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For mobile 3-D radar installed on a gyro-stabilized platform, its measurements are usually
contaminated by the systematic biases which contain radar offset biases (i.e., range, azimuth
and elevation biases) and attitude biases (i.e., yaw, pitch and roll biases) of the platform
because of the errors in the Inertial Measurement Units (IMU). Systematic biases can NOT
be removed by a single radar itself; however, fortunately, they can be estimated by using two
different radar measurements of the same target. The process of estimating systematic biases
and then compensating radar measurements is called error registration. In this paper, the
registration models are established first, then, the equivalent radar measurement error
expressions caused by the attitude biases are derived and the dependencies among attitude
biases and offset biases are analysed by using the observable matrix criterion. Based on the
analyses above, an Optimized Bias Estimation Model (OBEM) is proposed for registration.
OBEM uses the subtraction of azimuth and yaw bias as one variable and omits roll and pitch
biases in the state vector, which decreases the dimension of the state vector from fourteen of
the All Augmented Model (AAM), (which uses all the systematic biases of both radars as
state vector) to eight and has about 80% reduction in calculation costs. Also, OBEM can
decrease the coupling influences of roll and pitch biases and improve the estimation
performance of radar elevation bias. Monte Carlo experiments were made. Numerical results
showed that the bias estimation accuracies and the rectified radar raw measurement
accuracies can be improved.
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1. INTRODUCTION. With the rapid demands of the situation awareness
capability in the military and civilian surveillance and navigation systems, it is vitally
important to fuse all the information from different sensors to obtain accurate target
location estimation and comprehensive attribute information. However, before the
benefits of fusion can be realized, the sensor registration problem (or alignment) must
be addressed because of the existence of unavoidable systematic biases which make the
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measurements deviate from the true locations (see Feng and Ochieng, 2006). In this
situation, when different sensors’ measurements are transformed to a common
reference frame for fusion, the estimation accuracy will be decreased, also, data
disassociation and redundant tracks will occur, which can seriously harm the fusion.
Fortunately, many error registration methods were developed to estimate these biases
and compensate sensor measurements which include parameter estimation methods
(see Chen et al., 2012); however, these methods are based on the stationary radar
networks, and the systematic biases in consideration include range, the gain of range,
azimuth, and elevation biases which are usually referred to as offset biases.
As distinct from stationary radar, mobile radar measurements contain attitude

biases of platform at the same time (Progri et al., 1998; Progri, 2011; Setoodeh et al.,
2007; Falcone et al., 1998). Attitude biases, which means yaw, pitch, and roll biases,
can be caused by the accumulated biases in the gyros in the Inertial Measurements
Units (IMU) of the Inertial Navigation System (INS) (King 1997). They influence
radar measurements in two ways, according to different radar installation methods.

. As shown in Figure 1(a), the first type consists of large ship-borne radar which is
installed on the gyro-stabilized platforms and can steadily follow systems
referenced on local East-North-Up (ENU) coordinate environments. For the
ENU frame, its origin o locates at the centre of the gyro-stabilized platform, three
mutually orthogonal axes x, y, and z refer to the directions of East, North and
Up, respectively. The plane xoy is horizontal.

. As shown in Figure 1(b), the second type consists of airborne radar which is
directly fixed on platforms and rotates with platforms simultaneously.

For the first type, radar directly provides target coordinates in ENU reference
frame. For the second type, the measurements are made in the measurement frame
(Upadhyay et al., 1999) which should be converted to the ENU frame by using
attitude angles provided by the INS. The common characteristic for both types of
mobile radars is that they all need real-time attitude angle information of the platform
to rectify radar sensitive axes which contain attitude biases (Hide et al., 2007). Since
the mechanisms of both types of mobile radar measurements are different, the
registration models for them are different, too. In the paper, only the first type is
discussed for length limitation, the second type will be discussed later.
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Figure 1. Measurement from moving platform radar.
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Unlike stationary radars, the difficulty for mobile radar registration lies in the
estimation of offset biases and attitude biases simultaneously. However, both types of
biases are coupled and the coupling influences of attitude biases on radar
measurements are nonlinear, time-varying, and related to the relative positions of
the target. These influences assume as varying radar measurement errors which cannot
be distinguished from radar native offset biases. Although it is difficult to estimate
both types of biases separately, Cruz et al. (1992); Helmick and Rice (1993) have made
some efforts.
A two-stepped method was adopted by Cruz et al. (1992), which first estimated

radar offset biases using a Kalman Filter (KF) without considering the influences
of the attitude biases; that is, all the attitude biases were assumed to be zeros.
Subsequently, another KF was used merely to estimate the attitude biases by using
the measurements rectified by the offset bias estimations obtained in the first step.
This method in fact ignored the coupling between two different kinds of biases.
The model proposed by Helmick and Rice (1993) considered the coupling
adequately, but their methods assumed that the sensors were close enough (e.g.,
they located on the same platform). For models proposed by Cruz et al. (1992)
and Helmick and Rice (1993), they both selected the relative offset biases and
relative attitude biases as the system state variables. As a result, their methods
could not get absolute bias estimations of each sensor. Chen et al. (2012) proposed
Attitude Bias Conversion Mode (ABCM), which converted the attitude biases
into radar measurement errors to establish the registration equations, and used
the Unscented Kalman Filter (UKF) to estimate the biases. The estimation results
of ABCM for pitch and roll biases are zeros because the equivalent measurement
error expressions caused by the attitude biases include the target coordinates
which are big in magnitudes and limit the attitude bias estimations. Also, they
proved that the linearization is not the reason for the poor estimations of attitude
biases.
Based on the ABCM, we study the mobile 3-D radar registration problem where

both offset biases and attitude biases are included in radar measurements. The Earth-
Centred Earth-Fixed Frame (ECEF) (Kim and Smyton 1988 and Zhou et al., 1999) is
selected as the reference frame because it can maintain higher coordinate conversion
accuracy in a large space. As distinct from Chen et al. (2012), the equivalent
measurement errors caused by the attitude biases are derived and the dependencies of
the azimuth and yaw biases are proved. Then, an Optimized Bias Estimation Model
(OBEM) is developed whose state vector does NOT contain the pitch and roll biases,
However, the estimation result of the elevation bias contains their influences. Since the
dimensions of the state vector are small, OBEM can reduce the computational costs
and has better performance than ABCM. OBEM can estimate the absolute biases of
both radars.
For the purposes of discussion, it is assumed that all the biases are constants

(since attitude biases are slowly varying biases); both radars have accurate position
information of themselves; they are synchronized and have the same sampling
intervals.
Progri (2011, Chapter 5) provides the most comprehensive description on best

blind adaptive algorithms which could be utilized for future applications of
mobile radar error registration algorithms of both stationary and non-stationary
radars.

229OPTIMIZED BIAS ESTIMATION MODELNO. 2

https://doi.org/10.1017/S0373463312000458 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000458


The main contributions of this paper are:

. The All Augmented Model (AAM) is proposed after analysing radar
measurement models.

. Based on AAM, the dependencies between azimuth and yaw biases and the
equivalent measurement error expressions caused by the attitude biases are given.

. OBEM is proposed according to the second bullet above, and its performance is
tested by a simulated track.

Compared with the AAM and the ‘Attitude Bias Conversion Mode - Square Root
Unscented Kalman Filter’ (ABCM-SRUKF), the OBEM has fewer state variables
and the best estimation performance for the absolute systematic biases. This paper is
organized as follows. In Section 2, a basic mathematical model is developed for the
first kind of mobile radar according to the measurement generating mechanism. Then
the coupling influence expressions are derived and the observability of AAM is
analysed to introduce OBEM. The alignment algorithms are tested in Section 3 with
simulated track data. Finally, in Section 4, the results of this study are provided.

2. MATHEMATICAL MODEL. The problem addressed in this work can be
stated as follows. Consider the ith radar, where i={1,2}, which is installed on the ith
moving ship. The geographic coordinates of the ith ship are latitude Lsi, longitude Rsi,
and altitude Hi, which are known in real time. Three-axis gyro-stabilized platform
(King, 1997) of radar can steadily track the local ENU frame as shown in Figure 2.
A stabilized platform is installed on the carrier through inner and outer gimbals
sequentially; the gimbals are free to rotate with respect to one another. The spin axis of
platform points to the North, the inner gimbal points to East, and the outer gimbal
points to Up, respectively. There are three orthogonal IMUs installed on the platform
whose stable axes point to East, North, and Up, respectively. The annunciators of
IMUs which are fixed on the IMU stable axes output pitch, roll, and yaw angles of the
platform relative to ENU frame, respectively. When carrier’s attitude angles change,
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Figure 2. Working principle diagram of the stabilized platform (left) and conversion from the
platform frame to ENU (right).
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they can drive the platform to rotate simultaneously. Since the stable axis of IMU is
invariable, it can measure the variation of the attitude angle relative to its stable
axis and output electric signals proportional to the attitude angle magnitude. Then,
the electric signals are sent to the servo system to drive the motor to rotate with the
corresponding axis of the platform in the opposite direction and the same magnitude
to the attitude angle, which can compensate the rotation of the carrier. Thus the axes
of the platform can steadily point to East, North and Up all the time.
We define the output Cartesian coordinates of the gyro-stabilized platform as the

platform frame. The platform frame has the same origin with ENU, but its axes have
angle biases with the corresponding axes of ENU. These biases are attitude biases.
Figure 2 (right) shows the conversion process from the platform frame to ENU, where
xp, yp, and zp denotes x-, y-, and z- axes of the platform coordinates respectively,
and the axes drawn in dashed lines are intermediate axes. As shown in Figure 2 (right),
the transformation of the target coordinates from the platform frame to ENU is
accomplished by first rotating about the y-axis of the platform frame by the roll bias
Δψ, then rotating about the intermediate x-axis by the pitch bias Δη, and rotating
about the final z-axis by the yaw bias Δφ. Customarily, the polarities of Δφ and ∆ψ
abide by the left-hand rule, and Δη abides by the right-hand rule. For the ECEF frame
(Zhou et al., 1999), its origin locates at the centre of the Earth; its x-axis passes
through the Greenwich meridian; its z-axis coincides with the Earth’s axis of rotation;
its y-axis lies in the equatorial plane to form a right-handed system of coordinate axes.
Radar measurements are based on the measurement frame which shares the same

origin with the platform frame. In order to analyse the composition of radar
measurements, Figure 3 (left) gives the connection between radar offset biases and
their measurements without considering random measurement noises. As for random
noises, they are additive.
In Figure 3 (left), Tt denotes the true location of the target, and Tm denotes the

radar measurement which contains offset biases only. The dashed lines denote the
projection to planes xpoyp and ypozp, respectively. From Figure 3 (left), we know that
there are azimuth and elevation biases between the corresponding coordinate axes of
the measurement frame and the platform frame. The measurements from the ith radar
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Figure 3. Connection between the radar offset biases and their measurements without considering
random measurement noises (left) and the mechanism of the azimuth measurements (right).
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include the range ri, azimuth θi (as shown in Figure 3 [right]), the true North direction
corresponds to θ=0, and the clockwise direction denotes the increment of θ which can
be seen in Earle (2008), and elevation εi. These measurements contain the true target
position information (such as the true range rit, azimuth θit and elevation εit); radar
offset biases (such as the range bias Δri, the gain of range kri which arises for
atmospheric refraction, azimuth Δθi and elevation bias Δεi); attitude biases (such as
yaw bias Δφi, pitch Δηi and roll Δψi); and random measurement noises (such as the
range noise δri, azimuth δθi and elevation δεi). The random measurement noises are
zero-mean, Gaussian white with known standard deviations.
The main work for mobile radar registration is to estimate radar offset

biases and attitude biases simultaneously using both radars’ raw measurements.
Usually, the following steps are adopted to establish the mathematic models. As
shown in Figure 4, first, radar offset biases and random measurement errors included
in the raw measurements are removed to obtain the True Target Coordinates (TTC)
in the platform frame. Then, the TTC in the ENU frame are obtained by using
rotation transformation caused by the attitude biases. Finally, the conversion from
the ENU to the ECEF frame is used to obtain the TTC in the common reference
frame.
The theoretical basis for the alignment algorithm is that the true coordinates of

the same target included in both radars’ raw measurements are equal when they are
converted to a common reference frame. The main procedures are as follows.

2.1. True Target Coordinates in Platform Frame. Let the column vector
Xi_p(k)= [xi_p(k), yi_p(k), zi_p(k)]

T denote the TTC in the ith radar platform frame at
observation time k, where the superscript ‘T ’ denotes a matrix or vector transposition.
Each element in Xi_p is a nonlinear function of radar raw measurements, radar offset
biases, and random measurement noises. Since the biases and noises are small in
magnitudes, then, Xi_p can be approximated by the first-order Maclaurin series
expansion as:

Xi p(k) ≈ Xi(k) + Ai(k)βi(k) + Ci(k)wi(k) (1)
where:

Xi(k) = Xi−p(k)|βi=0
wi (k)=0

=
ri(k)sin(θi(k))cos (εi(k))
ri(k)cos (θi(k))cos (εi(k))

ri(k)sin(εi(k))





;Ai(k) = ∂Xi p(k)

∂βi(k)
∣∣∣∣βi=0
wi (k)=0

;

and:

Ci(k) = ∂Xi p(k)
∂wi(k)

∣∣∣∣βi=0
wi (k)=0

; βi(k) = [Δri, kri,Δθi,Δεi]T ; and wi(k) = [δri(k), δθi(k), δεi(k)]T

r kr
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Figure 4. The conversion of the True Target Coordinates (TTC) from the radar measurement to
the ECEF.
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It should be noted that the range error caused by the gain of the range bias is
correlated with the true target range, however, it cannot be obtained in practice, and it
can be approximated by the range measurement.

2.2. Transition from the Platform Frame to the ENU. The transition from the
platform frame to the ENU can be described by three sequential rotating
transformations. Each transformation can be described as one rotation matrix.
According to the polarity definition of the attitude biases and rotating transformation
order, we can get the following rotation matrix:

2.2.1. Roll Bias Rotation Matrix.

TΔψ =
cos Δψ 0 −sinΔψ

0 1 0
sinΔψ 0 cos Δψ





; (2)

2.2.2. Pitch Bias Rotation Matrix.

TΔη =
1 0 0
0 cos Δη −sinΔη
0 sinΔη cos Δη





; (3)

2.2.3. Yaw Bias Rotation Matrix.

TΔϕ =
cos Δϕ sinΔϕ 0
−sinΔϕ cos Δϕ 0

0 0 1





. (4)

The rotation matrices given above are orthogonal matrices which satisfy TT=T−1.
According to Equations (2)–(4), the TTC in the ENU frame can be written as:

Xi ENU = [xi ENU , yi ENU , zi ENU ]T = TΔϕiTΔηiTΔψiXi p = Ti p2ENUXi p (5)
Xi−p = TT

ΔψiT
T
ΔηiT

T
ΔϕiXi ENU = Ti ENU2pXi ENU (6)

where:

Ti_ENU2p denotes the rotation matrix from ENU to the platform frame.
Ti_2pENU denotes the inverse transformation of Ti_ENU2p.

Both of them are orthogonal matrices, that is, T−1
i p2ENU = TT

i p2ENU = Ti ENU2p and:

Ti p2ENU =
ti p2ENU (1, 1) ti p2ENU (1, 2) ti p2ENU (1, 3)
ti p2ENU (2, 1) ti p2ENU (2, 2) ti p2ENU (2, 3)
ti p2ENU (3, 1) ti p2ENU (2, 3) ti p2ENU (3, 3)





 (7)

where:

ti p2ENU (1,1) = cos Δψi cos Δϕi − sinΔψi sinΔηi sinΔϕi (7a)
ti p2ENU (2,1) = −cos Δψi sinΔϕi − sinΔψi sinΔηi cos Δϕi (7b)
ti p2ENU (3,1) = −cos Δψi sinΔϕi − sinΔψi sinΔηi cos Δϕi (7c)
ti p2ENU (1,2) = cos Δηi sinΔϕi (7d)
ti p2ENU (2,2) = cos Δηi cos Δϕi (7e)
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ti p2ENU (2,3) = sinΔηi (7f)
ti p2ENU (1,3) = −sinΔψi cos Δϕi − cos Δψi sinΔηi sinΔϕi (7g)
ti p2ENU (2,3) = sinΔψi sinΔϕi − cos Δψi sinΔηi cos Δϕi (7h)
ti p2ENU (3,3) = cos Δψi cos Δηi (7i)
Equation (7) can be approximated by the first-order Maclaurin series expansion

about attitude biases as:

Ti p2ENU ≈ I+
0 1 0
−1 0 0
0 0 0





Δϕi + 0 0 0

0 0 −1
0 1 0





Δηi + 0 0 −1

0 0 0
1 0 0





Δψi = I+ Δi (8)

where: I is a 3×3 identity matrix,
and:

Δi =
0 Δϕi −Δψi
−Δϕi 0 −Δηi
Δψi Δηi 0





 (9)

Substituting Equations (1), (8) into Equation (5), we have:

Xi ENU (k) ≈ [I+ Δi(k)][Xi(k) + Ai(k)βi(k) + Ci(k)wi(k)] (10)

2.3. Transition from the ENU to the ECEF. Given the geographic coordinates of
the ith radar, the TTC in the ECEF can be given as (Zhou et al., 1999):

Xi ECEF (k) = Xis(k) + Ti(k) × Xi ENU (k) (11)
where:

Xis(k) denotes the ECEF coordinates of the ith radar.
Ti(k) is the rotation matrix.

Both variables are only correlated with the geographic coordinates of the ith radar
at time k. The geometry of the target coordinates in the ECEF is shown in Figure 5.

2.4. All Augmented Model for Estimation. Substituting Equation (10) into
Equation (11), we can obtain:

Xi ECEF (k) = Xis(k) + Ti(k)[I+ Δi(k)][Xi(k) + Ai(k)βi(k) + Ci(k)wi(k)] (12)
According to the fact that:

X1 ECEF (k) = X2 ECEF (k) (13)
The registration equations can be established (for simplicity, time argument ‘k’ is

omitted in the following equations) as:

X1s + T1(I+ Δ1)(X1 + A1β1 + C1w1) = X2s + T2(I+ Δ2)(X2 + A2β2 + C2w2) (14)
Omitting the higher order terms, Equation (14) can be approximated as:

X1s + T1(X1 + A1β1 + C1w1) + T1Δ1X1 = X2s + T2(X2 + A2β2 + C2w2) + T2Δ2X2 (15)
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Usually, for moving platform radar registration equations, the offset and attitude
biases of both radars are written sequentially in the state vector as:

βAAM = [Δr1, kr1,Δθ1,Δε1,Δr2, kr2,Δθ2,Δε2,Δϕ1,Δη1,Δψ1,Δϕ2,Δη2,Δψ2]T (16)
According to Equation (16), Equation (15) can be rearranged as:

ZAAM = [T1A1,−T2A2, D1, −D2]βAAM + [T1C1,−T2C2] w1

w2

[ ]
(17)

where:

ZAAM = X2s − X1s + T2X2 − T1X1 (18)

Di =
xiaidi − yici yibidi + ziaidi xibidi + zici
xiaici + yicidi yibici + ziaici xibici − zidi

−xibi yiai − zibi xiai





and

ai = sinLsi
bi = cos Lsi
ci = sinRsi
di = cosRsi


 (19)

For constant systematic bias model (Bar-Shalom, 2001), the state equation can be
written as:

βAAM(k + 1) = βAAM(k) (20)
According to Equations (17) and (20), a KF can be used to estimate the

systematic biases (Xu et al., 2010). Since this model selects all the offset biases
and attitude biases as state vector, we call this model an AAM. AAM is a primary
method of mobile radar registration, but it does not consider the coupling influences
of the attitude biases on radar offset biases. Consequently, the estimations of
radar offset biases are inaccurate. In view of this, the coupling influences are analysed
below.

ECEFx

ECEFy

ECEFz

E

N
U

platform

target

Figure 5. Conversion from the ENU to the ECEF frame.

235OPTIMIZED BIAS ESTIMATION MODELNO. 2

https://doi.org/10.1017/S0373463312000458 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000458


2.5. Analysis of Coupling Influences of Attitude Biases.
2.5.1. Proposition 1. For dynamic equations consisting of Equations (17) and

(20), if azimuth and yaw biases are combined to form a new variable, the system is
observable.

2.5.2. Proof. Assuming a discrete linear time-varying system, its state and
measurement equations can be described as:

β(k) = F(k, k − 1)β(k − 1) +G(k)W(k), (21a)
Z(k) = H(k)β(k) + V(k). (21b)

Then the system is called N-step observable if, and only if, its observation matrixM
satisfies (Peters and Iglesias, 1997 and Bar-Shalom, 2001):

M(k, k −N + 1) =
∑k

i=k−N+1

FT (k, i)HT (i)H(i)F(k, i) . 0, (22)

where:

F(k,i) denotes the state transition matrix from time instant i to k.
H(i) is the measurement matrix at time i.
N is a positive integer which is unrelated to k.

According to Equations (17), (20) and (22), the observation matrix of AAM can be
written as:

M(k, k −N + 1) =
∑k

i=k−N+1

HT (i)H(i) =
∑k

i=k−N+1

S(i), (23)

where H(i)= [T1(i)A1(i),−T2(i)A2(i), D1(i), −D2(i)] is a 3×14 matrix and S(i)=HT(i)
H(i) is a 14×14 matrix.
In Equation (23), omitting time index, each element in matrix S can be written as:

Sij =
∑3
u=1

HT
iuHuj =

∑3
u=1

HuiHuj, (24)

where Sij denotes the ith row and the jth column element in the matrix S.
In Equation (15), only the term T1Δ1X1 contains attitude biases of platform 1, and it

can be written as:

T1Δ1X1 = D1a1, (25)
where a1= [Δφ1, Δη1, Δψ1]

T.
In linear Equation (15), the coefficients of radar 1 azimuth bias can be written as:

T1A1(:, 3) =

c1r1cos θ1cos ε1 − a1b1r1sin θ1cos ε1
− d1r1cos θ1cos ε1 − a1c1r1sin θ1cos ε1

b1r1sin θ1cos ε1







=
y1c1 − x1a1d1
−y1d1 − x1a1c1

x1b1










;

a1 = sin Ls1
b1 = cos Ls1
c1 = sin Rs1
d1 = cos Rs1


 (26)

where F(:, i) denotes the ith column vector in the matrix F.
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According to Equations (19) and (26):

T1A1(:, 3) = −D1(:, 1) (27)
Equation (27) means that the coefficients of the yaw bias of platform 1 in

Equation (17) are in proportion to the coefficients of the azimuth bias of radar
1. That is, in Equation (24), H(:, 3)=−H(:, 9). According to Equation (24),
Si3=Σu=1

3 Hiu
THu3=Σu=1

3 HuiHu3=−Si9. Similarly, for radar 2, si7=− si12. So, the
observation matrix M is not a positive definite matrix. According to the definition of
Equation (22), the system is unobservable.
On the contrary, if we subtract the yaw bias from the azimuth bias to form a new

variable, then, the dimension of state vector in Equation (17) will be reduced from 14
to 12. From Equation (23), when N≥4 and the positions of the target are different at
each sampling instant, the observation matrix M can be guaranteed to be positive
definite, according to the definition in Equation (22), the system is observable.
Assuming radar measurement errors caused by the attitude biases can be described

as Δrc(a
T), Δθc(a

T), and Δεc(a
T); a=[Δφ, Δη, Δψ]T which denote range, azimuth, and

elevation errors, respectively, then, the following proposition holds.
2.5.3. Proposition 2. For measurement errors caused by the attitude biases,

when attitude biases are small, the following results can be obtained:

(a) Δrc=0+o(a);

(b) Δθc = −Δϕ+ yzΔψ − xzΔη
x2 + y2

+ o(a);

and:

(c) Δεc = −xΔψ − yΔη���������
x2 + y2

√ + o(a)

2.5.4. Proof. Using the first-order approximation, Equation (10) can be
written as:

Xi ENU ≈ Xi + Aiβi + Ciwi + ΔiXi (28a)
Xi ENU + (−Aiβi − Ciwi − ΔiXi) ≈ Xi (28b)

The last term of the left hand side of Equation (28b) is the error expression caused
by the attitude biases. Omitting the subscript ‘i’, it can be rewritten as:

ex
ey
ez





 = −ΔX = −

0 Δϕ −Δψ
−Δϕ 0 −Δη
Δψ Δη 0





 x

y
z





 (29)

where ex, ey, and ez denote the errors in x, y, and z coordinates, respectively.
According to Equation (29), the measurement errors caused by the attitude biases

can be written as follows.
2.5.4.1. Range Error Caused by the Attitude Biases. The range error can be

given by:

Δrc(a) =
������������������������������������
(x+ ex)2 + (y+ ey)2 + (z+ ez)2

√
−

��������������
x2 + y2 + z2

√
(30)
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Substituting Equation (29) into Equation (30), Equation (30) can be approximated
by the first order Maclaurin series as (for details see Appendix A):

Δrc(a) = 0+ o(a) (31)
Equation (31) manifests that the range error caused by the attitude biases is

approximately zero.
2.5.4.2. Azimuth Error Caused by the Attitude Biases. Assuming the true

azimuth of target is θ and the additional azimuth caused by the attitude biases is
Δθc, there are two cases to be discussed to calculate Δθc, according to the different
locations of the target.

2.5.4.3. The Target Does Not Locate on the x-Axis of the ENU Frame. By the
definition of azimuth, we have:

tan(θ) = x/y (32)
tan(θ + Δθc) = (x+ ex)/(y+ ey) (33)

then:

tan(Δθc) = tan(θ + Δθc − θ) = tan(θ + Δθc) − tan(θ)
1+ tan(θ + Δθc) tan(θ) (34)

Substituting Equations (32), (33) into Equation (34), the first order approximation
of Equation (34) can be written as:

tan(Δθc) = tan(θ + Δθc − θ) = tan(θ + Δθc) − tan(θ)
1+ tan(θ + Δθc) tan(θ) (35)

Equation (35) can be approximated further as:

Δθc = −Δϕ+ yzΔψ − xzΔη
x2 + y2

+ o(a) (36)

2.5.4.4. The Target Locates on the x-Axis of the ENU Frame. In this case:

x = rxoy, y = 0 (37)
where rxoy denotes the projection of the target range on xoy plane of the ENU frame.
Substituting Equation (37) into Equation (29) gives:

ex = zΔψ, ey = rxoyΔϕ+ zΔη (38)
According to Equation (37) and Equation (38), the azimuth error can be

described as:

tan(Δθc) = − y+ ey
x+ ex

= − rxoyΔϕ+ zΔη
rxoy + zΔψ

≈ − rxoyΔϕ+ zΔη
rxoy

= −Δϕ− z
rxoy

Δη (39)

Equation (39) can be approximated as:

Δθc ≈ −Δϕ− z
rxoy

Δη (40)

In fact, Equation (40) is included in Equation (36). Considering the fact that rxoy≫z,
the result of Equation (36) manifests that the yaw bias is the main factor in causing
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radar azimuth measurement error and the effects of pitch and roll biases can be
omitted. According to the analyses above, Δθc is approximately −Δφ.

2.5.4.5. Elevation Error Caused by the Attitude Biases. Similarly, assuming the
true elevation of the target is ε, the additional elevation error caused by the attitude
biases is Δεc.
Then:

tan(ε) = z/
���������
x2 + y2

√
(41)

tan(ε+ Δεc) = (z+ ez)/
�����������������������
(x+ ex)2 + (y+ ey)2

√
(42)

tan(Δεc) = tan(ε+ Δεc − ε) = tan(ε+ Δεc) − tan(ε)
1+ tan(ε+ Δεc) tan(ε) (43)

Substituting Equations (41) and (42) into Equation (43), using first order
approximation, Equation (43) can be written as:

tan(Δεc) = −xΔψ − yΔη���������
x2 + y2

√ + o(a) (44)

Further approximation for Equation (44) can be written as:

Δεc = −xΔψ − yΔη���������
x2 + y2

√ + o(a) (45)

Equation (45) indicates that the elevation error is mainly caused by the roll and
pitch biases, its magnitudes are related to the position of the target.

2.6. Optimized Bias Estimation Model (OBEM). Proposition 1 and Equation
(36) suggest that both of the platforms’ yaw biases should be deleted in the state vector
Equation (16). The azimuth biases left are in fact equivalent to the subtraction of the
yaw biases from azimuth biases. Since the azimuth and yaw biases are constants, the
azimuth biases left are constants, too, which coincide with the state Equation (20) used
for a KF. So, the remaining azimuth bias variables can be estimated accurately.
According to Equation (45), the equivalent elevation error is mainly caused by the

roll and pitch biases. Its magnitude is not a constant and changes with different target
locations, however, the variations are small in each sampling period, and the invariant
part manifests the dependencies between the elevation bias and yaw, pitch biases.
Since the dependencies are strong, when selecting system state vector, it is practical to
abandon both pitch and roll biases and the remained elevation bias variable in fact
contains their influences. In view of this, the state vector can be written as:

βOBEM = [Δr1, kr1, (Δθ1 − Δϕ1), Δε1,Δr2, kr2, (Δθ2 − Δϕ2),Δε2]T (46)
Since the state vector is selected optimally, we call this model the Optimized Bias

Estimation Model (OBEM).
Rearranging Equation (15) in terms of Equation (46), the equivalent measurement

equation is given by:

ZOBEM = [T1A1,−T2A2]βOBEM + [T1C1,−T2C2] w1

w2

[ ]
(47)
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where:

ZOBEM = X2s − X1s + T2X2 − T1X1 (48)
Since the systematic biases are constants, the state equation can be described as:

βOBEM (k + 1) = βOBEM (k) (49)
Equations (47) and (49) constitute the linearized dynamic equations; a KF can be

used to estimate these biases. The complete algorithm flowchart is described in
Figure 6.

3. SIMULATION RESULTS. The alignment algorithms are tested by
generating a common track for two radars installed on different ships. The system
test setup block diagram is depicted in Figure 7 (left). Since the comparison between
OBEM and ABCM-SRUKF has been made (Chen et al., 2012) and the results given
are comprehensive, OBEM is only compared with AAM in this section. Assuming
that ship 1 and ship 2 are moving with constant velocity model, and the initial
geographical coordinates are [40°, 116°, 10 m], [40·75°, 115·34°, 10 m], respectively.
The initial states of both ships in their native ENU frame are [0,10 m/s, 0, 10 m/s, 0, 0].
In state vector, the variables denote x-coordinate (East), x-velocity, y-coordinate
(North), y-velocity, z-coordinate (Up), and z-velocity, respectively. The standard
deviations of both ships’ process noises are equal to those which are given in x, y, and z
coordinates by 0·1 m/s2, 0·1 m/s2, and 0 m/s2, respectively. Fusion centre locates at
the initial position of ship 1. The constant velocity model is also used for the target.
The initial state of the target in fusion centre is [60 km,−170 m/s, 30 km, 30m/s, 5 km,
1 m/s]. The standard deviations of the process noise in x, y, and z coordinates are set to
1 m/s2, 1 m/s2, and 0·1 m/s2, respectively. The geometry of radar and target is shown in
Figure 7 (right). The true offset biases of both radars are assumed to be constant and

k

Ls Rs Hs Ls Rs Hs

r k k k
r k k k

P

k k k

k k kP P

k k k k kZ H

k k k kv Z Z
T T

k k k k k k kS H P H R
T

k k k k kK P H S

k k k k k kK v
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k k k k k k

T
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k k k kP

k
k k k k kZ H w
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Z X X

T X T X

kkH T A T A T C T C

r rdiagR
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Kalman filtering:

Radar measurements:

Radar geographic coordinates:

Generating equivalent
measurement equations:

Figure 6. The complete algorithm flowchart for OBEM using first-order linearized model.
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equal as Δri=300m, kri=0.01, Δθi=2°, and Δεi=2°, respectively. The standard
deviations of random measurement noises for both radars are σri=50m, σθi = 0·5W,
and σεi = 0·5W, respectively. The attitude biases of both platforms are also assumed to
be constant and equal as Δφi=2°, Δηi=1°, and Δψi=1°, respectively. It is assumed that
both radars are synchronized with the same sampling intervals T=5 s. 200 scans of the
target are simulated and the number of Monte Carlo runs is set to 100. Figures 8–10
contain all the simulation results.
Figure 8 contains the Root Mean Square Errors (RMSE) of the offset biases of

radar 1 and radar 2, respectively, where:

The solid lines represent the results of AAM.
The dashed lines represent OBEM.
The red lines represent radar 1.
The blue lines represent radar 2.

(a) is the gross range bias which is the sum of the range bias and the range bias
induced by the gain of the range.

(b) is the elevation bias.
(c) is the subtraction of the yaw bias from azimuth bias.

The main difference between the OBEM and AAM is the estimation
accuracy of the elevation bias; OBEM performs better than AAM, which verifies
Proposition 2. (c) shows that the RMSE of the subtraction of yaw bias from azimuth
bias is less than 0·5°, which verifies Proposition 1.
The RMSEs of pitch and roll biases estimated by AAM are given in Figure 9. The

results show that the estimations deviate from the true values significantly because of
the strong dependencies. Since the real model has strong nonlinearity, and OBEM in
the paper is a first-order Extended Kalman Filter (EKF), linearization will inevitably
cause big estimation errors.
An UKF, whose theoretical basis is unscented transformation, does not need

linearization. The calculated covariances of UKF can coincide with the practical
situation well (Lee and Jekeli, 2010; Zhou et al., 2010). However for an EKF, the
calculated covariances deviate from the true values significantly because of the
linearization. So, the UKF estimations are expected to be closer to the true values

r kr

r

Ls Rs Hs

r kr

r

Ls Rs Hs

Figure 7. System test setup block diagram (left) and the geometry of radar and target (right).
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Figure 8. RMSE of radar bias estimation. (a) gross range bias; (b) elevation bias;
(c) the subtraction of the yaw bias from azimuth bias.
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than the EKF (Jwo and Lai, 2009). In view of this, we will use UKF for OBEM in our
future work.
Figure 10 are the RMSEs of the rectified measurements in each axis of the ENU

frame, where the raw measurements are subtracted by the estimated offset biases,
then, they are compensated by using attitude bias rotation matrix as described by
Equation (7). Since the dependencies between azimuth bias and yaw bias, the
subtraction of yaw bias from azimuth bias is used as azimuth estimation and the yaw
bias is set to zero when compensating the raw measurements. In Figure 10, (a)
represents x-coordinate; (b) represents y-coordinate; (c) represents z-coordinate, and
the black lines represent the raw measurements which deviate from the true locations
considerably; the red lines represent the results of using the estimation of an OBEM.
In this situation, the roll and pitch bias estimations are both assumed to be zero; the
blue lines represent the results of using all the estimations of AAM; and the green lines
represent using all the estimations of an AAM except roll and pitch biases. The results
of these figures show that the OBEM outperforms the AAM when their estimations
are used to rectify radar raw measurements.

4. SUMMARY AND CONCLUSIONS. The problem of aligning two
mobile 3-D radars which simultaneously have the offset biases and attitude biases was
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Figure 10. RMSE of target location in xyz-coordinates after rectifying radar 1 measurements by
bias estimations. (a) x-coordinates; (b) y-coordinates; (c) z-coordinates.
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examined. First, the physical registration models were given. Second, the coupling
error expressions caused by the attitude biases were derived and the observability
analysis was made for the system. Thirdly, according to the analyses, the OBEM for
registration was proposed, which combined the azimuth and yaw biases as one
variable, and omitted the roll and pitch biases in the state vector. Fourthly, comparing
the AAM and the ABCM, which use all the offset and attitude biases as state vector,
the OBEM has smaller dimension in the state vector and could reduce the
computational costs (see Goris et al., 1997). Fifthly, the OBEM can improve the
elevation bias estimation performance because it isolates the influences of poor
estimation results of roll and pitch biases.
Another characteristic of the OBEM is that the model does not need to know the

true course, pitch, and roll of the platform, which saves much bandwidth and
decreases the coupling influences of the attitude angles to a great extent. The OBEM in
the paper did not consider the position errors of radars. The same sampling intervals
and the same sampling instant for the common target were assumed for both radars.
However, in physical system, these assumptions should be considered carefully. How
they influence the estimation of the biases, how to model, how they affect each other
etc., should be studied further in the future.
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APPENDIX A

The following are the derivations of the equivalent measurement errors
caused by the attitude biases, as shown in Figure A1.

A1. DERIVATION OF EQUATION (31) . Equation (31) can be
approximated by the first order Maclaurin series expansion as:

Δrc(Δϕ,Δη,Δψ) =

r(x, y, z, ex, ey, ez)|Δϕ = 0
Δη = 0
Δψ = 0

+ 2(x+ ex)y+ 2(y+ ey)(−x)
2r(x, y, z, ex, ey, ez)

∣∣∣∣Δϕ = 0
Δη = 0
Δψ = 0

·Δϕ

+2(y+ ey)(−z) + 2(z+ ez)y
2r(x, y, z, ex, ey, ez)

∣∣∣∣Δϕ = 0
Δη = 0
Δψ = 0

·Δη+ 2(x+ ex)(−z) + 2(z+ ez)x
2r(x, y, z, ex, ey, ez)

∣∣∣∣Δϕ = 0
Δη = 0
Δψ = 0

.Δψ

+o(Δϕ,Δη,Δψ) −
��������������
x2 + y2 + z2

√
= o(Δϕ,Δη,Δψ)




(A1)
where:

r(x, y, z, ex, ey, ez) =
������������������������������������
(x+ ex)2 + (y+ ey)2 + (z+ ez)2

√
(A2)

A2. DERIVATION OF EQUATION (36) . The geometry of the true
target location and its ghost location affected by the attitude biases is at
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Figure A1. According to Equations (30), (33)–(35):

tan(Δθc) = tan(θ + Δθc − θ) = tan(θ + Δθc) − tan(θ)
1+ tan(θ + Δθc) tan(θ) (A3)

Taking attitude biases as variables, Equation (A3) can be first order
approximated as:

tan(Δθc) =

(x+ex)
(y+ey) − x

y

1+ x(x+ex)
y(y+ey)

=
y(x+ ex) − x(y+ ey)
y(y+ ey) + x(x+ ex) =

yex − xey
y(y+ ey) + x(x+ ex)

∣∣∣∣Δϕ = 0
Δη = 0
Δψ = 0

+ −(x2 + y2)2
(y(y+ ey) + x(x+ ex))2

∣∣∣∣∣Δϕ = 0
Δη = 0
Δψ = 0

.Δϕ+

−xz(y(y+ ey) + x(x+ ex))
(y(y+ ey) + x(x+ ex))2

∣∣∣∣∣Δϕ = 0
Δη = 0
Δψ = 0

·Δη+ yz(y(y+ ey) + x(x+ ex))
(y(y+ ey) + x(x+ ex))2

∣∣∣∣∣Δϕ = 0
Δη = 0
Δψ = 0

·Δψ + o(Δϕ,Δη,Δψ) =




−Δϕ+ yzΔψ − xzΔη
x2 + y2

+ o(Δϕ,Δη,Δψ)




(A4)

A3. DERIVATION OF EQUATION (43) . According to Equations
(30), (40–42):

tan(Δεc) = tan(ε+ Δεc − ε) = tan(ε+ Δεc) − tan(ε)
1+ tan(ε+ Δεc) tan(ε) (A5)

E

N

U

E

N

U

xe

x

ze

y

z
ye

(x,y,z)

O

xoy
r

Figure A1. The geometry of the true target location and its ghost location
affected by the attitude biases.
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Similarly to Equation (A4), taking attitude biases as variables, Equation
(A5) can be first order approximated as:

tan(Δεc) =

z+ ez�����������������������
(x+ ex)2 + (y+ ey)2

√ − z���������
x2 + y2

√
1+ z+ ez�����������������������

(x+ ex)2 + (y+ ey)2
√ z���������

x2 + y2
√ =

∂ tan(Δεc)
∂Δϕ

∣∣∣∣Δϕ = 0
Δη = 0
Δψ = 0

·Δϕ+ ∂ tan(Δεc)
∂Δη

∣∣∣∣Δϕ = 0
Δη = 0
Δψ = 0

·Δη ∂ tan(Δεc)
∂Δψ

∣∣∣∣Δϕ = 0
Δη = 0
Δψ = 0

·Δψ + o(Δϕ,Δη,Δψ) =

−xΔψ − yΔη���������
x2 + y2

√ + o(Δϕ,Δη,Δψ)




(A6)
where:

∂ tan(Δεc)
∂Δϕ

= − c(x, y, ex, ey)
a(x, y, z, ex, ey, ez) z+

���������
x2 + y2

√
b(x, y, z, ex, ey, ez)

a(x, y, z, ex, ey, ez)

[ ]
(A7)

∂ tan(Δεc)
∂Δη

= −y
���������
x2 + y2

√
− zd(x, y, z, ex, ey)

a(x, y, z, ex, ey, ez)

−
���������
x2 + y2

√
d(x, y, z, ex, ey) − yz

[ ]
b(x, y, z, ex, ey, ez)

a(x, y, z, ex, ey, ez)2

(A8)

∂ tan(Δεc)
∂Δψ

=−x
���������
x2 + y2

√
− zf (x, y, z, ex, ey)

a(x, y, z, ex, ey, ez)

−
���������
x2 + y2

√
f (x, y, z, ex, ey) − xz

[ ]
b(x, y, z, ex, ey, ez)

a(x, y, z, ex, ey, ez)2

(A9)

a(x, y, z, ex, ey, ez) =
�����������������������
(x+ ex)2 + (y+ ey)2

√ ���������
x2 + y2

√
+ z(z+ ez) (A10)

b(x, y, z, ex, ey, ez) = (z+ ez)
���������
x2 + y2

√
− z

�����������������������
(x+ ex)2 + (y+ ey)2

√
(A11)

c(x, y, ex, ey) = −2y(x+ ex) + 2x(y+ ey)
2

�����������������������
(x+ ex)2 + (y+ ey)2

√ (A12)

d(x, y, z, ex, ey) = 2z(y+ ey)
2

�����������������������
(x+ ex)2 + (y+ ey)2

√ (A13)

f (x, y, z, ex, ey) = 2z(x+ ex)
2

�����������������������
(x+ ex)2 + (y+ ey)2

√ (A14)
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A4. SUMMARY. The results manifest that all the attitude biases can be
converted to radar measurement errors. The attitude biases have no effects on
radar range measurements; the yaw bias mainly affects radar azimuth
measurement; and the roll and pitch biases mainly affect radar elevation
measurements, their effects are related with the target location.
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