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ON LIE ALGEBRAS OF VECTOR FIELDS WITH
INVARIANT SUBMANIFOLDS

AKIRA KORIYAMA

§ 0. Introduction.

It is known (Pursell and Shanks [9]) that an isomorphism between
Lie algebras of infinitesimal automorphisms of C> structures with compact
support on manifolds M and M’ yields an isomorphism between C~
structures of M and M.

Omori [5] proved that this is still true for some other structures on
manifolds. More precisely, let M and M’ be Hausdorff and finite dimen-
gsional manifolds without boundary. Let a« be one of the following
structures:

(1) C=-structures, (a = ¢)

(2) SL-structure, i.e. a volume element (positive n-form) with a
non-zero constant multiplicative factor, (¢ = dV)

(8) Sp-(symplectic) structure, i.e. symplectic 2-form with a non-zero
constant multiplicative factor, (@ = £2)

(4) Contact structure, i.e. contact 1-form with a non-zero C~-func-
tion as a multiplicative factor, (¢ = w)

(5) Fibring with compact fibre, (@« = %)

Let « (resp. &) be one of the above structures on M (resp. M’). Let
I' (Ty) be the Lie algebra of all C~, a-preserving infinitesimal transfor-
mations with compact support. We denote by 2,M) the group of all
C=, a-preserving diffeomorphisms on M with compact support, that is,
identity outside a compact subset. Then we have the following theorem

THEOREM (Omori [5]). I' (Ty) is algebraically isomorphic to I" . (Ty.),
if and only if (M,a) is isomorphic to (M’,a’). FEspecially, 2,(M) is iso-
morphic to 2,.(M’).
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Omori [6,7, 8] defined the notion of I.L.H.-Lie group and proved that
the group 2.(M) stated above is an I.L.H.-Lie group. As a matter of
fact, 2,(M) is a (strong) I.L.H.-Lie group with the Lie algebra I".(T,).
So we can say that the I.L.H.-Lie group 2,(M) is determined by its Lie
algebra.

Let (M,N) be a pair of paracompact C* manifolds such that N is
a closed submanifold of M (may be dimN = 0). We denote by I'y(Ty)
the Lie algebra of all C~, N-preserving, i.e. tangent to N, infinitesimal
transformations with compact support. By 2(M, N) we denote the group
of all C~, N-preserving diffeomorphisms on M with compact support.
The purpose of this paper is to prove the following theorem.

THEOREM. [I'y(Ty) is algebraically isomorphic to I'y.(Ty), if and
only if there exists a C~ diffeomorphism ¢: M — M’ such that ¢(N) = N’.
Especially 2(M,N) is isomorphic to 2(M’', N').

If M is compact, then 2(M,N) becomes an I.L.H.-Lie subgroup of
2(M) with the Lie algebra I'y(T,) (Ebin and Marsden [2]). So in this
case we can say that 2(M,N) is determined as an I.L.H.-Lie group by
its Lie algebra.

The proof of our theorem is parallel to that of Pursell and Shanks.
Main parts of our proof are §2 and §3. We denote by I'(Ty) instead
of I'y(Ty) for the case N = {p,}, where p,e M is an arbitrary but fixed
point. Since the structure of I'(T,) is different from that of I'y(T,)
for dim N =1, we will investigate I'(Ty) and I'y(T,) separately, that
is, in §2 we will study maximal ideals of I'(T,) and in §3 that of
I'y(Ty).

The author would like to express his gratitude to Prof. H. Omori
for suggesting the problem and also for his helpfull advice.

§ 1. Preliminaries.

Let R™ X R® be the euclidean space with coordinates {z!,...,z", %',
-,y Let F = C~(R" X RY be the set of all C~ functions on R™ X R’
Let ¢ = C*(R" X 0) = C~(R™ be the set of all C~ functions on R”. ¢
is naturally identified with the subset of C*(R"™ X RY by the projection
R" X R'— R*. Let # be the ideal of & of functions vanishing on
R" x 0, i.e.

= eF|flameo=0} .
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Clearly #'c¢ % t=1,.--,n) and y*c¢ & (@a=1,-.-,9).

LEMMA 1.1. For any fe & there exist g, % and f,e F 1< a < ¥)
such that f =g, + v'fi + - -+ + ¥,

Proof. Easy computation. (see, for example, [1])

COROLLARY 1.2. If fe #, then g,=0.
Let M be a C~ manifold of dimension m, and N be a closed sub-
manifold of dimension » such that n = 0. We set £ =m — n.

LEMMA 1.8. The subset I'y(Ty) of I'(Ty) is a Lie subalgebra of
I’ (Ty).

Proof. Let (U;at,---,2%, 9 ---,¥") be a coordinate system at pe N
such that UNN ={y' = ... = y*=0}. Let X = £49/ox") + &(/dy*) and
Y = »¥@/0x*) + 5*(@/9y*) be in I'y(Ty). Then by Corollary 1.2 & and »°
are written as

E=ye&+ - +¥E and =y 4+ -+ Y9 (@=1,.-.,0),
where &5, C~(M) (s=1,---,4). We have then

(e AN
[X,Y]-—(Ei o -yt axi)axf on UNN.

Hence [X,Y]e I'y(Ty).

LEMMA 1.4. For each X eI y(Ty) r (X) denotes the restriction of
X toN. Then r, is a Lie algebra homomorphism of I'y(Ty) onto I'(Ty),
that is, r [X,Y] = [r X, r, Y]

Proof. Easy computation.

LEMMA 1.5. Let XeI'y(Ty) such that X()+0 at peM. Then
there is a local coordinate system (U; x, ---, 2%y, -+, ¥°) such that X =
d/ox' on U and if pe N and dAimN =1 then UNN={y' = ... = y* = 0}.

Proof. Easy computation.

§ 2. Characterization of maximal ideals of I"(T).

We denote by I'(Ty) the Lie algebra of all C~ vector fields on M
with compact support, and I'(Ty) = {X e I'(Ty)| X(p,) = 0} is a Lie sub-
algebra of I'(Ty), where p,e M is an arbitrary but fixed point. We set
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I'i(Ty) = {XeI'(Ty|i"(X)(p) =0 for all » < k},
where i"(X)(p,) is the r-jet of X at p,.

LEMMA 2.1. If XeI'(Ty) does not vanish at peM (p # p,), then
for any Z e I'(Ty) there are a neighborhood U of p in M and a vector
field Y e I'(Ty) such that [X,Y]=Z on U.

Proof. Bs; Lemma 1.5 there exists a local coordinate system (V;
a2ty -++,2™) at p such that X =9/62' on V. For any Z = ¢'(9/0x") e I'(Ty),
i.e. ZeI'(Ty) such that Z|, = {¥d/9x'), we consider the differential
equations

o' _ m _

a_fc‘_c ¢G=1,---,m).
These equations have solutions on some neighborhood UCV of p. Set
Y = 5%(9/0x"), then Y is a C= vector field on U and satisfies the equation
[X,Y]=Z on U. Here we may assume that U is relatively compact in
V and dose not contain p,. Then an appropriate extension of Y is con-
tained in I"(T,).

LEMMA 2.2. Let gl(m) be the Lie algebra of all m X m real matrices.
Then we have the following results.

(i) sé(m) = {A e gl(m)|trace A = 0} is an ideal of gl(m).

(ii) The center of gl(m) is 3 = {AI|I is the unit matriz and A is o
real number.}, and 3§ is an ideal of gl(m).

(iii) If m =2, then gl(m) = 3 D sé(m) (direct sum), i.e. 3 N sé(m) = 0.
If m =1, then gl(m) = 3.

(iv) If m =2, then sé(m) is a simple Lie algebra, that is, sé(m)
does not admit any mon-trivial ideals.

(v) 3 and sé(m) are maximal ideals of gl(m).

Proof. These results are well known, and we omit the proofs. (see,
for example, [3])

LEMMA 2.3. For each point pe M such that p + p, we denote by
S, the subset {XeI'(Ty)| X =0 and i"(X)(p) =0 for all r=1} of
I'(Ty). Then for each peM, £, is an ideal of I'y(Ty).

Proof. The proof is direct computation.
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LEMMA 2.4, Let peM be a given point such that p #p,. If £ is
a proper ideal of I'(Ty), i.e. £ & I'(Ty), such that X(») = 0 for all X e #.
Then FC 4,

Proof. Since p # p,, there is a local coordinate system (U; <, ---,
2™) at p such that Uz p,. Hence appropriate extensions of 3/dz’ (j =1,
---.,m) are contained in I'(T,). We also denote the extended vector
fields by the same letters. For any X = £'(3/0x%) € # we have [9/027, X]
= 0§*/ox?-9/ox* for all j =1,..-,m. Since . is an ideal, [3/92’,X] e ~.
From the assumption for .7, (95%/0z")(p) =0 for all ¢,7=1,---,m. By
induction on 7, we have {"(X)(p) = 0 for all » = 1. Therefore 4 C ./ ,.

LEMMA 2.5. Let A be an arbitrary Lie algebra. If a and b are
ideals of A such that aDb. Then (A/D)/(a/0) = A/a.

Proof. The result is well known, and we omit the proof.

LEMMA 2.6. The subset I'(Ty) = {XeI(Ty|i'X)(p) =0} is a
proper ideal of I'(Ty).

Proof. Easy computation.

LEMMA 2.7. Let n: I'(Ty) — I'(Ty) | T'YTy) = gl(m) be the natural
projection. We define S, and £, by J,=z"'@) and S, = n'(4(m)).
Then both £, and £, are proper ideals of I'(Ty).

Proof. Since z:I'(Ty) — gl(m) is an onto Lie algebra homomor-
phism, we have the desired result.

ProPOSITION 2.8. If m is a maximal of ideal I'(Ty) such that m D
I'(Ty), then m = £, or S,

Proof. Let m & I'(Ty) be a maximal ideal such that m D I'i(T,).
Then by Lemma 2.5 m/I'y(Ty) is a proper ideal of I'(Ty)/I'«(Tyx). By
Lemma 2.2, I'(Ty)/IT'Ty) = gl(m) = 3@ sf(m) and both 3 and sé(m) are
simple Lie algebras. Hence m/I"y(T,) should be equal to either 3 or s£(m).
Therefore we have m = z7'(3) = £, or m = z7'(s4(m)) = S,

LEMMA 2.9. If m is a maximal ideal of I'(Ty) such that m D I'e(Ty),
then for any point p == p,, there exists an element X ¢ M such that X(p)
# 0, where

I'y(Ty) = {XeI'(Ty |7 X)) = 0 for all r=1}.
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Proof. Assume that there exists a point pe M (p # p,) such that
X(®) =0 for all Xem. By Lemma 2.4 mC f,. Since m is a maximal
ideal, m = #,. On the other hand, since p # p,, there exists Y ¢ I'g(Ty)
such that Y(p) #0. Hence m = #,2Y, contradicting the condition
mDIe(Ty).

LEMMA 2.10. If m is a maximal ideal of I'y(Ty) such that m D I'2(Ty),
then i'(m)(p,) s a proper ideal of gl(m), where i'(m)(p,) is the image of
m under the natural projection

w2 I'(Tw) — I'(Tw) [ THTw) = gl(m) .

Proof. Assume i*(m)(p,) = gl(m). Then by Sternberg’s linearization
theorem [4], there exist a vector field X em and a smooth local coordi-
nate system (U; 2%, --+,2™) at p, such that X|, = >, 243/9x?). On the
other hand, for any Z e I'y(Ty), there exists a sequence of neighborhoods
Vov,oV,D...DV,D... of p, such that VC U and

~

Z=Z(Z ¢i(x)-a’;x“) 9 +Z onv,

T \lalz2 oxt

where ¢i(x) is a C~ function on U such that

1 on V,CV
0 outside some neighborhood of V ,

$i(@) = {

3wz $4(2) -@i-2° is a power series which converges on V and Z is a C-
vector field on M such that Z(p)) = 0 and {"(Z)(p,) = 0 for all » =1 (see
[4] p. 35). Now we consider the following power series

(3, o ). 0

7 \ialz2 Jee| — 1 ) et

This series converges on V and becomes a C= vector field on V. Hence
a suitable extension Y of this vector field, i.e.

YIV=Z(|§_$2¢£(90)- o w) a_,

7 o] —1 ) aal

is contained in I'y(T,). Since Xem and m is an ideal of I'y(Ty), we
obtain [X,Y]em. Furthermore we have [X,Y] = A’.5/0x’, where

Aj=in<Z gl af _xa)+ > glealoze

7 ez 9xt  ja| — 1 jaT2s
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By the definition of ¢/, we have

18147
% =0 on V,, for all multiple indices g with |g|=1.
(]
Therefore the Taylor expansion of [X, Y] at p, = the Taylor expansion of
(Z —Z2) at p,, Hence Z — Z — [X,Y1eI's(Ty) Cm. Then Zem, hence
I'(Ty) Cm. Therefore, by Proposition 2.8, m = #, or 4, We have
then i'(m)(p,) < gl(m), contradicting the assumption.

PropoSITION 2.11. If m is a maximal ideal of I'(Ty) such that
mDOI'¢(Ty), then m = £, or S,

Proof. By Lemma 2.10, j'(m)(p,) is a proper ideal of gl(m). By
Lemma 2.2, j*(m)(p,) should be equal to either 3 or s4(m). If {'(m)(p,) = 3
(resp. s4(m)), then m C 4, (resp. m C #,,). By the maximality of m,m =
S, (resp. m = £,).

LEMMA 212, If m is a maximal tdeal of I'(Ty) such that m 2
I's(Ty), then i(m)(®) = gl(m).

Proof. Assume j'(m)(p,) be a proper ideal of gl(m). Then there
occur three cases. If j'(m)(p,) = {0}, then m < I'y(T,), contradicting the
assumption. If f(m)(p) =3 (resp. PM)(py) = sf(m)), m D S, DI(Ty)
(resp. m D £, D I'v(Ty), contradicting the assumption. Hence i'(m)(p,)
should be equal to gl(m).

LEMMA 2.13. Let m be a maximal ideal of I'y(Ty) such that i*(m)(p,)
=gl(m). If for any peM with p + p, there exists Y em such that
Y(p) #0, then m DI'g(T,).

Proof. We set #$ ={XeI'y(Ty) |supp X 2 p,}. First of all we prove
that S Cm.

(Remark that the assumption #§ C m has identical meaning with
that of Lemma 1 of Pursell and Shanks [9], but unfortunately their
proof contains a mistake about the argument of supports of the vector
fields denoted by N,. A complete proof for Lemma 1 is given in [5]. We
use here the method used in [5].)

Let X be an arbitrary element of #§. From the assumption of
Lemma 2.13, for any pesupp X there are a vector field Y em and
a local coordinate system (V;z!,.--,2™) such that Y|, = d/az'. Since
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supp X is compact, there are Y,em, X;e #§ and (V;; 2}, ---,21), ¢ =
1,---,7, such that Y,|,, =d/ox}, X=X, + --- + X,, suppX;CV,; and
Xy = 2k §40/0x}) on V..

Hence if we want to prove that X em, it suffices to prove that
X,em for each 7. Because the argument is local we may delete the
indices, that is, we may assume that there is a local coordinate system
(V;a'---,2™ such that X is written as X = 3] £49/0x*) on V with
supp &fCV for all ¢ =1, --.,m, and a suitable extension of 9/3x' is con-
tained in m. We use the same notation for the extended vector fields
because all argument here is local. Since 9/0x' € m and }[3/0x", (x)*(9/0x")]
= z'(9/0xY), x'(9/0x") e m. For £'(3/dx") we have the following formulae:

0 101 0 ]_<1 1381) 0
— x| = ===
[ax‘ ¢ oxrt ¢ oxt / ox'

and

3 21 (.08 3
[xl Pl ax‘] = (xl w El) o

Hence we have ([9/dx, x'¢'(d/dx")] — [x'(d/0x"), £'(@/ax)]) = £'(3/0x) € m.
On the other hand for &'(3/dx?), ¢ = 2, we have the following formulae:

0 lia]_(i 1661)6
, et = | = x
[ax‘ ¢ oxt i oxt / oxt

and

RN Y
oxt ' oxt ox' oxt

Hence we have

0 ”a] [16 ia] ; 0
, B | — | R | = —em.
[ax‘ ¢ ox? ox! § ox® ¢ oxt

Therefore we have X = 7 £%9/0x*) e m. Finally we obtain #§ c m. Now
we continue the proof of Lemma 2.13.

Since {'(m)(p,) = gl(m), by the Sternberg’s linearization theorem there
are a vector field X e m and a local coordidate system (U; «, ---,2™) at
p, such that X |; = 2%(@/dx%). For any Z ¢ I'y(Ty) such that Z |; = {(9/dz?)
we consider the following system of differential equations on a neighbor-
hood of p,:
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B J
xzaﬂ _77]=CJ G=1,---,m).

oxt
By the polar coordinate system zt = r¢, (6", .---,6" ) (¢t =1,-..,m), above
equations are written as
dy? .
r =4 i = I =1,.--,m),
a7 4 @ )

where 7* = 3, (¢%)’. By r(dy//dr) — 5 =0 we have »' = C(r)-r, where
C(r) is a function of ». So we have dC/dr = ¢?/7*. Since ¢ is flat at
r = 0,

o = [ Ear.
o 7
Hence we have
= ’l"r LZd’r
o 7r

on some neighborhood WC U of p,. Clearly »’(0)=0 (=1, --,m).
Therefore a suitable extension Y of 7'(9/dx%), i.e. Y|, = 5%3/9x%), is con-
tained in I"\(T'y). Obviously [X,Y]|y = Z|». On the other hand [X, Y] e m.
Weset A=2Z7Z—[X,Y]. Then AeI'y(Ty). Since suppA4 z2p, Ae F§ Cm.
Then Z = A + [X, Y], hence Zem. Therefore I'?(T,) C m.

PROPOSITION 2.14. If m is a maximal ideal of I'WT,) such that
m N I'¢(Ty), then there exists a unique point p e M such that p + p, and
m=J,.

Proof. By Lemma 2.12, {(m)(p,) = gl(m). By Lemma 2.13, there
exists a point pe M such that p = p, and X(p) =0 for all Xem. By
Lemma 2.4, mC #,. Since m is a maximal ideal, m = #,. Further-
more the maximality of m implies the uniqueness of the point p.

THEOREM 2.15. Any maximal ideal of I'(Ty) should be equal to one
of the following ideals;

i) S
i; f’}: ideal with finite codimension and corresponding to p,,
11 s,
(iii) J,: dideal with infinite codimension and corresponding to p

(p # o).
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Proof. The result is an immediate consequence of Propositions 2.11
and 2.14,

§ 3. Characterization of maximal ideals of 7"y(T,) (dim N = 1).

LEMMA 38.1. Let X e I'y(Ty) such that X(p) =0 at pe M. Then for
any ZelI'yw(Ty) there exist an element Y e I'y(Ty) and o neighborhood
Uof pin M such that [X,Y]=Z on U.

Proof. The case pe N was already proved in Lemma 2.1. Let p
be a point sn N. By Lemma 1.5 we can take a local coordinate system
{W;a, -, 2%y, --,9) at p such that UNN={y' = --- = ¢y* = 0} and
X =09/0x* on U. For any Z = {0/0x") + £*(@/0y*) € I'y(Ty) we consider
the following differetial equations.

' _ P
é%—c G=1,---,m)
on*

Py =Ca (a:l,-~-,ﬂ), where C“(xl""’xn:o,”’,o):o .
x

These equations have solutions on U':
”i = J‘Cidxl + Ci(wzy . .,xn,yl, ° ',?/‘)
7]" = ICadxl + Ca(wz’ cc "xn’yly M w'!/’) .

Set C*(«%, +++,2%,0,-.-,00 =0 for «a=1,---,4.
Then »*(z*,---,2",0,.--,0) =0. Let Y be an appropriate extension
of 7%3/0x") + p*(@/oy*). Then Y eI'y(Ty) and [X,Y]=2Z on U.

LEMMA 3.2. For any proper ideal 5 C I'y(T,) there exists a point
peM such that X(p) =0 for all Xe 2.

Proof. The proof is done by the method which was used to prove
¢, Cm in Lemma 2.13, and omitted.

LEMMA 3.8. Let # C I'y(Ty) be an ideal, and p € M be a point such
that X(p) =0 for all Xe 7.

(Case peN) Let (U; ', ---,2™) be a local coordinate system at p.
Then for any X = &43/9x%) € & we have

__T¥ =0 (Q=is=m;l<r
axil...axirp* StEm; =7
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(Case peN) Let (U;at,---,x*yt--,9") be a local coordinate sys-
tem at p in M such that UNN ={y' = .-- = y* = 0}
Then for any X = £40/0x*) + &%(@/0y*) € # we have
arsi arsu
— %5 _ (=0 d ——=_(p)=0
prr— L S A
Aismlsa=s4;18n.

Proof. The proof is all the same as that of Lemma 2.4.

LEMMA 38.4. Let # be a proper ideal of I'y(Ty) such that X(p) =0
for all Xe £ at a point pe M. Then peN, if and only if S does not
contain Ker r,, where r,: I'y(Ty) — I'(Ty) is the Lie algebra homomor-
phism.

Proof. Easy computation.

Let » be a point of M. We denote by £, the ideal of I'y(Tj) con-
gisting of all element X such that X and its all derivatives vanish at
the point p. Clearly if p¢ N, then £, is a maximal ideal of I"y(T,).

For a given point pe N we denote by .4, the ideal of I'(Ty) con-
sisting of all element Y such that Y and its all derivatives vanish at
the point p. ., is a maximal ideal of I'(Ty).

PROPOSITION 3.5. For any maximal ideal & of I'y(Ty), there exists
a unique point p e M such that

Ly (if# does not contain Ker r,)
o ry’f, (@f S contains Kerr,) .

Proof. By Lemma 3.2 there is a point pe M such that X(p) =0
for all Xe.#. If 4 does not contain Kerr,, then p is never contained
in N. Hence by Lemma 3.3 .# is contained in the proper ideal .7,.
Since £ is maximal, 4 = .#,. If 4 contains Ker r,, by Lemma 3.3
r.(f) C J,. By the maximality of £,r,(#) is also maximal in I'(Ty).
Hence 7,(f) = #,. Therefore # = r;'/,. Furthermore the maximality
of # implies the uniqueness of the point p.

m

—
LEMMA 3.6. I'y(Ty)/Sp=RI2', ---,2™]] X --- X RI[=, - - -,2™]] and

_ —— A
I'y(Ty)|ri'F, = Rlla', -+, 2”11 X --- X Rl[«', ---,2*]] as Lie algebras,
where m =n + £ and R[[---1] is the ring of formal power series.
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Proof. Let (U;al,---,2™) be a local coordinate system at pe M.
Then the formal Taylor expansion of X e I'y(T,) at p with respect to
this coordinate is a homomorphism of I'y(T,) onto the product of the
rings of formal power series, and its kernel is exactly .7,.

For the case pe N we consider the following commutative diagram:

I'y(Ty) —2—> (T,

ﬂl J,”

I'y(Ty) 13 S, - I'Ty)| s, = Rl ---,2"]] X --- X R[[z}, ---,2"]].
3
Since 7, is an isomorphism, we have the desired result.

§ 4. Stone topology of maximal ideal sets.

(Case I'(Ty) Let M and M’ be C= manifolds and p, (resp. p) be
an arbitrary but fixed point of M (resp. M’). We define I'(Ty), Ly(Ty.),
I'(Ty) and I'(Ty) as in §2.

LEmMMA 4.1. If @:I'(Ty) — I'(Ty) is a Lie algebra isomorphism,
then O(F) = £,, O(F,) = £, and O(F,) = SF, Gf p+p). FEspecially
O(I'(Ty) = I'(Ty).

Proof. If m’ = &(m) is a maximal ideal, then I'(T))/m is isomor-
phic to I'(Ty)/m’. Hence codimm in I'(Ty) = codimm’ in I'(Ty.).
Since codim £, =%’ —1 and codim £, =1, we have &(f) = ., and
&(S,) = F,. On the other hand, since each ideal #, which has infinite
codimension corresponds to a point p (p # p,) uniquely, &(#,) = £, for
some unique point p’ (p’ # pp. Moreover, since I'y(Ty) = #,N S,
O(I'Y(Ty) = I'y(Ty.).

We denote by M* the set of all maximal ideals of I'(T,), that is,
M* ={s|f c I'(Ty): maximal ideal} .

From now on, we denote both ., and #,, simply .#,. Let ¢: M*—>M
be the natural correspondence defined by o(.#,) =p. (Note. o(5,) =
O'(fa) = o(£.) = Dy

For any subset A C M we set A* =07'(4) = {J,e M*|pe A}. .

DEFINITION 4.2. (Stone topology of M*) For any subset of M* we
define a closure operator “€¢¢” by the formulas:
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(i) %p=¢

(ii) If B+ ¢ then ¥¢B ={m|m is a maximal ideal such that
m D (Nees L}

DEFINITION 4.3. We call a subset B C M* is closed, if and only if
€¢B = B.

LEMMA 4.4. For each A* = ¢ '(A), ¥4(A*) = (A)*, where A is the
closure of A in M.

Proof. First, we prove “C”. For any mec @4(4*), since m is a
maximal ideal, there exists a unique point p € M such that m = #, (may
be p = p,). Assume p¢ A. '

(Case p#p) M= S5, D (,exs?. On the other hand, since pe 4,
there is X € | J,c4«# such that X(p) 0. Hence X ¢ ., - .. contradiction.

(Case p = p,) There are two cases, one is m = 4, D (\,c»f and
other is m = #,, D (,eur#. On the other hand there is Y ¢ I'(T,) such
that i'(Y)(p,) 23 U sé(m) (set union). Let : M — R be a C= function
such that

_ 1 in some neighborhood U of p, with UN A = ¢
" |0 outside some neighborhood of U.

Then X = ¢Y e (,exr# and j(X)(py) €3 Usl(m), that is, Xe S, U 2, .-
contradiction. Therefore p should be contained in A. So m e (A)*.

Next we prove “D”. For any £, ¢ (A)* (may be p =p,), pec 4. If
peA, then clearly f,e%4(A*). So we may assume ped — A. For
any Ye( yexr#y Y =0 on A. Since Y is a C~ vector field, Y(p) =0
and i"(Y)(p) =0 for all »r=1. Hence Y e £, (may be p = p,). There-
fore S, D (\,exrF, that is, S, e%4(A*). This completes the proof of
Lemma 4.4.

LEMMA 4.5. The natural correspondence o:M* — M preserves the
concept of closed subsets defined by Definition 4.3, that is, A is a closed
subset of M, if and only if A* = o¢7'(A) is a closed subset of M*.

Proof. Let A be a closed subset of M. By Lemma 4.4, ¥4(A*) =
(A)* = A*. Hence A* is closed.

Conversely, let A* = ¢ '(4) be a closed subset of M*, then by
Lemma 4.4, (A)* = ¢4(A*) = A*. Hence 4 = ¢((A)*) = o(A*) = A. So A
is closed.
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LEMMA 4.6. Let @: I'(Ty) —» I'(Ty) be a Lie algebra isomorphism.
Then A* is a closed subset of M*, if and only if ®(A*) is a closed sub-
set of (M)*, where ®(A*) = {O(SF)|SF e A*}.

Proof. Since @ is an isomorphism, @: M* — (M')* is a one to one,
onto correspondence. So we have

di(ﬂ f): NoH= N +.

S € 4* sE4* S ED(A*)

Hence we have m D (N,es #, if and only if O(m) D N, coun#’. This
completes the proof of Lemma 4.6.
Now we define a map ¢: M — M’ by the following formula.

{so(po) = p;
(@) =17, if p #p, and O(F,) = S, .

PROPOSITION 4.7. The natural map ¢: M — M’ is an onto homeo-
morphism.

Proof. Clearly ¢ is a one to one and onto map. From the defini-
tion of ¢, we have the following commutative diagram.

M* _d)_> (M")*

all laz

M — M,
¢

where ¢; is the natural correspondence. Let B be an arbitrary closed
subset of M’. By Lemmas 4.5 and 4.6, (@ 'oo;)(B) is a closed subset
of M*. Since o7 (¢~ (B)) = (@ '00;)(B), we see by Lemma 4.5 that ¢(B)
is a closed subset of M. Hence ¢ is a continuous map. By the same
way we can prove that ¢~' is also continuous. Hence ¢ is a homeomor-
phism.

Next we study the case I'y(Ty) with dimN = 1. Let M and M’ be
C= manifolds and N (resp. N’) be an arbitrary but fixed closed submani-
fold of M. (resp.M’).

PROPOSITION 4.8. Let @: I'y(Ty) — I'y.(Ty) be an isomorphism. Let
S be the maximal ideal of I'y(Ty) corresponding to p, and S’ = O(F)
be the maximal ideal of I'y.(Ty.) corresponding to p’. Then pe N, if
and only if p’e N'.
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Proof. Since &:I'y(Ty) — I'y(Ty) is an isomorphism, I'y(Ty)/ 5
should be isomorphic to I"y.(Ty.)/#’. By Lemma 3.6 this implies pe N
e eN.

LEMMA 4.9. Let ¢: I'y(Ty) —I'y(Ty) be an isomorphism. Then
o (Ker r,) = Ker 7%, that is, @ induces an isomorphism ¥ : I'(Ty) — I'(Ty.),
where r,: I'y(Ty) — I'(Ty) (resp.ry: I'y(Ty)— I'(Ty.)) is the homomor-
phism induced by the restriction of vector fields on M (resp. M’) to N
(resp. N').

Proof. Obviously Kerr, = N\ {rz'#,|peN}. By Proposition 4.8,
O Kerr,) = N {0z ) |pe N} = N {ri'F,lqe N’} = Ker 7.

Let ¢: I'(Ty) —» I'y(Ty) be an isomorphism. Let .# be the maximal
ideal corresponding to pe M. Then by Proposition 3.5 there exists a
unique point ¢ € M’ such that the maximal ideal .#’ = &(#) corresponds
to g. We set ¢(p) =¢q. Now we define the Stone topology of M* =
{#1F C I'y(Ty): maximal ideal} as in the case I'y(T,). Then we have
the following proposition.

PROPOSITION 4.10. The natural correspondence ¢: M — M’ is an onto
homeomorphism such that ¢(N) = N’.

Proof. The proof for ¢ to be a homeomorphism is all the same as
that of the case I'(Ty). By Proposition 4.8, ¢(N) = N’.

§ 5. Characterization of non-zero vector fields.

LEMMA 5.1. Let £, be the maximal ideal of I'(Ty) corresponding
top (p#p). For any XeI'(Ty), X(p) # 0, if and only if [X,I'(Txy)]
+ S, = T'(Tw).

LEMMA 5.1”. For any XeI'y(Ty), X(») # 0, if and only if
(i) X, Iy(Twl + £, =IT'y(Ty) (for p&N) or
(i) [rX, I'(TyY] + SF, =TI (Ty) (for peN).

Proof. The proofs of these lemmas are all the same as that of Lem-
ma 3 of Pursell and Shanks [9] (see also Omori (5]), and omitted.

LEMMA 5.2. Let @:I'(Ty) — I'(Ty) be a Lie algebra isomorphism
and ¢: M — M’ be the induced homeomorphism. For any peM (p # D)
there are smooth local coordinate system (U; at, ---,2™) at p and (V; ¥,
ce Y™ at @(p) = ' such that for any
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b3}
X=8 7

ox

2T, o) = @ee 2

Proof. Since p # p,, there is a smooth local coordinate system (U;
al, --+,2™) at p such that p,¢ U. Hence suitable extensions of 3/dz* (i =
1,...,m) are contained in I'"(T,). We also denote the extended vector
fields by the same letters. Set v, =@0/62") (¢ =1,.--,m). Then
v,eI'(Ty) for all i =1,..-,m. Since (3/9x*)(p) + 0, by Lemma 5.1,
v,(p’) # 0, where p’ = ¢(p). Since O is a Lie algebra isomorphism, on
some neighborhood of p’, [v;, v,] = @&([d/0x?,d/92']) = 0 for all 4,5 =1, ---,
m. Hence there exists a smooth local coordinate system (V; 4, ---,y™)
at p’ such that v; =9/0y* on V. Let ¢ be an arbitrary point in U.
Now, for any X = £4a/ox%) e I'(Ty), a suitable extension of £¥(q)(3/dx%)
is contained in I"y(Ty). We denote it by X*. Since (X — X*)(g) = 0, by
Lemma 5.1, &(X — X*)(¢') = 0. Hence &(X)(¢) = O(X*)(¢) = £4q)-v«q")
= (£%007(q)-(@/3y*)(¢). Therefore P(£%(9/dx") = (¢ )(@/dy*) on V.

COROLLARY 5.3. The induced homeomorphism ¢: M — M’ is linear
with respect to the local coordinate systems defined in Lemma 5.2, that
8, o', -, a™) =2t (=1, ---,m), where ¢ = yoop.

Proof. We use the same notations for the extended vector fields
because all argument here is local. By Lemma 5.2, @(x%3/0x?)) =
(@top™)(@/0y’). On the other hand we have [3/dy*, (x'0 ¢ )(3/0y")] =
@/3y*) (xt o) (3/0y?) and [3/3y*, (x* o) (@/dy))] = @ ([9/0x*, x*(3/0x9)]) =
0u(@/0y’), where . is the Kronecker delta. So we have @/ay*)(x*c¢p™!) =
0. Hence x'o¢p! = y* 4+ C, where C is a constant of integration. Since
¢(0) =0, C =0. Therefore ziop™ = y¢. Since ¢ is a homeomorphism,
Yoo = (@fop™ogp =zt

PROPOSITION 5.4. Let @:1I'(Ty) — I'(Ty.) be a Lie algebra isomor-
phism and ¢: M — M’ be the induced homeomorphism. Then ¢ly,: M,
— Mg is @ C= diffeomorphism, where M, = M — {p,} and M, = M’ — {py}.

Proof. Let feC=(M, be an arbitrary C= function of M, and p’ € M,
be an arbitrary point, and set p’ = ¢(p). Let (U; 2!, ---,2™) be a local
coordinate system at p in M, Since p,¢ U, a suitable extension of
f-9/ox* is contained in I'(T,). We denote the extended vector field by
the same letter. By Lemma 5.2, &(f-98/9x") = (fo¢™")-3/0y' on some
coordinate neighborhood V of p’e M;. Since &(f-0/ox") is a C~ vector
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field, foe™ is a C~ function on V. Since p’ and f are arbitrary, ¢ is
a diffeomorphism.

COROLLARY 5.5. Let ¢:M — M’ be the homeomorphism induced by
the isomorphism @. Then @ = dp on M — {p,}.

Proof. For each point pe M — {p,}, by Lemma 5.2 and Corollary
5.3 ¢!, -+, 2™ = ylop(a!, .-+, ™) = 2* in some neighborhood of p.
Hence for any X = £%9/0x%) € I'(Ty) we have

= (&top! asaj ._._a__= top™?). 9 .
dp(X) = (o9 (-221) o = Gtop)

On the other hand &(X) = (£f0¢™)3/0y’. Hence dp = @ on M — {p,}.

§ 6. Proof of the theorem.
(Case I'(Ty)

LEMMA 6.1. For any YeI'(Ty) and any g € C*(M’') we have
O (gY) = (go@~'(Y) .

Proof. For the case p # p, we already proved in Lemma 5.2. Set
Z = gY — g(py)-Y, where p; = ¢(p,). Clearly Z(p;) = 0. Since @~': I'(Ty.)
— I'(Ty) is an isomorphism, @-'(0) = 0. Hence @~ %(Z)(p,) = ' (gY)(p,)
— 9P 9 (Y)(p) = 0. Hence we have 07'(9Y)(p) = 9(@) P~ (Y)(py) =
(9 ° )P0~ (Y)(Dy).

LEMMA 6.2. Let R' be the one dimensional Euclidean space with
the standard coordinate x. If f:R'— R is a continuous function such
that g(x) = x- f(x) is a C™*' function, then f(x) is a C™ function. More-
over if g is a C* function, then f is also a C* function.

Proof. It suffices to prove that f is a C! function if g is a C? function.
Clearly f is a C? function except the origin 0. We take the Taylor ex-
pansion of g(x) at 0.

9@ = g0) + g'(0)-2 + Lg”(0x)-2* (0<9<1).

Since g(2) = z- (@), 9(0) = 0. So z-f(2) = ¢'(0)-x + }¢”(62)-2*, and we
have f(x) = ¢’(0) + ix9”(6x) for x + 0. Since f(x) is continuous, f(0) =
9’(0). Hence we have
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lim M = lim lg"(ﬂx) = _1‘g”(()) .
20 x z-0 2 2

Therefore f(x) is differentiable at x = 0 and f/(x) is continuous on R!,
that is, f(x) is a C' function. By induction on 7, f(z) becomes a C~
function.

COROLLARY 6.3. Let R™ be the Euclidean m-space with the standard
coordinate (x',.---,2™). If f:R™— R is a continuous function such
that g(x) = 2'- f(x) is a C™' function, then f(x) is @ CT function.
Especially, if g(x) is a C* function then f(x) is also a C* function.

Proof. We regard 22 --.,x™ as smooth parameters of g(x), and take
the Taylor expansion of g(x) at the origin 0e R™ with respect to the
first coordinate «!. Then we can easily prove the differentiability of f(x).

THEOREM 6.4, Let @:I'(Ty) — I'(Ty) be a Lie algebra isomorphism.
and ¢: M — M be the induced homeomorphism. Then ¢ becomes a C
diff eomorphism.

Proof. By Proposition 5.4, ¢: M — {p)} — M’ — {pg} is a C= diffeo-
morphism. So it suffices to prove the differentiability of ¢ at p,e M.
Let (U; 2! ---,2™) be a local coordinate at p,e M. Then suitable ex-
tension of x'.9/9x* is contained in I'W(Ty). We denote the extended
vector field by X. Set Y = &(X), then Y e I'(Ty,). For any ge C(M')
we set Y, =g9Y. Then Y, eI'(Ty,). Hence X, = @ (Y, is contained
in I'(Ty). By Lemma 6.1,

X, =07'Q9Y) = (gop)@ (YY) = (gop)X .

Hence, on the neighborhood U, X, = (go¢)-x'(@/0x"). Since X, is a C~
vector field, (g0 ¢)-2'e C*(U). By Proposition 4.7, ¢ is continuous. There-
fore the composition go¢ is continuous and, by Corollary 6.3, ¢ is C>
differentiable at p,e U C M.

COROLLARY 6.5. Let M and M’ be compact manifolds without
boundaries. If Lie algebras of 2(M,p,) and 2M’,p,) are isomorphic,
then 2(M,p,) = 2(M’,p;) as 1.L.H.-Lie groups.

Proof. Since Lie algebras of 2(M,p,) and 2(M’,p,) are exactly
r(r,) and I(Ty.), by Theorem 6.4,

DM, p) = 2M',pp) .
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COROLLARY 6.6. Let ¢: M — M’ be the diffeomorphism induced by 9.
Then we have dyp = @.

Proof. Since @:I'(Ty) —I'(Ty) is an isomorphism, for any
Xel'(Ty), 9X)eI'(Ty). Since ¢: M — M is a C= diffeomorphism,
also we have do(X) e I'(Ty.). By Corollary 5.5 dp(X) = &(X) on M’ —
{pi} as C= vector fields. By continuity of the vector fields we have

dp(X)(p9) = O(X)(py). Hence dp = .

COROLLARY 6.7. Let N = {p,,---,ps} and N’ = {p},---,p;} be zero
dimensional manifolds consisting of finite number of points. If I'y(T,)
18 isomorphic to I'y(Ty.), then s =t and there exists a C~ diffeomor-
phism ¢: M — M’ such that ¢(N) = N’.

Proof. The proof is easy, and omitted.

(Case I'y(Ty) with dim N = 1)

LEMMA 6.8. Let @: I'y(Ty) — I'y.(Ty.)be a Lie algebra isomorphism.
We have then, for any fe C=(M) and X e I'y(Ty), O(fX) = (f oo HD(X).

Proof. The proof is all the same as that of Lemma 5.2, and omitted.

THEOREM 6.9. Let @: I (Ty) — I'y(Ty.) be an isomorphism and
o: M — M be the induced homeomorphism. Then ¢ is a C~ diffeomor-
phism such that o(N) = N'.

Proof. Let g be an arbitrary function in C=(M’), and q = ¢(p) be
an arbitrarily fixed point. Let Y be any element of I'y.(T,.) such that
Y(@) #0. Actually we can take such Y, because of dim N’ > 1. We set
X=0%(Y), Y,=9Y and X, = 0°(Y)).

(Case p2 N) By Lemma 5.1, [Y,I'y.(Ty)]l + #; = I'y.(Ty.), where
S, is the maximal ideal corresponding to q. Since @ is a Lie algebra
isomorphism, by operating &' to the above equality we have [X, I"y(T;)]
+ S, =I'y(Ty). Hence X(p) +# 0.

(Case peN) By Lemma 5.V, [*,Y,I'(Ty)]+ J5,=I(Ty). By
operating the isomorphism ¥-': I'(Ty.) — I'(Ty), we have (r,X)(p) # 0.
Hence X(p) # 0.

So we may assume that X = 9/dx' on a some neighborhood U of p.
On the other hand, X, =0 (Y)) =907'(gY) =(gop)? ' (Y) = (gop)X.

https://doi.org/10.1017/5S0027763000016238 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016238

110 AKIRA KORIYAMA

Hence X, = (9go¢)@/0x") on U. This is an expression of the smooth
vector field X, with respect to the local coordinate on U. Therefore go¢
is contained in C~(M). So ¢ is a diffeomorphism.

COROLLARY 6.10. Let ¢: M — M’ be the diffeomorphism induced by
@. Then we have dp = @.

Proof. The proof is same as that of Corollary 6.6.
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