The groups Gz and Gy have
arithmetic meanings when K is the field of rational numbers, and we have in
mind to investigate further arithmetic applications on later occasion.

Now, we denote by & the group of automorphisms of L leaving invariant
each element of K. For simplicity we shall call  the automorphism group of
L/K. Obviously @ is a subgroup of GL(V). Each element z €L defines an
endomorphism u(z) of V by

(1) u(z2)(x) = z2x, xeV.

The mapping u is clearly an isomorphism of V into €(V), and we have
w(L¥) = u(V) ~GL(V). Tt follows at once that #(Gx) C Gg and & C Gay. We
shall set G =Gy and G = Gy,.

ProposiTION 1. For any HC K*, we have & ~ n(Gy) = {e} where ¢ is the
identity endomorphism in C(V).

Proof. Take an element u(z) E® ~ #(Gx). Then, it follows that
1=pu(2)(1) =2z and u(z) =-.

ProposiTION 2. Assume that K is an infinite field. Then, for any HC K*,
we have Gy = p(Gp)@.

Proof. Let N be a Galois extension of K containing L. We denote by $
and R the Galois groups of N/K and N/L respectively. Let o(w), 0 EN, ¢ €
be a normal base of N/K. By some representatives v;, 1 < ¢ < #, of right cosets
of » modulo & we put ngérn(w), 1<{<mn where we set r1=1, the
identity in . It follows at onoce that »; form a base of L/K. Let V" be the
scalar extension of V with respect to V.  We define elements 4;, 1 £ j = #n,
in the dual space (V¥)* by putting 4 () =1 (n), 1<4 j=<n  Since
det(zj(n)) %0, 4, 1 £j<mn, form a base of (V)*. For x=>lxin €V, we
have N(x) = H(E;xirj(vi)) =T12;(x). We set (n(s)2)(x) = A(sx) Lfor se GV,
2e (V¥ xE]V‘V: Then cleaJrIy we have (s)A€(VY)* and we get (s)i;
=Zk]akjlk with apj & N. Now let s be any element of Gy.  Then, we have
I]](Ek]aijk)(x) =A(s)l;I Ai(x) for all x& V. As K contains infinitely many
elements, this implies that H(Zk}akj/lk) = A( s)IjI 1; in the symmetric algebra on
VY. Thus, by a well kno;vn theorem on the decomposition of polynomials,

there exists an integer k(j) for each j such that k(j)= k(j') if j=j/, and

https://doi.org/10.1017/50027763000002002 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000002002

ON ALGEBRAIC GROUPS DEFINED BY NORM FORMS 127

arj %0 if and only if %=%(j). Therefore we have 7(s)i; =ajli), @ € N
In particular for j =1, we get s(y;) = A,(s%:) = (p(8)A) (i) = @arey(9i), 1 =4 £ m.
Since we have >irkq)(7i) =§w"EK* and s(y)& L, this implies that e, € L
and we see that zrkme . GA% we have N(sx) = Nl(aitra)(x)) = N(a)N(x), it
follows that N(a,) = A(s)e H. Thus we have s = pla) ey, € 0(Gu)S. q.ed.

As an immediate cosequence of the two propositions, we get the following

CoroLLArY. If K contains infinitely many elements, Gy is a semi-direct
product of 1(Gx) and &°.

Suppose now K is infinite. = We shall restrict our attention to the case
where H is algebraic, ie. H=K"* or H={1}. The mapping g, which is a
linear isomorphism of V onto u(V), gives also a homeomorphism of V onto
#(V) in the sense of Zariski-topology, and every closed set in u(V) is also
closed in €(V) since u(V), being a linear subspace of €(V), is closed in E(V).
Also each irreducible set of V is mapped on an irreducible set of (V) and
vice versa, and every irreducible set in #(V) is irreducible in €( 7).  Since
w(L¥) = p(V) ~GL(V), u(L*) is an algebraic group on V and is irreducible as
an open subset in u(V). By Proposition 2, the group Gx* has p(Gg*) = u(L¥)
as a subgroup of a finite index. Thus we get by the above corollary the
following

TuEOREM 1. Let K be an infinite field and L/K a separable extension of
finite degree.  Then, the group Gx* of all linear transformations of L over K
which leave semi-invariant the norm form of L/K is algebraic on the vector
space L over K and p(L*) is the algebraic component of Gx*, p being defined
by (1).  Furthermore Gx* is the semi-direct product of n(L*) and ®&, where &
is the automorphism group of L/K.

Next, we shall consider the group G, ie. the group of all linear transfor-
mations of V leaving invariant the norm form of L/K. Of course G is an
algebraic group on V. G being closed in V, u(G) is also algebraic. We
define a raitonal representation N of x(L*) by N(u(%))=N(x), xe=L* Let
H be the smallest algebraic group containing N(z(L*)). Then, H is irreducible

® We say that a group G is a semi-direct product of a normal subgroup N and a

subgroup H if we have G=N-H and N0 H={e}, ¢ being the identity in G. We see that

«(GH) is normal in Gu by the relation ou(z)s~!1=u(s(2)), 2z L, s,
4 Cf. C. III. Chap. VI §1,
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and H={1} or H=K*  But as K is infinite, N(u(L*))={1} and we have
H=K*  Since p(G) is the kernel of the representation N, it follows that
dimg 2(G)=£n—1, where n=[L : K1¥ On the other hand, we shall define a
homomorphism p of L* into itself by o(x) =x""N(x), x& L*. Obviously we
have p(L*)C G and p induces a rational representation § of x(L*) in u(G) by
(%)) =pnlp(x)), x=L*. We denote by H the smallest algebraic group
containing g(x(L*)). If we take an algebraically closed field M containing K,
then we have H" = (p)"(u(L*)™).” We denote b& 4" the unique extension of
ato V'=L" Let (L")* be the group of all invertible elements of L” which is
considered as an algebra over M. It follows that p"((L")*) = (L") ~ GL(V™)
= (L) ~GL(V™) = u(I*) ~ GL(V™) = u(L*)", where u(L) and x(L*) mean the
closures of (L) and u#(L*) in V¥ respectively. Let ¢" be the unique extension
of p to (L™)*. It follows that dimxH = dimy H" = dimu ()" (2 (L)) =
dimu 2" (" (L™)*)) = dimy o™ ((L™)*).  Since L/K is separable and M is alge-
braically closed, we have V* = L" = Me,;+ . . . + Me, with pimitive idempotents

¢i, 1=i=n. Let x=2lxie; be in the kernel of the homomorphism o”. From
the relation N”(x) :x’:,” it follows that (a;* * * )l =1(x* * * x)(e1+ . ..
+en) =xle;+ ...+ xne, and that 7= ....=x%  Therefore the kernel of
o™ is of 1-dimension over M, as it has M™* as a subgroup of finite index, and
so the kernel of (5)"” is also of 1-dimension over M. M being algebraically
closed, it follows that dimx H = dimu(5)"(u(L*)") =2 -1  Since H is con-
tained in #(G), we get at once dimzu(G)=n—1. Hence, we have dimgx u(G)
=n—1. Now, let u(Gi) be the algebraic component of x(G) and let G =G+
. .. + G, be the decomposition of & into the cosets modulo G;.  Thus each
Gi is irreducible and dimxGi=n—1. Let B;, 1 =17 =< #, be prime ideals of the
polynomial ring K[X;, ..., Xul associated to G; respectively. As is well
known each %; is principal: B; = (Pi(X)), X=(Xi, ..., X»). Obviously the
ideal A=P; ~ ...~ B=PBy++ B, is associated to G. On the other band,
every element in G satisfies the equation F(X) = IJI(!ZXiTj(m)) —1=0, where

5 C. II. Chap. II. §6. Prop. 8. If the characteristic of K is zero, we get dimgu(G)=
n—1 by C. II. Chap. II. §14. Théoréme 12.

6) C. II. Chap. II. §5. Prop. 4, §7. Prop. 2. Cor. 1.

' N™ means the extension of N to V¥ It is also the norm of the algebra L¥ over
M with respect to the regular representation.

® C. II. Chap. II. §6. Prop. 8. Cor.
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tj, v have the same meaning s in Proposition 2. Since F(X)+ 1 splits into
the product of different » linear factors in the algebraic closure of K, F(X) is
an irreducible polynomial. Since F(X)& U, we have =1 and it follows that
A=, = (F(X)) is the associated ideal to G. Thus G, or ;(G), is irreducible
and we get the following

TueorREM 2. Let K be an infinite field, and L/K a separable extension of
finite degree n. Then, the group G of all linear transformations of L over K
which leave invariant the norm form of L/ K is an algebraic group of dimension
n—1 and p(G) is the algebraic component of G, p being defined by (1).
Furthermore G is the semi-direct product of 1(G) and ®, where ® is the auto-
morphism group of L/K.

Lastly, we shall determine the center of the Gu defined over an arbitrary
field K.

Proposition 3. Let K be an arbitrary field and L/ K a separable extension

of degree n. Then, there exists a base w;, 1 <1 <n of L/K with N(w;) =1.

Proof. Suppose first that K is infinite. Let L(G) be the linear closure of
G in V. Clearly we have dimg L(G) 2dimxG =n — 1. (Theorem 2). Since G is
irreducible and closed and is not a linear space, L(G) must be the whole space
V.” Next, suppose that K is a finite field with ¢ elements. Thus, the number
of elements in G is =(g¢"—1)/(g—1). Let # be the dimension of L(G). Then,
we have (¢"—1)/(g—1)=q". From this, it follows that ¢(¢g—1)=q"""—qg=
q"—1>q¢"—qand r+ 1>n, namely r=n. Therefore we have again L(G) = V.
This proves our proposition.

TueoreMm 3. Let K be an arbitrary field and L/ K a separable extension of
degree n. Then the center of Gu is the image of the group Wy=1{a; a< Gu,
ola)=a, 6 € &} by the isomorphism p defined by (1).

Proof. Let ¢ be any element of the center of Gg. Let w; be a base of
L/K with N(w;)=1, 1<1¢ < n (Proposition 3). As we have G C Gy, ¢ must
commute with u(w;) and it must commute with all u(z), z& L. Thus it
follows that (Cu(2))(1) =¢(z) = u(2)¢(1) =2¢4(1). Hence, it follows that ¢(2)
=az and a =¢(1)& L*. On the other hand, { must commute with each ¢ € &,

9 C. 1II. Chap. VI. §1 Prop. 14,
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Thus, we have ¢o(1) =a=0¢(1)=0(a). Since & Gy, we get N(a)E H.
Conversely, it is easy to see that any ux(a) with ¢ € Wy is in the center of Gx
either by Proposition 2 or by the fact that every a & Wx is an element in K if
K is finite.

CoroLLARY. Under the same assumption as in Theorem 3, suppose that
L/K is a Galois extension. Then the center of Gu is the image of Wy=
{a, aE K", a" € H}.

Remark 1. We can define the norm form for any algebraic extension L/K
of finite degree by means of the regular representation. E.g. if L/K is a
purely inseparable extension of degree p/, where p is the characteristic of K,
we have N(x) =x1’f, xe L and we see at once that #(G)=G={e}. Thus, we
have a simple example showing that the dimension of the kernel of a rational
representation p of an algebraic group G is strictly smaller than the difference
of the dimension of G and that of o(G).”®

Remark 2. The conclusion of Proposition 2 does not hold in general if XK
is a finite field. E.g. let K=GF(2), [L: K]1=3. Since K* is of order 1, Gg =
G =GL(V). Thus, the order of G is = (2°~1)(2°—2)(2°—2%) =168." On the
other hand, u(K™*)=u(G) is of order 2°—~1=7. By Proposition 1, the order
of u(L*)®=387=21<168. The center of G is of order 1 (Theorem 3, Co-
rollary). Furthermore this G is simple as is well known."” Thus, it would be

of some interest to study the structure of the finite group G for these cases.

Mathematical Institute
Nagoya University

10) Cf. C. II. Chap. II. §6. p. 119.
) C.f. Dickson, Linear Groups, pp. 77-83,
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