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APPROXIMATIONS TO QUASI-BIRTH-AND-DEATH
PROCESSES WITH INFINITE BLOCKS
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Abstract

The numerical analysis of quasi-birth-and-death processes rests on the resolution of a
matrix-quadratic equation for which efficient algorithms are known when the matrices
have finite order, that is, when the number of phases is finite. In this paper we consider
the case of infinitely many phases from the point of view of theoretical convergence
of truncation and augmentation schemes, and we develop four different methods. Two
methods rely on forced transitions to the boundary. In one of these methods, the transitions
occur as a result of the truncation itself, while in the other method, they are artificially
introduced so that the augmentation may be chosen to be as natural as possible. Two
other methods rely on forced transitions within the same level. We conclude with a brief
numerical illustration.
Keywords: Quasi-birth-and-death process; infinite-dimensional matrix; truncation and
augmentation; approximations; matrix-analytic method
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1. Introduction

Take a quasi-birth-and-death (QBD) process with infinitely many phases: this is a two-
dimensional process {Xn = (Ln, ϕn)}n≥0 on the state space N × S with |S| = ∞ and with
transition matrix

P =

⎡
⎢⎢⎢⎢⎢⎣

B A1 0 · · ·
A−1 A0 A1

. . .

0 A−1 A0
. . .

...
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦

. (1.1)

The blocks B, A−1, A0, and A1 are nonnegative matrices with infinitely many rows and
columns. The components L and ϕ of X are respectively called the level and the phase. For
the sake of simplicity, we assume that S is the set of strictly positive integers.

The stationary probability vector π is decomposed as π = (πn)n≥0, with each subvector
πn = (πn,j )j∈S having infinitely many components. It is known (see [6, Chapter 6]) that, if the
QBD is positive recurrent then its stationary probability distribution has the matrix-geometric
form π�

n = π�
0 Rn for n ≥ 0, where R, called the rate matrix, is the minimal nonnegative

solution of the equation
Y = A1 + YA0 + Y 2A−1 (1.2)
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Approximations to QBD processes with infinite blocks 1103

and π0 is the unique solution of

x�(B + RA−1) = x�, (1.3)

normalized by x� ∑
ν≥0 Rν1 = 1.

In some circumstances, the transitions between the levels 0 and 1 are different from those
between the levels n and n + 1 for n ≥ 1. Then, the transition matrix has the structure

P =

⎡
⎢⎢⎢⎢⎢⎣

B B1 0 · · ·
B−1 A0 A1

. . .

0 A−1 A0
. . .

...
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦

, (1.4)

the stationary distribution is given by πn = π1R
n−1 for n ≥ 1, with R as above, and the initial

subvectors are given by

[π�
0 , π�

1 ]
[

B0 B1
B−1 A0 + RA−1

]
= [π�

0 , π�
1 ],

π�
0 1 + π�

1

∑
ν≥0

Rν1 = 1.

If the number of phases is finite then it would be easy to solve (1.2) by, for example, the
logarithmic or cyclic reduction algorithms described in [6, Chapter 8] and [1, Chapter 7].
However, when the number of phases is infinite, we may at best compute a finite-dimensional
approximation of R and π0, and the question is how to do this.

The problem of approximating the stationary distribution of Markov chains with an infinite
state space and without a particular structure is not new. Often, one starts from the truncated
matrix kP formed from a subset of the elements of the transition matrix P . As matrix kP is
substochastic, the problem is to transform it into a stochastic matrix kP̃ in such a way that
the stationary distribution kπ of kP̃ converges to that of P as k tends to ∞; this is called the
augmentation step.

From a computational perspective, there is no difficulty with QBD processes evolving in an
infinite state space, because there is no restriction on the values for the level: it is the number |S|
of different values for the phase which has to be finite, and sufficiently small, for calculations
to be feasible. Thus, it is on the phase dimension that we need to impose a constraint, and we
will define the truncated matrices kP as

kP =

⎡
⎢⎢⎢⎢⎢⎣

kB kA1 0 · · ·
kA−1 kA0 kA1

. . .

0 kA−1 kA0
. . .

...
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦

, (1.5)

where kB, kA−1, kA0, and kA1 are the k by k northwest corners of the matrices B, A−1, A0,
and A1 respectively. In Section 2 we show with simple probabilistic arguments that the rate
matrices kR of the truncated QBDs automatically converge from below to the rate matrix of
the original process. This falls short of our aim, since the stationary distribution depends not
only on R, but also on the density at level 0. It does, however, point to the important role that
the structure of the QBD may play, even though, as we show in Example 4.1, the structure by
itself is not enough.
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1104 N. BEAN AND G. LATOUCHE

Let us temporarily forget about the QBD structure of our processes and let P be the transition
matrix of an arbitrary Markov chain on the integers. We assume that it is irreducible and positive
recurrent, so that its stationary probability vector π is well defined. Gibson and Seneta [3] took
kP to be the k by k northwest corner of P and discussed various ways of constructing a stochastic
matrix kP̃ .

With last column augmentation, the missing mass on each row of kP is added to the last
column; thus, kP̃ = kP + (I − kP )1 · e�

k , where I is the identity matrix, 1 is a vector of 1s,
and ek is the vector of size k with a 1 in kth position and 0s elsewhere. The resulting sequence
of stationary probability vectors, unfortunately, does not always converge: one interesting case
is given in [3], which inspired our Example 4.1.

In fixed column augmentation, kP̃ = kP + (I − kP )1 · f �
m , where fm has size k, with 0s

everywhere except for a 1 in position m fixed once and for all; often, m = 1, in which case we
speak of first column augmentation. With fixed column augmentation, the sequence {kπ}k≥m

of stationary distributions does converge to π (see [3, Theorem 3.1]).

A useful property is for P to be a Markov matrix, that is, for P to have one column bounded
away from 0. Assuming without loss of generality that this is the first column, we have
Pi,1 ≥ ε > 0 for some ε and all i. In this case, any augmentation leads to a sequence of
stationary distributions which converge to π (see [3, Theorem 2.1]).

In fact, convergence of the sequence of approximating stationary distributions has been
related to the behavior of expected first passage times to finite subsets of states in [11] and also
in [4], where it was most clearly shown. We illustrate this in Sections 3 and 5. In Section 3
we adapt to QBDs the simplest ‘augment the first column’ scheme and we force a transition
to state (0, 1) whenever the process attempts to move to some state (n, i) with i ≥ k + 1. We
show how Theorem 1 of [4], presented herein as Theorem 3.1, is immediately applicable. In
Section 5 we transform the QBD in such a way that its transition matrix becomes a Markov
matrix. To do this, we introduce an artificial event called a ‘catastrophe’, which has the effect
of restarting the process in the state (0, 1). Here, again, one easily shows convergence of the
modified processes.

Naturally, we would prefer to modify the process in such a way as to better preserve its
dynamics, instead of repeatedly restarting the system from scratch. We show in Section 6 that
it is actually possible to preserve the QBD structure of the transition matrix, and merely to
modify the phase. If the process attempts to move from (n, i) to some phase j with j > k, we
force it to move to phase 1 in the same level, or in one of its neighboring levels, n − 1 or n + 1.
Compared to the augmentations of Sections 3 and 5, this clearly reduces the disruption to the
behavior of the process.

As we show in Theorem 6.1, this gives a sequence of approximations which converges under
suitable conditions to the stationary distribution of the original process. The proof is based on
an extension of the arguments in [4] and [11] to a Markov regenerative process with an infinite
regenerative set of states. Our last scheme is a blend of those in Sections 5 and 6: we introduce
an artificial event (as in Section 5) which affects the phase only (as in Section 6). We conclude
in Section 7 with a few numerical examples to illustrate and compare the various procedures.

We restrict our attention to QBDs in discrete time, noting that continuous-time QBDs may
be treated in exactly the same manner if the transition rates are uniformly bounded, by using
their uniformized discrete-time version. We assume without loss of generality (see [7]) that the
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matrix P in (1.1) is irreducible and that the doubly infinite matrix

PD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .
... . .

.

. . . A0 A1 0 · · ·

. . . A−1 A0 A1
. . .

· · · 0 A−1 A0
. . .

. .
. ...

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.6)

is irreducible as well. Matrices with the structure of (1.1) will be called QBD matrices and
will be characterized by their blocks A−1, A0, A1, and B. Finally, in order to avoid technical
difficulties, we assume that the augmented matrices are such that they have a unique stationary
distribution.

2. Truncation of QBDs

The matrix R in (1.2) may also be expressed as the series R = A1
∑

ν≥0 U ν , with U =
A0 +A1G, where G is the stochastic matrix of first passage probabilities from level 1 to level 0:
Gij = P[θ < ∞, ϕθ = j | X0 = (1, i)] for i and j in S, with θ = inf{n ≥ 1 : Ln = 0} being
the first return time to level 0.

The series
∑

ν≥0 U ν always converges and its limit is equal to (I − U)−1 when |S| is finite,
while it is the minimal nonnegative solution of (I − U)X = I when |S| is infinite.

The matrix G is the minimal nonnegative solution of

Y = A−1 + A0Y + A1Y
2, (2.1)

and it is related to U by G = ∑
ν≥0 U νA−1, so that we may rewrite (1.3) as

x�(B + A1G) = x�. (2.2)

Finally, with Nj = ∑
1≤n≤θ 1{Xn = (1, j)}, where 1{·} denotes the indicator function, being

the number of visits to (1, j) before the first return to level 0, R can be interpreted as a matrix
of expected number of visits:

Rij = E[Nj | X0 = (0, i)]
for all i and j in S.

Now, the process kX with transition matrix (1.5) exactly follows the evolution of the process
X with transition matrix (1.1) as long as the phase takes values between 1 and k, and it ceases
to evolve as soon as the phase becomes strictly greater than k, that is, Xn = kXn for n < Tk ,
where Tk = inf{n ≥ 0 : ϕn ≥ k + 1}. Thus, it is easy to see that the matrix kG, which we
define as

kGij = P[θ < ∞, θ < Tk, ϕθ = j | X0 = (1, i)] for i, j ≤ k, (2.3)

is the minimal nonnegative solution of

Y = kA−1 + kA0Y + kA1Y
2,

and that kGij converges to Gij from below as k → ∞ for any given i and j , since limk→∞ Tk =
∞ almost surely (a.s.) for any given X0.
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1106 N. BEAN AND G. LATOUCHE

Similarly, the rate matrix

kR = kA1(I − kA0 − kA1 kG)−1 (2.4)

is also the minimal nonnegative solution of the equation

Y = kA1 + Y kA0 + Y 2
kA−1

and is such that kRij = E[kNj | X0 = (0, i)] for i, j ≤ k, where kNj = ∑
1≤n≤min(θ,Tk)

1{Xn =
(1, j)} is the number of visits to (1, j) before the first return to level 0, or before the first passage
time to a phase at least equal to k + 1, whichever comes first. We immediately conclude that
limk→∞ kRij = Rij from below for any given i and j . Thus, the truncation defined in (1.5)
automatically provides us with a sequence of matrices which converges to R. This, however,
is only one of the ingredients of the matrix-geometric distribution, and we lack the equivalent
of (2.2). If we used kP as such, we would obtain the boundary matrix kB + kA1kG; however,
since this matrix is substochastic, the system x� = x�(kB + kA1kG) does not have a solution.

In the following sections we use a range of approaches to ensure a stochastic boundary
condition.

3. First column augmentation

In the first approach, we apply one of the principles mentioned in the introduction and
augment kP by putting the missing mass on the column corresponding to the state (0, 1). This
gives kP̃ = kP + (I − kP )1 · η�

1 , where η�
1 = [e�

1 , 0�, 0�, . . .] and e�
1 = [1, 0, . . . , 0] is a

vector of k components. The matrixkP̃ has the structure

kP̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

kB̃ kA1 0 0 · · ·
kB̃−1 kA0 kA1 0

. . .

kC kA−1 kA0 kA1
. . .

kC 0 kA−1 kA0
. . .

...
...

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.1)

where
kC = (I − kA−1 − kA0 − kA1)1 · e�

1 ,

kB̃−1 = kA−1 + kC,

kB̃ = kB + (I − kB − kA1)1 · e�
1 .

The matrix kP̃ in (3.1) is a Markov chain of GI/M/1 type (see [8, Theorem 1.2.1]) and its
stationary distribution has the form

kπn = kπ0(kR)n,

where kR is as defined in (2.4) and kπ0 is given by the system

kπ
�
0 (kB̃ + kRkB̃−1 + kR(I − kR)−1

kC) = kπ
�
0 , (3.2)

kπ
�
0 (I − kR)−11 = 1.

Using the special structure of (3.1), we may express the boundary equation (3.2) in a more
transparent manner: assume that the process starts in level n for some n ≥ 2 and define τ as
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the first passage time to any lower level—this will be level n − 1 or level 0. It is easy to verify
that kG defined in (2.3) gives the probability that the process goes down to level n − 1 before
level 0, independently of n ≥ 2. The matrix kH defined as

kHij = P[τ < ∞, Xτ = (0, j) | X0 = (n, i)]
gives the probability of jumping to level zero without visiting level n − 1, independently of
n ≥ 2. For X0 in level 1, since kB̃−1 = kA−1 + kC, it easily follows that P[τ < ∞, Xτ =
(0, j) | X0 = (1, i)] = kGij + kHij . In this manner, we see that (3.2) may be expressed as

kπ
�
0 (kB̃ + kA1(kG + kH )) = kπ

�
0 .

By Lemma A.1 in Appendix A,

kH = (I − kA0 − kA1kG − kA1)
−1

kC,

so that kπ0, and the whole distribution kπ , are completely determined once kG is known.
The question of convergence is rapidly dealt with. Consider general transition matrices P

and {kQ̃}k∈N on the same state space, with the property that limk→∞(kQ̃)ij = Pij for all states i

and j . Denote by Z and kZ̃ the processes with transition matrices P and kQ̃, respectively,
and assume that they are all defined on the same probability space. Assume that Z and kZ̃ are
regenerative, with cycle times C and C̃k , respectively. Define Tk to be the first time when kZ̃

differs from Z. Theorem 1 of [4], stated below, is expressed in terms of a queueing system, but
it is quite general.

Theorem 3.1. ([4, Theorem 1].) If, for all sufficiently large k,

1{C̃k < Tk} = 1{C < Tk} and C̃k1{C̃k < Tk} = C1{C < Tk} a.s.,

and if
lim

k→∞ E[C̃k1{C̃k ≥ Tk}] = 0,

then limk→∞(kπ)i = πi for all i.

In the sequel, we write limk→∞ kπ = π as a shorthand notation to indicate that convergence
holds for every fixed state.

Sufficient conditions are that a nonnegative random variable V exists, with E[V ] < ∞, such
that E[C̃k1{C̃k ≥ Tk}] ≤ E[(V + C)1{C ≥ Tk}], or such that C̃k ≤ V + C a.s.

Now, consider the Markov chains X and kX̃ with transition matrices (1.1) and (3.1), respec-
tively. In order to apply Theorem 3.1, we expand the matrix on the right-hand side of (3.1) so
that it is defined for all the states of the original QBD, with (kP̃ )(n,i),(n′,i′) = 0 if i or i′, or
both, is strictly greater than k.

Without loss of generality, we may assume that the initial state is (0, 1). Then, the QBDs
are regenerative processes with cycle durations C and C̃k equal to the return time to (0, 1). The
first time when they differ, Tk , is the first passage time of X to any of the states in {(n, j) : n ≥
0, j ≥ k + 1}; by our construction,

• if C < Tk then C̃k = C,

• if C > Tk then C̃k = Tk ,

so that C̃k ≤ C a.s. As mentioned above, this is a sufficient condition to apply Theorem 3.1
and to conclude that limk→∞ kπ = π .
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4. Block augmentation

First column augmentation has the obvious drawback that whenever the process attempts to
move beyond phase k, the whole system is cleaned up and restarts. Of course, we would prefer
to augment the transition matrix kP in a manner that better preserves the process dynamics. In
particular, we would prefer to modify individual blocks so as to keep the homogeneous QBD
structure of (1.1). For instance, we might use

kP̃ =

⎡
⎢⎢⎢⎢⎢⎣

kB̃ kÃ1 0 · · ·
kÃ−1 kÃ0 kÃ1

. . .

0 kÃ−1 kÃ0
. . .

...
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦

, (4.1)

with the blocks

kÃ−1 = kA−1, kÃ1 = kA1, and kÃ0 = kA0 + diag(kd), (4.2)

where diag(·) is a diagonal matrix and

kd = (I − kA−1 − kA0 − kA1)1. (4.3)

With this choice of augmentation, we merely disable events which would move the system
beyond phase k.

Alternatively, we might allow the system to move as close as possible to the forbidden phase
and use the augmented blocks

kÃν = kAν + a(k)
ν · e�

k , (4.4)

with (a
(k)
ν )i = ∑

j≥k+1(Aν)ij for i ≤ k; note that a
(k)
−1 + a

(k)
0 + a

(k)
1 = kd. This corresponds

to accepting the change of level and replacing transitions from phase i to phase j by transitions
from i to min(j, k).

The problem with such schemes is that convergence is not guaranteed, as can be seen in the
example below, inspired from [3].

Example 4.1. We choose λ and µ such that µ > λ > 0 and λ + µ < 1, we define A−1 = µI ,
A1 = λI , and A0 = (1 −λ−µ)A, where A is an irreducible stochastic matrix, and we choose
B = A−1 + A0.

In this setup, the value of the level clearly has no influence on the transition of the phase
and vice versa; thus, the QBD possesses level-phase independence (see [9]) and the stationary
distribution has a product form given by (1 − ρ)ρnα, where ρ = λ/µ and α is the stationary
vector of A. The algebraic proof of this statement is given in Appendix B.

Now, let us take the transition matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

q1 p1 0 · · ·
q2 0 p2

. . .

q3 0 0
. . .

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦
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from [3], with qi = 1 − pi for all i and pi defined as

pi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4 if i = 1,

(i − 1)4

((i − 1)2 − 1)(i + 1)2 for i ≡ 1 mod N, i 
= 1,(
i

i + 1

)2

for i ≡ 2, . . . , N − 1 mod N ,

1 − 1

i2 if i ≡ 0 mod N ,

for some fixed N ≥ 3.
If, as suggested above, we augment the last column of each block (which is equivalent

here to augmenting the diagonal), then kÃ−1 = µI , kÃ1 = λI , and kÃ0 = (1 − λ − µ)kÃ,
where kÃ = kA + (I − kA)1 · e�

k . The stationary distribution of this QBD is given by kπn =
(1 − ρ)ρn

kα, where kα is the stationary probability vector of kÃ. It was shown in [3] that kα

does not converge to α as k → ∞, so kπ does not converge to π either.

In Section 6 we will apportion the missing mass on the first column of the three blocks, as
opposed to the first column of the matrix kP itself, without specifying a priori in which of the
three. Then,

kB̃ = kB + (kδ−1 + kδ0) · e�
1 (4.5)

and

kÃν = kAν + kδν · e�
1 for ν = −1, 0, 1, (4.6)

where kδν ≥ 0, kδ−1 + kδ0 + kδ1 = kd, and kd is defined in (4.3). One possibility is to relocate
the missing mass in the same block, in which case kδν = a

(k)
ν , but circumstances may suggest

other choices, as we show in Example 7.1.
Before examining the augmented blocks (4.5) and (4.6), however, we consider in the next

section a scheme which allows us to use any block augmentation.

5. Artificial restart

As mentioned in the introduction, any augmentation will do if the transition matrix is Markov.
This motivates us to suggest a procedure whereby we would perturb the original QBD in a way
which guarantees convergence. In the theorem below, kP̃ is obtained from P by the usual
truncation on the first k phases, and augmentation by block augmentation without further
constraints.

We can now use these ideas to prove the following theorem.

Theorem 5.1. Consider the transition matrix P given by (1.1), with stationary distribution π ,
and the stochastic QBD matrix kP̃ with blocks kÃν ≥ kAν for ν = −1, 0, 1 and kB̃ ≥ kB.
Consider the transition matrix

kQ̃(γ ) = γ e · η�
1 + (1 − γ )kP̃ (5.1)

and denote its stationary distribution by kπ(γ ). We have

lim
γ→0

lim
k→∞ kπ(γ ) = π .
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Remark 5.1. Before we prove the theorem, we briefly comment on it. With the matrix kP̃

being obtained from P without constraint, it is possible that its stationary distribution does not
converge to π as k goes to ∞. Transformation (5.1) creates a Markov matrix, at the cost of
introducing an artificial event, which we term a catastrophe and which occurs with probability
γ , independently of the state of the system. This has the benefit that limk→∞ kπ(γ ) is equal
to the stationary distribution π(γ ) of the matrix

Q(γ ) = γ e · η�
1 + (1 − γ )P . (5.2)

We then show that π(γ ) tends to π as γ tends to 0.

Proof of Theorem 5.1. Without loss of generality, we assume that the initial state is (0, 1).
Then, the processes with transition matrices kQ̃(γ ) and Q(γ ) are regenerative processes with
cycle times C̃k and C, respectively, equal to the return time to (0, 1). The first epoch when
they differ is the first passage time Tk to any of the states in {(n, j) : n ≥ 0, j ≥ k + 1}. The
random variables C̃k and C are bounded by the interval of time V until a catastrophe occurs;
V is geometrically distributed and has a finite expectation. By Theorem 3.1, this is a sufficient
condition for limk→∞ kπ(γ ) to be equal to π(γ ).

Now, the stationary probability π(0,1)(γ ) is the inverse of the expected cycle time E[C], and
C = min(V , D), where D is the cycle time for the process with transition probability matrix
P , independent of V . Thus,

E[C] =
∑
ν≥0

P[C > ν] =
∑
ν≥0

(1 − γ )ν P[D > ν] = 1 − 
(1 − γ )

γ
,

where 
(·) is the generating function of D. Therefore,

π(0,1)(γ ) = γ

1 − 
(1 − γ )

and

lim
γ→0

lim
k→∞ kπ(0,1)(γ ) = lim

γ→0
π(0,1)(γ ) = lim

γ→0

γ

1 − 
(1 − γ )
= 1


′(1)
= π(0,1).

By [11, Theorem 3.1], this concludes the proof.

It is easy to verify that π(0,1)(γ ) actually decreases to π(0,1) as γ decreases to 0.

6. First phase augmentation

The augmentation scheme defined in (4.5) and (4.6) imposes a somewhat lesser perturbation
of the system dynamics, by augmenting on the first phase without forcing the process to move
all the way to level 0. With this strategy, the most natural resynchronization of the QBDs is no
longer on the single state (0, 1) but on the infinite set K = {(n, 1) : n ≥ 0}. We need, therefore,
to extend the results in [4] in two ways, in order to accommodate both the Markov renewal
structure of the process and the fact that |K| = ∞. Before doing so in Theorem 6.1, we need
the following technical lemma.

Lemma 6.1. Consider a positive recurrent QBD with transition matrix P given in (1.1), such
that the doubly infinite matrix PD given in (1.6) is irreducible. Denote by C the first return time
to any state in K = {(n, 1) : n ≥ 0}. Then there exists � such that E[C | X0 = (i, 1)] ≤ �

independently of i.
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Proof. Denote by X and X∗ the processes with transition matrix P and PD , respectively.
We may define them on the same probability space and choose X0 = X∗

0 so that their paths
will coincide at least until the first passage to level 0, provided that the initial level is positive.
Denote by C∗ the first return time of X∗ to K and by � the joint first passage time of X and
X∗ to level 0, and observe that C∗ = C if C ≤ �. Now,

E[C | X0 = (i, 1)] = E[C1{C < �} | X0 = (i, 1)] + E[C1{C ≥ �} | X0 = (i, 1)]
= E[C∗1{C∗ < �} | X∗

0 = (i, 1)] + E[C1{C ≥ �} | X0 = (i, 1)].
The second term in the equation above tends to 0 as i goes to ∞ because � tends to ∞ and C

is finite a.s. Thus,

lim
i→∞ E[C | X0 = (i, 1)] = lim

i→∞ E[C∗1{C∗ < �} | X∗
0 = (i, 1)]

= lim
i→∞ E[C∗ | X∗

0 = (i, 1)]
= E[C∗ | X∗

0 = (0, 1)]
< ∞,

where the second equality is justified by the fact that � → ∞ as i → ∞, and the third equality
is justified by the fact that E[C∗ | X∗

0 = (i, 1)] is independent of i, the behavior of X∗ being
completely homogeneous in the levels.

The sequence {E[C | X0 = (i, 1)]} being finite and converging, it is uniformly bounded.

Theorem 6.1. Consider a sequence {kZ̃} of QBD processes with transition matrix kP̃ , where
the blocks of kP̃ are defined in (4.5) and (4.6), and assume that each process is irreducible and
positive recurrent. Denote by kπ the stationary distribution of kZ̃, and denote its rate matrix
by kR̃.

If there exists ρ < 1 such that sp(kR̃) < ρ for large enough k, where sp(·) is the spectral
radius, then limk→∞ kπ = π .

Proof. As in the proof of [4, Theorem 1], we assume that all the processes are defined on the
same probability space. We interpret them as semi-regenerative processes, with regeneration
times at the visit epochs to the states in K , and we denote by C and C̃k the first passage time
to K by the processes X and kZ̃, respectively.

The embedded semi-Markov processes have kernels H (t) and kH̃ (t), where

Hij (t) = P[C ≤ t, L(C) = j | X0 = (i, 1)],
kH̃ij (t) = P[C̃k ≤ t, L(C̃k) = j | kZ̃0 = (i, 1)],

and, by [2, Theorem 10.4.9],

kπnj = 1

kν�
km

∑
i≥0

kνi

∑
u≥0

kFin(j, u), (6.1)

where kν is the stationary distribution of kH̃ (∞), kmi = E[C̃k | kZ̃0 = (i, 1)] is the expected
duration of an inter-regeneration interval, and kFin(j, u) = P[kZ̃u = (n, j), C̃k ≥ u | kZ̃0 =
(i, 1)] is the distribution of the process during an inter-regeneration interval.

In order to prove from (6.1) that the sequence kπ converges, we need to prove that the
sequence kν converges, which seems to be at least as difficult. However, the vector kν appears
in both the numerator and the denominator, which will simplify things considerably.
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The sequence kν, being bounded, has accumulation points and our strategy will be to show
that they all lead to the same result. Let us, therefore, fix j0 arbitrarily and choose σ to be any
sequence such that limk∈σ kνj0 exists. By [11, Lemma 2.1], there exists a constant c, 0 < c ≤ 1,
which may depend on the sequence σ , such that

lim
k∈σ

kνj = cνj for all j .

Let Tk be the first passage time of X to any of the states of the form (n, j) with j ≥ k + 1. By
construction, Xt = kZ̃t for all t < Tk and C̃k = min(C, Tk), which implies by Lemma 6.1 that

kmi ≤ E[C | X0 = (i, 1)] ≤ � uniformly in i and k. (6.2)

Now, in the special case where j = 1, (6.1) reduces to kπn1 = kνn/kν
�

km. Indeed, the sum∑
u≥0 kFin(1, u) is equal to 0 for i 
= n, for the process cannot spend any time in (n, 1), starting

from (i, 1), before returning to K; for i = n, this sum is equal to 1, the unit of time spent in
X0 = (n, 1) before moving to X1.

We apply this to the state (i, 1) and write kνi = (kν
�

km)kπi1. By (6.2), kmi ≤ �, so that
kν

�
km ≤ � as well. Furthermore, kπi,1 = kπ

�
0 (kR̃)ie�

1 , and its asymptotic decay rate sp(kR̃)

is bounded by ρ < 1 by assumption, so that kπi,1 = O(ρi).
We have therefore shown that there exists a constant χ such that kνi ≤ χρi , independently

of k. As ρ < 1, the series of upper bounds converges and we obtain, by the dominated
convergence theorem,

lim
k∈σ

kν
�

km = c
∑
i≥0

νi lim
k∈σ

kmi, (6.3)

provided that limk∈σ km exists.
It is clear from the construction of the processes kZ̃ that

C̃k < Tk ⇐⇒ C < Tk 
⇒ C̃k = C,

C̃k ≥ Tk ⇐⇒ C ≥ Tk 
⇒ C̃k = Tk,

and we may write

kmi = E[C̃k1{C̃k < Tk} | kZ̃0 = (i, 1)] + E[C̃k1{C̃k ≥ Tk} | kZ̃0 = (i, 1)]
= E[C1{C < Tk} | X0 = (i, 1)] + E[Tk1{C ≥ Tk} | X0 = (i, 1)]. (6.4)

The second term in (6.4) is bounded above by E[C1{C ≥ Tk} | X0 = (i, 1)], and this upper
bound decreases to 0, since C is finite a.s. and Tk increases to ∞ with k. The first term
monotonically converges to mi = E[C1{C < ∞} | X0 = (i, 1)]. This allows us to conclude
from (6.3) that

lim
k∈σ

kν
�

km = cν�m.

We apply exactly the same argument to the numerator of (6.1). In order to justify the various
exchanges of limiting and summation operators, we rely on the fact that the series may be
written as ∑

u≥0

kFin(j, u) = E

[∑
u≥0

1{kZ̃u = (n, j), C̃k ≥ u}
∣∣∣∣ kZ̃0 = (i, 1)

]

= E

[ ∑
0≤u≤C̃k

1{kZ̃u = (n, j)}
∣∣∣∣ kZ̃0 = (i, 1)

]

≤ E[C̃k | kZ̃0 = (i, 1)],
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and we finally obtain limk∈σ kπ = π . The limit being independent of σ , this concludes the
proof.

The assumption that the transition matrices are irreducible for all k is not very restrictive,
what really matters is that there is a unique irreducible class of positive recurrent states, at least
for infinitely many values of k.

Remark 6.1. It is not clear how restrictive is the assumption of the existence of ρ. It seems
likely that a sufficient condition is that κ(R) < 1, where κ(·) is the convergence norm (see [10,
Section 6.1]), a condition which should hold in general. Our argument is as follows. Since
the processes {kZ̃} are positive recurrent with finitely many phases, we know that sp(kR̃) < 1,
but we need more. If we decompose the number Nj of visits to (1, j) under the taboo of
level 0 as the sum kNj + kN

′
j of visits before and after time Tk , respectively, then we may write

kR̃ = kR + kR
′, where

kR
′
ij = E

[ ∑
min(θ,Tk)+1≤n≤θ

1{kZ̃n = (1, j)}
∣∣∣∣ kZ̃0 = (0, i)

]
.

Since θ is finite a.s. and limk→∞ Tk = ∞, the limit limk→∞ kR
′
ij is equal to 0. Furthermore,

as shown at the end of Section 2, kR converges from below to R so that, by [5, Lemma 2.3],
sp(kR) converges from below to κ(R). All the ingredients are therefore present to suggest that
the sequence sp(kR̃) would converge to κ(R), which is at most equal to 1, since the original
QBD is positive recurrent. In the cases where κ(R) is strictly less than 1, sp(kR̃) would be
bounded away from 1 for large enough k. We do not however have a formal proof.

Remark 6.2. We may also combine the principle of augmentation on the first phase with the
catastrophe from Section 5; the effect of a catastrophe being limited here to bringing the process
to phase one, possibly with a minor change of level.

We define the QBD matrix P ∗ with blocks

B∗ = (δ∗−1 + δ∗
0) · e�

1 and A∗
ν = δ∗

ν · e�
1 for ν = −1, 0, 1,

where δ∗
ν ≥ 0, δ∗−1 + δ∗

0 + δ∗
1 = 1, and e1 a vector of infinitely many components with the

first component equal to 1 and all other components equal to 0. We see from every state (n, i)

that the system directly moves to some state in K , although there is some degree of freedom in
defining the probabilities (δ∗−1)(n,i), (δ∗

0)(n,i), and (δ∗
1)(n,i) of moving to (n − 1, 1), (n, 1), and

(n + 1, 1), respectively.
Next, we define the QBD matrices Q∗(γ ) = γP ∗ + (1 −γ )P , 0 ≤ γ ≤ 1, which will here

play a role similar to that of the matrix Q(γ ) in (5.2). We take a sequence of QBD matrices
kP̃ without any assumption on the type of augmentation and define the sequence

kQ
∗(γ ) = γ kP

∗ + (1 − γ )kP̃ , (6.5)

where kP
∗ is obtained by performing a k by k truncation of the blocks of P ∗; we denote by

kπ
∗(γ ) the stationary distribution of kQ

∗(γ ).
It is easy to duplicate the proof of Theorem 6.1 and to show that, under a similar set of

conditions, limγ→0 limk→∞ kπ
∗(γ ) = π . The first step is a nearly verbatim repetition of the

proof of Theorem 6.1: we rely on the fact that C̃k(γ ), the first return to K , is bounded by V ,
the time until the first catastrophe and show that limk→∞ kπ

∗(γ ) = π∗(γ ) for a fixed γ . In
the second step we prove that limγ→0 π∗(γ ) = π , and here again, we repeat the argument in
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Theorem 6.1; the first return time C(γ ) to K is bounded by C, so that we may use Lemma 6.1
to obtain a uniform bound on the expectation of C(γ ).

The problem is that we need some reasonably simple constraint on the rate matrices kR
∗(γ )

and R∗(γ ) of the QBDs kQ
∗(γ ) and Q∗(γ ), respectively, in order to allow for the exchange

of limit and summation as in (6.3). We might argue, as in Remark 6.1, that κ(R) < 1 is likely
to be a sufficient condition, but this remains to be proved. We return to this question in the next
section.

7. Illustrations

We take three examples of QBDs for which we know the exact stationary distribution, so
that we are able to compare the successive approximations to the exact values. Our measure of
distance between π and kπ is

εk =
∑

(n,i)∈Ek

|πn,i − kπn,i | +
∑

(n,i)
∈Ek

πn,i ,

where Ek = {(n, i) : n ≥ 0, 1 ≤ i ≤ k}. The measure εk is the L1 norm of the difference
between π and a vector obtained by expanding kπ so that it is defined over the whole state
space of the original QBD, with components set to 0 for states not in Ek . Following [12], we
note that

εk = 2
∑

(n,i)∈E+
k

(kπn,i − πn,i) ≥ 2

(
1 −

∑
(n,i)∈Ek

πn,i

)
, (7.1)

where E+
k is the set of states in Ek for which kπn,i > πn,i . The rightmost expression in (7.1) is

particularly useful since this lower bound provides us with a benchmark against which to judge
the quality of any approximation kπ .

Example 7.1. (The discrete-time M/PH/1 queue.) Consider a discrete-time queue, where
arrivals occur according to a Bernoulli process and service times have a PH(τ , T ) representation
of order m < ∞; we denote by λ the probability of an arrival at any given time.

The M/PH/1 queue is usually analyzed as the process {(Ln, ϕn), n ≥ 0}, where Ln is the
number of customers in the system at time n and, for Ln ≥ 1, ϕn is the phase at time n of
the customer being served; if the queue is empty then the value of the phase is irrelevant. The
transition matrix P ∗ has the structure (1.4) with

B−1 = (1 − λ)t, B0 = 1 − λ, B1 = λτ ,

A−1 = (1 − λ)t · τ , A0 = λt · τ + (1 − λ)T , A1 = λT ,

where t = 1 − T 1. Its stationary distribution ω is given by

ω1 = ω0λτV , ωn = ω1(R
∗)n−1 for n ≥ 1,

when it exists, where V = (I − λ1 · τ − (1 − λ)T )−1, R∗ = λT V , and ω0 = (1 + λτV (I −
R∗)−11)−1.

We define the residual service time representation as {(Ln, rn), n ≥ 0}, where Ln is, as
before, the number of customers in the queue and rn is the residual service time for the customer
in service at time n. This is also a QBD, since the number of customers varies at most by one
unit, but it has infinitely many phases if the service time is unbounded, as we now assume. The
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transition matrix P has the structure (1.4) with

B−1 = (1 − λ)e1, B0 = 1 − λ, B1 = λq,

A−1 = (1 − λ)e1 · q, A0 = λe1 · q + (1 − λ)M, A1 = λM,

where qj = τT j−1t for j ≥ 1 and

M =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 . . .

1 0 0
. . .

0 1 0
. . .

...
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦

.

By conditioning on ϕn we readily see that

P[Ln = k, rn = j ] =
∑

1≤i≤m

P[Ln = k, ϕn = i] P[rn = j | Ln = k, ϕn = i]

=
∑

1≤i≤m

P[Ln = k, ϕn = i](T j−1t)i ,

so that the stationary distribution π of P is given by π0 = ω0, and πk,j = ωkT
j−1t for k ≥ 1

and all j . Knowing this allows us to compare the exact distribution to the approximations kπ

obtained by the various procedures.
In our two examples, (τ , T ) is a mixture of two geometric distributions:

τ = [α, 1 − α], T =
[
p1 0
0 p2

]

(note that our geometric distributions start at 1, not 0 as is often the case). The factorial moments
are given by k! τ (I − T )−kT k−11 for k ≥ 1 (see [6, Section 2.5]), so that

E[S] = α

1 − p1
+ 1 − α

1 − p2

and

E[S(S − 1)] = 2αp1

(1 − p1)2 + 2(1 − α)p2

(1 − p2)2 .

We fix the mean µ and the squared coefficient of variation c2 = σ 2/µ2, and we chose the
parameters so that each phase contributes one half of the mean:

α

1 − p1
= 1 − α

1 − p2
= µ

2
. (7.2)

Making use of this relation, we find that

var(S) = µ2

2α
+ µ2

2(1 − α)
− µ − µ2,

which leads to

2α(1 − α) = µ2

(c2 + 1)µ2 + µ
.

The right-hand side of this is given and so we easily solve for α; the values of p1 and p2
immediately follow from (7.2).
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Table 1.

Case c α p1 p2

1
√

2 0.206 63 0.979 34 0.920 66
2 2 0.111 43 0.988 86 0.911 14

We consider two M/PH/1 queues with λ = 0.045 and µ = 20. In the first case c = √
2 and

in the second case c = 2. The parameter values are given in Table 1, rounded to five decimal
places.

Figure 1 gives a general impression of how the various techniques behave in the first case,
Figure 2 is the log version. We have plotted the lower bound for visual reference and we note
that it decreases quite slowly: the truncation parameter has to be greater than 200 before the
distance between π and kπ can possibly drop below 10−2. The different curves are marked
as follows. First column refers to the procedure analyzed in Section 3, with transition matrix
given by (3.1). For last phase, the augmented blocks in the transition matrix (4.1) are given
by (4.4). This corresponds to putting the missing mass on its last column; in effect, the service
time is bounded by k. The same blocks are used as kP̃ in (5.1) for AR first column, which
identifies the results of the procedure in Section 5, and as kP̃ in (6.5) for AR first phase, which
refers to the approach briefly described in Remark 6.2. Finally, first phase is the method which
is the object of Theorem 6.1. The augmented matrices in (4.1) are of the form (4.5) and (4.6)
with kδ−1 = 0, kδ0 = a

(k)
−1, and kδ1 = a

(k)
0 ; note that a

(k)
1 = 0. This illustrates the fact that the

missing mass on each row may be arbitrarily allocated among the first columns of the three
blocks. Here, it has the effect of forcing a resampling of the service time distribution whenever
the service length is too long.

We observe that first column and AR first column always converge more slowly (and less
accurately in the AR case) than first phase and AR first phase, respectively, and that last phase
appears to be the most accurate approximation for this model. Furthermore, Figure 2 shows
that the three schemes first column, first phase, and last phase converge linearly.

First phase

First column
AR first column,
γ = 10–3

AR first phase,
γ = 10–3

Lower bound

Last phase

εk

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0 100 200 300 400 500

Value of the truncation parameter, k

Figure 1: Plot of the error εk against the truncation parameter, k, for the M/PH/1 model using a service
distribution with a coefficient of variation of

√
2; AR is the abbreviation for ‘artificial restart’.
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First
column

AR first column, γ = 10–3

AR first phase, γ = 10–3

First phase

Last phase

Lower bound

εk

101

100

10–1

10–2

10–3

10–4

10–5
0 100 200 300 400 500

Value of the truncation parameter, k

Figure 2: Plot of log10 εk against the truncation parameter, k, for the M/PH/1 model using a service
distribution with a coefficient of variation of

√
2.

The main characteristic of the AR schemes is most apparent in Figure 2: as k increases,
the error initially diminishes, until it plateaus and remains nearly constant. This is because the
Poisson process of catastrophes has a parameter independent of k and because its influence is
masked for small values of k; there is, however, a point where it becomes the major effect.

More details are given in Figure 3, where we plot the errors for the two AR schemes, with
γ taken as 10−3, 10−4, and 10−5. First, we observe that to augment on the first phase is one
order of magnitude better in terms of the error than to augment on the first column of the whole
matrix, a clear sign that it is better to preserve the dynamic structure as much as possible.
Furthermore, the smaller the value of γ , the longer the linear convergence persists before the
plateau, and, hence, the more accurate the answer. Actually, with γ = 10−5, AR first phase is
nearly as good as last phase until k = 300 and better than first phase until k = 500 at least. This

Lower bound

AR first column
AR first phase

γ = 10–3 γ = 10–4 γ = 10–5

εk

101

100

10–1

10–2

10–3

10–4

10–5
0 100 200 300 400 500

Value of the truncation parameter, k

Figure 3: Plot of log10 εk against the truncation parameter, k, for various AR methods and the M/PH/1
model using a service distribution with a coefficient of variation of

√
2.
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First phase
First column

AR first column, γ = 10–3

AR first phase,
γ = 10–3

Last
phase

Lower
bound

εk

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0 100 200 300 400 500

Value of the truncation parameter, k

Figure 4: Plot of the error εk against the truncation parameter, k, for the M/PH/1 model using a service
distribution with a coefficient of variation of 2.

points to the advantage of the AR first phase approach, which is demonstrably convergent, and
which allows us to augment the various blocks in a manner which is well suited to the model at
hand. Figure 3 also makes it clear that, for any given γ , the distribution eventually converges
to the wrong distribution.

Not surprisingly, the quality of the approximation depends on the service time distribution.
In Figure 4 we plot the error against the truncation parameter, k, for an M/PH/1 queue with
c = 2. Convergence is much slower here than in Figure 1, but all the qualitative features remain
the same.

The question which remains to be answered is whether the sufficient condition of Theorem 6.1
is satisfied or not. Define {pn : n ≥ 0} as the stationary marginal distribution for the number
of customers in the queue, and define the series p(z) = ∑

n≥0 znpn, R(z) = ∑
n≥0 znRn, and

R∗(z) = ∑
n≥0 zn(R∗)n. Since pn = ωn1 = πn1, we have

p(z) = π0 + zπ1R(z)1 = ω0 + zω1R
∗(z)1. (7.3)

The number m of phases is finite, so the radius of convergence of p(z) and that of R∗(z) are
equal. We denote this common radius of convergence by c∗, and we note that c∗ = 1/sp(R∗),
with sp(R∗) < 1 since the QBD process {(Ln, ϕn)} is positive recurrent.

By the first equality in (7.3), we conclude that the series R(z) converges for z < c∗, so
that the convergence radius c of R is at least equal to c∗, and the convergence norm κ(R) =
1/c ≤ 1/c∗ = sp(R∗) < 1. We argued in Remark 6.1 that this should be sufficient to ensure
that sp(kR̃) is bounded away from 1 and that we can apply the first phase and AR first phase
techniques legitimately. As a verification, we show in Figure 5 that sp(kR) does converge, from
below, to the spectral radius of the rate matrix R∗ associated with the usual representation of
the M/PH/1 queue.

Example 7.2. (Tandem queues.) We consider the Jackson network made of two queues in
tandem: customers arrive at queue 1 according to a Poisson process with rate λ, after receiving
a first exponential service with parameter µ1, and they move to queue 2 where they receive a
second exponential service with parameter µ2. Both buffers have infinite capacity.
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First phase

AR first phase, γ = 10–3

AR first phase, γ = 10–2

sp(R*)
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Figure 5: Plot of the spectral radius of kR against the truncation parameter, k, for the M/PH/1 model
using a service distribution with a coefficient of variation of

√
2.

We follow [5] and represent the system as a QBD {(L(t), ϕ(t))}, where the level is the number
of customers in queue 2, while the phase is the number of customers in queue 1. Since the
transition rates are uniformly bounded by λ + µ1 + µ2, we may use instead the discrete-
time Markov chain {(Ln, ϕn)} obtained by uniformization, which has the same stationary
distribution. With this representation, it is well known that

πn,j = (1 − ρ2)(1 − ρ1)ρ
n
2 ρ

j
1 (7.4)

for n, j ≥ 0, where ρ1 = λ/µ1 and ρ2 = λ/µ2, provided that ρ1 and ρ2 are both strictly less
than 1.

It was shown in [5, Lemma 4.8, Theorem 4.9] that κ(R) = ρ2 if µ1 > µ2 (in which case
queue 2 is the bottleneck), and κ(R) = η ≤ ρ2 if µ1 < µ2 (queue 1 is the bottleneck),
where η is the unique root in (0, 1) of the equation −λ − µ1 − µ2(1 − z) + 2

√
λµ1/z = 0.

This contrasts somewhat with (7.4), where we see that the decay rate of πn,j with respect to
the level n is always ρ2.

Furthermore, the authors of [5] considered the truncated and augmented QBD (4.1), where
the blocks are given by (4.2) or, equivalently, by (4.4) in this example. They showed that sp(kR̃)

converges to κ(R). We verify in Figures 6 and 7 that sp(kR̃) converges from below to κ(R) for
the first phase and AR first phase techniques, so we can apply these legitimately; for the AR
techniques, the augmented blocks are given by (4.2).

Consider the situation where λ = 8 and µ1 = 10 > µ2 = 9; we see in Figure 6 that the
spectral radii of the truncated QBDs converge, from below, to ρ2 = 8

9 as expected. Figure 8
shows extremely fast convergence for all techniques, including the last phase augmentation,
and similar qualitative features to those observed for the M/PH/1 example.

In our second example, λ = 8 and µ1 = 9 < µ2 = 10. Figure 7 shows, again, that the
spectral radii converge from below; here the limit is η ≈ 0.7869 < ρ2 = 8

10 . Figure 9 shows
similar qualitative features to those observed earlier. However, first phase and first column
show less difference, relatively.

It is worth drawing attention to a difference between [5] and our paper. Here, we are
concerned with the convergence of kπ(n,j) to π(n,j) for a given n and j . It is actually much
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Figure 6: Plot of the spectral radius of kR against the truncation parameter, k, for the tandem queue
example where µ1 = 10 and µ2 = 9.
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Figure 7: Plot of the error εk against the truncation parameter, k, for the tandem queue example where
µ1 = 10 and µ2 = 9.

easier to prove that, for any given (n, i) and (m, j), the ratio kπ(n,i)/kπ(m,j) converges to
π(n,i)/π(m,j) as k → ∞, even for last column augmentation; see [3, Lemma 2.1]. In particular,
limk→∞ kπ(n+1,i)/kπ(n,i) = ρ2 for any given n, no matter how large, and for any i.

The analysis in [5] concerns the decay rate limn→∞ kπ(n+1,i)/kπ(n,i) and it was shown there
that this limit converges to κ(R) as k → ∞, which is different from ρ2 if µ1 < µ2. In short,
we may have

lim
k→∞ lim

n→∞
kπ(n+1,i)

kπ(n,i)


= lim
n→∞

π(n+1,i)

π(n,i)

= lim
n→∞ lim

k→∞
kπ(n+1,i)

kπ(n,i)

,

another case of limits not being interchangeable.
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Figure 8: Plot of the spectral radius of kR against the truncation parameter, k, for the tandem queue
example where µ1 = 9 and µ2 = 10.
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Figure 9: Plot of the error εk against the truncation parameter, k, for the tandem queue example where
µ1 = 9 and µ2 = 10.

Example 7.3. (Example 4.1 (continued).) We return to the QBD of Example 4.1. As shown
in Section 5, that QBD is level-phase independent, and we easily see that sp(kR̃) = ρ < 1 for
all k and any scheme that augments the diagonal block only. In the figures to follow, we have
chosen N = 25, and λ = 0.18 and µ = 0.2, so that ρ = 0.9.

Figure 10 shows us that last phase augmentation really does diverge, as we stated in Section 4,
since εk stays above 0.75 when k is an integer multiple of N . We also note that first phase
does converge, and that we actually cannot tell the difference between first phase and the lower
bound; first column also converges but significantly more slowly. Also, when k is not an integer
multiple of N , last phase is also indistinguishable from the lower bound.
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Figure 10: Plot of the error εk against the truncation parameter, k, for the Gibson and Seneta example
with N = 25.
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Figure 11: Plot of log10 εk against the truncation parameter, k, for the Gibson and Seneta example with
N = 25.

Figure 11 shows, on a log scale, how theAR methods perform; the artificial restart mechanism
has the effect of damping the oscillations due to last phase augmentation, at least for larger
values of k, when the restart mechanism gets a chance to activate before the QBD reaches
phase k. This is obtained at the cost of converging to the wrong distribution, with AR first
phase converging more accurately than AR first column.

In Figure 12 we show in greater detail the influence of the value of γ on the performance of
the AR first phase method. For larger values of γ , control over the fluctuations is achieved for
much smaller values of k; for example, when γ = 10−2, no fluctuations after k = 50 are visible,
while, for γ = 10−3, this is more like k = 250. However, the larger the value of γ , the greater
the effect of the perturbation due to artificial restarts, and so the greater the difference between
π∗(γ ) and π . To show this, we plot both εk and its lower bound for each value of γ ; the lower
bound is clearly visible for γ = 10−2 only, and, for γ < 10−4, this difference is unobservable.

https://doi.org/10.1239/aap/1293113153 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113153


Approximations to QBD processes with infinite blocks 1123

εk

Value of the 
truncation parameter, k

–log10(γ)1
2

3
4

5
0

100
200

300
400

500

0

0.2

0.4

0.6

0.8

1.0

Figure 12: Plot of the error εk against the truncation parameter, k, and log10(γ ) for the Gibson and Seneta
example with N = 25 using the AR first phase technique as γ varies.

8. Conclusion

In conclusion, in addition to presenting for QBDs the analysis of two existing truncation and
augmentation approximation procedures, we have developed two new demonstrably convergent
schemes that are specialized to QBD-type structures. We have also proven, through the
introduction of AR mechanisms, that it may be useful to consider more complex schemes
than simple truncation and augmentation.

We have demonstrated through examples that our two new schemes out-perform their
general-purpose counterparts, and in the case of the AR schemes, this is by quite a margin;
this confirms the usefulness of keeping as much of the structure as possible.

Finally, we have complemented the results of Kroese et al. [5] by showing that the stationary
distribution of the truncated and augmented system may converge to the exact limit even if the
decay rate does not.

Appendix A. Direct jumps to 0

Consider a QBD with direct jumps to level 0, with finitely or infinitely many phases, and
transition matrix

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 A1 0 0 · · ·
B−1 A0 A1 0

. . .

C A−1 A0 A1
. . .

C 0 A−1 A0
. . .

...
...

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Define the first passage probability matrices G and H as

Gij = P[τ < ∞, Xτ = (n − 1, j) | X0 = (n, i)],
Hij = P[τ < ∞, Xτ = (0, j) | X0 = (n, i)],

for all i, j and n ≥ 2, where τ is the first passage time to level n − 1 or below.
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Lemma A.1. The matrix G is the minimal nonnegative solution of (2.1) and the matrix H is
the minimal nonnegative solution of

X = C + A0X + A1GX + A1X, (A.1)

which can be expressed as

H = [I − (A0 + A1G + A1)]−1C (A.2)

if |S| < ∞.

Proof. The statement about G is well known, and given here for the sake of completeness.
Simple probabilistic arguments show that H is a solution of (A.1), which we write as

X = C + A1X + UX, (A.3)

where U = A0 + A1G. We need to prove that H = Xmin, the minimal nonnegative solution
of (A.3).

The matrix U is substochastic and the series NU = ∑
ν≥0(U)ν converges, so that we may

rewrite (A.3) as X = NU (C + A1X) + limν→∞ U νX. Now, consider the equation

Y = NUC + NUA1.

Its minimal nonnegative solution is Ymin = ∑
ν≥0(NUA1)

νNUC, provided that the series
converges. We may also write that

Ymin =
∑
ν≥1

∑
k1,k2,...,kν≥0

U k1A1U
k2A1 · · · A1U

kν C,

where the product [U k1A1U
k2A1 · · · U kν−1A1] is empty for ν = 1, and equal to I , by conven-

tion, in that case. The general term in the series above is the probability that, without violating
the taboo of the levels 0 to n − 1, the process returns k1 times to level n, then moves to level
n + 1, where it will return k2 times without returning to level n, and then moves to level n + 2,
where it will return k3 times without returning to level n + 1, etc., until it reaches level n + ν,
from which it will drop to level 0 after having made kν returns.

The interpretation of Ymin is therefore

(Ymin)ij =
∑
ν≥0

P[τ < ∞, Xτ = (0, j), Lτ−1 = n + ν | X0 = (n, i)],

which shows that the series converges, and that Ymin = H . We can easily verify by direct
substitution that Ymin is a solution of (A.3) and that X ≥ Ymin for any other nonnegative
solution X, which concludes the proof of the first statement. It is then a simple matter to prove
(A.2) when |S| < ∞.

Appendix B. Level-phase independence

Assume that A1 = λI , A−1 = µI , and A0 = (1 − λ − µ)A, where µ > λ > 0 and
λ + µ < 1, and that B = A−1 + A0. By [6, Lemma 6.3.2], π�

n = α�(I − R)Rn for all n,
where α� is the stationary vector of A = A−1 + A0 + A1 and R is the minimal nonnegative
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solution of (1.2). To prove that π�
n = (1 − ρ)ρnα�, we need to show that α� is an eigenvector

of R and that the corresponding eigenvalue is ρ. The equation for R is written in this case as

R = λA + (1 − λ − µ)RA + µR2A

and may be solved by functional iteration. This shows that R is of the form R = s(A) for some
function s(z) = ∑

ν≥0 sνz
ν , so α� is an eigenvector of R and α�R = s(1)α�.

It is readily seen that sν ≥ 0 for all ν, so s(z) is, for z ≥ 0, the minimal nonnegative solution
of

s(z) = λ + (1 − λ − µ)zs(z) + µs2(z).

This minimal solution is

s(z) = 1 − (1 − λ − µ)z − √
(1 − (1 − λ − µ)z)2 − 4λµ

2µ
,

and it is easy to verify that s(1) = ρ, which completes the proof.
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