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Abstract
Farmers make pest and disease management decisions without facing the social costs
derived from their input choices. But given the sizable externalities involved, there is a
rationale for government intervention. We model the profit-maximizing problem of a
representative farmer by specifying a functional form for the damage function that
incorporates the biological impact of the pathogen-vector system on yield as well as the
abating impact of insecticides on the vector population. We use citrus greening disease in
Florida as a case study because farmers there adopted an insecticide program that caused
toxicity per acre to increase by 472%. Our simulation results show that a tax rate based on
toxicity provides farmers with a strong incentive to substitute highly toxic chemicals with
less toxic alternatives. Such a tax is also more efficient relative to a quantity-based tax that
achieves a similar reduction in toxicity because it results in a significantly lower reduction
in farmers’ yield and profit.
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Introduction

Plant pests and diseases impose a significant constraint on agricultural productivity.
Rossman (2009) estimated that invasive plant pathogens cause an estimated USD 21
billion in crop losses each year in the United States alone, while Bradshaw et al. (2016)
estimated invasive insects to cost USD 70 billion annually worldwide. Therefore, pesticide
applications are key for farmers to mitigate the impact of pests and diseases affecting their
crops. Without the application of pesticides, the amount of harvested crops would be
smaller and, ceteris paribus, prices would be higher. However, farmers do not face all of the
costs associated with their pesticide input choices, they take private costs into
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consideration while ignoring the social costs. Therefore, farmers’ pest and disease control
decisions have consequences beyond their own farms.

The social costs that arise from pesticide use include adverse impact on human health
of workers and consumers, the development of pesticide resistance, and potential
ecological harm. The annual health costs derived from pesticide exposure in the U.S. are
estimated at USD 1.5 billion (Bourguet and Guillemaud 2016). While the social cost
generated by the development of pesticide resistance is on the rise due to the increasing
reliance of agricultural producers worldwide on individual pesticide applications, global-
scale cost estimates are lacking. But Carpenter and Gianessi (2010) estimate that increased
chemical costs due to glyphosate resistance in the U.S are USD 10 billion annually.

As a consequence of the sizable externalities created by farmers’ pesticide use, there is a
strong case for government intervention because, as economic theory suggests, pesticides
can be overused relative to the level preferred by society (Sexton, Lei, and Zilberman 2007).
But using a command-and-control approach to regulate pesticides, which includes
recommended dosages per application and maximum rates per season, leaves much to be
desired (Zilberman and Millock 1997a). This is so because – other than bans, which would
be unfeasible to implement on the grounds that farmers would not be able to control pests
and diseases affecting their crops – direct controls such as restrictions on use (i.e., when,
where, and how to use pesticides) or limits on the total quantity of chemical used do not
provide any incentives for reducing pesticide use. Instead, when designed properly,
market-based instruments are more cost-effective relative to command-and-control
(OECD 2017).

The optimal level of pesticide use is obtained when the value of its marginal product is
equal to the sum of the private cost and the marginal external costs. Therefore, the first-
best policy would be that which achieves no deadweight loss. The most intuitive policy to
try to capture the marginal external cost would then be the introduction of a Pigouvian tax
that captures the cost of the externalities. In addition, an advantage of introducing a tax is
that no monitoring is necessary because decision-making is decentralized at the farmer
level. Importantly, however, the externalities generated from pesticide use are not directly
observable, so taxing individuals based on the generation of those externalities is not
feasible. Moreover, due to the complex nature of agricultural production, marginal
external costs may be dependent on location, time, and application technology, making it
virtually impossible to compute the tax level that leads to equating the social marginal
benefits and costs associated with the use of pesticides; even when pesticides’ externalities
do not depend on location and use, it can be very challenging to determine such a tax
(Sexton, Lei and Zilberman 2007). To complicate things further, typically, little data are
available to accurately assess all the social costs of pesticide use.

Given the above-described challenges for computing the marginal external costs of
pesticides, financial incentives such as taxes need to be applied to externality-causing
inputs, whose use is observable, unlike externalities which are not. Since the relationship
between the use of pesticides and the externalities they generate is not a direct one, the goal
of a policy regulating the use of pesticides should be to minimize the deadweight loss
derived from the market failure by inducing farmers to undertake levels of pesticide use
that are closer to the social optimum (Waterfield and Zilberman 2012).1 Thus, a second-
best approach would consist of having policy makers choose a target level of pesticide use
reduction, which can be attained introducing a pesticide tax (Baumol and Oates 1988).

1Sexton, Lei and Zilberman (2007) note that even if the relationship between pesticide-use levels and
damage was a direct one, taxing inputs would still cause a deadweight loss because they distort farm-level
decisions by reducing input use (without incentivizing other abatement efforts that may be less costly).
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In practice, however, most environmentally related tax rates are not only significantly
below marginal external costs but are also below levels that achieve significant behavioral
changes (OECD 2017). Finger et al. (2017) argue that, in the context of pesticides, a tax
should not be ad-valorem or per unit because pesticides vary widely with respect to their
properties. Instead, the authors argue that the tax should be based on the risks each
pesticide poses to reflect the social marginal costs associated with their use. A tax based on
such a criterion would incentivize farmers to modify their pest management decisions by
substituting the use of pesticides with higher external costs for those that have lower
external costs. But, Skevas, Stefanou, and Lansink (2013) assessed the effectiveness of
different fiscal measures in encouraging farmers to reduce pesticide use and their
externalities and found that taxes based on the toxicity of pesticides did not result in the
substitution of high- with low-toxicity pesticides. However, their study has some
limitations. For example, the data the authors use on pesticides was based on expenditures
and, therefore, they used a price index to infer quantities. Importantly, the authors only
considered two tax categories in their analysis, one for high and one for low toxicity, which
limited substitution possibilities. In fact, they mentioned that the absence of low-toxicity
alternatives may explain their result.

In this study, we assess the effectiveness of imposing a tax on pesticide use based on two
different criteria by using simulations at the farm-level in the context of the spread of citrus
greening or Huanglongbing (HLB) disease on Florida’s citrus industry. This is a highly
relevant case study because the significant production challenge that such an invasive
species has posed to citrus farmers in Florida encouraged them to adopt the use of
significantly more toxic insecticides to try to control the vector of the disease and slow
down the infection rate. Given that the current pesticide regulation in the U.S. – based on
direct controls – does not penalize the decision of farmers to use chemicals that are more
toxic in any way, it is a rational economic choice for farmers to adopt their use. Despite
farmers’ widespread adoption of such insecticides, the disease still decimated the state’s
citrus industry, eventually causing production to decrease by more than 90%. Such a
devastating impact is evidence that the switch to more toxic chemicals by individual
farmers may be futile,2 calling into question the usefulness of the current regulation that
allows them to apply pesticides without having to pay any of the social costs derived from
their decisions.

Our contributions to the literature can be summarized as follows. First, we quantify the
significant increase in toxicity derived from Florida orange farmers’ decisions to adopt an
intensive insecticide program to control the insect vector of HLB. Such an estimate should
be useful to increase policymakers’ awareness on the consequences of having no policies in
place for restricting the use of pesticides that are highly toxic and, therefore, pose
significant risks for human health and the environment. Second, we model the profit-
maximizing problem of a representative farmer by specifying a functional form for the
damage function that incorporates the biological impact of the pathogen-vector system on
yield as well as the abating impact of different insecticides on the insect vector population
based on previous entomological work.

Importantly, we also use estimates of the marginal benefit and toxicity for each
pesticide based on multiple and detailed toxicity criteria. This allows us to compute a
differentiated tax rate for each chemical, which arguably provides a better opportunity for

2A major fault of individual pest control is that the mobility of pests compromises its effectiveness
(Hendrichs et al. 2007). The use of site-specific pest control does not consider that neighboring farmers
share the pests. Therefore, individual actions within the farm have little impact on the pest density in future
periods due to re-infestation from neighboring farms (Lazarus and Dixon 1984).
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substitution patterns among them. In fact, our results show in detail how the substitution
of high- with low-toxicity pesticides occurs under the different alternative policies we
consider. To our knowledge, we are the first to model a functional form for the damage
function of HLB to Florida citrus farmers that considers the underlying biological process
that determines the relationship of the insect vector and the yield damage that the disease
causes. By running simulations of such a farm-level model, we are able to quantify the
differential impact of choosing a pesticide indicator that accounts for the heterogeneous
properties of chemicals versus a quantity-based tax. The model is valuable because little
empirical research has been conducted regarding the implementation of financial
incentives in pesticide policy and their impact on pesticide use, farm income, and
externalities at the farm level (exceptions include Falconer and Hodge (2001) and Skevas,
Stefanou and Lansik (2013)). Third, this case study analysis helps renew attention to the
significant inefficiency associated with the current command-and-control pesticide policy
in the United States and makes a case for the need to complement it with an incentive
system that would minimize the associated deadweight loss.

The rest of this article is organized as follows. In the next section, we provide an
overview on the current pesticide policies in the U.S. and in Europe. We also discuss the
impact of HLB in Florida and its relevance as a case study for the present analysis. In the
following section, we present the theoretical model and the specification for tax policies
based on two possible criteria. In the subsequent section, we show how we calibrate the
model in terms of yield, prices, and the correlation between those two variables to run
simulations of the model applied to the Florida citrus industry. In addition, we also specify
a functional form to the damage function. We then summarize and discuss the results, and,
in the last section, we offer some conclusions and make recommendations for the design of
a more efficient pesticide policy in the United States.

Background

Pesticide policies in the U.S. and in Europe
The experience in OECD countries regarding the introduction of environmental taxes on
agricultural production inputs, such as pesticides, is limited because only a small number
of countries have implemented them (Nielsen et al. 2023). Instead, many governments
have opted for a command-and-control approach to regulate pesticide use. Such a policy
choice can largely be attributed to the challenges of assessing the damages derived from
pesticide use and their variability caused by the spatial and temporal heterogeneity in
applications.

In the United States, for example, the Environmental Protection Agency (EPA)
regulates pesticides through their registration and labeling under the premise that their use
“will not generally cause unreasonable adverse effects on the environment.” By such a
statement, the EPA means any unreasonable risk to man – including dietary risk from
residues on foods that result from use of a pesticide – or the environment (EPA 2024a).
Thus, the EPA requires that manufacturers test chemicals and mixtures for toxic effects
prior to their approval, and monitors risks and side effects (EPA 2024b). Should a pesticide
be found to have harmful effects on the environment or human health, they get banned.
But there are no financial incentives for farmers to reduce the use of pesticides other than
following the recommended application rates (Zilberman and Millock 1997b). Moreover,
the command-and-control approach can sometimes be too lenient. The Environmental
Protection Agency (EPA) is developing new guidelines for the use of pesticides to ensure
improved compliance with the Endangered Species Act (ESA), which were brought about
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by lawsuits claiming that the EPA had failed to comply with the ESA when registering
pesticides (EPA 2024c).

In Europe, there is a greater emphasis on financial incentives relative to the United
States. National action plans are mandatory for all European Union member states since
2012. Pesticide policies in the different national action plans include subsidies for
upgrading equipment, educating farmers, and increasing awareness regarding the
introduction of pesticide taxes (Böcker and Finger 2016). The main stated goal of
pesticide policies is to reduce the “risks and impacts of pesticide use on human health and
the environment” (Remáč 2018, p.14). Taxes on pesticide use can contribute to achieve
such a goal and a few countries have adopted such market-based policy based on different
criteria.

Sweden was the first country to introduce a flat quantity tax on pesticides based on the
volume sold in 1984 (Böcker and Finger 2016). Norway, on the other hand, introduced a
tax on pesticides in 1988, which was designed as an ad-valorem tax but changed in 1999; it
currently consists of a base rate per area plus an additional rate that is based on which of
the seven possible categories the pesticide belongs to according to the risks it presents for
human health and the environment. In 2009, France replaced a volume tax on pesticides
with a 3-category tax by which products are charged a different fee based on the non-point
agricultural pollution category to which they belong. Thus, mineral-based pesticide
products are charged the lowest fee, products considered to be dangerous to the
environment are charged approximately double the fee, and products that are carcinogenic
or hazardous are charged the highest fee, which is approximately five times that of the
lowest fee. Starting in 2013, Denmark implemented a pesticide tax by which each pesticide
product receives a differentiated tax rate based on the environmental and health impacts of
the product. Such a pesticide policy is considered to be the most sophisticated currently in
place (OECD 2017) and makes the country a pioneer in implementing such an approach to
curb the externalities associated with the application of pesticides in agriculture (Böcker
and Finger 2016).

Citrus greening disease in Florida as a case study
Florida has historically been the largest orange- and citrus-producing state in the U.S. and
a top global producer (USDA-NASS 2022). Orange production in Florida typically
accounts for 90 percent of the state’s annual citrus production.3 Therefore, in our analysis
we focus on such a crop. Since 2005, Florida citrus farmers have been facing the impact of
HLB, a devastating bacterial disease transmitted by an insect vector (the Asian citrus
psyllid) that has decimated the state’s citrus industry (Singerman and Rogers 2020). As
illustrated in Figure 1, orange production in Florida has decreased by more than 90% since
the disease was first found. As a consequence, Florida has lost its status as the top citrus
and orange-producing state in the United States (USDA-NASS 2022).

To try to mitigate the impact of the disease, Florida orange farmers have adopted
several different practices, including an intensive insecticide program to control the
propagation of the insect that transmits the disease (Shen et al. 2013).4 Thus, farmers
substituted the traditional insecticides they had been using (i.e., mainly petroleum or
mineral oil) with significantly more toxic chemicals such as neonicotinoids. Figure 2 shows
the toxicity measured in load (see appendix for a detailed explanation of how the load is
computed) and quantity per acre of insecticide use for growing oranges in Florida from

3Also, approximately 90 percent of the oranges grown in Florida are processed into juice.
4The eradication of the disease or its vector is not practically nor economically feasible.
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Figure 1. Orange production in Florida from 1955 to 2022, with shaded period (2005–2022) denoting
citrus greening disease outbreak.

Figure 2. Insecticide use toxicity and quantity per acre for producing oranges in Florida from 2005 to
2017.
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2005 to 2017. As illustrated by Figure 2, there is little difference, approximately 3%, in the
quantity of insecticide used per acre from 2005 to 2017. However, such a figure also shows
that the toxicity of insecticides used in orange production in Florida increased by 472%
during that same period.

While the estimated increase in toxicity is very significant, to the extent that it only
includes insecticides, it represents a lower bound on the total increase in toxicity of
chemicals used by Florida citrus farmers to try to manage the impact of HLB. For example,
the estimate does not include the toxicity and risks associated with citrus farmers’ adoption
of antibiotics as foliar sprays – following a decision of Florida policy makers to approve
them in 2016.

The questionable approval of the use of antibiotics as foliar sprays (see Singerman and
Lence 2023) is highly relevant because they can contribute to the development of antibiotic
resistance with its consequent impact on public health. Given that the use of antibiotic
foliar sprays was eventually found to be ineffective to enhance the health of HLB-infected
trees (Li et al., 2020), their use was short lived. However, the decision of farmers to
substitute the use of insecticide sprays with antibiotics induced greater variability in the use
of insecticides, which contributed not only to an increase in the population of the insect
that transmits the disease, but also to an increase in resistance to insecticides (Chen et al.,
2018). The development of pesticide resistance can cause a further increase in their use to
offset the lower susceptibility of the pest, which exacerbates the negative externalities
generated (Dover and Croft 1986).

Given the drastic change in the toxicity of insecticides used by Florida orange farmers as
a response to the exceptional challenge imposed by HLB, in this study, we use such a case
to illustrate the change in outcomes derived from possible market-based interventions to
capture, at least partially (as explained in the introduction), the external costs of pesticide
use. In particular, we provide a conceptual and empirical framework to examine the
change in farm-level outcomes (i.e., insecticide toxicity, profit, and yield per acre) from
implementing a tax on insecticide use based on different pesticide indicators. The social
cost mitigation achieved by lowering the use of pesticides through the implementation of a
tax would make society better off (by decreasing the magnitude of the externalities and,
thus, of the deadweight loss). In addition, given that producer surplus can be defined as
revenue minus variable costs and, equivalently, as profit plus fixed costs, a tax based on the
pesticide indicator that results in the greatest toxicity reduction at the lowest profit loss for
producers will generate an outcome that is closer to the social optimum.

Model

We base our model on the damage control framework developed by Lichtenberg and
Zilberman (1986), in which the farmer’s use of pesticides is viewed as a damage control
input. The premise of the model is that farmers apply pesticides to try to reduce the
damage from pests and diseases and, thus, increase the proportion of potential output they
can realize. The starting point of our model is the profit function for a representative
farmer, which is given by Π � TR � TC, where Π, TR; and TC denote profit, total
revenue, and total private cost, respectively; all three terms expressed in dollars per acre.
For a representative Florida orange farmer, TR � p � q, where p is the price of oranges per
box and q is the quantity of oranges boxes produced per acre. Following Lichtenberg and
Zilberman (1986), in our model, q � y � 1 � D N1� �� �, where y is the maximum potential
yield per acre in the absence of disease, and D N1� � denotes the damage to yield caused by
the density of the vector population, N1, that spreads the disease. Therefore, D N1� � is
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between 0 and 1, and N1 is a function, k, of the initial pest population N0 and the quantity
of insecticide I used per acre during the season, so that N1 � k N0; I� �.

Economic theory offers no guidance regarding the functional form that should be used
to specify the damage function, so studies typically consider a variety of functional forms
(Sexton, Lei and Zilberman 2007). Importantly, and in contrast to such an approach, in
our model we use the findings of an entomological study on HLB to specify a functional
form for the damage function that incorporates the underlying biological processes of the
insect vector and the pathogen of the disease on yield. Thus, we model the damage to
orange yield based on the study of Monzo and Stansly (2017). In their work, the authors
used non-linear least-squares to model the relationship between yield losses and the
cumulative number of psyllids in experiments they conducted in commercial groves of
mature orange trees in Florida. They then fitted the data to a rectangular hyperbolic yield
loss model by using the Newton-Raphson iterative estimation procedure. Thus, we define
the yield damage function as follows:

D N1� � � θ � k N0; I� �
1� θ�k N0; I� �

η

 !
� 100�1 (1)

where θ denotes the slope of the curve at the origin – that is the rate of yield loss at low pest
density – and η denotes the horizontal asymptote of the function, which denotes the
maximum yield loss. Furthermore, based on feedback from entomologists at University of
Florida Citrus Research and Education Center, we model the function k �� � in equation (1)
as follows:

k N0; I� � � N0 �
Y

n
i�1

1 � xi � di � Ii� � (2)

where xi is the rate of reduction of the insect vector population from applying insecticide i,
di is the duration of the effect of insecticide i in days expressed as a proportion of a year,
Ii is the application rate of insecticide i, and n is the number of insecticides used.

For simplicity, in our model, we define the total private cost per acre as the sum of
purchasing and applying inputs so that TC I;Z� � � C I� � � W Z� �, where C I� � represents
the private cost for pest control inputs I and W Z� � represents the cost of all other grove
caretaking inputs Z. Since we are particularly interested in the farmer’s insecticide
decisions, we assume that all other inputs are constant and given by W Z� �.

Given that Florida citrus farmers typically spray insecticides mixed along with other
chemicals, we assume that there is no additional cost of applying insecticides. Thus, the
private cost of pest control inputs I is then given by the cost of the materials used. The total
cost for a representative Florida orange farmer in the baseline scenario, which represents
the current regulation, is then given by the following expression.

TC I;Z� � �
Xn
i�1

ri � Ii� � �W Z� �

where ri is the price of insecticide i and Ii is the annual application rate per acre of
insecticide i. Importantly, insecticide use must be constrained so that each chemical
application does not exceed its maximum recommended use Ii, so that Ii ≤ Ii. Therefore,
the problem for the representative farmer whose objective is to maximize profit by
choosing the level of each insecticide used can then be formalized as follows:

8 Audrey Rizk and Ariel Singerman
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maxIi E p � y 1 � θ � N0 �
Q

n
i�1 1 � xi � di � Ii� �

1� θ�N0 �
Q

n
i�1

1�xi �di�Ii� �
η

0
@

1
A � 100�1

2
4

3
5

8<
:

9=
; �

Xn
i�1

ri � Ii� � �W Z� �

s:t: (3)

Ii ≤ Ii

Social planner and taxing
The setup in (3) can be modified to represent that of a social planner whose objective is to
maximize social welfare, by subtracting an additional term denoting the net social costs of

all insecticides used: SC�Pn
i�1

Ii �. Thus, we assume such term represents all social benefits

and costs of each insecticide used and that the latter are larger than the former. Such a
setup, and in particular the estimate of the last term, would allow implementing a first-best
policy that achieves no deadweight loss because all social costs are taken into account.
However, as mentioned in the introduction, it would be virtually impossible to capture all
social costs associated with pesticide use. Therefore, a second-best approach would consist
of implementing of a tax policy that would reduce the size of the deadweight loss resulting
from the market failure derived from farmers not internalizing the social costs of their
input choices. A first tax policy we consider is based on adopting quantity indicator of
insecticides used, whereas a second policy we consider is based on an indicator that
accounts for the toxicity of insecticides.

If policy makers were to implement a tax on the quantity of insecticides used, the total
cost to an orange farmer would be given by:

TC I;Z� � �
Xn
i�1

ri � Tq

� � � Ii� ��W Z� � (4)

where Tq represents the rate for the quantity tax (in dollars per acre). If instead, policy
makers were to implement a tax on the toxicity of insecticides (i.e., a load tax), the total
cost to an orange farmer would be given by:

TC I;Z� � �
Xn
i�1

ri � Li � TL� � � Ii� � �W Z� � (5)

where Li represents the load of insecticide i and TL represents the rate for the load tax (in
dollars per load).

Depending on whether a tax on quantity or on the toxicity of insecticides is
implemented, the variable cost term in expression (3) needs to be modified according to
equation (4) or (5), respectively. Thus, the simulations allow us to compare the outcomes
in terms of yield, profit, and aggregate toxicity of insecticides in the baseline scenario to
those obtained when implementing a tax to curb the social cost of insecticides.5

5The outcomes we obtain are for a single season. Evaluating the long-term impact is beyond the scope of
this study but could be analyzed in future research.
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Data and calibration

In this section, we describe the data we have available on insecticide use by Florida orange
farmers, including active ingredients, cost, application rate, and cost-effectiveness. Then,
we describe how we calibrate key variables (i.e., yield, prices, and the correlation between
those two) for a representative Florida orange farmer to run our simulations. In the
appendix we provide a detailed explanation of the procedure we followed to estimate the
toxicity of each insecticide.

Insecticide data
USDA-NASS has collected data on the quantity of insecticide used for growing oranges in
Florida from 2005 to 2017 by surveying farmers every odd year during that period,
excluding 2013. According to the USDA-NASS data, eight different active ingredients –
out of a total of 30 – account for over 90% of all insecticide use by Florida orange farmers.
Our simulations and analysis are then based on the cost and traits of the most popular
commercial products in the market that contain those active ingredients. To obtain
estimates of the cost of insecticides, we collected quotes from chemical retailers and used
their average. In addition, for each insecticide, we also gathered data regarding the rate of
application per acre, the duration and magnitude of adult psyllid population reduction,
and the proportion of active ingredients per product from the entomological literature
available (Qureshi, Kostyk and Stansly 2014). Table 1 summarizes the data just described
for each insecticide active ingredient and corresponding commercial product along with
other relevant variables that we computed for each of them. Thus, the information in
Table 1 is used for the variables defined in equation 2. Table 1 also includes the cost-
effectiveness of each insecticide, which we obtained by using the prices and the duration of
adult insect vector reduction listed in such table. The cost-effectiveness of insecticide i in
dollars per acre per day is computed by multiplying the price of insecticide i by the
application rate and dividing it by the duration of adult insect vector reduction in days
multiplied by the magnitude of the insect vector reduction.

The main indicators used as a basis for taxing are the Quantity of Active Ingredients
(QA) and the Load Index (LI), which measures the toxicity of a given pesticide on
organisms other than the targeted one. While the QA indicator is simpler and, thus, often
used in policy making, the LI indicator accounts not only for differences in dosage of
pesticides but also for their environmental and health impacts at the product level (Kudsk,
Jørgensen, and Ørum, 2018). Möhring et al. (2019) found that quantity-based pesticide
indicators fail to identify important qualitative characteristics of pesticides, particularly for
applications that have the highest values of the LI indicator.

Pesticides load
The load of a pesticide provides a measure of the toxicity from the use of such a chemical
on human health and the environment. To estimate the load of insecticides used by Florida
citrus farmers, we used data from the International Union of Pure and Applied Chemistry
database regarding the properties of pesticides and bio-pesticides and follow the procedure
established in the literature (Samsøe-Petersen et al., 2012). The load of a pesticide has three

10 Audrey Rizk and Ariel Singerman
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Table 1. List of insecticide active ingredients (which account for over 90% of all insecticide use by Florida orange farmers) and corresponding most popular commercial
product used to grow processed oranges in Florida along with their prices, application rates, proportion of active ingredient per product, duration, and magnitude of
psyllids reduction, effective days of coverage, and cost-effectiveness

Insecticide active

ingredient Product name

Price

($/lb)

Product applica-

tion Rate1 (lb/

acre)

Proportion of active

ingredient per prod-

uct2

Active ingredient

application rate (lb/

acre)

Duration of Adult

psyllids reduction1

(days)

Magnitude of

psyllids reduc-

tion1 (%)

Effective days

of coverage3

(days)

Cost-effective-

ness3 ($/acre

per day) Load (L/acre)

Chlorpyrifos Lorsban $4.56 5.000 44.9% 2.245 42 100 42 0.54 106.50

Dimethoate Dimethoate $5.44 1.000 44.7% 0.447 31 96 30 0.18 1.95

Imidacloprid Admire Pro $22.88 0.438 45.2% 0.198 67 88 59 0.17 3.09

Naled Dibrom $14.40 1.000 62.0% 0.620 42 91 38 0.38 288.97

Petroleum Oil 435 oil $0.56 40.000 99.0% 39.600 38 76 29 0.78 51.48

Phosmet Imidan $11.04 1.500 70.0% 1.050 33 100 33 0.50 3.16

Spirotetramat Movento $41.60 1.000 22.4% 0.224 58 97 56 0.74 0.02

Zeta-Cypermethrin Mustang Max $20.64 0.269 18.1% 0.049 44 97 43 0.13 4.13

1Source: Qureshi, Kostyk and Stansly (2014). Note: In their study, the authors had two different application rates for each insecticide: low and high. Given the urgency of farmers to deal with the
disease, we assume they applied the maximum rate possible (i.e., high).
2Source: Environmental Protection Agency (EPA) product labels.
3Source: Authors’ calculations.
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components: human health load, environmental fate load, and environmental toxicity
load. We explain how we computed each of those components in detail in the appendix.6

Calibration
To calibrate our simulations, we use publicly available data from the United States
Department of Agriculture’s (USDA) National Agricultural Statistics Service (NASS)
regarding oranges’ historical yield and prices in Florida. For cost estimates, we use publicly
available data from the University of Florida. We calibrate our model to represent Valencia
oranges because it is the variety with the highest proportion of planted acreage in the state,
currently accounting for approximately 60% of the area. Importantly, the management
practices and cost of production for non-Valencia oranges are identical to those of
Valencia oranges.

To calibrate yield, we first estimate the trend for Valencia oranges yield data in Florida
from 1955 to 2004, which we then use for obtaining two other estimates as explained next.
Given that yield is a random variable in our model, we assume it follows a normal
distribution. Using the estimated historical yield trend of Valencia oranges, we can obtain a
sensible estimate for the mean of the yield distribution by computing the trend yield for
year 2005. Thus, such an estimate represents the maximum potential yield of Valencia
oranges per acre in the absence of HLB, which is reasonable because 2005 was the year in
which HLB was first found in the state. In addition, we also use the trend to compute the
de-trended yield for each year in our series so as to reflect 2005 technology but historical
yield variability due to weather (i.e., weather draws). Thus, by estimating the variance of
the resulting series, we obtain a sensible estimate for the variance of the yield distribution
that we use as a basis for our simulations.

Regarding prices, we assume they follow a log normal distribution to avoid obtaining
negative prices in our simulations. Given that the HLB outbreak was in 2005, we use the
average of real prices in Florida for Valencia oranges from 1990 to 2004 as the mean of the
distribution. The reason for choosing such a period is because in the 1980s there were
several widespread freezes in Florida that caused orange trees and, therefore, orange supply
to decrease and prices to increase significantly as a consequence. We obtained estimates of
real prices by adjusting the nominal prices published by the USDA-NASS for inflation
based on the annual Producer Price Index (PPI) for all U.S. citrus fruit (USDA-ERS 2019).

The final step in the calibration consisted of including an estimate of the negative
correlation between prices and yield. Therefore, we computed the historical correlation
between the two variables for Valencia oranges grown in Florida from 1955 to 2004, which
we estimated at –0.33. We then used the Iman and Conover (1982) methodology – which
only re-sorts the original yield and price draws – to impose such an observed correlation in
our simulations.

In equation (1), we set parameters θ= 0.97 and η= 50.91 following the work of Monzo
and Stansly (2017), who obtained those estimates by pooling the data in the experiments
they conducted in commercial groves of mature orange trees in Florida. Regarding the cost
of inputs and applications for a representative orange farmer of processed oranges in
Florida, we use farmer survey estimates provided by Singerman (2020), excluding the costs
associated with the management of the insect vector of HLB (which we estimate in our

6The adverse effect of pesticides on the health of workers is included as part of the calculations of the load
of a pesticide. However, the calculations for the load of a pesticide do not capture the potential externality on
the health of consumers, which is a limitation of the load-based tax model.

12 Audrey Rizk and Ariel Singerman
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simulations). Thus, our estimate for the cost of all other grove caretaking inputs denoted
by W Z� � in expression (3) is $1,600 per acre.

Results

We run simulations of the profit maximization problem for a representative Florida orange
farmer denoted by expression (3) for the baseline scenario. We show results for population
levels of the psyllid insect vector (N0) from 0 to 80 because before 2012, when the
significant increase in toxicity depicted in Figure 2 occurred, the average level of psyllids
per orange block was less than 10, but it increased to a peak of 27 per orange block in 2017
(Singerman 2017). Thus, a level of psyllids that almost triples that count allows us to
consider the likely further increase in psyllid population levels in following years.7

We then run simulations of the profit maximization problem for the cases in which a
quantity-based tax and a load-based tax are implemented, which are denoted by the
combination of expressions (3) and (4) for the former case and by the combination of
expressions (3) and (5) for the latter case. The objective is to estimate the magnitude of the
change in load, yield, and profit per acre when implementing each tax policy relative to the
baseline.

For the load-based tax model, we run different tax rates per load (TL) and found that, as
the number of psyllids increases, a tax rate of $2.50 makes the total load be asymptotic at a
level of 29, which is the level of load in the baseline scenario when the number of psyllids is
20 (roughly representing a middle point in the spike of psyllid population between 2012
and 2017 described earlier). Therefore, we run the simulations using such a value as a
“target load” because it arguably reflects a sensible maximum tax rate that would make
sense implementing to reduce the toxicity of insecticides (i.e., higher tax rates would be
futile in achieving a greater reduction in load).

In panel A of Table 2, we show the results of the simulations in levels for the baseline
scenario, as well as for the scenario in which a load-based tax rate of $2.50 per load is
implemented. For comparison purposes, we also show the results for the scenario in which
a quantity-based tax is implemented using the same rate. However, to make the
comparison more meaningful between tax policies, in Table 2 we also show the results of a
scenario for a quantity-based tax with a rate of $12 because we found it yields a comparable
target load level of 29 when the number of psyllids is 50. However, that quantity tax rate
does not prevent toxicity from further increasing as the number of psyllids increases (as the
load tax rate does). Hence, we also show the results for a quantity tax rate of $20 that
achieves a slightly lower but similar load to the load-based tax rate of $2.50 when the
psyllid number is 80.

In panel B of Table 2, we show the results of the simulations in panel A in percentage
change relative to the baseline. The load-based tax rate of $2.50 induces a significant
reduction (74%) in the load of insecticides when the level of psyllids per acre is 10. The
underlying substitution in insecticides causes a reduction in yield of 3% and of 16% in
profit relative to the baseline. As expected, as the number of psyllids increases, both the
percent reduction in load and profit increases significantly.8 When the psyllids level is 60,

7In addition, profit becomes negative in the baseline scenario when the number of psyllids reaches a count
of 120 but the additional psyllid levels show the same trends as those shown, so we omit them in the interest
of space.

8The only exception in the pattern is for the percent load when the psyllid level increases from 10 to 20,
which is driven by a relatively higher increase in load when the tax is applied but the load level is still lower
compared to that of the baseline as seen in Panel A.
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Table 2. Profit maximization simulation results showing change in load, yield, and profit per acre for the baseline, for a load-based tax of $2.50, as well as for a quantity-
based tax of $2.50, $12, and $20 for different psyllid levels when the correlation between yield and prices is –0.33

Psyllid
level

Baseline Load tax $2.50 Quantity tax $2.50 Quantity tax $12 Quantity tax $20

Load
Yield

(boxes)
Profit
($) Load

Yield
(boxes)

Profit
($) Load

Yield
(boxes)

Profit
($) Load

Yield
(boxes)

Profit
($) Load

Yield
(boxes)

Profit
($)

A. Results in Levels

0 0 335 369.89 0 335 369.89 0 335 369.89 0 335 369.89 0 335 369.89

10 25 325 266.63 6 316 223.98 22 324 251.33 4 312 216.08 0 308 209.95

20 29 320 222.07 19 312 155.70 27 318 201.55 17 311 140.53 5 298 111.05

30 108 314 184.12 26 310 112.04 45 313 161.72 22 307 92.20 12 294 47.83

40 243 310 150.52 28 307 75.91 135 309 127.05 25 303 51.95 15 290 0.23

50 343 306 120.93 29 302 43.11 237 304 96.07 29 298 16.09 17 285 –39.70

60 424 303 94.98 29 297 13.02 329 301 68.46 54 293 –16.01 19 282 –74.06

70 504 301 72.04 29 293 –14.69 407 298 43.97 93 290 –45.07 20 277 –105.47

80 581 300 51.82 29 289 –40.22 494 297 22.06 121 286 –71.39 25 274 –133.36

% Change relative to baseline for

Psyllid level

Load tax $2.50 Quantity tax $2.50 Quantity tax $12 Quantity tax $20

Load Yield Profit Load Yield Profit Load Yield Profit Load Yield Profit

B. Results in Percentage Change Relative to the Baseline

0 0 0 0 0 0 0 0 0 0 0 0 0

10 –74% –3.0% –16% –11% –0.5% –6% –86% –4.1% –19% –98% –5.3% –21%

20 –37% –2.4% –30% –9% –0.5% –9% –41% –2.9% –37% –82% –7.0% –50%

(Continued)
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Table 2. (Continued )

% Change relative to baseline for

Psyllid level

Load tax $2.50 Quantity tax $2.50 Quantity tax $12 Quantity tax $20

Load Yield Profit Load Yield Profit Load Yield Profit Load Yield Profit

30 –76% –1.2% –39% –59% –0.3% –12% –79% –2.3% –50% –89% –6.4% –74%

40 –88% –0.9% –50% –44% –0.3% –16% –90% –2.2% –65% –94% –6.3% –100%

50 –92% –1.3% –64% –31% –0.5% –21% –92% –2.7% –87% –95% –6.8% –133%

60 –93% –2.1% –86% –22% –0.7% –28% –87% –3.3% –117% –96% –7.2% –178%

70 –94% –2.9% –120% –19% –1.0% –39% –82% –3.9% –163% –96% –8.0% –246%

80 –95% –3.6% –178% –15% –1.2% –57% –79% –4.7% –238% –96% –8.7% –357%
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the load is reduced by 93% relative to the baseline, but the profit is also reduced
significantly – to 86% – because the tax prevents farmers from using more toxic
insecticides profitably. For higher levels of psyllid population, the profit under a load tax of
$2.50 becomes negative.

The results of implementing a quantity-based tax model using a rate of $2.50 in Table 2
show that using such a tax type and rate initially induces a reduction in the load of
insecticides. But as the number of psyllids increases, a farmer would find it profitable to use
more toxic insecticides despite the tax and, therefore, the load increases. Thus, for levels of
psyllids greater than 30, the percent change in load relative to the baseline starts decreasing
(in absolute value). When the psyllids level is 60, the load is reduced by only 22% (versus
93% with the load-based tax). The percent reduction in profit is increasing due to the effect
of the tax combined with the increase in the number of psyllids. Even though a quantity tax
of $12 is more effective at reducing the load relative to the rate of $2.50, the pattern in load
reduction is similar; it starts decreasing for levels of psyllids greater than 50. Only when the
quantity-based tax is $20, the percent reduction in load remains steady at more than 90%
when the number of psyllids is 40 or more. Importantly, however, the percent reduction in
profit using the $20 quantity-based tax rate roughly doubles that obtained when using a
load-based tax of $2.50 for a number of psyllids of 40 or more.

Table 3 shows the prevalence and pattern of insecticide use in each of the scenarios
included in Table 2 and for each level of psyllid population. The table illustrates, for
example, that in the baseline scenario the criterion used to choose the level of use of each
insecticide is based on the cost-effectiveness (which is shown in Table 1). In addition,
Table 3 also shows the pattern of substitution that takes place when a tax on load is
implemented; the most toxic insecticides such as Naled and Chlorpyrifos are no longer
used because they are taxed more heavily. Interestingly, when the quantity tax is $20, Naled
is still used (albeit at a very low level) when the psyllid level is 80.

Sensitivity analysis
Our model hinges on the correlation imposed between prices and yield of processed
Valencia oranges that we estimated based on historical values. However, such a value may
no longer hold under current market conditions. Thus, we conduct a sensitivity analysis
for different correlation values to examine whether and to what extent the simulation
results change. We run the simulations for correlation values between the two variables of
–0.50 and –0.75. When the (absolute) value of the correlation between prices and yield
increases, yield draws that have lower values are matched more often with the price draws
that have higher values to reach the target correlation (as described in the calibration
section when referring to the Iman and Conover (1982) methodology).

The simulation results for the correlation values of –0.50 and –0.75 are shown in
Tables 4 and 5, respectively. The results in Tables 2, 4, and 5 show that as the (absolute)
value of the correlation increases, profit in all scenarios decreases for all psyllids levels. This
is because a higher correlation value implies that a change in yield is offset more often by a
change in prices in the opposite direction. As the absolute value of the correlation between
yield and prices increases, the choice of insecticides used changes slightly in the baseline
and quantity tax-based scenarios as denoted by the change in load. Nevertheless, for the
load-based tax case the load and yield change only marginally. Thus, an additional
advantage to implementing a load-based policy to curb the social costs of insecticide use is
that such a tax would be more stable should the correlation between price and yield
change.

16 Audrey Rizk and Ariel Singerman
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Table 3. Prevalence of insecticide use (as percentage of maximum possible application) by scenario for each psyllid population level

Psyllid Level Chlorpyrifos Dimethoate Imidacloprid Naled Petroleum Oil Phosmet Spirotetramat Zeta-Cypermethrin Ending Psyllid Level

Use in Baseline Scenario

0 0% 0% 0% 0% 0% 0% 0% 0% 0

10 0% 15% 93% 0% 0% 0% 0% 100% 3

20 0% 96% 100% 0% 0% 0% 0% 100% 5

30 0% 100% 100% 19% 0% 0% 0% 100% 7

40 0% 100% 100% 51% 0% 2% 0% 100% 9

50 2% 100% 100% 73% 0% 11% 0% 100% 11

60 9% 100% 100% 86% 0% 20% 0% 100% 12

70 20% 100% 100% 95% 0% 26% 0% 100% 13

80 40% 100% 100% 97% 0% 28% 0% 100% 14

Use in Load-based Tax Scenario ($2.50)

0 0% 0% 0% 0% 0% 0% 0% 0% 0

10 0% 5% 78% 0% 0% 0% 0% 1% 7

20 0% 31% 100% 0% 0% 0% 0% 55% 8

30 0% 64% 100% 0% 0% 0% 0% 90% 9

40 0% 85% 100% 0% 0% 0% 0% 100% 10

50 0% 97% 100% 0% 0% 0% 0% 100% 13

60 0% 100% 100% 0% 0% 0% 2% 100% 15

70 0% 100% 100% 0% 0% 2% 5% 100% 17

(Continued)
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Table 3. (Continued )

Psyllid Level Chlorpyrifos Dimethoate Imidacloprid Naled Petroleum Oil Phosmet Spirotetramat Zeta-Cypermethrin Ending Psyllid Level

80 0% 100% 100% 0% 0% 4% 18% 100% 19

Use in Quantity-based Tax Scenario ($2.50)

0 0% 0% 0% 0% 0% 0% 0% 0% 0

10 0% 0% 68% 0% 0% 0% 0% 100% 4

20 0% 44% 100% 0% 0% 0% 0% 100% 6

30 0% 90% 100% 4% 0% 0% 0% 100% 8

40 0% 100% 100% 25% 0% 0% 0% 100% 10

50 0% 100% 100% 49% 0% 2% 0% 100% 12

60 6% 100% 100% 67% 0% 5% 0% 100% 13

70 14% 100% 100% 78% 0% 7% 0% 100% 14

80 28% 100% 100% 87% 0% 5% 0% 100% 15

Use in Quantity-based Tax Scenario ($12)

0 0% 0% 0% 0% 0% 0% 0% 0% 0

10 0% 0% 45% 0% 0% 0% 0% 0% 8

20 0% 0% 97% 0% 0% 0% 0% 57% 9

30 0% 0% 100% 0% 0% 0% 0% 86% 10

40 0% 8% 100% 0% 0% 0% 0% 98% 12

50 0% 24% 100% 1% 0% 0% 0% 99% 15

60 0% 39% 100% 7% 0% 0% 0% 100% 17

(Continued)
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Table 3. (Continued )

Psyllid Level Chlorpyrifos Dimethoate Imidacloprid Naled Petroleum Oil Phosmet Spirotetramat Zeta-Cypermethrin Ending Psyllid Level

70 0% 50% 100% 16% 0% 0% 0% 100% 19

80 2% 57% 100% 21% 0% 0% 0% 100% 21

Use in Quantity-based Tax Scenario ($20)

0 0% 0% 0% 0% 0% 0% 0% 0% 0

10 0% 0% 6% 0% 0% 0% 0% 0% 10

20 0% 0% 59% 0% 0% 0% 0% 4% 15

30 0% 0% 80% 0% 0% 0% 0% 33% 17

40 0% 0% 88% 0% 0% 0% 0% 51% 19

50 0% 0% 92% 0% 0% 0% 0% 59% 22

60 0% 0% 93% 0% 0% 0% 0% 69% 25

70 0% 3% 93% 0% 0% 0% 0% 73% 28

80 0% 7% 92% 1% 0% 0% 0% 80% 30
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Table 4. Profit maximization simulation results showing change in load, yield, and profit per acre for the baseline, for a load-based tax of $2.50, as well as for a quantity-
based tax of $2.50, $12, and $20 for different psyllid levels when the correlation between yield and prices is –0.50

A. Results in Levels

Psyllid
level

Baseline Load tax $2.50 Quantity tax $2.50 Quantity tax $12 Quantity tax $20

Load
Yield

(boxes)
Profit
($) Load

Yield
(boxes)

Profit
($) Load

Yield
(boxes)

Profit
($) Load

Yield
(boxes)

Profit
($) Load

Yield
(boxes)

Profit
($)

0 0 335 362.53 0 335 362.53 0 335 362.53 0 335 362.53 0 335 362.53

10 25 326 259.35 6 316 216.74 22 324 244.02 4 312 208.81 0 308 202.96

20 30 320 215.03 18 312 148.24 27 318 194.43 18 311 133.26 5 298 103.81

30 101 314 177.12 26 311 105.12 38 313 154.77 23 308 85.26 12 294 40.26

40 241 309 143.57 29 307 69.05 130 308 120.13 25 303 45.31 16 290 –7.01

50 344 306 113.85 29 302 36.45 239 304 89.18 28 298 9.39 18 286 –46.42

60 430 303 87.80 29 297 6.48 321 301 61.41 41 293 –22.76 19 282 –80.77

70 511 301 64.79 29 292 –21.21 409 298 36.73 84 290 –51.85 20 278 –112.21

80 590 300 44.46 29 289 –46.85 503 297 14.80 116 286 –78.20 24 275 –139.60

B. Results in Percentage Change Relative to the Baseline

% Change relative to baseline for

Psyllid level

Load tax $2.50 Quantity tax $2.50 Quantity tax $12 Quantity tax $20

Load Yield Profit Load Yield Profit Load Yield Profit Load Yield Profit

0 0 0 0 0 0 0 0 0 0 0 0 0

10 –74% –3.0% –16% –11% –0.6% –6% –86% –4.1% –19% –99% –5.4% –22%

20 –38% –2.5% –31% –9% –0.5% –10% –41% –2.8% –38% –83% –7.0% –52%

(Continued)
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Table 4. (Continued )

B. Results in Percentage Change Relative to the Baseline

% Change relative to baseline for

Psyllid level

Load tax $2.50 Quantity tax $2.50 Quantity tax $12 Quantity tax $20

Load Yield Profit Load Yield Profit Load Yield Profit Load Yield Profit

30 –74% –1.0% –41% –63% –0.2% –13% –77% –2.1% –52% –88% –6.3% –77%

40 –88% –0.8% –52% –46% –0.3% –16% –90% –2.2% –68% –94% –6.2% –105%

50 –92% –1.2% –68% –30% –0.5% –22% –92% –2.7% –92% –95% –6.4% –141%

60 –93% –2.1% –93% –25% –0.8% –30% –90% –3.3% –126% –96% –6.9% –192%

70 –94% –2.9% –133% –20% –1.0% –43% –84% –3.9% –180% –96% –7.8% –273%

80 –95% –3.7% –205% –15% –1.2% –67% –80% –4.8% –276% –96% –8.5% –414%
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Table 5. Profit maximization simulation results showing change in load, yield, and profit per acre for the baseline, for a load-based tax of $2.50, as well as for a quantity-
based tax of $2.50, $12, and $20 for different psyllid levels when the correlation between yield and prices is –0.75

A. Results in Levels

Psyllid
level

Baseline Load tax $2.50 Quantity tax $2.50 Quantity tax $12 Quantity tax $20

Load
Yield

(boxes)
Profit
($) Load

Yield
(boxes)

Profit
($) Load

Yield
(boxes)

Profit
($) Load

Yield
(boxes)

Profit
($) Load

Yield
(boxes)

Profit
($)

0 0 335 351.71 0 335 351.71 0 335 351.71 0 335 351.71 0 335 351.71

10 25 326 248.77 7 316 206.36 23 324 233.11 3 312 197.78 0 308 192.87

20 29 320 204.69 19 313 137.28 27 318 183.89 18 312 122.17 5 298 93.10

30 72 314 166.88 27 311 94.88 35 313 144.59 24 308 75.36 12 295 29.31

40 236 309 133.26 29 307 59.02 102 308 109.98 25 303 35.51 16 291 –17.94

50 373 306 103.60 29 302 26.68 234 304 78.98 25 297 –0.50 18 288 –56.60

60 435 303 77.31 29 297 –3.12 337 301 51.21 36 293 –32.76 21 284 –90.07

70 487 301 54.02 29 292 –30.72 419 298 26.24 54 289 –61.84 21 280 –120.66

80 580 300 33.48 29 289 –56.33 511 296 4.10 85 286 –88.25 23 277 –147.76

B. Results in Percentage Change Relative to the Baseline

% Change relative to baseline for

Psyllid level

Load tax $2.50 Quantity tax $2.50 Quantity tax $12 Quantity tax $20

Load Yield Profit Load Yield Profit Load Yield Profit Load Yield Profit

0 0 0 0 0 0 0 0 0 0 0 0 0

10 –72% –2.8% –17% –9% –0.5% –6% –87% –4.2% –20% –99% –5.4% –22%

20 –36% –2.3% –33% –8% –0.5% –10% –39% –2.7% –40% –82% –6.9% –55%

(Continued)
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Table 5. (Continued )

B. Results in Percentage Change Relative to the Baseline

% Change relative to baseline for

Psyllid level

Load tax $2.50 Quantity tax $2.50 Quantity tax $12 Quantity tax $20

Load Yield Profit Load Yield Profit Load Yield Profit Load Yield Profit

30 –63% –0.8% –43% –51% –0.1% –13% –67% –1.8% –55% –84% –6.1% –82%

40 –88% –0.7% –56% –57% –0.4% –17% –89% –2.2% –73% –93% –5.9% –113%

50 –92% –1.2% –74% –37% –0.5% –24% –93% –2.8% –100% –95% –6.0% –155%

60 –93% –1.9% –104% –23% –0.7% –34% –92% –3.2% –142% –95% –6.1% –217%

70 –94% –2.8% –157% –14% –0.9% –51% –89% –3.8% –214% –96% –6.8% –323%

80 –95% –3.7% –268% –12% –1.1% –88% –85% –4.7% –364% –96% –7.5% –541%
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Conclusions and policy implications

Applications of pesticides are critical for farmers to manage pests and diseases affecting
their crops. But when farmers apply pesticides, they ignore the social costs associated with
their use. In the United States, pesticides are regulated only through their registration and
labeling; there are no financial incentives for farmers to reduce the use of pesticides other
than following the recommended application rates. Given the sizable externalities
generated by pesticide use, there is a rationale for further government intervention. As
argued by Zilberman and Millock (1997a), the role of economists in assessing pesticide
policies is to expose the inefficiency associated with existing regulations and propose
alternatives. Thus, using citrus greening disease in Florida as a case study – where farmers
adopted the use of highly toxic insecticides to try to control the spread of the insect that
transmits the disease – we use simulations to compare the outcomes of implementing a tax
on insecticide use based on different criteria to curb the social costs associated with
their use.

Our simulations’ results show that taxing farmers using a load-based tax would provide
them with a strong incentive to reduce the use of pesticides that are more toxic and
substitute them with less toxic chemicals. Instead, a policy using a quantity-based tax
would need to have a significantly higher rate to achieve a similar effect but the percentage
reduction in profit and yield would be significantly higher in such a case. Thus, a load-
based tax would be more effective to help correct the market failure derived from farmers
not internalizing the social costs of their input choices.

A significant proportion of the crop damage that pesticides aim to prevent is caused by
invasive species such as HLB. Economics can not only be helpful in informing pesticide
policy, but it can also aid in the design of policies that would minimize and mitigate the
effects of invasive species (Sexton, Lei and Zilberman 2007). In this regard, since our
results show that a load-based tax would significantly increase the cost of using insecticides
to combat pests and diseases – which would in turn cause loss of yield and profit – policy
makers could, for instance, exempt farmers from paying the tax under certain
circumstances.

Invasive species like HLB pose a collective-action problem (see, for example, Perrings
et al. 2002; Florec et al. 2013; Singerman and Rogers 2020). Hence, the ability of individual
farmers to effectively control mobile pests in the long run depends critically on the actions
of neighboring farmers (Lazarus and Dixon 1984), which creates a public-good dilemma. It
is, therefore, key for policy makers to realize that the lack of policies restricting the toxicity
of pesticides being used may not even be beneficial for farmers in the long run – as it has
been the case of citrus farmers in Florida – because farmers (incorrectly) view pesticides as
a guarantee to achieve fewer production losses (Deguine et al. 2021), which promotes a
false belief in the possibility of self-reliance for controlling pests that require instead
collective action (Bagavathiannan et al. 2019).

Policy makers could achieve multiple desirable societal objectives by designing a policy
that would minimize the deadweight loss derived from farmers ignoring the social costs of
their input choices and simultaneously mitigate the impact of invasive species as
exemplified next. Spraying insecticides as part of a regional pest and disease control such as
an Area-wide Pest Management program (AWPM) has been shown to be superior to site-
specific control when pests and disease vectors are mobile (Faust 2008; Singerman, Lence
and Useche 2017). The underlying premise for AWPM is that coordinating sprays allows
neighboring farmers to control the pests and diseases at a lower (social) cost by increasing
the productivity of their inputs. However, due to its voluntary character, an AWPM
program can suffer from low farmer participation (Hendrichs et al., 2007; Singerman and
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Useche, 2019). A policy combining a load-based tax and a potential exemption from it
when neighboring farmers coordinate sprays could contribute to reduce pesticide use and
therefore the externalities associated with it because farmers could choose to either apply
insecticides individually (and be subject to the tax) or in coordination with neighbors (and
be exempt from the tax). Thus, farmers would not necessarily be worse off by the
introduction of the tax policy but they would unequivocally reduce the externalities
associated with their pesticide choices.9

Last, but not least, there is evidence that the introduction of a load-based tax targeting
the externalities of pesticide use in Denmark has been effective in inducing behavioral
change on farmers and has resulted in an overall reduction of pesticide toxicity by 18%
(Nielsen et al. 2023). Given that global warming will likely contribute to increase the
vulnerability of crops to pests and diseases and, thus, lead farmers to increase chemical use
(Lyall, Suk and Tait 2006), policy makers in the United States could consider
complementing the current pesticide regulatory system with financial incentives, such
as a load-based tax, to reduce the risks for human health and the environment derived
from the toxicity of pesticide use.

Data availability statement. The authors confirm that the data supporting the findings of this study will be
available within the article.
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Appendix: pesticide load calculation

The first component of a pesticide load is the human health load, which measures the risk of exposure that
an insecticide poses to human health when handling and applying the pesticide. The load of each pesticide is
calculated based on the hazard statements that appear on the label of the product; each statement is assigned
risk points, and then those points are converted to a load per pound of product by multiplying the points by
a load factor. Table A1 shows the risk points and corresponding load on human health for the different
hazard statements that appear on the pesticides’ labels. As an example, Table A2 summarizes the sum of risk
points from the hazard statement and the Human Health Load for eight insecticide active ingredients – out
of a total of 30 – that account for over 90% of all insecticide use by Florida orange farmers. The conversion
from risk points to load per lb. of product involves dividing the total by a reference value of 300. We then
convert the Human Health Load per lb. of product to Load per lb. of active ingredient.

The second component of a pesticide load is the environmental fate load, which measures three distinct
characteristics of a pesticide: degradation, bioaccumulation, and leaching. Degradation measures how long
an insecticide persists in the environment and is calculated using the following expression:
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Table A1. Risk points and load on human health associated with the different hazard statements found
on pesticides’ labels

Hazard statements with respect to human health
Risk
points

Load (L per lb
product)

Repeated exposure may cause skin dryness or cracking 10 0.0728

Harmful if swallowed 10 0.0728

may be fatal if swallowed and enters airways 10 0.0728

Causes skin irritation 10 0.0728

May cause respiratory irritation 10 0.0728

Harmful in contact with skin 15 0.1102

Causes serious eye irritation 15 0.1102

Harmful if inhaled 15 0.1102

May cause an allergic skin reaction. 20 0.1455

May cause drowsiness or dizziness 30 0.2205

Toxic if swallowed 50 0.3660

May cause allergy or asthma symptoms or breathing difficulties if
inhaled

50 0.3660

May cause harm to breast-fed children 50 0.3660

Fatal if swallowed 70 0.5137

Toxic in contact with skin 70 0.5137

Causes severe skin burns and eye damage 70 0.5137

Causes serious eye damage 70 0.5137

Toxic if inhaled 70 0.5137

Suspected of causing genetic defects (possible route of exposure) 70 0.5137

Suspected of causing cancer (possible route of exposure) 70 0.5137

Suspected of damaging fertility or the unborn child (possible specific
effect/exposure route)

70 0.5137

May cause damage to organs (possible specific organs/route of
exposure)

70 0.5137

May cause damage to organs through prolonged or repeated exposure
(possible specific organs/route of exposure)

70 0.5137

Fatal if swallowed 85 0.6239

Fatal in contact with skin 85 0.6239

Fatal if inhaled 85 0.6239

Fatal in contact with skin 100 0.7275

Causes severe skin burns and eye damage 100 0.7275

Fatal if inhaled 100 0.7275

May cause genetic defects (possible route of exposure) 100 0.7275

(Continued)
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Di �
DT50

i � DLF
Ref

DT50
Ref

where Di denotes insecticide i’s degradation in Load per pounds of active ingredient (L/lbs a.i.), DT50
i is the

half-life (in days) of insecticide i’s active ingredient in the soil, and DLF
Ref and DT50

Ref represent the values for
the load factor (in L/lb a.i.) and the half-life (in days) of the active ingredient of a reference substance,
respectively (Samsøe-Petersen et al. 2012). The reference substance is an approved active ingredient with the
worst value for load.
Bioaccumulation is the second characteristic that defines the environmental fate load of an insecticide and it
refers to the progressive accumulation over time of a contaminant in an organism relative to its level in the
ambient medium. The bioconcentration factor (BCF) is an indicator measuring the ability of a chemical to
be assimilated by organisms from the water and it is used to calculate bioaccumulation (Wang, 2016). When
the BCF of an insecticide was not available in the database, following the literature, we estimated it by using
the so-called log Pow model, which correlates laboratory bioconcentration factors determined in fish and
n-octanol/water partition coefficients. The relationship between the two variables was studied by
Devillers et al. (1996), and the formula linking them that we used is the following:

Table A1. (Continued )

Hazard statements with respect to human health
Risk
points

Load (L per lb
product)

May cause cancer (possible route of exposure) 100 0.7275

May damage fertility or the unborn child (possible specific effect/route
of exposure)

100 0.7275

Causes damage to organs (possible specific organs/route of exposure) 100 0.7275

Causes damage to organs through prolonged or repeated exposure
(possible specific organs/route of exposure)

100 0.7275

Source: Samsøe-Petersen et al., 2012, p. 17.

Table A2. Sum of risk points and human health Load for the top eight insecticides’ active ingredients used
to grow processed oranges in Florida

Insecticide active ingredient Sum of the risk points Human health load (L a.i./lbs)

Chlorpyrifos 50 0.03394

Dimethoate 25 0.01691

Imidacloprid 10 0.00647

Naled 50 0.04687

Petroleum Oil 175 0.26195

Phosmet 90 0.09525

Spirotetramat 115 0.03895

Zeta-Cypermethrin 45 0.01232
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BCFi � 100:85�log�Powi��0:7

where BCFi denotes insecticide i’s bioconcentration factor and Powi is the octanol/water partition of
insecticide i. Bioaccumulation, denoted by Bi, is then computed using the following expression:

Bi �
BCFi � BCFLF

Ref

BCFRef

where BCFLF
Ref and BCFRef represent the coefficients for the bioconcentration factor load (in L/lb a.i.) and

bioconcentration factor for a reference substance, respectively.
Leaching is the third characteristic that defines the environmental fate load of an insecticide. It measures the
mobility of pesticides in soil, which indicates their potential for migrating to groundwater. This factor is
calculated by using the Screening Concentration in GroundWater (SCI-GROW) model – a screening model
used to estimate insecticide concentrations in groundwater (EPA, 2016). Leaching is calculated using the
formula:

Lei �
SCIGROWi

� LeLFRef
LeRef

where Lei denotes insecticide i’s leaching in Load per pounds of active ingredient (L/lbs a.i.), SCIGROWi
is the

SCI-GROW index of insecticide i, and LeLFRef and LeRef represent the coefficients for the leaching load factor
(in L/lb a.i.) and the SCI-GROW index of a reference substance, respectively. Thus, to compute the
environmental fate load of each insecticide active ingredient, we simply added the values we obtained for
each of its three sub-components: degradation, bioaccumulation, and leaching.
The third and last component of the load of a pesticide is the environmental toxicity load, which measures
the load of an insecticide on different organisms other than the targeted one. This measure is composed of
the short-term effects on birds, mammals, fish daphnia, algae, aquatic plants, earthworms, and bees, and the
long-term effects on fish daphnia, and earthworms (Samsøe-Petersen et al. 2012). Table A3 shows the
different reference values and load factors for each component of the environmental toxicity load. Each of
the components is multiplied by a reference value and divided by a reference load:

Table A3. Parameters of reference substances to be used in the environmental toxicity load calculation

Short term Unit for reference value Reference value Load factor

Birds LD50 mg per kg body weight 49 1.00

Mammals LD50 mg per kg body weight 20 1.00

Fish LC50 mg per liter water 0.00021 30.00

Daphnia EC50 mg per liter water 0.0003 30.00

Algae EC50 mg per liter water 0.000025 3.00

Aquatic Plants EC50 mg per liter water 0.00036 3.00

Earthworms LC50 mg per kg soil 3.4 2.00

Bees LD50 microgram per bee 0.02 100.00

Long Term Unit for reference value Reference Value Load Factor

Fish NOEC mg per liter water 0.000115 3.00

Daphnia NOEC mg per liter water 0.000115 3.00

Earthworms NOEC mg per kg soil 0.2 2.00

Source: Samsøe-Petersen et al., 2012, p. 20.
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Ein �
RVn

vin
� RLn

where Ein is insecticide i’s effect on organism n in Load per pounds of active ingredients (L/lb a.i.), RVn is the
value for the reference substance on organism n, RLn is the reference load of the reference substance on
organism n in Load per pounds of active ingredients (L/lbs a.i.), and vin is the effect/value of insecticide i on
organism n. Short- and long-term effects are then added up to obtain the total environmental toxicity load of
a pesticide.

We obtain the total load for each of the eight insecticides we consider by simply summing up the values we
obtained for each of its three components: the human health load, the environmental fate load, and the
environmental toxicity (see Table A4). In the last column of Table A4, we also show the area load for each
insecticide. Calculating the load of each insecticide per acre allows us to compare the load of insecticides
used by Florida orange farmers for a standard measure of unit area. Thus, we obtain the total area load of
insecticide i at the maximum yearly recommended use (ALi) in L/acre, as follows:

ALi � Hi � EFi � ETi� � � Ui (1)

where is Hi represents the Human Health Load of insecticide i, EFi is insecticide i’s environmental fate load,
ETi is the environmental toxicity load of insecticide i – all in L/lb a.i. – and Ui is the actual use of insecticide i
on Florida oranges in lb a.i./acre.

In contrast to the calculations above, the Quantity of Active Ingredients index simply measures insecticide
use so that QAi � Ui, where QAi is the quantity of active ingredients in lb a.i./acre.

Table A4. Toxicity (load) components and total load per pound and per acre for the top eight insecticides’
active ingredients that are used to grow processed oranges in Florida

Insecticide active
ingredient

Human health
(L/lb)

Environmental
fate (L/lb)

Environmental tox-
icity (L/lb)

Load
(L/lb)

Load1 (L/
acre)

Chlorpyrifos 0.03 1.55 45.85 47.44 106.50

Dimethoate 0.02 0.02 4.31 4.35 1.95

Imidacloprid 0.01 1.33 14.30 15.63 3.09

Naled 0.05 0.14 465.89 466.07 288.97

Petroleum Oil 0.26 1.00 0.04 1.30 51.48

Phosmet 0.10 0.03 2.88 3.01 3.16

Spirotetramat 0.04 0.01 0.03 0.08 0.02

Zeta-Cypermethrin 0.01 0.24 84.71 84.96 4.13

1Those values were obtained by multiplying the total load by the rate of application per acre.

Cite this article: Rizk, A. and A. Singerman (2025). “Pesticide use and the case for toxicity-based taxation:
evidence from citrus greening in Florida.” Agricultural and Resource Economics Review 54, 1–31. https://doi.org/
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